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Abstract: In Galerkin finite element schemes, the discrete first derivative operator for each spatial dimension

is a square matrix that is skew-symmetric under restrictive assumptions for certain types of discretizations and

boundary conditions. In most settings, however, this desirable property is violated, often only for a few pairs

of nodes. These exceptions can invalidate certain design principles based on the skew-symmetry assumption

made for these operators. This paper demonstrates that algebraic manipulations can be performed to make the

discrete gradient operators of Bernstein polynomial-based finite element methods skew symmetric. Interest in

such discretizations has recently been increasing because they represent natural extensions of second-order

algebraic flux correction schemes to higher-order spaces. We employ the new operators in the context of such

property-preserving methods, mostly based on discontinuous Galerkin discretizations of arbitrary order. Addi-

tional theoretical results for the schemes under investigation are derived, including local and global entropy

inequalities, among others. Moreover, a discussion on the optimality of CFL-like time step restrictions arising in

explicit Runge–Kutta methods shows that our new approach is superior to earlier representatives of operators

employed in similar contexts. These techniques use the monolithic convex limiting paradigm and are applied to

the compressible Euler equations.

Keywords: algebraic flux correction; hyperbolic conservation laws; skew-symmetric discrete gradients; entropy

stability; Bernstein finite elements; monolithic convex limiting
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1 Introduction

Hyperbolic problems are commonly solved numerically using high-resolution schemes. These encompass sta-

bilization and limiting techniques designed for the purpose of obtaining physics-conforming approximations

are, for instance, residual distribution schemes, slope and a posteriori limiters, entropy-based semi-discrete

approaches, smoothness indicators, and/or weighted essentially non-oscillatory (WENO) techniques, see e.g.,

[1]–[6]. For an overview of property-preservation, we refer to the book [7]. Most of the techniques mentioned

herework by blending a certain high-order target schemewith a low-order counterpart to be used in the vicinity

of steep gradients [8]. The main question is how to choose the numerical viscosity locally to preserve accuracy

in smooth regions but avoid formation of spurious numerical solutions. These features include violations of

nonnegativity constraints, Gibbs phenomena, and/or nonentropic results.

In this work, we focus on algebraic flux correction (AFC) schemes, e.g., [9]–[14] because they are failsafe, in

the sense that it is possible to guarantee the validity of various desirable constraints, e.g., the nonnegativity of

certain quantities. Moreover, they are prone to numerical analysis, e.g., [7], [15]–[17] and can also be designed

in a way that a multitude of desirable properties are guaranteed. Usual properties include discrete maximum
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principles [14], nonnegativity constraints [13], entropy stability conditions [18], and well-balancedness [12]. The

latter reference presents a scheme that possesses all of these features at once. As such, it is unique among the

families of high-resolution schemes. Because of such progress, additional improvements of AFC schemes are

called for, and this work is aimed at that purpose.

The first work on algebraic flux correction schemes [19] has spawned many further developments and the-

oretical analyses [10], [11], [13]–[15], [17], [20], [21]. For instance, AFC techniques based on high-order Bernstein

polynomials are presented in refs. [10], [14] for discontinuous Galerkin (DG) methods and classical finite ele-

ments, respectively. Combining the theoretical frameworks developed in the seminal papers by Hoff [22] and

Harten et al. [23], Guermond and Popov [24] propose a new way of analyzing the low-order method, which pro-

vides sufficient numerical dissipation to guarantee the failsafe property of the scheme. In ref. [11] and related

works, this approach is used in the predictor stage of the proposed convex limiting techniques. Kuzmin’s mono-

lithic convex limiting (MCL) paradigm [13] is no representative of such FCT approaches. Instead, it operates on

the semi-discrete level of spatial discretizations, allowing for steady-state calculations [13], [25], [26], implicit

time stepping [26]–[28], and semi-discrete entropy stabilization [18], [28], [29] based on Tadmor’s entropy sta-

bility theory [30], [31]. MCL techniques have since been further developed, e.g., [18], [21], [25], [32] and analyzed

[7], [17]. Following the work of Lohmann et al. [14] on high-order FCT schemes for finite elements based on

Bernstein basis functions, Kuzmin and Quezada de Luna [32] first developed a high-order counterpart of MCL

and later introduced entropy limiting based on Tadmor’s criterion into these algorithms [18], [29]–[31]. Subse-

quently, we extended the approaches in refs. [13], [32] to Bernstein-DG discretizations [25]. Rueda-Ramírez et al.

[21] use MCL techniques in combination with Legendre–Gauss–Lobatto (LGL) bases for DG. These authors were

the first who enforced Tadmor’s entropy stability criterion [30], [31] in the AFC-DG context to stabilize entropy-

producing terms arising from volume integrals. In ref. [21], numerical fluxes across interior boundaries are of

local Lax–Friedrichs (LLF) type. In contrast, here and in ref. [28, Ch. 6], an arbitrary flux is blended with such

an LLF counterpart and entropy limiting can also be performed for blended interfacial fluxes.

The present article addresses the following issues: The employeddiscrete gradient operators inAFC schemes

are generally not skew-symmetric as a result of the type of discretization and/or due to using other than periodic

boundary conditions. Nevertheless, the assumption of skew-symmetry is oftenmade for theoretical purposes [27,

Rem. 4] and in the design of flux limiters [33]. The concept of summation-by-parts, often invoked in the LGL-DG

context [20], [21], [34], [35], yields skew-symmetric discrete gradients seemingly for free, which suggests that,

in this sense, LGL schemes are superior to their Bernstein polynomial-based counterparts [14], [25], [32]. How-

ever, the latter produce significantly less restrictive CFL conditions because the Bernstein nodes are uniformly

distributedwithin the elements as opposed to the LGLnodes. Thus, it isworthwhile to adapt the LGL-summation-

by-parts concept to high-order convex limiting schemes based on the Bernstein basis. Amain aspect of this work

is dedicated to this effort. Bernstein basis functions possess many further desirable properties (see [14], [25], [32]

and the references therein) such as nonnegativity and boundedness of local approximations by the min- and

max-values of nodal values within the elements, which can be exploited for mathematical purposes. We also

demonstrate that a supposedly entropy-stable AFC limiter can actually produce entropy instead of dissipating it

if the non-skew-symmetric version is used instead of our new one. Additionally, this work presents novel theo-

retical results for monolithic flux correction schemes applied to hyperbolic problems. In this regard, the present

paper can be seen as a follow-up to ref. [25], again focusing onDGbut second-order continuous Galerkin schemes

are also discussed.

2 Preliminaries

2.1 Model problem

LetΩ ⊂ ℝd, d ∈ {1, 2, 3}, x ∈ Ω, t ⩾ 0, and let u(x, t) ∈ ℝM ,M ∈ ℕ, be the solution to the conservation law

𝜕u

𝜕t
+∇ ⋅ f (u) = 0 in Ω× (0,∞), (1)
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where ∇⋅ is the matrix-divergence operator applied to the inviscid flux f = f (u) ∈ ℝM×d. To formulate a well-

posed initial-boundary value problem, (1) has to be equipped with the initial condition u(⋅, 0) = u0 and suitable

data u0 = u0(x) ∈ ℝM as well as appropriate boundary conditions. The latter are specified for the test problems

in Section 6. For many specific applications (e.g., scalar problems, shallow water equations, gas dynamics), the

exact solution to (1) is known to satisfy certain admissibility constraints that can be described by constraining

u to lie in a some convex set  ⊂ ℝM . For instance, in the scalar case, M = 1,  is an interval bounded by the

extrema of initial and boundary conditions [36, Ch. 6]. Suppose there exists a convex function U:→ ℝ and a

corresponding flux F:→ ℝd such that F′(u) = U′(u)⊤ f ′(u), then (U, F) is called an entropy pair for the conser-

vation law (1). By the chain rule, a conservation law for the entropy U can be derived under the assumption that

u and U are smooth. In general however, weak solutions to the nonlinear problem (1) can develop discontinu-

ities in finite time. Using, for instance, the concept of vanishing viscosity solutions [36, Sect. 6.3], one can show

well-posedness of weak entropy solutions for the scalar case, if a weak form of the entropy inequality

𝜕U(u)

𝜕t
+∇ ⋅ F(u) ⩽ 0 in Ω× (0,∞) (2)

holds for all (U, F) that are entropy pairs for (1). If discrete versions of (2) are satisfied, ideally in a localizedman-

ner, the occurrence of nonphysicalweak solutions can be averted in numerical approximations,whichmotivates

the use of entropy-stable approximations, e.g., [3], [4], [7], [12], [21].

2.2 Generic monolithic convex limiting discretization

We now summarize the concept of monolithic convex limiting (MCL), first proposed by Kuzmin [13], see also

[7], [18], [21], [25], [32]. This algebraic flux correction (AFC) paradigm operates on the semi-discrete level and is

capable of enforcing a variety of constraints. A generic MCL semi-discretization can be written as

mi

dui
dt

=
∑

j∈i∖{i}
2di j

(
ū∗
i j
− ui

)
. (3)

Here the index i ∈ {1,… ,N} refers to a node,N is the number of unknowns for each variable, and thus the total

number of unknowns isMN . Note that in the system case all components of the solution vector u are interpolated

on the same set of nodes, which are associated with a certain node xi ∈ Ω̄, i.e., we do not consider staggered
approaches. Similarly, mi > 0 is associated with this node and typically represents an entry of a diagonalized

massmatrix. The seti ⊂ {1,… ,N} is the nodal stencil of xi, i.e., the set of nodes x j that directly interactwith xi.

In piecewise linear continuous finite element methods,i is the set of mesh vertices that are nearest neighbors

to node xi in the sense that they are endpoints of a certainmesh edge. Entities featuring two distinct indices such

as the symmetric artificial diffusion coefficient dij = dji ⩾ 0 refer to terms depending on the two nodal values

ui and uj. In the MCL framework, the flux-corrected bar states ū
∗
i j
[13] are algebraically enforced to satisfy user-

defined constraints of convex nature. Upon temporal discretization of (3) with a strong-stability preserving (SSP)

Runge–Kutta (RK) method [37]–[39], Shu–Osher updates can be written as a convex combination of forward

Euler steps

uFE
i
=
⎛⎜⎜⎝1−

𝜏

mi

∑
j∈i∖{i}

2di j

⎞⎟⎟⎠ui +
𝜏

mi

∑
j∈i∖{i}

2di jū
∗
i j
, (4)

where 𝜏 > 0 is the time step. Suppose that ui ∈ i for a certain convex subseti ⊂  of the largest admissible

set. If ū∗
i j
∈ i can be guaranteed for j ∈ i∖{i} and the CFL-like time step restriction

𝜏 ⩽ min
i∈{1,…,N}

mi∑
j∈i∖{i}2di j

(5)

holds, then uFE
i
is a convex combination of the solution at the previous iteration ui and the flux-corrected bar

states ū∗
i j
. In conclusion, by convexity of i, we then have uFE

i
∈ i as well. Recent works, e.g., [33], [40], also

demonstrate howAFC andMCL canbe performedusing non-SSP timediscretizations, including implicitmethods
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and applications to viscous problems. Although they appear promising, these issues shall not be addressed here

since our focus lies on the spatial discretization. The particular choice of the sets i and how to enforce ū∗
i j
∈

i for all j ∈ i∖{i} sets different MCL techniques apart from each other. Before discussing high-order DG

discretizations, we give a brief example of arguably the simplest MCL variant.

2.3 Case study: MCL based on classical finite elements for the Euler equations

We only summarize the steady case here. More information can be found in ref. [7] and the references therein.

Let I be the d × d-identity matrix and let 𝜌 = 𝜌(x, t) ∈ ℝ, 𝒗 = 𝒗(x, t) ∈ ℝd, p = p(x, t) ∈ ℝ denote density,

velocity, and pressure of an ideal polytropic gas. We consider the compressible Euler equations

𝜕𝜌

𝜕t
+∇ ⋅ (𝜌𝒗) = 0, (6a)

𝜕(𝜌𝒗)

𝜕t
+∇ ⋅ (𝜌𝒗𝒗⊤ + p I) = 0, (6b)

𝜕(𝜌E)

𝜕t
+∇ ⋅

(
(𝜌E + p)𝒗

)
= 0, (6c)

where u = [𝜌, 𝜌𝒗⊤, 𝜌E]⊤ is the vector of conserved unknowns (density, momentum, and total energy), and

p = (𝛾 − 1)

(
𝜌E − 𝜌|𝒗|2

2

)
= (𝛾 − 1)𝜌e, (7)

where 𝛾 > 1 is the adiabatic constant and e is the specific internal energy. The (physically motivated) largest

admissible set for (6) and (7) is  = {u = [𝜌, 𝜌𝒗⊤, 𝜌E]⊤ ∈ ℝd+2: 𝜌 ⩾ 0, p ⩾ 0}. Note that due to (7), nonnega-
tivity of pressure is equivalent to the physically motivated constraint that internal energy e may not become

negative. The usual entropy pair for (6) and (7) is given by (U, F) with U = −𝜌log(p𝜌−𝛾 ), F = 𝒗U [41].

Let us discretize (1) using a conforming simplicial mesh and local ℙ1-polynomials with corresponding

Lagrange basis functions𝜑i ∈ C(Ω̄), i ∈ {1,… ,N}, defined implicitly by the interpolation property𝜑i(x j) = 𝛿ij
for all i, j ∈ {1,… ,N}. We then setmi = ∫Ω 𝜑i dx, cij = ∫Ω 𝜑i∇𝜑 j dx and

𝜆i j = 𝜆(ui, uj, ci j∕|ci j|):= max

{|||𝒗i ⋅ ci j∕|||ci j||||||+
√
𝛾 pi∕𝜌i,

|||𝒗 j ⋅ ci j∕
|||ci j||||||+

√
𝛾 p j∕𝜌 j

}
. (8)

For a unit vector nij = cij∕|cij|, (8) corresponds to the largest absolute eigenvalue of the Jacobian of f (ui) or f (uj)
projected onto nij. This estimate for the exact wave speed does not produce states outside of the set [42, App.],

which is why we use (8) to define the diffusion coefficients as follows [24], [43], [44]:

di j = max{𝜆i j|ci j|, 𝜆 ji|c ji|} ∀i, j ∈ {1,… ,N}, i ≠ j. (9)

Next, we define the low-order bar states ūi j =
ui+u j

2
+ (f i−f j ) ci j

2di j
[23], [24] and their MCL counterparts [13]:

ū∗
i j
= ūi j +

f ∗
i j

2di j
, (10)

where f i:= f (ui) and f ∗
i j
= − f ∗

ji
is a flux-corrected counterpart of the target flux fij, which for steady-state cal-

culations can simply be set to fij = dij(ui − uj). The low-order counterpart ūi j of ū
∗
i j
initially appeared in Harten

et al. [23]. Guermond and Popov [24] were the first to use it in the AFC context to analyze the low-order method

that is the first-order predictor in FCT-type convex limiting schemes and, similarly, the low-order version ofMCL

approaches. In either case, the limited antidiffusive fluxes f ∗
i j
are set to zero.
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In general, the least-restrictive constraint that should be enforced for any hyperbolic problem is the admis-

sibility of solutions, i.e., u ∈ . For the compressible Euler equations, we need to ensure that densities remain

nonnegative, which can be achieved by enforcing positivity of the first component of ū∗
i j
=
[
𝜌̄∗
i j
, (𝜌𝒗)∗

i j
, (𝜌E)∗

i j

]
.

Using definition (10) and skew symmetry of f ∗
i j
, this task is accomplished by setting the first component of f ∗

i j

to max
{
−2di j𝜌̄i j,min{ f

𝜌

i j
, 2di j𝜌̄ ji}

}
, where 𝜌̄i j and f

𝜌

i j
correspond to the first component of the low-order bar

state ūi j and the unlimited flux fij, respectively. Next, we can enforce additional constraints such as nonnega-

tivity of pressure and Tadmor’s entropy stability condition [30], [31] by further reducing the magnitude of f ∗
i j
.

These issues are described in detail in refs. [13], [18], [27], respectively, see also [7]. Additionally, the quality of

numerical solutions can be improved by enforcing discrete maximum principles in addition to nonnegativity,

see, e.g., [7], [10], [16], [21], [28], [40]. All of these tasks (and more, for instance, well-balancedness in the case of

the shallow water equations [12]) can be guaranteed simultaneously.

Since nonnegativity of pressure is a nonnegotiable constraint (as is nonnegativity of density), we briefly

summarize the typical MCL pressure fix [13], [21], [25]. For a pair of nodes i ≠ j let f ∗
i j
be the prelimited antidif-

fusive flux. Setting f ∗∗
i j

= 𝛼i j f ∗i j , where the correction factor 𝛼ij = 𝛼ji ∈ [0, 1] is defined via [13]:

𝛼i j =
⎧⎪⎨⎪⎩
Qi j

Ri j
if Ri j > Qi j,

1 otherwise,

(11)

where 𝑤̄i j = 2di jūi j =
[
𝑤̄
𝜌

i j
,
(
𝒘̄
𝜌𝒗

i j

)⊤
, 𝑤̄

𝜌E

i j

]⊤
, f ∗

i j
=
[
f
𝜌,∗
i j
,
(
f
𝜌𝒗,∗
i j

)⊤
, f

𝜌E,∗
i j

]⊤
, and

Qi j = Qji = min
{
𝑤̄
𝜌

i j
𝑤̄
𝜌E

i j
− 1

2
|𝒘̄𝜌𝒗

i j
|2, 𝑤̄𝜌

ji
𝑤̄
𝜌E

ji
− 1

2
|𝒘̄𝜌𝒗

ji
|2},

Ri j = Rji = max
{|𝒘̄𝜌𝒗

i j
|, |𝒘̄𝜌𝒗

ji
|}|f 𝜌𝒗,∗

i j
|+max

{
𝑤̄
𝜌

i j
, 𝑤̄

𝜌

ji

}| f 𝜌E,∗
i j
|

+max
{
𝑤̄
𝜌E

i j
, 𝑤̄

𝜌E

ji

}| f 𝜌,∗
i j
|+max

{
0,

1

2
|f 𝜌𝒗,∗

i j
|2 − f

𝜌,∗
i j

f
𝜌E,∗
i j

}
guarantees that the pressure of the bar state ū∗∗

i j
= ūi j + f ∗∗

i j
∕(2di j ) remains nonnegative. The derivation of (11)

can be found in refs. [13], [28]. The following result is an interesting observation made in the process of this

work.

Lemma 1 (pressure fix yields nonnegative density). Let ui, uj ∈  be arbitrary, ū∗∗
i j

= ūi j + f ∗∗
i j
∕(2di j ), where

dij is given by (9), f
∗∗
i j

= 𝛼i j f ∗i j , and let 𝛼ij be defined by (11). Then the first component of ū
∗∗
i j
is nonnegative.

Proof. For 𝛼ij given by [13, Eq. (92)] or (11), the pressures of the states ū
∗∗
i j

= ūi j + 𝛼i j f ∗i j∕(2di j ) and ū
∗∗
ji
= ū ji −

𝛼i j f
∗
i j
∕(2di j ) are nonnegative [13]. The density and total energy components of the low-order bar states ūi j, ū ji

are also nonnegative [24, Lem. 2.1], see also [23]. Thus, only one of the two terms 𝑤̄
𝜌

i j
+ 𝛼i j f

𝜌,∗
i j

or 𝑤̄
𝜌

ji
− 𝛼i j f

𝜌,∗
i j

can potentially become negative. Let us first consider the case f
𝜌,∗
i j

< 0, where

−𝛼i j f
𝜌,∗
i j

⩽
Qi j

Ri j
| f 𝜌,∗
i j
| ⩽ 𝑤̄

𝜌

i j
𝑤̄
𝜌E

i j
− 1

2
|𝒘̄𝜌𝒗

i j
|2

𝑤̄
𝜌E

i j
| f 𝜌,∗
i j
| | f 𝜌,∗

i j
| = 𝑤̄𝜌

i j
−
|𝒘̄𝜌𝒗

i j
|2

2𝑤̄
𝜌E

i j

⩽ 𝑤̄𝜌

i j

since 𝑤̄
𝜌E

i j
⩾ 0. Thus, the first component of 𝑤̄∗∗

i j
= 2di jū

∗∗
i j
, 𝑤̄

𝜌

i j
+ 𝛼i j f

𝜌

i j
⩾ 0. The case f

𝜌

i j
> 0 is similar. □
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3 Skew-symmetry of discrete gradient operators

3.1 General considerations and second-order continuous Galerkin schemes

Let us oncemore consider aℙ1 orℚ1 continuousGalerkin discretization as described in Section 2.3. If the domain

has only periodic boundaries, then each component Ck of the discrete gradient operator C = (C1,… , Cd ) =
(ci j )

N
i, j=1 is a skew-symmetric N × N matrix due to the divergence theorem. Otherwise,

ci j = ∫
Ω

𝜑i∇𝜑 j dx = −
∫
Ω

∇𝜑i𝜑 j dx + ∫
𝜕Ω

𝜑i𝜑 jn ds =:−c ji + bi j,

where n = n(x) ∈ ℝd denotes the unit outward normal to 𝜕Ω. In this setting, each matrix Ck , k ∈ {1,… , d},
is almost skew-symmetric, with only a few pairs of entries where bij ≠ 0 being exceptions to this rule. For

flux-correction schemes, the skew symmetry of C is often desirable to design new algorithms [33], simplify com-

putations (note that cij = −cji implies 𝜆ij = 𝜆ji in (8) (the computation of 𝜆ij is a significant cost factor in AFC

schemes for systems), and to prove certain theoretical results such as entropy stability [18], see also Section 4.3.2.

Therefore, it is unfortunate that a few boundary nodes invalidate skew symmetry.

We now explain how the issue raised at the beginning of this section can be resolved starting in the already

introduced CG setting. Let us take a step back and remind ourselves how the matrices C arise in the first place.

The strong form of the CG discretization of the conservation law (1) contains the integral

∫
Ω

𝜑i∇ ⋅ f (uh ) dx, (12)

which can generally only be approximated via quadrature. The group finite element formulation [45], [46]:

f h:=
N∑
j=1

f j𝜑 j ≈ f (uh ) (13)

interpolates the inviscid flux f (uh) in the finite element space. On simplicial meshes with periodic boundary

conditions, this approach can be interpreted as nodal quadrature [46]. Inserting (13) into (12), we obtain

∫
Ω

𝜑i∇ ⋅ f (u) dx ≈
N∑
j=1

f j ⋅ ∫
Ω

𝜑i∇𝜑 j dx =
N∑
j=1

f j ⋅ ci j =
∑

j∈i∖{i}
(f j − f i ) ⋅ ci j, (14)

which is how the discrete gradient operators arise in AFC schemes. The last equality in (14) holds because the

row sums of each Ck are zero due to the partition-of-unity property
∑N

j=1𝜑 j(x) = 1 for any x ∈ Ω̄. Replacing cij
in (14) by some c̃i j ∈ ℝd such that c̃i j = 0 if j ∉ i is equivalent to adding

∑
j∈i∖{i}

(f j − f i ) ⋅ (c̃i j − ci j ) (15)

to (14). If for all k ∈ {1,… , d} the row sums of each C̃k in C̃ = (C̃1,… , C̃d ) = (c̃i j )
N
i, j=1 sum to zero, and the

columns of the matrices Ck and C̃k add up to the same values ck
j
stored in c j =

(
c1
j
,… , cd

j

)
, then

N∑
i=1

∑
j∈i∖{i}

(f j − f i ) ⋅ (c̃i j − ci j ) =
N∑
j=1

f j ⋅

(
N∑
i=1

c̃i j −
N∑
i=1

ci j

)
=

N∑
j=1

f j ⋅ (c j − c j ) = 0.
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Thus, the proposed modification does not lead to a change in the global mass balance. Note that by writing the

correction term (15) using a sum over only indices j ≠ i, we may choose the diagonal entries c̃ii arbitrarily. This

possibility is what will allow us to define the skew-symmetric discrete gradients below.

Remark 1. In this paper, we are referring to a matrix A = (ai j )
N
i, j=1 as skew symmetric, if aij + aji = 0 for all

i, j ∈ {1,… ,N}, i ≠ j, which does not imply zero diagonal entries. Their values are unimportant since their use

can be avoided in AFC schemes via formulations such as (15).

An additional constraint that is desirable in the context of high-order AFC schemes is the sparsity of C̃ [10],

[14], [20], [21], [25], [32], [47]. By that we refer to the property that every nonzero offdiagonal entry corresponds

to two distinct nodes that are closest neighbors (in a certain metric) in the submesh obtained by using each

Bernstein node as a degree of freedom of a continuous subcell ℙ1 or ℚ1 (depending on the element geometry)

discretization [13], [14], [25]. The corresponding stencil ̃ i will be further specified below. Each pair of nodes

(i, j) with j ∈ ̃ i∖{i} corresponds to one antidiffusive flux that needs to be limited and incorporated. Thus, the
fewer elements in the stencils ̃ i the better in terms of computational resources.

Thus, we may replace the discrete gradient operator C by matrices C̃ of the same size satisfying

c̃i j = −c̃ ji ∀i, j ∈ {1,… ,N}, i ≠ j, (16a)

N∑
j=1

c̃i j = 0, (16b)

N∑
i=1

(ci j − c̃i j ) = 0 ∀ j ∈ {1… ,N}, (16c)

c̃k
i j
≠ 0 ⇒ i = j or i and j are closest neighbors in the stencil ̃ i. (16d)

The remainder of this section is dedicated to constructing suchmatrices C̃. For second-order continuousGalerkin

schemes with weakly-enforced boundary conditions, C satisfies (16b)–(16d). Thus finding a C̃ that also fulfills

(16a) is simple (which is why no originality is claimed here, although we found no works using these matrices in

a similar context). Given the original operatorsC and symmetric boundarymatricesB = (B1,… ,Bd ) = (bi j )
N
i, j=1,

we only have to adjust a few entries of C, which can be done as follows:

c̃i j =
⎧⎪⎨⎪⎩

ci j −
1

2
bi j if i ≠ j,

cii +
1

2

∑
k∈i∖{i}

bik otherwise.

Proving the validity of (16) for this operator is straightforward. So far, we have focused on globalmatrices. Below,

we discuss elementwise operators because these become relevant in the high-order and/or DG cases.

3.2 Skew-symmetric discrete gradient operators for Bernstein polynomials

In Section 3.1, we established that the group finite element formulation [45], [46] produces the discrete gradients

C = (C1,… , Cd ) = (ci j )
N
i, j=1, ci j = ∫

Ω

𝜑i∇𝜑 j dx, (17)

where {𝜑i}Ni=1 are the Lagrange basis functions ofℙ1 orℚ1 continuous finite element spaces. Let us now consider

elementwise operators C for a certain reference element K ⊂ ℝd and the Bernstein basis. These matrices are

obtained by replacing the number of rows and columns N and the integration domain Ω in (17) by the local

number of unknowns and the reference element K, respectively. With some abuse of notation, we avoid making
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this distinction, to avoid redefining all operators or carry additional indices. For each of the below element types,

we construct matrices C̃ = (C̃1,… , C̃d ) = (c̃i j )
N
i, j=1, satisfying conditions (16).

3.2.1 1D elements

Denote the 1D reference element by K = [0, 1]. The Bernstein polynomials of degree p ∈ ℕ associated with the

nodes xk = k∕p are 𝜑 p

k
(x) =

(
p

k

)
(1− x) p−kxk , k ∈ {0,… , p}. The derivative operator C = C1 = (ci j )

p

i, j=0, ci j =
∫ 1

0
𝜑

p

i
(x)(𝜑

p

j
)′(x) dx is a dense matrix with zero row sums, and its column sums read

p∑
i=0

1

∫
0

𝜑
p

i
(x)
𝜕𝜑

p

j
(x)

𝜕x
dx =

1

∫
0

𝜕𝜑
p

j
(x)

𝜕x
dx = 𝜑 p

j
(1)− 𝜑 p

j
(0) =

⎧⎪⎪⎨⎪⎪⎩

−1 if j = 0,

1 if j = p,

0 otherwise.

(18)

Lemma 2. The tridiagonal matrix (originally proposed by Pazner [20, Eq. (21)] for an LGL-FCT scheme)

C̃ = (c̃i, j )
p

i, j=0, c̃1,1 = c̃l,l−1 = −0.5, c̃ p, p = c̃l−1,l = 0.5 (19)

for l ∈ {1,… , p} and all other entries set to zero, satisfies conditions (16).

Proof. Condition (16c) follows from (18). The rest is obvious, see also Pazner [20]. □

Remark 2. Applying the theory by Lohmann et al. [14, App. B] to the case of discrete gradients, we obtain alter-

native sparsified operators given by [14, Eq. (B.4)]. Note that this matrix satisfies all of the conditions (16) except

for (16a). As we quantify in Sections 5 and 6, the use of [14, Eq. (B.4)] requires significantly smaller time steps for

large p than its skew-symmetric counterpart defined in Lemma 2.

Lemma 3. Let {𝜓k}
p

k=0 be the piecewise linear continuous Lagrange basis interpolating the Bernstein nodes

{k∕p} p

k=0 of the reference element [0, 1]. Then the following matrix coincides with (19):

C̄ = (c̄i j )
p

i, j=0, c̄i j =
1

∫
0

𝜓i(x)
𝜕𝜓 j(x)

𝜕x
dx. (20)

Proof. For i ≠ j, the integral in (20) reduces to a single subcell connecting nodes xi and xj if they are closest

neighbors. The subcell length is the reciprocal of the constant slope of 𝜓
p

j
and so it remains to integrate 𝜓

p

i
,

which yields precisely c̃i j = ±1∕2. The case i = j follows from c̄ii = 1

2
∫ 1

0
𝜕𝜓i(x )

2

𝜕x
dx. □

At first, it seems natural to extend the definition of subcellℙ1∕ℚ1 Lagrange polynomials to the multidimen-

sional case and use an analog of (20) to define sparse discrete gradients. However, similar to the case of dense

discrete gradients C, these matrices are not fully skew-symmetric because of entries corresponding to pairs of

nodes that are neighbors on the same boundary segment of the element. Thus, we have to find other matrices

to achieve skew symmetry, which we focus on next.

3.2.2 Box elements

Let us now discuss the case of ℚ p elements, i.e., quadrilaterals in 2D, hexahedra in 3D, or higher-dimensional

analogues. For generality, we allow varying polynomial degrees pl in each spatial direction l ∈ {1,… , d}. The
Bernstein basis functions {𝜑i}Ni=1 are simply tensor-products of the one-dimensional Bernstein polynomials and
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N =∏d

l=1( pl + 1). We choose a lexicographical ordering of basis functions and corresponding node indices i =
(i1,… , id) within the reference element, where to obtain the element-global index iwe first iterate over all basis

functionswith respect to the first spatial variable, i.e., going through all i1 ∈ {0,… , p1} before incrementing the
subsequent one i2 once and so forth. This common approach enables us tomimic the 1D case by using Kronecker

products A⊗ B ∈ ℝ(kl)×(kl) of matrices A ∈ ℝk×k , B ∈ ℝl×l. By Il ∈ ℝl×l, we denote the identity matrix and by

1l ∈ ℝl the vector of ones.

Lemma 4. Let C̃ pk
∈ ℝ( pk+1)×( pk+1) be given by (19) for pk = p. Then the matrices C̃ = (c̃i j )

N
i, j=1,

C̃ = (C̃1,… , C̃d ), C̃k = 1∏d
l=1
l≠k
( pl + 1)

[
IΠk−1

l=1 ( pl+1)
⊗ C̃ pk

⊗ IΠd
l=k+1( pl+1)

]
∈ ℝN×N ,

satisfy conditions (16) for multidimensional box elements (quadrilaterals, hexahedra, etc.).

Proof. If c̃k
i j
≠ 0 and i = (i1,… , id) ≠ j = (j1,… , jd), then il = jl for all l ∈ {1,… , d}∖{k} and ik = jk ± 1. This

property follows from the definition of C̃with the lexicographical numbering of nodes and implies sparsity (16d).

Similarly, considering such a pair of nodes, skew symmetry (16a) can be shown by definition of the 1D matrices

C̃ pk
. Furthermore, let A,B, C,D be matrices such that products AC and BD can be formed, then the Kronecker

product satisfies the relationship (A⊗ B)(C⊗ D) = (AC)⊗ (BD). Thus,

C̃k(1 p1+1⊗…⊗ 1 pd+1 ) =
1∏d

l=1
l≠k
( pl + 1)

[
1( p1+1)…( pk−1+1)⊗ 0 pk+1⊗ 1( pk+1+1)…( pd+1)

]
= 0N

because C̃ pk
1 pk+1 = 0 pk+1, where 0l ∈ ℝl is the zero vector. Hence, (16b) holds. Finally, to show (16c), we recall the

definition ck
j
= ∫

K

𝜕𝜑 j

𝜕xk
dx = ∫

𝜕K
𝜑 jnk ds, where K ⊂ ℝd is the reference element and nk is the kth component of

the normal to 𝜕K. Note that for fixed j ∈ {1,… ,N}, k ∈ {1,… , d}, 𝜕K in this integral can be replaced by a single

boundary face Γ, on which 𝜑 j is equal to a Bernstein polynomial in (d − 1) variables. Since Γ is a box element

inℝd−1 with volume |Γ| = 1 and all Bernstein polynomials possess equal mass, that is ∫Γ 𝜑i ds = |Γ|∕Nk , where

Nk =
∏d

l=1
l≠k
( pl + 1) is the number of nodes on Γ, it follows that

N∑
i=1

ck
i j
=

N∑
i=1 ∫

K

𝜑i

𝜕𝜑 j

𝜕xk
dx = ck

j
= 1∏d

l=1
l≠k
( pl + 1)

×

⎧⎪⎪⎨⎪⎪⎩

−1 if jk = 0,

0 if jk ∈ {1,… , p− 1},

1 if jk = p.

This is equal to the corresponding row sum of C̃k because

(1 p1+1⊗…⊗ 1 pd+1 )
⊤C̃k = 1∏d

l=1
l≠k
( pl + 1)

[
1
⊤
( p1+1)…( pk−1+1)

⊗ 1
⊤
pk+1

C̃ pk
⊗ 1

⊤
( pk+1+1)…( pd+1)

]

and 1⊤
pk+1

C̃ pk
= [−1, 0,… , 0, 1], see (19). Thus, all properties in (16) hold. □

3.2.3 Simplices

We now move on to the reference simplex K = conv{0d, e1,… , ed} ⊂ ℝd, where conv{} denotes the convex
hull and ei is the ith unit vector in ℝd. The barycentric coordinates are Λ0(x) = 1−∑d

i=1xi, Λi(x) = xi for i ∈
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{1,… , d}, and the Bernstein nodes shall be numbered using a multi-index notation i = (i0,… , id) similar to the

case of box elements. The set of multi-indices representing nodes in K is

 =  ( p, d) =
{
(i0,… , id ) ∈ {0,… , p}d+1:

d∑
j=0

i j = N:=
(
p+ d

p

)}

and the (isotropic) pth-degree Bernstein basis functions read 𝜑
p

k
(x) = p!∏d

l=0kl!
∏d

l=0Λl(x)
kl , k ∈  .

3.2.3.1 The ℙ1 triangle

Before studying the general simplex case, let us briefly focus on theℙ1-triangle in 2D. By (16a)–(16c), all matrices

satisfying (16) can be expressed as

C1 = 1

4

⎡⎢⎢⎢⎣
−1 a 1− a

−a 1 a− 1

a− 1 1− a 0

⎤⎥⎥⎥⎦
, C2 = 1

4

⎡⎢⎢⎢⎣
−1 b 1− b

−b 0 b

b− 1 −b 1

⎤⎥⎥⎥⎦
, a, b ∈ ℝ.

The magnitude of nonzero off-diagonal entries in these matrices affects the time step restriction of convex lim-

iting schemes due to (9) and (5). Thus, all nonzero off-diagonal entries of C1 and C2 should generally have the

same absolute value if possible (see also Section 5 for further discussions on this issue). By this argument, it

makes sense to only choose a, b ∈ {0, 0.5, 1}. Figure 1 shows various choices including three (Figure 1b–d) out
of the possible nine combinations of parameters a and b in addition to the usual, non-skew-symmetric matrices

C (Figure 1a) along with a variant, where a, b ∉ {0, 0.5, 1} (Figure 1e).
The case a = 1, b = 0 leads to dimensional decoupling and inhibits optimal convergence rates, see the

numerical examples in Section 6.2. Setting a = 0, b = 1 corresponds to an unusual gradient, where coupling

occurs in a direction that is opposite to the one in the previous case. This scheme exhibits optimal convergence

behavior but requires significantly more time steps than the choice a = b = 0.5, which seems to be optimal in

terms of CFL conditions. The gradient in Figure 1e corresponds to a discrete gradient that satisfies conditions

(16) but uses off-diagonal entries of varying magnitude. As a result, the resulting CFL condition is much more

restrictive, however, this method also exhibits optimal convergence rates. We have not experimented with gra-

dients other than the ones shown in Figure 1 because the two matrices C1, C2 corresponding to any other choice

of a, b ∈ {0, 0.5, 1} would be dimensionally inconsistent to each other.
In conclusion, uniqueness of simplicial discrete gradients satisfying conditions (16) does not hold. Note

that for box elements the operators specified earlier are only unique because of their tensor-product structure

(not possible here). Based on the summarized results obtained with each of the schemes in Figure 1 (detailed

in Section 6.2), it makes sense to generalize the gradient in Figure 1d. In the remainder of this section, we

demonstrate that this approach is feasible for general high-order simplices in arbitrary space dimensions.

Figure 1: Five different options for how to choose C̃ on triangles, red represents entries in C1, blue represents entries in C2.
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3.2.3.2 General simplices

The realization that the gradient in Figure 1d appears to be optimal for ℙ1-triangles implies the following struc-

ture for arbitrary p, d ∈ ℕ: Conditions (16a)–(16c) fully determine the values of diagonal entries since

ck
j
=

N∑
i=1

c̃k
i j
=

N∑
i=1

c̃k
i j
+

N∑
i=1

c̃k
ji
=

N∑
i=1

(
c̃k
i j
+ c̃k

ji

)
= 2c̃k

j j
+

N∑
i=1
i≠ j

(c̃k
i j
− c̃k

i j
) = 2c̃k

j j
⇒ c̃k

j j
=

ck
j

2
.

In any matrix row i, the offdiagonal entry in the jth column is nonzero only if the multiindices i and j corre-

spond to nodes that are nearest neighbors. The magnitude of offdiagonal entries should be constant, and their

sign should be determined by the spatial direction. If the node x j lies in positive direction w.r.t. any Cartesian

coordinate, then c̃k
i j
> 0 and c̃k

i j
< 0 otherwise for all k ∈ {1,… , d}, i.e., for all matrices. For closest neighbors

other than these nodes (diagonal neighbors), the sign of c̃k
i j
depends onwhether the diagonal direction is positive

w.r.t. the coordinate xk . If d > 2, there are diagonal neighbors with the same multiindex component for the xk
direction. The corresponding indices are set to zero in C̃k .

To formalize these considerationsmathematically, we require some notation. For consistencywith previous

works [25], [32], we define connectivity on simplices as follows.

Definition 1. Let i, j ∈  . If ∃k, l ∈ {0,… , p}, k ≠ l, such that j = i+ ek − el, where ek,l are the kth and lth unit

vectors in ℝd+1, respectively, then we say j ∈ ̃ i, i.e., j is in the local stencil ̃ i.

In addition, let

s = 1

2(d − 1)!
(

p+d−1
p

) = p!
2( p+ d − 1)! (21)

denote half the mass of a pth-degree Bernstein polynomial on the (d − 1)-dimensional reference simplex. Fur-

thermore, let ck
j
= ∫

𝜕K
𝜑 jnk ds be as before, and for i, j ∈  , define

c̃k
i j
:=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

−s∕d if ( j ∈ ̃ i ) ∧ [( j0 = i0 + 1) ∨ ( jk = ik − 1)],

s∕d if ( j ∈ ̃ i ) ∧ [( j0 = i0 − 1) ∨ ( jk = ik + 1)],

−s if (i = j) ∧ (i0 > 0) ∧ (ik = 0),

s if (i = j) ∧ (i0 = 0) ∧ (ik > 0),

0 otherwise.

(22)

Lemma 5. The matrices C̃k = (c̃k
i j
)i, j∈ = (c̃k

(i0,…,id )( j0,…, jd )
)i, j∈ given by (22) satisfy conditions (16).

Proof. By Definition 1, i ∉ ̃ i for all i ∈  . Therefore, all cases in (22) are exclusive, and c̃k
i j
is well defined.

Sparsity (16d) is built into Definition 1, and skew symmetry (16a) is proved by observing that for i ≠ j,

c̃k
ji
=

⎧⎪⎪⎨⎪⎪⎩

−s∕d if (i ∈ ̃ j ) ∧ [(i0 = j0 + 1) ∨ (ik = jk − 1)],

s∕d if (i ∈ ̃ j ) ∧ [(i0 = j0 − 1) ∨ (ik = jk + 1)],

0 otherwise,

=
⎧⎪⎨⎪⎩

s∕d if ( j ∈ ̃ i ) ∧ [( j0 = i0 + 1) ∨ ( jk = ik − 1)]

−s∕d if ( j ∈ ̃ i ) ∧ [( j0 = i0 − 1) ∨ ( jk = ik + 1)]

0 otherwise

⎫⎪⎬⎪⎭
= −c̃k

i j
.
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We show (16c) by proving that

c̃k
j j
= 1

2
ck
j

∀ j ∈ {1,… ,N}, k ∈ {1,… , d}, (23)

which, together with (16a) and (16b) (to be proven last), implies (16c). To better illustrate how (23) can be shown,

let us consider the example sketched in Figure 2. The red nodes are precisely those corresponding to the nonzero

diagonal entries in (22). These are set in accordance with (23), as are the entries for black and blue nodes:

Diagonal entries for the former are zero because these nodes are either within the element interior or lie on

a boundary where the respective component of the normal appearing in ck
j
is zero. The blue nodes are degrees

of freedom for which the Bernstein polynomial is nonzero on more than one boundary segment, with the cor-

responding normal component being nonzero on precisely two (also for d > 2) of these, which depends on k.

These two integrals cancel, which is consistent with definition (22).

Let us now rigorously prove (23) for (22) by formalizing these exemplified considerations in all required

cases: If j0 jk > 0 (black nodes), then ck
j
= 0 and (22) is consistent with (23) because c̃k

j j
= 0. For j0 > 0 = jk (red

nodes not opposite the origin), the integral ck
j
= ∫

𝜕K
𝜑 jnk ds can be reduced to a (d − 1)-dimensional reference

simplex, on which 𝜑 j is a Bernstein polynomial in d − 1 variables. The component nk of the normal to this

boundary is always−1, thus, ck
j
= −2s by (21), and c̃k

j j
= −s. If j0 = 0 and jk > 0 (red nodes opposite the origin),

the situation is exactly reversed, and by similar arguments (including transformation to the reference simplex),

we obtain ck
j
= 2s = 2c̃k

j j
. In the case j0 = jk = 0 (blue nodes), contributions to the integral ck

j
arise fromprecisely

two boundaries, one of which is always opposite the origin. These two integrals are clearly of opposite sign.

Invoking transformation rules, one can show that theirmagnitudes are equal. Hence, ck
j
= 0, which is consistent

with (22) because c̃k
j j
= 0. Thus, we have shown (23).

It remains to prove (16b), where, for clarity, we also distinguish between all relevant cases based on

the row multiindex i ∈  : For i0 = p, we have c̃k
ii
= −s, precisely d positive, and no negative entries in the

row. Similarly, for ik = p, c̃k
ii
= s, and the other d nonzero row entries are negative. For any other vertex,

i.e., ∃l ∈ {1,… , d}∖{k} with il = p (for d = 2, these are blue nodes in Figure 2), we have c̃k
ii
= 0. The nodes

with j0 = 1, jl = p− 1 and jk = 1, jl = p− 1 each contribute one negative and one positive row entry, of which

there are no more nonzero ones. We have now dealt with all corners of the simplex. At this stage, it makes

sense to restrict ourselves to the case d > 1 (in 1D, it can easily be shown that (22) coincides with (18)). We

define q:= |{l ∈ {1,… , d}∖{k}: il > 0}|, where | ⋅ | denotes the cardinality of a set. For i0 = ik = 0, we have

c̃k
ii
= 0 and there are precisely q negative and q positive entries in row i, which correspond to j0 = i0 + 1 and

jk = ik + 1, respectively. For i0 = 0 < ik < p, we have c̃k
ii
= s. The negative row entries correspond to either j =

i+ e0 − ek (one entry), j0 = i0 + 1 (q additional entries), or jk = ik − 1 (d − 1 additional (diagonal) neighbors).

Moreover, there are precisely q positive entries in that row,which correspond to jk = ik + 1. Thus, the row sum is

s− s

d
(1+ q+ d − 1)+ s

d
q = 0. The case ik = 0 < i0 < p is similar, andweobtain−s− s

d
q+ s

d
(1+ d − 1+ q) = 0

for the row sum. Finally, for 0 < i0,k < p, we have c̃k
ii
= 0 and the row sum is − s

d
(1+ q+ d − 1)+ s

d
(1+ d −

1+ q) = 0. We have thus shown (16b), which together with (23) concludes the proof of (16c) as well as that of

Lemma 5. □

Figure 2: Bernstein nodes of theℙ4 triangle and correspond-

ing multiindices.
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3.2.4 Prisms

Finally, we study prismatic cells (also called wedges) in ℝ3. These are tensor products of a triangular element

and an interval, which is exploited here. For simplicity, wemake the assumption that the spatial dimensions are

numbered such that the reference element is K =△× [0, 1], where△= conv{(0, 0)⊤, (1, 0)⊤, (0, 1)⊤}. We allow

the Bernstein basis functions to be of different orders pxy, pz ∈ ℕ on the triangle and the interval, respectively.

The Bernstein basis functions are now tensor products of the triangular Bernstein polynomials and the 1D basis.

We define n =
(

px y+2
px y

)
as the number of nodes on△.

Lemma 6. Let C̃ pz
be given by (19) for p = pz and C̃

x, C̃ y ∈ ℝn×n be given by (22) for p = pxy and let

C̃1 = 1

pz + 1
I pz+1⊗ C̃x, C̃2 = 1

pz + 1
I pz+1⊗ C̃ y, C̃3 = 1

( pxy + 1)( pxy + 2)
C̃ pz

⊗ In.

Then the matrices C̃ = (C̃1, C̃2, C̃3 ) satisfy conditions (16).

Proof. The proof (omitted for brevity) follows those for quadrilaterals and simplices, see Lemmas 4 and 5. □

3.3 Implementation aspects

The GitHub repository [48] was published together with the first DG-MCL paper [25]. It provides codes for com-

puting the discrete gradient operators on simplices following [32]. This repository has been updated to include

both the old and new sparsification approaches for all element geometries considered in this work.

Having discussed various geometry reference elements, let us briefly summarize the requiredmodifications

to obtain local discrete gradients on actual mesh elements. Let Ĉ = (Ĉ1,… , Ĉd ), Ĉk = (ĉi j )
N
i, j=1 for k ∈ {1,… , d}

be the reference element matrices and let adj( J) denote the adjugate of the Jacobian matrix J to the transforma-

tion for mapping the reference element to physical cells. Then all entries of the corresponding discrete gradient

operators on physical cells are obtained via ℝd ∋ ci j = adj( J )⊤[ĉ1i j,… , ĉd
i j]
⊤. Here we assumed linearity of the

transformation to factor out adj( J)⊤. Whether the discrete gradients defined in this manner are suitable for non-

linear mappings too is yet to be determined. We refer to ref. [21, App. B] for a discussion regarding curvature

and nonlinear transformations in the very similar LGL-AFC context.

4 Theoretical results for Bernstein-DG-AFC schemes

4.1 Notation

The superscript e ∈ {1,… , E} generally denotes the element index, where E is the number of mesh cells. The
global solution uh is obtained from local contributions ue

h
via uh =

∑E

e=1u
e
h
. A single subscript index refers to

local nodes within the element. Two subscripts indicate interplay between distinct degrees of freedom, e.g.,

volumetric diffusion coefficients de
i j
(here i, j are local indices of nodes within Ke). If subscripts are separated

by a comma, this indicates coupling across element boundaries, e.g., interfacial diffusion coefficients de
i,k
. Let  e

i

denote the set of (interior) boundary segments Γe
k
that the node xe

i
belongs to. For fixed k ∈ ℕ, there exists a

unique node xe
′

i′
at the same location as xe

i
∈ 𝜕Ke. To ease readability, these quantities are denoted using a hat

symbol, e.g., the degrees of freedom associated with the same location as xe
i
but located within the neighbor

element that shares face Γe
k
with Ke is ûe

i,k
(not ue

′

i′
).
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The semi-discrete AFC discretization for the Bernstein-DG discretization reads

me
i

due
i

dt
=
∑
j∈ e

i

[
de
i j

(
ue
j
− ue

i

)
− (f (ue

j
)− f (ue

i
)) ⋅ c̃e

i j
+ f e,∗

i j

]

+
∑
k∈ e

i

[
de
i,k

(
ûe
i,k
− ue

i

)
− (f (ûe

i,k
)− f (ue

i
)) ⋅ ce

i,k
+ f e,∗

i,k

]
, (24)

where

me
i
=

∫
Ke

𝜑e
i
dx, de

i j
= max

{|ce
i j
|𝜆e

i j
, |ce

ji
|𝜆e

ji

}
, ce

i,k
= 1

2∫
Γe
k

𝜑e
i
ne
k
ds, de

i,k
= |ce

i,k
|𝜆e

i,k
, (25)

and ne
k
is the unit normal to Γe

k
pointing outside of Ke. The volumetric and interfacial wave speeds 𝜆e

i j
and 𝜆e

i,k
in

the directions c̃e
i j
∕|c̃e

i j
| and ce

i,k
∕|ce

i,k
| depend on ue

i
and ue

j
or ue

i
and ûe

i,k
, respectively. In this section, we generally

only assume (16b) and (16c) for entries of the discrete gradient operator. The volumetric and interfacial limited

antidiffusive fluxes f e,∗
i j

and f e,∗
i,k

are obtained from their unlimited counterparts f e
i j
and f e

i,k
by enforcing various

constraints via MCL. These aspects [7], [25] need not be addressed here.

4.2 General results

For completeness, we reformulate an already established result [25, Lem. 1] in the context of quadrature.

Lemma 7 (recovery of the target scheme). If no limiting is performed, i.e., if f e,∗
i j

= f e
i j
and f e,∗

i,k
= f e

i,k
for all unlim-

ited antidiffusive fluxes defined as in ref. [25], then (24) is equivalent to the DG target scheme

∫
Ke

𝜑e
i

𝜕ue
h

𝜕t
dx−

le∑
j=1
𝜔e

j
f(ue

h
(qe

j
)) ⋅∇𝜑e

i
(qe

j
)+
∑
k∈ e

i

le
k∑
j=1
𝜔e
k, j
𝜑e
i
(qe

i
)fne

k
(ue

h
(qe

i
), ûe

h
(qe

i
)) = 0

for all e ∈ {1,… , E}, i ∈ {1,… ,N}, where 𝜔e
j
,qe

j
are the le quadrature weights and points used to approximate

the nonlinear volume integral, and 𝜔e
k, j
, xe

k, j
are the le

k
quadrature weights and points used to approximate the

boundary integral containing the target numerical flux fne
k

(
ue
h
, ûe

h

)
in direction ne

k
.

Proof. The claim reformulates [25, Lem. 1], which assumes exact integration, using quadrature rules. □

As discussed in ref. [25], the similar structure of volumetric and interfacial terms in (24) allows for a combi-

nation of the two by adjusting the definition of local stencils and extending definitions of volumetric terms to

include their interfacial counterparts. In this paper, we simply write sums over indices j ≠ i (with some abuse of

notation) to indicate that both types of couplings are considered. Using this convention, the forward Euler time

discretization reads

ue,FE
i

= ue
i
+ 𝜏

me
i

∑
j≠i

[
de
i j

(
ue
j
− ue

i

)
−
(
f e
j
− f e

i

)
⋅ ce

i j
+ f e,∗

i j

]
= ue

i
+ 𝜏

me
i

∑
j≠i

2de
i j

(
ūe,∗
i j

− ue
i

)
,

where ue
i
and ue,FE

i
are the old and new nodal values. Next, we adapt [24, Thm. 4.7] to our setting.

Proposition 1 (fully discrete local entropy inequalities, [24]). Consider an explicit SSP time discretization of (24).

The low-order method, in which f e,∗
i j

= f e,∗
i,k

= 0, satisfies the local discrete entropy inequalities

Ue,FE

i
⩽ Ue

i
+ 𝜏

me
i

∑
j≠i

[
de
i j

(
Ue
j
− Ue

i

)
−
(
Fe
j
− Fe

i

)
⋅ c̃e

i j

]
(26)

w.r.t. all entropy pairs (U, F) consistent with system (1) if the CFL condition (5) holds.
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Proof. Our low-order method fits in the framework of [24, Thm. 4.7] and the proof directly carries over. □

Remark 3. Inequalities such as (26) cannot be derived for flux-limiters because (26) is based on properties that

hold for ūi j but not for ū
∗
i j
in the MCL case nor for FCT-like alternatives as in refs. [11], [44]. Thus, results akin to

Proposition 1 are of limited practical relevance except for the analysis of first-order schemes. For comments on

which entropy conditions should be enforced, we refer to refs. [7], [27] and the references therein.

Proposition 2 (local conservation property). Let 𝛼e
i,k
∈ [0, 1]m be the vectors of effective correction factors, with

which each component of the interfacial antidiffusive flux f e
i,k
is multiplied to obtain f e,∗

i,k
for (24), then

d

dt∫
Ke

ue
h
dx = −

N∑
i=1

∑
k∈ e

i

∫
Γe
k

𝜑e
i

[(
1m − 𝛼e

i,k

)
⚬ f LLF

ne
k

(
ue
i
, ue

i,k

)
+ 𝛼e

i,k
⚬ fne

k

(
ue
h
, ue

h,k

)]
ds,

where f LLF
n

(u, 𝑣) = 1

2
[(f(u)+ f(𝑣)) ⋅ n+ 𝜆n(u, 𝑣)(u− 𝑣)] is the local Lax–Friedrichs (LLF) flux and ⚬ denotes

componentwise multiplication of vectors of the same size.

Proof. Exploiting de
i j
= de

ji
, (16b) and (16c), skew-symmetry of antidiffusive fluxes, as well as the definitions of

ce
i,k
and of f e

i,k
, see [25, Eq. (4.3)], we sum (24) over all local nodes, which yields the claim. □

The following two results were implied in ref. [25] but have not been formulated as such.

Proposition 3 (preservation of global bounds, [13], [24]). Consider an SSP time discretization of (24) satisfying

the CFL condition (5). Let ue
i
, ūe,∗

i j
∈  for all i ∈ {1,… ,N}, j ≠ i, and all element indices e, where is the largest

admissible set. Then the solution at the next time step is also in.

Proof. Again, it suffices to consider the forward Euler case, in which the updated solution ue,FE
i

is a convex

combination of ue
i
and the ūe,∗

i j
under the CFL condition (5). The claim follows because is convex. □

Proposition 3 implies that constraints such as global lower and upper bounds hold for numerical solutions to

scalar conservation laws. For the Euler equations, limiting of ūe,∗
i j

w.r.t. density and pressure (see Section 2.3)

can be used to guarantee nonnegativity of these two quantities (naturally only up to machine precision). For

shock-capturing purposes, limiting w.r.t. local bounds may also be desirable.

Corollary 1 (preservation of local bounds, [13], [24]). Consider an SSP time discretization of (24) satisfying the

CFL condition (5). Let ue
i
, ūe,∗

i j
∈ i for all j ≠ i in the DG stencil (volumetric and interfacial neighbors, the former

depending on the sparsity of C̃e), wherei ⊆  is convex. Then ue,FE
i

∈ i.

Proof. The arguments used in the proof of Proposition 3 directly carry over to this setting. □

4.3 Results exploiting skew-symmetric discrete gradients

4.3.1 Two issues regarding sequential limiters

In the process of algebraic flux correction, it is not uncommon to perform more than one limiting step. For the

Euler equations (and similar systems), we adopt the sequential approach [13], [21], [25], [49] of first adjusting den-

sity, followed by limiting of velocity components and specific total energy (the latter are limited independently

of each other). Additionally, a pressure correction should always be performed and an entropy fix may also be

desirable. These two steps each multiply all components of the antidiffusive flux by the same correction fac-

tors. However, due to the sequential approach used to limit specific unknowns rather than conserved ones [49],
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these synchronized steps may violate the maximum principles enforced beforehand for specific unknowns. This

issue may not be of critical importance because such constraints are used for shock-capturing purposes rather

than for enforcing nonnegotiable solution properties. Nevertheless, it would be desirable to show that this issue

can be avoided. In ref. [28, Lem. 3.16], a sufficient condition for such compatibility of sequential limiters with

subsequent synchronized limiters is given, which reads

𝜌̄e
i j
𝜑
e,min

i
⩽ (𝜌𝜑)e

i j
⩽ 𝜌̄e

i j
𝜑
e,max

i
∀ j ≠ i. (27)

Here 𝜌 is the main unknown (e.g., density), 𝜑 the specific unknown (e.g., velocity), and (𝜌𝜑) the conserved

unknown (e.g., momentum) with corresponding bar states 𝜌̄e
i j
,

𝜑̄e
i j
=

(𝜌𝜑)e
i j
+ (𝜌𝜑)e

ji

𝜌̄e
i j
+ 𝜌̄e

ji

, (28)

and (𝜌𝜑)e
i j
, respectively [13]. If the discrete gradient is skew symmetric, we have ūe

i j
= ūe

ji
, hence (28) simplifies to

𝜑̄e
i j
= (𝜌𝜑)e

i j
∕𝜌̄e

i j
and (27) becomes𝜑e,min

i
⩽ 𝜑̄e

i j
⩽ 𝜑e,max

i
∀ j ≠ i (since 𝜌 ⩾ 0). This simplified compatibility condi-

tion is nothing else than a design criterion for the definition of local bounds𝜑e,min

i
and𝜑e,max

i
. It is automatically

satisfied for the canonical choice [13, Eq. (78)] 𝜑min
i

= min j𝜑̄i j, 𝜑
max
i

= max j𝜑̄i j, while for nonskew-symmetric

discrete gradients, the validity of (27) is more difficult to guarantee.

A related issue is that if all correction factors of the sequential limiter are set to zero, the semi-discrete

low-order method for product type variables (such as momentum or total energy) actually reads

me
i

d(𝜌𝜑)e
i

dt
=
∑
j≠i

2de
i j

[
𝜌̄e
i j
𝜑̄e
i j
− (𝜌𝜑)e

i

]
(29)

instead of

me
i

d(𝜌𝜑)e
i

dt
=
∑
j≠i

2de
i j

[
(𝜌𝜑)e

i j
− (𝜌𝜑)e

i

]
. (30)

If ūe
i j
= ūe

ji
, (29) and (30) are equivalent but the symmetry of bar states generally requires skew symmetry of dis-

crete gradients. The low-order method (29) is less theoretically justified than (30). For instance, the fully discrete

entropy inequalities derived in Proposition 1 and [24, Thm. 4.7] can only be shown for (30). Skew symmetry of

volumetric discrete gradients is therefore desirable for sequential limiters.

4.3.2 Discrete entropy stability

As discussed in Remark 3, high-resolution schemes cannot be expected to satisfy fully discrete local entropy

inequalities w.r.t. all admissible entropy pairs as the low-order method does (see Proposition 1). A different

concept to achieve entropy stability is to make use of Tadmor’s semi-discrete theory [30], [31]. Kuzmin and

Quezada de Luna [18] derived Tadmor’s condition for AFC schemes and proposed a limiter that enforces local

semi-discrete entropy inequalities. Further results on these techniques can be found in refs. [7], [27], [29]. Rueda-

Ramírez et al. [21] were the first to use this limiter in the AFC-DG context, but no theoretical results are derived

therein. Since their LGL framework uses skew-symmetric discrete gradients, one can derive results similar to

the next two statements, which apply to our Bernstein-DG methods.

Proposition 4 (local semi-discrete entropy inequalities, [18], [30]). Let 𝝍 (u) = 𝑣(u)⊤ f (u)− F(u), where 𝑣 = U′,

be the entropy potential and let Tadmor’s condition [18], [30] for volumetric and interfacial fluxes:

𝑣e
i
− 𝑣e

j

2

[
de
i j

(
ue
j
− ue

i

)
−
(
fe
j
+ fe

i

)
⋅ c̃e

i j
+ f e,∗

i j

]
⩽
(
𝝍

e
j
−𝝍 e

i

)
⋅ c̃e

i j
∀ j ∈ ̃ e

i
, (31a)

𝑣e
i
− 𝑣̂e

i,k

2

[
de
i,k

(
ûe
i,k
− ue

i

)
−
(
f̂e
i,k
+ fe

i

)
⋅ ce

i,k
+ f e,∗

i,k

]
⩽
(
𝝍̂

e
i,k
−𝝍 e

i

)
⋅ ce

i,k
∀k ∈  e

i
(31b)
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hold. Then scheme (24) satisfies the inequality:

me
i

dUe
i

dt
⩽
∑

j∈i∖{i}

[
Ge
i j
+
(
Fe
i
− Fe

j

)
⋅ c̃e

i j

]
+
∑
k∈ e

i

[
Ge
i,k
+
(
Fe
i
− F̂e

i,k

)
⋅ ce

i,k

]
, (32)

where

Ge
i j
=
𝑣e
i
+ 𝑣e

j

2

[
de
i j

(
ue
j
− ue

i

)
+ f e,∗

i j

]
+
𝑣e
i
− 𝑣e

j

2

(
fe
i
− fe

j

)
⋅ c̃e

i j
,

Ge
i,k
=
𝑣e
i
+ 𝑣̂e

i,k

2

[
de
i,k

(
ûe
i,k
− ue

i

)
+ f e,∗

i,k

]
+
𝑣e
i
− 𝑣̂e

i,k

2

(
fe
i
− f̂e

i,k

)
⋅ ce

i,k
.

Proof. Following [7], [18], [30], [31], wemultiply (24) by𝑣e
i
, which yields the left-hand side of (32). On the right,𝑣e

i
is

split into symmetric and antisymmetric parts. After exploiting Tadmor’s condition, the rest of the proof follows

from algebraic manipulations. We refer to ref. [27, Sect. 4.1] for a proof in the CG context that can directly be

adapted to handle both the volumetric and interfacial terms appearing in (24). □

Corollary 2 (elementwise entropy inequalities, [18]). Let the assumptions of Proposition 4 hold for all i ∈
{1,… ,N}, and, additionally, let c̃e

i j
= −c̃e

ji
for all i, j ∈ {1,… ,N}, j ≠ i, then (24) satisfies the inequality

d

dt∫
Ke

Ue
h
dx+

N∑
i=1

∑
k∈ e

i

Re
i,k

(
ue
h
, ûe

h,k

)
⩽ 0, Re

i,k

(
ue
h
, ûe

h,k

)
:=
(
Fe
i
+ F̂e

i,k

)
⋅ ce

i,k
− Ge

i,k
. (33)

Proof. Summing (32) over i ∈ {1,… ,N}, exploiting (16a)–(16c) (thus Ge
i j
= −Ge

ji
), and (25) we obtain:

N∑
i=1

me
i

dUe
i

dt
⩽

N∑
i=1

∑
j∈i∖{i}

[
Ge
i j
+
(
Fe
i
− Fe

j

)
⋅ c̃e

i j

]
+

N∑
i=1

∑
k∈ e

i

[
Ge
i,k
+
(
Fe
i
− Fe

i,k

)
⋅ ce

i,k

]

= −
N∑
j=1

Fe
j
⋅
∫
Ke

∇𝜑e
j
dx + 1

2

N∑
i=1

Fe
i
⋅
∑
k∈ e

i

∫
Γe
k

𝜑e
i
ne
k
ds+

N∑
i=1

∑
k∈ e

i

[
Ge
i,k
− Fe

i,k
⋅ ce

i,k

]

= −
N∑
i=1

Fe
i
⋅
∑
k∈ e

i

ce
i,k
+

N∑
i=1

∑
k∈ e

i

[
Ge
i,k
− Fe

i,k
⋅ ce

i,k

]
= −

N∑
i=1

∑
k∈ e

i

Re
i,k

(
ue
h
, ue

h,k

)
.

Extracting the time derivative, we find that the left-hand side of this inequality is equal to d

dt
∫
KeUe

h
dx. □

Corollary 3 (global entropy inequality, [18]). Let ûh be the input for the Riemann solver at every domain boundary

segment. Under the assumptions of Corollary 2, scheme (24) satisfies the global entropy inequality:

d

dt∫
Ω

Uh dx+
E∑
e=1

N∑
i=1
xe
i
∈𝜕Ω

∑
k∈ e

i

Re
i,k
(uh, ûh ) ⩽ 0. (34)

Proof. Summing (33) over all elements, we rewrite the sum of fluxes as a sum over faces, which we split into

interior and boundary faces. As is common in the DG setting, all interior fluxes cancel, yielding (34). □

Tadmor’s conditions (31) is enforced as in refs. [18], [27]. In the DG context, we compute the entropy-adjusted

fluxes for both, volumetric and interfacial contributions w.r.t. the same entropy pairs.
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5 CFL-like time step restrictions for AFC schemes with SSP-RK

The fact that the SSP update (4) is a convex combination of admissible states is essential for many algebraic

limiting techniques, e.g., [11], [13], [20], [21], [24], [25], which imposes the CFL time step restriction (5). In simple

settings, the right-hand side of (5) can be evaluated, allowing for an a priori comparison of different baseline

discretizations in terms of their efficiency. We consider three different DG discretizations of the 1D advection

equation 𝜕u

𝜕t
+ 𝑣𝜕u

𝜕x
= 0 with constant velocity 𝑣 ∈ ℝ∖{0} on a periodic domain. Let the 1D mesh be tessellated

using intervals of uniform length h > 0. For the new Bernstein sparsification (19), we have

me
i
= h

p+ 1
, de

i j
= |𝑣|max{|ce

i j
|, |ce

ji
|} = |𝑣|

2
, de

i,k
= |𝑣| |ce

i,k
| = |𝑣|

2
. (35)

Due to sparsity (16d), every node has exactly two neighbors. Interior nodes within the element possess two

neighbor nodes within the same element, while nodes on the element boundaries have exactly one neighbor in

that element and one outside of it. Thus,
∑

j∈Ñi∖{i}di j = |𝑣|(1∕2+ 1∕2) = |𝑣|, and (5) reduces to
𝜏 ⩽ h

2( p+ 1)|𝑣| , (36)

which is only slightly more restrictive than the common CFL condition 𝜏 ⩽ h

(2 p+1)|𝑣| [50, Eq. (2.35)] for a (p+ 1)-

order DG discretization combined with a (p+ 1)-order Runge–Kutta method.

For the non-skew-symmetric Bernstein sparsification [14], [25], [32], the value of∑
j∈Ñi∖{i}

de
i j
= |𝑣|(max{|c̃e

i,i−1|, |c̃ei−1,i|}+max
{|c̃e

i,i+1|, |c̃ei+1,i|}) (37)

varies while me
i
and de

i,k
remain unchanged compared to (35). Using [14, Eq. (B.4)], it is possible to evaluate (37)

for each i ∈ {0,… , p}. To avoid tedious calculations, we only show that for p > 1, this scheme requires time

steps 𝜏 smaller than (36). Indeed, for i = 0, we have

de
i,1
+
∑

j∈Ñi∖{i}
de
i j
= |𝑣|

2
+ |𝑣|max{|ce

0,1
|, |ce

1,0
|} = |𝑣|[ 1

2
+ 1

p+ 1
max{p, |− 1|}] = |𝑣| ( p+ 1)+ 2p

2( p+ 1)
,

which is larger than |𝑣| if p > 1. Thus, the use of (19) instead of our old approach [14], [25], [32] leads to less

restrictive CFL conditions for Bernstein elements.

Finally, we study the case of LGL discretizations [20], [21], in whichme
i
= h𝜔i, |cei j| = 1

2
∀ j ∈ ̃ i∖{i}, |ceik| ≡

1

2
, where𝜔i are the LGL quadrature weights. For p > 2, the LGL nodes are not uniformly distributed within the

elements but are concentrated around the element boundaries. Generally, theweights of the twoboundarynodes

for the unit interval [0, 1] are given by𝜔0 = 𝜔 p = 1

p( p+1) . Thus, the largest possible time step satisfying the CFL

condition (5) is bounded by h

2 p( p+1)|𝑣| , which is more restrictive than the optimal Bernstein-CFL (36) by a factor
of p. This unfortunate drawback of LGL discretizations could potentially be cured by replacing elementwise

discrete gradient operators [20], [21] (which are identical to the ones we use here for the Bernstein ansatz) with

matrices that account for variations in the LGL quadrature weights.

In conclusion, for p > 1, our new sparsification can use somewhat larger time steps (depending on p) than

the previous one [14], [25], [32], while improvements over time steps for LGL are significant. For p = 1, Bernstein

polynomials are simply the Lagrange basis functions, which makes the scheme equivalent to the LGL space

discretization. In 1D and on box elements, the old and new sparsifications are also identical.
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Remark 4. The comparisonsmade here can be easily adapted to discretizations of nonlinear systems inmultiple

space dimensions, where the same conclusions can be drawn. For instance, the multidimensional version of the

optimal Bernstein-CFL (36) reads

𝜏 ⩽ mi

2
∑

j≠idi j
= [h∕( p+ 1)]d

2
∑

j≠i
1

2
|𝒗 ⋅ ni j|[h∕( p+ 1)]d−1

= h

( p+ 1)
∑

j≠i|𝒗 ⋅ ni j| , (38)

where the ni j ∈ ℝd are either the volumetric or interfacial integrals in the stencil.

Remark 5. The CFL restrictions derived here apply to low-order and flux-limited approximations. CFL numbers

w.r.t. the target scheme may be more restrictive, see e.g., [51], [52] for further analysis on this topic. Violations

of CFL conditions typically lead to severe blowups, in which case the limiter would adapt the unstable target

solution to satisfy all constraints that are being enforced. In this manner, one can, for instance, guarantee non-

negativity. However, it is usually preferable to limit an already stable target scheme rather than to rely on limiting

for that purpose as well. The numerical example in Section 6.1 provides an illustration of how our limiters work

if applied to such an unstable baseline discretization. CFL conditions of standard DG methods combined with

appropriate time stepping schemes can be relaxed by modifying the numerical fluxes [53]. While this may lead

to a loss of the superconvergence property, all other advantages of standard DG remain valid. In practice, we

have not observed any cases, where the DG target discretization combined with SSP-RK schemes produces more

restrictive CFL conditions than the limiter does.

6 Numerical experiments

Wenow apply the proposed AFC schemes to common test problems for the compressible Euler equations, where

𝛾 = 1.4 by default. The application to other conservation laws is straightforward. Time discretization is per-

formed using the SSP Runge–Kutta paradigm [37]–[39]. The methods are implemented in the open-source C++
library mfem [54], [55] and snapshots are visualized with the accompanying GLVis toolbox [56].

To distinguish between different variants ofMCL schemes, we use the following conventions: If all antidiffu-

sive fluxes are set to zero, the low ordermethod is employed. The sequential limiter enforcing discretemaximum

principles following [25], shall be labelled ‘seq’. All MCL-type schemes enforcing global bounds are referred to

by a tuple or triple of quantities that are being limited, e.g., (𝜌, p) first enforces nonnegativity of density fol-

lowed by the pressure fix, while (𝜌, p,U) subsequently also enforces Tadmor’s entropy stability conditions (31).

Often, we append a suffix indicating which numerical flux (LLF, HLL, etc.) is used. To distinguish between the

nonskew-symmetric and skew-symmetric sparsifications, we simply use the terminology old versus new. Unless

stated otherwise, we use adaptive SSP time stepping of the same order as the polynomial space, e.g., SSP2 for

p = 1. The time step is set equal to 𝜈 ∈ (0, 1] times the right-hand side of (5), where the constant 𝜈 is chosen to

be 0.5 in all tests for the Euler equations.

6.1 1D blast wave

We begin our experiments with a challenging 1D test problem studied first in ref. [57]. The spatial domainΩ =
(0, 1) is equipped with reflecting wall boundaries, and the initial flow configuration is as follows:

𝜌0 ≡ 1, 𝑣0 ≡ 0, p0(x) =

⎧⎪⎪⎨⎪⎪⎩

1, 000 if x < 0.1,

0.01 if 0.1 < x < 0.9,

100 if 0.9 < x.

The solution exhibits strong shocks due to the vastly different pressure values, which makes this benchmark an

extreme test for preservation of positive internal energies. For small times, the exact solution can be obtained by
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Figure 3: Density profiles of the 1D blast wave solved on 500 ℙ1 elements.

solving two Riemann problems [58, Ch. 4] but at the end time t = 0.038, interactions with the domain boundaries

and shock collisions have occurred. Therefore, only reference solutions are available.

Since these do not contain any highly oscillatory features, the most economical choice in terms of accuracy

versus computational cost is to use second-order schemes on rather finemeshes.Weuse ourℙ1-DGdiscretization

to solve this problem on a grid consisting of 500 uniformly spaced elements. As our MCL approach is capable

of using any numerical flux and performing limiting to guarantee various constraints, we begin by usingmean

value fluxes fn(u, 𝑣) = 1

2
(f (u)+ f (𝑣)) ⋅ n and ensure only nonnegativity of density and pressure. Since limiting is

carried out w.r.t. global bounds only, the result in the left panel of Figure 3 is extremely poor. Performing entropy

limiting subsequently to the other steps significantly enhances the solution quality, as seen in the red curve in

the right panel of Figure 3 but some spurious oscillations remain.

A more reasonable approach than using mean value fluxes is to employ the local Lax–Friedrichs Riemann

solver fn(u, 𝑣) = 1

2
[(f (u)+ f (𝑣)) ⋅ n+ 𝜆(u− 𝑣)]. We combine this scheme with (𝜌, p)-limiting for the volume

terms (the interfacial LLF fluxes do not require limiting to ensure any properties in the 1D case [25]). Comparing

this result with the (𝜌, p,U)-limited profile, we observe less smearing of the contact discontinuity at x ≈ 0.6,

which occurs if entropy limiting is enabled. We investigate this issue further in the following section. At this

stage, it is safe to say that entropy limiting in our context can drastically improve unstable schemes by adding

sufficient amounts of dissipation. The question is, are these amounts also necessary?

6.2 2D isentropic vortex

Let us now numerically assess the convergence order of schemes by considering an example with a smooth

solution [59, Sect. 5.1]. Here, the doubly-periodic domain is Ω = (−5, 5)2 and at every time t = 10k, k ∈ ℕ, the
solution coincides with the initial condition, which reads

𝜌0(x, y) = 𝜃0(x, y)1∕(𝛾−1), 𝒗0(x, y) =
[
1

1

]
+ 𝜀

2𝜋
e0.5(1−(x

2+y2 ))

[
−y
x

]
,

p0(x, y) = 𝜃0(x, y)𝛾∕(𝛾−1), 𝜃0(x, y) = 1− (𝛾 − 1) 𝜀2

8𝛾𝜋2
e1−(x

2+y2 ), 𝜀 = 5.

We use structured, uniform meshes and perform the tests that were alluded to in Section 3. In addition,

the convergence rate with entropy limiting enabled is checked for the ℚ1 space. Other than entropy stability,

only nonnegativity of density and pressure are enforced. Since the solution is smooth, we do not rely on limiters

enforcing local bounds (these would deteriorate optimal rates). In Tables 1–3, we present the L1(Ω) errors in
density at the final time t = 10 and the corresponding experimental orders of convergence (EOC).

First, we observe that the entropy fix leads to a catastrophic reduction of the convergence order. This serves

as an explanation for our earlier results, in particular, it explains why the entropy fix is capable of fixing the

oscillatory profile on the left of Figure 3. It is still shocking that the order is reduced by that much. Since the
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Table 1: Isentropic vortex,ℚ1-HLL on square cells.

10

h
(𝝆, p, U) EOC (𝝆, p) EOC

32 1.76E-02 — 9.32E-04 —

64 1.23E-02 0.52 1.58E-04 2.56

128 7.56E-03 0.70 2.90E-05 2.44

256 4.29E-03 0.82 6.28E-06 2.21

Avg. EOC . .

Table 2: Isentropic vortex,ℚ2-(𝜌, p) on square cells.

10

h
New-LLF EOC New-HLL EOC Old-HLL EOC

32 5.07E-05 — 2.60E-05 — 2.60E-05 —

64 7.84E-06 2.69 2.35E-06 3.47 2.35E-06 3.47

128 1.22E-06 2.68 2.70E-07 3.12 2.70E-07 3.12

256 1.79E-07 2.78 3.31E-08 3.03 3.31E-08 3.03

Avg. EOC . . .

Table 3: Isentropic vortex, (𝜌, p)-HLL on triangles with different gradients, compare Figure 1.

√
200

h
ℙ1, Figure 1a EOC ℙ1, Figure 1b EOC ℙ1, Figure 1d EOC ℙ2, Figure 1a EOC ℙ2, Figure 1d EOC

32 1.07E-03 — 3.24E-03 — 9.78E-04 — 4.08E-05 — 4.08E-05 —

64 1.66E-04 2.69 1.13E-03 1.52 1.66E-04 2.56 3.60E-06 3.50 3.60E-06 3.50

128 3.08E-05 2.43 4.16E-04 1.44 3.08E-05 2.43 3.96E-07 3.18 3.96E-07 3.18

256 6.70E-06 2.20 1.88E-04 1.15 6.70E-06 2.20 4.85E-08 3.03 4.85E-08 3.03

Avg. EOC . . . . .

solution to this test is smooth, its exact entropy integrated over the domain remains constant in time. Numerical

schemesmay fail tomirror this behavior due to quadrature errors, numerical entropyproduction, or dissipation.

It seems that Tadmor’s entropy fix designed to make discretizations entropy conservative (not dissipative) does

not work well in the DG case even for ℚ1 spaces (where Bernstein polynomials are simply the nodal Lagrange

basis functions). In principle, an unnecessarily high rate of entropy dissipation can be attributed to too diffusive

numerical fluxes such as LLF or HLL. However, the culprit here is clearly the volumetric entropy limiting, as

we obtain second-order rates by disabling this fix. A comparison with the CG case and similar entropy-limited

AFC schemes is in order to gain further understanding of this issue and how to resolve it. Second, we notice that

LLF fluxes are too diffusive to exhibit third-order convergence forℚ2 discretizations [28, Sect. 6.3]. This problem

can be cured using more accurate numerical fluxes such as HLL. Finally, we confirm the results regarding the

different gradients. The old and new sparsification approaches are almost identical in terms of error values and

convergence orders. In particular, the fact that three leading digits in the error values are identical for third-

order schemes is striking given that the new sparsification requires noticeably fewer time steps, cf. Table 5. Out

of the five triangular gradients in Figure 1 only (b) does not converge with optimal accuracy (rates for Figures 1c

and 1e not printed for brevity) but the gradient in Figure 1d generally requires the fewest time steps, cf. Tables 4

and 5.
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Table 4: Isentropic vortex: number of time steps required by ℙ1-HLL on triangles with different gradients, compare Figure 1.

√
200

h
Figure 1a (old) Figure 1b Figure 1c Figure 1d (new) Figure 1e

32 1771 2,121 2,552 1742 4,130

64 3,557 4,254 5,080 3,453 8,272

128 7,068 8,496 10,119 6,866 16,535

256 14,126 16,966 20,193 13,688 33,062

Table 5: Isentropic vortex: number of time steps required by ℙ2-HLL on triangles with different gradients, compare Figure 1, andℚ2-HLL

on square cells with old and new sparsification approaches.

√
200

h
ℙ2, Figure 1a (old) ℙ2, Figure 1b ℙ2, Figure 1c ℙ2, Figure 1d (new)

10

h
ℚ2 (old) ℚ2 (new)

32 2,833 2,856 4,613 2,497 32 2,800 2,100

64 5,659 5,657 9,216 4,954 64 5,557 4,168

128 11,304 11,298 18,419 9,863 128 11,076 8,307

256 22,595 22,587 36,820 19,681 256 22,119 16,589

6.3 Modified Sod shock tube

Sod’s shock tube is a common test case that we solved with Bernstein-DG-MCL and the old sparsification in ref.

[25]. A popular variant of this benchmark [58, Sect. 8.5.1] slightly changes the classical setup such that a sonic

point appears in the exact solution. Many numerical schemes fail in the proximity of this location, where one of

the eigenvalues of the flux changes its sign, by producing a nonphysical entropy shock (see Figure 4a). The setup

of this test is as follows: the domainΩ = (0, 1) has an inlet boundary on the left and an outlet on the right. The

inlet boundary profile is identical to uL for all times, where

u0(x) =
⎧⎪⎨⎪⎩
uL if x < 0.25,

uR if x > 0.25,
uL = (1, 0.75, 2.78125)⊤, uR = (0.125, 0, 0.25)⊤,

are the initial conditions. This Riemann problem admits an exact entropy solution that can be determined with

arbitrary accuracy by solving a nonlinear equation for a single pressure state [58, Ch. 4]. It consists of a left

rarefaction wave, a right shock wave, and contains a contact discontinuity in between.

First, we solve this problem up to t = 0.2 with continuous ℙ1 elements and Roe [60] target fluxes (see [27]

for details) employing uniform meshes of increased resolution and fixed time steps determined by the most

restrictive CFL condition. The profiles in Figure 4a illustrate the appearance of the entropy shock.

Next, we use a coarser uniform mesh with only 16 uniform DG elements and polynomial degree p = 7.

The result of the (𝜌, p,U)-limited solution is displayed in Figure 4b. These profiles are obtained with the new

sparsification approach but the old one looks quite similar. The availability of the exact solution allows us to

compute the exact entropy evolution for this test. Luckily, in this example, the entropy flux F(u) at both domain

boundaries is zero. Thus, entropy is only changed via dissipation at nonsmooth solution features. We see from

Figure 4c and d that entropy decays linearly. Since we use entropy fixes, one would hope that this property holds

true for all discrete entropy evolutions as well but we see that this is only the case for the new sparsification.

Indeed, all three considered Riemann solvers produce entropy with the old sparsification at the beginning of

the simulation. Since the old sparsification does not use skew-symmetric discrete gradients, this result does

not contradict Corollary 3. Besides provable semi-discrete entropy stability, the new sparsification also has the

advantage of needing significantly fewer time steps than the old one.
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Figure 4: Modified Sod shock tube: solution profiles (a)–(b) and entropy evolutions (c)–(d). DG solutions use adaptive SSP3.

A few further remarks are in order. First, the red curve in Figure 4d is actually notmonotone. This is also not

in contradiction to Corollary 3 because our entropy fixes guarantee semi-discrete entropy stability rather than

in the fully discrete setting. It is known that explicit time stepping schemes may result in entropy production

proportional to a certain power of the time step [61]. Time step reductions can be used to make the red curve in

Figure 4dmonotonically decreasing. However, this approach does not remove the wiggles observed in Figure 4c,

which are therefore indeed due to the spatial discretization, which fails to dissipate entropy even though an

entropy limiter is used. Second, despite these small entropy productions, we do not actually observe the forma-

tion of entropy shocks. This is consistent with our previous assessment [27] that entropy limiting does not seem

to be necessary for this system. Instead, preservation of nonnegotiable constraints and shock-capturing should

be implemented. Finally, if we use the sequential approach in combinationwith either sparsification, all entropy

evolutions become monotone. This observation shows that enforcing constraints such as maximum principles

via AFC leads to dissipation of entropy even though entropy does not play a role in the sequential limiter. Since

sufficient entropy dissipation cannot be guaranteed by this scheme, our above arguments regarding entropy

evolutions remain valid and we recommend using the new sparsification rather than the old one.

6.4 High-Mach number astrophysical jet

Finally, we apply our schemes to a hypersonic test problem, in which the Mach number is more than 2,000 [62].

The spatial domain is Ω = (0, 1)2, the adiabatic constant is 𝛾 = 5∕3, and the initial conditions for the primitive
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unknowns are 𝜌0 ≡ 0.5, 𝒗0 ≡ 0, p0 ≡ 0.4127. A jet enters at the left boundary {0} × [0, 1], where the inflow

profile is set according to

(𝜌,𝒗⊤, p)(0, y, t) =
⎧⎪⎨⎪⎩
(5, [800, 0], 0.4127) if |y− 0.5| ⩽ 0.05,

(0.5, [0, 0], 0.4127) otherwise,
y ∈ [0, 1].

For the end time t = 10−3, the other three boundaries can be set somewhat arbitrarily (we use free outflow).

We solve this problem numerically on a uniform quadrilateral mesh with 5122 cells and an unstructured

triangular mesh with 543,744 elements. Generally, we compare results of the (𝜌, p)-limiter with the sequential

approach using ℚ p and ℙ p spaces with p ∈ {1, 2} and contrast the old and new sparsification approaches (not

forℚ1, as old andneware identical for these). The results are shown in Figures 5–8; Figure 5 additionally displays

the low order solution. Note that the color bar (which is the same for all plots) is logarithmic. The number of

required time steps (t.s.) is shown in the figure captions for each snapshot. These were computed using HLL

fluxes [23] with wave speed estimates

s− = min{𝒗L ⋅ n− aL,𝒗R ⋅ n− aR}, s+ = max{𝒗L ⋅ n+ aL,𝒗R ⋅ n+ aR},

where L and R denote the two input states of the flux, n is the normal, and a =
√
𝛾 p∕𝜌 the sound speed.

Overall, all numerical approximations agreewell with each other and no unsurprising results are observed.

The two sparsification approaches produce essentially indistinguishable results but the reduced number of time

steps makes us favor the new technique. As before, sequential limiting usually requires fewer time steps but in

this example, there are some exceptions (ℙ1 with either sparsification, ℙ2 with the new one). The sequential

limiter introduces some additional streaks along the transition between the head of the jet and the background.

It seems that these features are spurious and can be attributed to a choice of bounds for numerical admissibility

that arenotwell-suited for this example. On the other hand, only enforcingnonnegativity of density andpressure

Figure 5: Density profiles of the astrophysical jet on a uniform quadrilateral mesh,ℚ1 solutions.

Figure 6: Density profiles of the astrophysical jet on a uniform quadrilateral mesh,ℚ2 solutions.
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Figure 7: Density profiles of the astrophysical jet on an unstructured triangular mesh, ℙ1 solutions.

Figure 8: Density profiles of the astrophysical jet on an unstructured triangular mesh, ℙ2 solutions.

seems to work quite well here despite the severity of this test case. Naturally, there exist examples where the

oscillations arising because the numerical viscosity along shocks is too low will reverse the situation. Finding a

framework that introduces precisely the right amount of diffusion in high-order methods, which also converge

with optimal orders of accuracy is an open problem.

7 Conclusions

A new, skew-symmetric variant of discrete gradient operators, commonly used in finite element methods,

and in particular algebraic flux correction schemes, was proposed and analyzed. For continuous and discon-

tinuous Galerkin discretizations using Bernstein basis functions, the feasibility of the novel techniques was

demonstrated in various geometries. We used the new operators in the context of our monolithic convex lim-

iting scheme and compared it with existing techniques, based on non-skew-symmetric discrete gradients and

LGL approaches. In the context of semi-discrete entropy stabilizations via MCL, the necessity of having skew-

symmetric off-diagonal entries was demonstrated numerically. Moreover, additional theoretical results for the

new and old versions of this approach were derived. Finally, we showed the optimality of the novel technique

in terms of explicit time step restrictions. Numerical tests demonstrated that the new version of the scheme

performs well in terms of shock capturing and also preserves optimal orders of accuracy.

The discrete gradients developed in this work are by no means restricted to flux-correction schemes nor

monolithic limiting. In fact, they can readily be employed in the context of FCT algorithms for both continu-

ous and discontinuous ansatz spaces using elementwise operators. Potential future studies include their use

for other types of equations, such as incompressible flows [63]. Moreover, we plan to further develop our flux-

correction techniques by adding additional features to the described methodology. These include smoothness

indicators [47], flux limiting using general Runge–Kutta time discretizations [33], as well as the inclusion of

diffusive [40] and source [12] terms. These topics shall be addressed in future publications.
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