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Abstract: In Galerkin finite element schemes, the discrete first derivative operator for each spatial dimension
is a square matrix that is skew-symmetric under restrictive assumptions for certain types of discretizations and
boundary conditions. In most settings, however, this desirable property is violated, often only for a few pairs
of nodes. These exceptions can invalidate certain design principles based on the skew-symmetry assumption
made for these operators. This paper demonstrates that algebraic manipulations can be performed to make the
discrete gradient operators of Bernstein polynomial-based finite element methods skew symmetric. Interest in
such discretizations has recently been increasing because they represent natural extensions of second-order
algebraic flux correction schemes to higher-order spaces. We employ the new operators in the context of such
property-preserving methods, mostly based on discontinuous Galerkin discretizations of arbitrary order. Addi-
tional theoretical results for the schemes under investigation are derived, including local and global entropy
inequalities, among others. Moreover, a discussion on the optimality of CFL-like time step restrictions arising in
explicit Runge—Kutta methods shows that our new approach is superior to earlier representatives of operators
employed in similar contexts. These techniques use the monolithic convex limiting paradigm and are applied to
the compressible Euler equations.

Keywords: algebraic flux correction; hyperbolic conservation laws; skew-symmetric discrete gradients; entropy
stability; Bernstein finite elements; monolithic convex limiting
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1 Introduction

Hyperbolic problems are commonly solved numerically using high-resolution schemes. These encompass sta-
bilization and limiting techniques designed for the purpose of obtaining physics-conforming approximations
are, for instance, residual distribution schemes, slope and a posteriori limiters, entropy-based semi-discrete
approaches, smoothness indicators, and/or weighted essentially non-oscillatory (WENO) techniques, see e.g.,
[1]-[6]. For an overview of property-preservation, we refer to the book [7]. Most of the techniques mentioned
here work by blending a certain high-order target scheme with a low-order counterpart to be used in the vicinity
of steep gradients [8]. The main question is how to choose the numerical viscosity locally to preserve accuracy
in smooth regions but avoid formation of spurious numerical solutions. These features include violations of
nonnegativity constraints, Gibbs phenomena, and/or nonentropic results.

In this work, we focus on algebraic flux correction (AFC) schemes, e.g., [9]1-[14] because they are failsafe, in
the sense that it is possible to guarantee the validity of various desirable constraints, e.g., the nonnegativity of
certain quantities. Moreover, they are prone to numerical analysis, e.g., [7], [15]-[17] and can also be designed
in a way that a multitude of desirable properties are guaranteed. Usual properties include discrete maximum
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principles [14], nonnegativity constraints [13], entropy stability conditions [18], and well-balancedness [12]. The
latter reference presents a scheme that possesses all of these features at once. As such, it is unique among the
families of high-resolution schemes. Because of such progress, additional improvements of AFC schemes are
called for, and this work is aimed at that purpose.

The first work on algebraic flux correction schemes [19] has spawned many further developments and the-
oretical analyses [10], [11], [13]-[15], [17], [20], [21]. For instance, AFC techniques based on high-order Bernstein
polynomials are presented in refs. [10], [14] for discontinuous Galerkin (DG) methods and classical finite ele-
ments, respectively. Combining the theoretical frameworks developed in the seminal papers by Hoff [22] and
Harten et al. [23], Guermond and Popov [24] propose a new way of analyzing the low-order method, which pro-
vides sufficient numerical dissipation to guarantee the failsafe property of the scheme. In ref. [11] and related
works, this approach is used in the predictor stage of the proposed convex limiting techniques. Kuzmin’s mono-
lithic convex limiting (MCL) paradigm [13] is no representative of such FCT approaches. Instead, it operates on
the semi-discrete level of spatial discretizations, allowing for steady-state calculations [13], [25], [26], implicit
time stepping [26]-[28], and semi-discrete entropy stabilization [18], [28], [29] based on Tadmor’s entropy sta-
bility theory [30], [31]. MCL techniques have since been further developed, e.g., [18], [21], [25], [32] and analyzed
[7], [17]. Following the work of Lohmann et al. [14] on high-order FCT schemes for finite elements based on
Bernstein basis functions, Kuzmin and Quezada de Luna [32] first developed a high-order counterpart of MCL
and later introduced entropy limiting based on Tadmor’s criterion into these algorithms [18], [29]-[31]. Subse-
quently, we extended the approaches in refs. [13], [32] to Bernstein-DG discretizations [25]. Rueda-Ramirez et al.
[21] use MCL techniques in combination with Legendre—Gauss—Lobatto (LGL) bases for DG. These authors were
the first who enforced Tadmor’s entropy stability criterion [30], [31] in the AFC-DG context to stabilize entropy-
producing terms arising from volume integrals. In ref. [21], numerical fluxes across interior boundaries are of
local Lax—Friedrichs (LLF) type. In contrast, here and in ref. [28, Ch. 6], an arbitrary flux is blended with such
an LLF counterpart and entropy limiting can also be performed for blended interfacial fluxes.

The present article addresses the following issues: The employed discrete gradient operators in AFC schemes
are generally not skew-symmetric as a result of the type of discretization and/or due to using other than periodic
boundary conditions. Nevertheless, the assumption of skew-symmetry is often made for theoretical purposes [27,
Rem. 4] and in the design of flux limiters [33]. The concept of summation-by-parts, often invoked in the LGL-DG
context [20], [21], [34], [35], yields skew-symmetric discrete gradients seemingly for free, which suggests that,
in this sense, LGL schemes are superior to their Bernstein polynomial-based counterparts [14], [25], [32]. How-
ever, the latter produce significantly less restrictive CFL conditions because the Bernstein nodes are uniformly
distributed within the elements as opposed to the LGL nodes. Thus, it is worthwhile to adapt the LGL-summation-
by-parts concept to high-order convex limiting schemes based on the Bernstein basis. A main aspect of this work
is dedicated to this effort. Bernstein basis functions possess many further desirable properties (see [14], [25], [32]
and the references therein) such as nonnegativity and boundedness of local approximations by the min- and
max-values of nodal values within the elements, which can be exploited for mathematical purposes. We also
demonstrate that a supposedly entropy-stable AFC limiter can actually produce entropy instead of dissipating it
if the non-skew-symmetric version is used instead of our new one. Additionally, this work presents novel theo-
retical results for monolithic flux correction schemes applied to hyperbolic problems. In this regard, the present
paper can be seen as a follow-up to ref. [25], again focusing on DG but second-order continuous Galerkin schemes
are also discussed.

2 Preliminaries

2.1 Model problem
Let QCc R4, d e {1,2,3},x € Q,t > 0,and let u(x, t) € RM, M € N, be the solution to the conservation law

%+V-f(u)=0 in Q % (0, o0), @
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where V- is the matrix-divergence operator applied to the inviscid flux f = f(u) € RM*4, To formulate a well-
posed initial-boundary value problem, (1) has to be equipped with the initial condition u(-, 0) = u, and suitable
data u, = u,(x) € RM as well as appropriate boundary conditions. The latter are specified for the test problems
in Section 6. For many specific applications (e.g., scalar problems, shallow water equations, gas dynamics), the
exact solution to (1) is known to satisfy certain admissibility constraints that can be described by constraining
u to lie in a some convex set A C RM. For instance, in the scalar case, M = 1, A is an interval bounded by the
extrema of initial and boundary conditions [36, Ch. 6]. Suppose there exists a convex function U: 4 — R and a
corresponding flux F: A — R4 such that F'(u) = U’(w)" f’(u), then (U, F) is called an entropy pair for the conser-
vation law (1). By the chain rule, a conservation law for the entropy U can be derived under the assumption that
u and U are smooth. In general however, weak solutions to the nonlinear problem (1) can develop discontinu-
ities in finite time. Using, for instance, the concept of vanishing viscosity solutions [36, Sect. 6.3], one can show
well-posedness of weak entropy solutions for the scalar case, if a weak form of the entropy inequality

oU(u)
ot

holds for all (U, F) that are entropy pairs for (1). If discrete versions of (2) are satisfied, ideally in a localized man-
ner, the occurrence of nonphysical weak solutions can be averted in numerical approximations, which motivates
the use of entropy-stable approximations, e.g., [3], [4], [7], [12], [21].

+V-Fu)<0 in Q X (0, ) 2

2.2 Generic monolithic convex limiting discretization

We now summarize the concept of monolithic convex limiting (MCL), first proposed by Kuzmin [13], see also
[71, [18], [21], [25], [32]. This algebraic flux correction (AFC) paradigm operates on the semi-discrete level and is
capable of enforcing a variety of constraints. A generic MCL semi-discretization can be written as

du; s
Mg = je%{i}zcii’(u”_ ui)‘ ®)

Heretheindexi € {1, ..., N} refersto anode, N is the number of unknowns for each variable, and thus the total
number of unknowns is MN. Note that in the system case all components of the solution vector u are interpolated
on the same set of nodes, which are associated with a certain node x; € Q, i.e., we do not consider staggered
approaches. Similarly, m; > 0 is associated with this node and typically represents an entry of a diagonalized
mass matrix. The set N; C {1, ..., N} isthe nodal stencil of x;, i.e., the set of nodes X; that directly interact with x;.
In piecewise linear continuous finite element methods, WV, is the set of mesh vertices that are nearest neighbors
to node x; in the sense that they are endpoints of a certain mesh edge. Entities featuring two distinct indices such
as the symmetric artificial diffusion coefficient d; = d;; > 0 refer to terms depending on the two nodal values
u; and u;. In the MCL framework, the flux-corrected bar states fl:‘] [13] are algebraically enforced to satisfy user-
defined constraints of convex nature. Upon temporal discretization of (3) with a strong-stability preserving (SSP)
Runge—Kutta (RK) method [37]-[39], Shu-Osher updates can be written as a convex combination of forward
Euler steps

FE _ T T —
uh=|1- > 24, i+ D 2d;;iiy, @
tjeN\{i} tjeN\{i}

where 7 > 0 is the time step. Suppose that u; € A; for a certain convex subset A; C A of the largest admissible
set. If 1‘1;*]. € A, can be guaranteed for j € N;\{i} and the CFL-like time step restriction

r< min 5)
ie{1,....N} Z]GM\{I}Zdl]

holds, then uf* is a convex combination of the solution at the previous iteration u; and the flux-corrected bar

states 1"11*] In conclusion, by convexity of A4;, we then have ul.FE € A; as well. Recent works, e.g., [33], [40], also

demonstrate how AFC and MCL can be performed using non-SSP time discretizations, including implicit methods
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and applications to viscous problems. Although they appear promising, these issues shall not be addressed here
since our focus lies on the spatial discretization. The particular choice of the sets .A; and how to enforce &, €
A; for all j € NM;\{i} sets different MCL techniques apart from each other. Before discussing high-order DG
discretizations, we give a brief example of arguably the simplest MCL variant.

2.3 Case study: MCL based on classical finite elements for the Euler equations

We only summarize the steady case here. More information can be found in ref. [7] and the references therein.
Let I be the d X d-identity matrix and let p = p(x,t) € R, v = v(x,t) € R, p = p(x,t) € R denote density,
velocity, and pressure of an ideal polytropic gas. We consider the compressible Euler equations

dp ) _

o TV =0, (6a)
%+V-(pva+pI)=O, (6b)
% + V- ((pE+ pv) =0, (60)

where u = [p, pvT, pE]" is the vector of conserved unknowns (density, momentum, and total energy), and

p:(y—1)<pE—”|2v|2> = (y —Dpe, @)
where y > 1 is the adiabatic constant and e is the specific internal energy. The (physically motivated) largest
admissible set for (6) and (7) is A = {u = [p, pv", pE]" € R™2%:p > 0, p > 0}. Note that due to (7), nonnega-
tivity of pressure is equivalent to the physically motivated constraint that internal energy e may not become
negative. The usual entropy pair for (6) and (7) is given by (U, F) with U = —plog(pp™"), F = vU [41].

Let us discretize (1) using a conforming simplicial mesh and local P;-polynomials with corresponding
Lagrange basis functions @; € C(Q),i € {1, ..., N}, defined implicitly by the interpolation property ¢;(x ) =96
foralli,j € {1,...,N}. We thensetm; = [, ¢; dx, ¢; = f, @;V; dx and

Aij = Mug, uj, ¢/ e )= max{ |Ui : Cij/“'ij” +1\/rpi/ pis ‘Vj : ci/’/)ci/’H + \/J’Pj/ﬂj}- @®)

For a unit vector n; = ¢;/|c;l, (8) corresponds to the largest absolute eigenvalue of the Jacobian of f(u;) or f(u;)

projected onto n;. This estimate for the exact wave speed does not produce states outside of the set .A [42, App.],
which is why we use (8) to define the diffusion coefficients as follows [24], [43], [44]:

dij = max{A;lcl, Azle;l} Vije{L...,N}, i#]. 9
Next, we define the low-order bar states i; j = "’;"’ + % [23], [24] and their MCL counterparts [13]:
ij
f*
ﬁl*] U+ ﬁ (10)

ij
where f;:= f(u;) and f; =— f] + is a flux-corrected counterpart of the target flux f;;, which for steady-state cal-
culations can simply be set to f; = d;;(u; — u)). The low-order counterpart &;; of ﬂf] initially appeared in Harten
et al. [23]. Guermond and Popov [24] were the first to use it in the AFC context to analyze the low-order method
that s the first-order predictor in FCT-type convex limiting schemes and, similarly, the low-order version of MCL
approaches. In either case, the limited antidiffusive fluxes flj are set to zero.
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In general, the least-restrictive constraint that should be enforced for any hyperbolic problem is the admis-
sibility of solutions, i.e., u € A. For the compressible Euler equations, we need to ensure that densities remain
nonnegative, which can be achieved by enforcing positivity of the first component of i u p (pv)* (pE);.“j .
Using definition (10) and skew symmetry of flj‘ this task is accomplished by setting the first component of fl;‘

to max{ —2d;;p;;, min{ f” 2d;;pji} } where p;; and f" correspond to the first component of the low-order bar
state &;; and the un11m1ted flux fj;, respectively. Next we can enforce additional constraints such as nonnega-
tivity of pressure and Tadmor’s entropy stability condition [30], [31] by further reducing the magnitude of f;

These issues are described in detail in refs. [13], [18], [27], respectively, see also [7]. Additionally, the quality of
numerical solutions can be improved by enforcing discrete maximum principles in addition to nonnegativity,
see, e.g., [7], [10], [16], [21], [28], [40]. All of these tasks (and more, for instance, well-balancedness in the case of
the shallow water equations [12]) can be guaranteed simultaneously.

Since nonnegativity of pressure is a nonnegotiable constraint (as is nonnegativity of density), we briefly
summarize the typical MCL pressure fix [13], [21], [25]. For a pair of nodes i # j let fl;‘ be the prelimited antidif-
fusive flux. Setting flj‘* = flj‘ where the correction factor a; = € [0, 1] is defined via [13]:

% if R;; > Q)
a; = ij (1
1 otherwise,

T T T
- = 4 — pU pE _ p,% PU, % pE x
where w;; = 2d;;l;; = [w] (wi].> w;; ] flj [fl] ,(fij ) fl/ ] ,and

= = min!d w0’ —
Q;j=0;= mln{witwi

pvlz P - 1 —pv|2}
j ’

w , !
| jiji 9!

_ _ E,
Rij=Rﬁ=max{|wf].v|, Iw }lfpv*|+max{w w }fﬂ |

+max{aff, @ 7+ max{0, T - o)

y

guarantees that the pressure of the bar state u** =1+ f = /(2d; ;) remains nonnegative. The derivation of (11)
can be found in refs. [13], [28]. The following result 15 an 1nterest1ng observation made in the process of this
work.

Lemma 1 (pressure fix yields nonnegative density). Let u;, u; € A be arbitrary, '*]* =U; + f** /(2d;;), where
ij is given by (9), f =y f %, and let a; be defined by (11). Then the first component of u** lS nonnegatlve

Proof. For a;; given by [13, Eq. (92)] or (11), the pressures of the states u** = U;; + a; f */(2d;;) and u** =u;—

Jji
a; fi; ; /2d;)) are nonnegative [13]. The density and total energy components of the low- order bar states Ujj, Uj;

are also nonnegative [24, Lem. 2.1], see also [23]. Thus, only one of the two terms wij + a;; fl’/’ or ww”, ) fl‘]’ *

J
can potentially become negative. Let us first consider the case fl‘]’* < 0, where

—p —pE 1,~.pv T,V
— fl”*<&|fﬁv*|<wff ff _£|w,‘)' |2 fﬂ*|_ _| wy |2 -
%l S R o 'S o) ij = W 0D pE S Wi

ij

since LDI’.;.E > 0. Thus, the first component of LD;‘* =24, 1”1*]* w” +a; f” 0. The case fé’ > 0 is similar. O
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3 Skew-symmetry of discrete gradient operators

3.1 General considerations and second-order continuous Galerkin schemes

Letus once more consider a ?; or Q, continuous Galerkin discretization as described in Section 2.3.If the domain
has only periodic boundaries, then each component C* of the discrete gradient operator C = (C%,...,C%) =

(¢ }-)ﬁ"jzl is a skew-symmetric N X N matrix due to the divergence theorem. Otherwise,

cij e /(olV@] dX= —/qul(o] dx+/§01q0/n dS =:_Cfi +bij7
Q Q 0Q

where n = n(x) € R? denotes the unit outward normal to 0Q. In this setting, each matrix K ke {1,...,d},
is almost skew-symmetric, with only a few pairs of entries where b; # 0 being exceptions to this rule. For
flux-correction schemes, the skew symmetry of C is often desirable to design new algorithms [33], simplify com-
putations (note that ¢; = —c;; implies 4; = 4; in (8) (the computation of 4; is a significant cost factor in AFC
schemes for systems), and to prove certain theoretical results such as entropy stability [18], see also Section 4.3.2.
Therefore, it is unfortunate that a few boundary nodes invalidate skew symmetry.

We now explain how the issue raised at the beginning of this section can be resolved starting in the already
introduced CG setting. Let us take a step back and remind ourselves how the matrices C arise in the first place.
The strong form of the CG discretization of the conservation law (1) contains the integral

/(in - fwy,) dx, (12)

Q

which can generally only be approximated via quadrature. The group finite element formulation [45], [46]:

N
fui= D f0; =~ fu) 13)
=1

interpolates the inviscid flux f(u;) in the finite element space. On simplicial meshes with periodic boundary
conditions, this approach can be interpreted as nodal quadrature [46]. Inserting (13) into (12), we obtain

N N
/ oV fwdx~ Y f;- / Vo dx= Y fi-c;= D (Fi=f)-cy. (14)
j=1 Q j=1

Q JENALI}

which is how the discrete gradient operators arise in AFC schemes. The last equality in (14) holds because the
row sums of each CX are zero due to the partition-of-unity property Zz]y:1¢ i(x) =1foranyx € Q. Replacing Cji
in (14) by some ¢;; € R4 such that ¢;=0ifj& N is equivalent to adding

2 (f/ _fi)’(z'ij_cij) (15)
JeENAL}
to (14). If for all k € {1, ...,d} the row sums of each C¥ in € = (C%,...,C%) = (Ei}-)]i"j=1 sum to zero, and the

columns of the matrices C* and C¥ add up to the same values cﬂ? storedin ¢; = (ci ,cj.l), then

N N
2 2 (ff—fi)'(éij—ci/)=2fj‘<

i=1 jeN\{i) j=1

N N N
%—Zczj>= fi-(ej=¢c)=0.
i=1 i=1 =1

i j=
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Thus, the proposed modification does not lead to a change in the global mass balance. Note that by writing the
correction term (15) using a sum over only indices j # i, we may choose the diagonal entries ¢; arbitrarily. This
possibility is what will allow us to define the skew-symmetric discrete gradients below.

Remark 1. In this paper, we are referring to a matrix A = (aij)f’j=1 as skew symmetric, if a; + a; = 0 for all
i,j€{1,...,N},i#j,which does not imply zero diagonal entries. Their values are unimportant since their use
can be avoided in AFC schemes via formulations such as (15).

An additional constraint that is desirable in the context of high-order AFC schemes is the sparsity of C [10],
[14], [20], [21], [25], [32], [47]. By that we refer to the property that every nonzero offdiagonal entry corresponds
to two distinct nodes that are closest neighbors (in a certain metric) in the submesh obtained by using each
Bernstein node as a degree of freedom of a continuous subcell P, or Q, (depending on the element geometry)
discretization [13], [14], [25]. The corresponding stencil N ; will be further specified below. Each pair of nodes
(i, ) with j € N :\{i} corresponds to one antidiffusive flux that needs to be limited and incorporated. Thus, the
fewer elements in the stencils A" ; the better in terms of computational resources.
Thus, we may replace the discrete gradient operator C by matrices C of the same size satisfying

Z‘l]=_?:]l VI’]E {1”N}a l#]a (163)
N
Y g =0, (16b)
j=1
N
> (c;—)=0 Vje{l...N}, (16¢)
i=1
¢ #0 = i=joriandjare closest neighbors in the stencil N i (16d)

The remainder of this section is dedicated to constructing such matrices C. For second-order continuous Galerkin
schemes with weakly-enforced boundary conditions, C satisfies (16b)—(16d). Thus finding a C that also fulfills
(16a) is simple (which is why no originality is claimed here, although we found no works using these matrices in
a similar context). Given the original operators C and symmetric boundary matrices B = (B, ..., B%) = (b; j )2’}.:1,
we only have to adjust a few entries of C, which can be done as follows:

1
v Cit 5

b; if i # j,

Z b, otherwise.
keN\{i}

Proving the validity of (16) for this operator is straightforward. So far, we have focused on global matrices. Below,
we discuss elementwise operators because these become relevant in the high-order and/or DG cases.

3.2 Skew-symmetric discrete gradient operators for Bernstein polynomials

In Section 3.1, we established that the group finite element formulation [45], [46] produces the discrete gradients

C=(C,...Ch=(c)}ieyp €= /(in(pj dx, 7
Q

where {@; }Zi"= , are the Lagrange basis functions of P; or @, continuous finite element spaces. Let us now consider
elementwise operators C for a certain reference element K C R? and the Bernstein basis. These matrices are
obtained by replacing the number of rows and columns N and the integration domain € in (17) by the local
number of unknowns and the reference element K, respectively. With some abuse of notation, we avoid making
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this distinction, to avoid redefining all operators or carry additional indices. For each of the below element types,
we construct matrices € = (CL, ..., C%) = (Eij)f’jzl, satisfying conditions (16).

3.2.1 1D elements

Denote the 1D reference element by K = [0, 1]. The Bernstein polynomials of degree p € N associated with the

nodes x, = k/p are q;}f(x) = <£>(1 —x)P~*xK k € {0, ..., p}. The derivative operator C = C! = (cij)l{’jzo, Cj =

1P 0)(@?Y (x) dx is a dense matrix with zero row sums, and its column sums read
0 q)l q)]

1 1 -1 lf] = 0,
Zp:/gop(x)a(pf()() dx /d(p]l'](X) dx = p? (1) — ¢?(0) 1 if j (18)
. = = i — Q. = ifj=p,
= L ox A ox ] J
0 otherwise.

Lemma 2. The tridiagonal matrix (originally proposed by Pazner [20, Eq. (21)] for an LGL-FCT scheme)

6 = (Ei’j)i{)jzo, El,l = El,l—l = _0.5, Ep’p = El—l,l =0.5 (19)
forle {1,..., p} and all other entries set to zero, satisfies conditions (16).
Proof. Condition (16c) follows from (18). The rest is obvious, see also Pazner [20]. O

Remark 2. Applying the theory by Lohmann et al. [14, App. B] to the case of discrete gradients, we obtain alter-
native sparsified operators given by [14, Eq. (B.4)]. Note that this matrix satisfies all of the conditions (16) except
for (16a). As we quantify in Sections 5 and 6, the use of [14, Eq. (B.4)] requires significantly smaller time steps for
large p than its skew-symmetric counterpart defined in Lemma 2.

Lemma 3. Let {y;} ll::o be the piecewise linear continuous Lagrange basis interpolating the Bernstein nodes
{k/p} 5:0 of the reference element [0, 1]. Then the following matrix coincides with (19):

1
_ Ay ()
C=@py  T= / w0 ";f)ix dx. 20)

Proof. For i # j, the integral in (20) reduces to a single subcell connecting nodes x; and x; if they are closest
neighbors. The subcell length is the reciprocal of the constant slope of 1//].” and so it remains to integrate l//ip ,

which yields precisely ¢;; = +1/2. The case i = j follows from ¢; = 1 /1M dx. O

290 ox
At first, it seems natural to extend the definition of subcell P, /@, Lagrange polynomials to the multidimen-
sional case and use an analog of (20) to define sparse discrete gradients. However, similar to the case of dense
discrete gradients C, these matrices are not fully skew-symmetric because of entries corresponding to pairs of
nodes that are neighbors on the same boundary segment of the element. Thus, we have to find other matrices
to achieve skew symmetry, which we focus on next.

3.2.2 Box elements

Let us now discuss the case of Q » elements, i.e., quadrilaterals in 2D, hexahedra in 3D, or higher-dimensional
analogues. For generality, we allow varying polynomial degrees p, in each spatial direction ! € {1, ...,d}. The

Bernstein basis functions { ¢; }f; , are simply tensor-products of the one-dimensional Bernstein polynomials and
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N = H;i:l(p, + 1). We choose a lexicographical ordering of basis functions and corresponding node indices i =
(i, ... , ig) within the reference element, where to obtain the element-global index i we first iterate over all basis
functions with respect to the first spatial variable, i.e., going through all i; € {0, ..., p; } before incrementing the
subsequent one i, once and so forth. This common approach enables us to mimic the 1D case by using Kronecker
products A ® B € RUXK) of matrices A € R, B € R By I; € R, we denote the identity matrix and by
1, € R the vector of ones.

Lemma 4. Let C, € R(P+DX(2+D pe given by (19) for py = p. Then the matrices C = (Z‘l-j)ffl.zl,
1

=
[T (p+D
Ik

C— (1 ~d rk Fa NXN
C=(,...0H, ¢ e ® Cp, ®Tne )| €RVY,

satisfy conditions (16) for multidimensional box elements (quadrilaterals, hexahedra, etc.).

Proof. Iféf‘j #0andi=(@,...,i) #j=(y, ..., jp), then iy =j; forall L € {1, ...,d}\{k} and i} = j; + 1. This
property follows from the definition of C with the lexicographical numbering of nodes and implies sparsity (16d).
Similarly, considering such a pair of nodes, skew symmetry (16a) can be shown by definition of the 1D matrices
C e Furthermore, let A, B, C, D be matrices such that products AC and BD can be formed, then the Kronecker
product satisfies the relationship (A ® B)(C ® D) = (AC) ® (BD). Thus,

1

— 1
M=o+ D
Ik

~k _ —
9 (1p1+1 ®..® 1pd+1) - (p1+1D)...(pry+1) ® Opk+1 ® 1( PratD). . (pg+1) | — 0N

because C pdp+1 = 0p 41 where 0, € R!is the zero vector. Hence, (16b) holds. Finally, to show (16c), we recall the
definition cﬁ? = fx% dx = /ax(/’ My ds, where K C R? is the reference element and ny is the kth component of
the normal to oK. Note that for fixedj € {1, ... ,N},k € {1, ...,d}, 0K in this integral can be replaced by a single
boundary face I', on which ¢; is equal to a Bernstein polynomial in (d — 1) variables. Since I is a box element
in R%! with volume |I"| = 1and all Bernstein polynomials possess equal mass, that is Jr@;ds = |['| /N, where
N, = H?:l( p; + 1) is the number of nodes on I', it follows that

Ik

-1 ifj, =0,
N N / a(pj ) 1
k ip s
Gj = iy =ci=—g————=Xq0  ifje{l...,p-1},
’g{ ! ; K 0x; ! H?=1(P1+1) Jk p
#k 1 if j, = p.

This is equal to the corresponding row sum of C¥ because

Tk _ 1 T T 7 T
(1P1+1 ®...8® 1Pd+1) = Htli 1(pl +1) 1(p1+1)...(pk_1+1) ® 1pk+lcpk ® 1(pk+1+1)...(pd+1)
Ik
and 1; +1C‘ p = [-1,0,...,0,1], see (19). Thus, all properties in (16) hold. O
3.2.3 Simplices

We now move on to the reference simplex K = conv{0,,e,,...,e;} C R¢ where conv{} denotes the convex
hull and e; is the ith unit vector in R¢. The barycentric coordinates are A,(x) =1— Z?zlxi, Ax)=x;forie
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{1, ...,d}, and the Bernstein nodes shall be numbered using a multi-index notation i = (i, ... , i;) similar to the
case of box elements. The set of multi-indices representing nodes in K is

d
J=J(p.d)= {(io,...,id) € {0,..., p}4h Zij=N:= <p-;)—d>}
=0

and the (isotropic) pth-degree Bernstein basis functions read (plf (x) = Hd”—!k'Hf:OA,(x)"l, keJ.
1=0"1*

3.2.3.1 The P, triangle
Before studying the general simplex case, let us briefly focus on the P,-triangle in 2D. By (16a)-(16c¢), all matrices
satisfying (16) can be expressed as

-1 a 1—a -1 b 1-b
c1=% —a 1 a-1f c2=% -b 0 b | a,beR.
a—1 1-a 0 b—1 -—b 1

The magnitude of nonzero off-diagonal entries in these matrices affects the time step restriction of convex lim-
iting schemes due to (9) and (5). Thus, all nonzero off-diagonal entries of C! and C? should generally have the
same absolute value if possible (see also Section 5 for further discussions on this issue). By this argument, it
makes sense to only choose a,b € {0,0.5,1}. Figure 1 shows various choices including three (Figure 1b—d) out
of the possible nine combinations of parameters a and b in addition to the usual, non-skew-symmetric matrices
C (Figure 1a) along with a variant, where a, b ¢ {0,0.5,1} (Figure 1e).

The case a =1, b = 0 leads to dimensional decoupling and inhibits optimal convergence rates, see the
numerical examples in Section 6.2. Setting a = 0, b = 1 corresponds to an unusual gradient, where coupling
occurs in a direction that is opposite to the one in the previous case. This scheme exhibits optimal convergence
behavior but requires significantly more time steps than the choice a = b = 0.5, which seems to be optimal in
terms of CFL conditions. The gradient in Figure 1le corresponds to a discrete gradient that satisfies conditions
(16) but uses off-diagonal entries of varying magnitude. As a result, the resulting CFL condition is much more
restrictive, however, this method also exhibits optimal convergence rates. We have not experimented with gra-
dients other than the ones shown in Figure 1because the two matrices C', C? corresponding to any other choice
ofa,b € {0,0.5,1} would be dimensionally inconsistent to each other.

In conclusion, uniqueness of simplicial discrete gradients satisfying conditions (16) does not hold. Note
that for box elements the operators specified earlier are only unique because of their tensor-product structure
(not possible here). Based on the summarized results obtained with each of the schemes in Figure 1 (detailed
in Section 6.2), it makes sense to generalize the gradient in Figure 1d. In the remainder of this section, we
demonstrate that this approach is feasible for general high-order simplices in arbitrary space dimensions.

(a) Non-skew Py (b)a=1,b=0 (c)a=0,b=1 (d)a=b=05 (e)a=2b=-1
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Figure 1: Five different options for how to choose € on triangles, red represents entries in C', blue represents entries in 2.
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3.2.3.2 General simplices
The realization that the gradient in Figure 1d appears to be optimal for P;-triangles implies the following struc-
ture for arbitrary p, d € N: Conditions (16a)—(16c¢) fully determine the values of diagonal entries since

N N N N N ok
k _ ~k _ ~k ~k _ <k | =k \ _ ozk <k _ =ky _ o=k <k _ J
ct = Zc‘._ Zc“ Zc.._ Z (C.. c..) = 2C", Z C. — C¢r) = 2¢7%. ¢ =~
j VAR Y U+, Jji o 4 l]+ ji l}+‘ (U u) Ji = Ji 2
i=1 i=1 i=1 i=1 i=1
i#]

In any matrix row i, the offdiagonal entry in the jth column is nonzero only if the multiindices i and j corre-
spond to nodes that are nearest neighbors. The magnitude of offdiagonal entries should be constant, and their
sign should be determined by the spatial direction. If the node x; lies in positive direction w.r.t. any Cartesian
coordinate, then Eff]. > 0 and Z‘f.‘]. < 0 otherwise for all k € {1, ..., d}, i.e., for all matrices. For closest neighbors
other than these nodes (diagonal neighbors), the sign of Z‘f.‘]. depends on whether the diagonal direction is positive
w.rt. the coordinate x;. If d > 2, there are diagonal neighbors with the same multiindex component for the x;
direction. The corresponding indices are set to zero in CX.

To formalize these considerations mathematically, we require some notation. For consistency with previous
works [25], [32], we define connectivity on simplices as follows.

Definition 1. Leti,j € J.If3k,l € {0, ..., p}, k # [, such that j = i + e, — e, where ¢, ; are the kth and Ith unit
vectors in R4+, respectively, then we say j € N, i.e., j is in the local stencil V.

In addition, let

1 p!
- p+d-1 2Ap+d-1!
2(d 1)!( » ) p

denote half the mass of a pth-degree Bernstein polynomial on the (d — 1)-dimensional reference simplex. Fur-
thermore, let cﬂf = /ax(/’ Mk ds be as before, and for i, j € 7, define

—s/d if(je N)ALG, =i+ DV (i = i — DI,
s/d if(je N)ALG, =i — DV Gy = i + DI,
Cii=1-s if (i = j) A (iy > 0) A (i, = 0), (22)
s if (i = j) A (i = 0) A (iy > 0),
\0 otherwise.

ices Ok = (¢k — (¢k
Lemma 5. The matrices C* = (©ijes =

€l i /‘d))’? jeg iven by (22) satisfy conditions (16).

Proof. By Definition 1, i ¢ N ; for all i € J. Therefore, all cases in (22) are exclusive, and Effj is well defined.
Sparsity (16d) is built into Definition 1, and skew symmetry (16a) is proved by observing that for i # j,

—s/d if (i€ N )ALy =jo + DV G = ji — D,
& =1s/d if (i€ N) ALy =jo =DV (g = ji + D,
0 otherwise,
s/d if (j € N) ALy = ip + DV (g = i — D]
=1 -s/d  HGENIAGy =i =DV (=i +D] =T
0 otherwise
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We show (16¢) by proving that

Z"?.:%c‘? vje(l,...,N},

i ke {1,...,d}, (23)

which, together with (16a) and (16b) (to be proven last), implies (16c). To better illustrate how (23) can be shown,
let us consider the example sketched in Figure 2. The red nodes are precisely those corresponding to the nonzero
diagonal entries in (22). These are set in accordance with (23), as are the entries for black and blue nodes:
Diagonal entries for the former are zero because these nodes are either within the element interior or lie on
a boundary where the respective component of the normal appearing in c;? is zero. The blue nodes are degrees
of freedom for which the Bernstein polynomial is nonzero on more than one boundary segment, with the cor-
responding normal component being nonzero on precisely two (also for d > 2) of these, which depends on k.
These two integrals cancel, which is consistent with definition (22).

Let us now rigorously prove (23) for (22) by formalizing these exemplified considerations in all required
cases: If j,j, > 0 (black nodes), then c’}? = 0 and (22) is consistent with (23) because E’Jf}. = 0. For j, > 0 = j (red
nodes not opposite the origin), the integral cj? = [;x® iy ds can be reduced to a (d — 1)-dimensional reference
simplex, on which ¢; is a Bernstein polynomial in d — 1 variables. The component n; of the normal to this
boundary is always —1, thus, cj? = —2s by (21), and E;?j = —s.If j, = 0 and j, > 0 (red nodes opposite the origin),
the situation is exactly reversed, and by similar arguments (including transformation to the reference simplex),
we obtain ¢¥ = 2s = 2¢X . In the case j, = j, = 0 (blue nodes), contributions to the integral c;? arise from precisely
two boundaries, one of which is always opposite the origin. These two integrals are clearly of opposite sign.
Invoking transformation rules, one can show that their magnitudes are equal. Hence, c;? = 0, which is consistent
with (22) because &¥. = 0. Thus, we have shown (23).

It remains to prove (16b), where, for clarity, we also distinguish between all relevant cases based on
the row multiindex i € J: For iy = p, we have E;‘i = —s, precisely d positive, and no negative entries in the
row. Similarly, for i, = p, Eﬁ = s, and the other d nonzero row entries are negative. For any other vertex,
ie, e {1,...,d}\{k} with i = p (for d = 2, these are blue nodes in Figure 2), we have Z‘ﬁ = 0. The nodes
with j, =1, j, = p—1and j;, =1, j, = p — 1 each contribute one negative and one positive row entry, of which
there are no more nonzero ones. We have now dealt with all corners of the simplex. At this stage, it makes
sense to restrict ourselves to the case d > 1 (in 1D, it can easily be shown that (22) coincides with (18)). We
define g:= |{l € {1, ...,d}\{k}:i, > 0}|, where | - | denotes the cardinality of a set. For i, = i, = 0, we have
Eﬁ' = 0 and there are precisely q negative and q positive entries in row i, which correspond to j;, = i, +1 and
Jx = I + 1, respectively. For iy = 0 < i, < p, we have E;‘i = s. The negative row entries correspond to either j =
i+ e, — e, (one entry), j, = i, + 1 (¢ additional entries), or j, = i, —1 (d — 1 additional (diagonal) neighbors).
Moreover, there are precisely q positive entries in that row, which correspond to j, = i, + 1. Thus, the row sum is
s— 2(1+ q+d-1+ gq = 0.Thecasei, = 0 < i, < pissimilar,and we obtain —s — §q+ 2(1+ d-1+q =0
for the row sum. Finally, for 0 < i;; < p, we have ¢& = 0 and the row sum is —J+q+d-D+°0+d-
1+ q) = 0. We have thus shown (16b), which together with (23) concludes the proof of (16c) as well as that of
Lemma 5. O

(a) Coloring w.r.t. C*

°
(0,0,4)
° °
(1,0,3) (0,1,3)
° ° °
(2,0,2) (1,1,2) (0,2,2)
° ° ° °
(3,0,1) (2,1,1) (1,2,1) (0,3,1)
° ° ° ° °
(4,0,0) (3,1,0) (2,2,0) (1,3,0) (0,4,0)

(b) Coloring w.r.t. C?

°
(0,0,4)
° °
(1,0,3) (0,1,3)
° ° °
(2,0,2) (1,1,2) (0,2,2)
° ° ° °
(3,0,1) (2,1,1) (1,2,1) (0,3,1)
° ° ° ° °
(4,0,0) (3,1,0) (2,2,0) (1,3,0) (0,4,0)

Figure2: Bernstein nodes of the P, triangle and correspond-
ing multiindices.
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3.2.4 Prisms

Finally, we study prismatic cells (also called wedges) in R®. These are tensor products of a triangular element
and an interval, which is exploited here. For simplicity, we make the assumption that the spatial dimensions are
numbered such that the reference elementis K =\ X [0, 1], where /\ = conv{(0,0)7,(1,0)7,(0,1)7 }. We allow
the Bernstein basis functions to be of different orders p,,, p, € N on the triangle and the interval, respectively.
The Bernstein basis functions are now tensor products of the triangular Bernstein polynomials and the 1D basis.

We define n = ( p;y”) as the number of nodes on /\.

Xy
Lemma 6. LetC p, be given by (19) for p = p, and C*, CY € R™" be given by (22) for p = Dyy and let

1
p+1”z

1

-1 1 ¢
(Dyy + D(pyy +2) P

C=—" +1® ¢ =

3 —
p,+1 L n®C €=

®I,
Then the matrices C = (C', C?, C?) satisfy conditions (16).

Proof. The proof (omitted for brevity) follows those for quadrilaterals and simplices, see Lemmas 4 and 5. []

3.3 Implementation aspects

The GitHub repository [48] was published together with the first DG-MCL paper [25]. It provides codes for com-
puting the discrete gradient operators on simplices following [32]. This repository has been updated to include
both the old and new sparsification approaches for all element geometries considered in this work.

Having discussed various geometry reference elements, let us briefly summarize the required modifications
to obtain local discrete gradients on actual mesh elements. Let cC=(C,...,CY, Ck= (¢ j)ﬁ’jzl forke {1,...,d}
be the reference element matrices and let adj(J) denote the adjugate of the Jacobian matrix J to the transforma-
tion for mapping the reference element to physical cells. Then all entries of the corresponding discrete gradient
operators on physical cells are obtained via R? 3 ¢;; = adj(J )TIE, ... ”f;]T. Here we assumed linearity of the
transformation to factor out adj(J)T. Whether the discrete gradients defined in this manner are suitable for non-
linear mappings too is yet to be determined. We refer to ref. [21, App. B] for a discussion regarding curvature
and nonlinear transformations in the very similar LGL-AFC context.

4 Theoretical results for Bernstein-DG-AFC schemes

4.1 Notation

The superscript e € {1, ..., E} generally denotes the element index, where E is the number of mesh cells. The
global solution u;, is obtained from local contributions u; via u, = Zf \Up. A single subscript index refers to
local nodes within the element. Two subscripts indicate interplay between distinct degrees of freedom, e.g.,
volumetric diffusion coefficients de (here i, j are local indices of nodes within K°). If subscripts are separated
by a comma, this indicates couphng across element boundaries, e.g., interfacial diffusion coefficients de Let F{
denote the set of (interior) boundary segments I'; that the node x¢ belongs to. For fixed k € N, there exists a
unique node xl?‘ at the same location as x{ € JK*. To ease readablhty, these quantities are denoted using a hat
symbol, e.g., the degrees of freedom associated with the same location as x? but located within the neighbor

element that shares face Fi with K¢ is ﬁf X (not uf,').
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The semi-discrete AFC discretization for the Bernstein-DG discretization reads

mf% = j;ve[dfj(u; — ) = ()~ f - &+ £

+ Z [df,k(ﬁf,k - ”?> — (@5 — F@) - ¢ + £ @9
keF?
where
1
= /(pg dx, df = max{ |15, 5145 | <y = i/(pfﬂi ds, d7, = [c5, 12, (25)
K e

and n; is the unit normal to I"; pointing outside of K®. The volumetric and interfacial wave speeds /le and ﬂe in
the dlrectlons cf] / |cf}| and cl’k / |cl’k| depend on uf and u] or uf and i, respectively. In this section, we generally
only assume (16b) and (16c¢) for entries of the discrete gradient operator. The volumetric and interfacial limited
antidiffusive fluxes fl‘;* and f* f: are obtained from their unlimited counterparts flj and f* f by enforcing various
constraints via MCL. These aspects [7], [25] need not be addressed here.

4.2 General results

For completeness, we reformulate an already established result [25, Lem. 1] in the context of quadrature.

e e . . X €,
Lemma 7 (recovery of the target scheme). Ifno limiting is performed, i.e., if fl.]. = fl‘; and fl f Jor allunlim-
ited antidiffusive fluxes defined as in ref. [25], then (24) is equivalent to the DG target scheme

le
ouy
/(pl o - 2 wSfus (@) - Vo) + Y Z o} 5@ (u5(a5), 85(q5)) = 0
Ke t kerf j=1
forallee {1,...,E}, i€ {1,...,N}, where a)‘;, q‘/? are the I° quadrature weights and points used to approximate
the nonlinear volume integral, and w;, It xii are the Iy quadrature weights and points used to approximate the

boundary integral containing the target numerical flux fn; ( ) in direction n;.

n Un
Proof. The claim reformulates [25, Lem. 1], which assumes exact integration, using quadrature rules. O

As discussed in ref. [25], the similar structure of volumetric and interfacial terms in (24) allows for a combi-
nation of the two by adjusting the definition of local stencils and extending definitions of volumetric terms to
include their interfacial counterparts. In this paper, we simply write sums over indices j # i (with some abuse of
notation) to indicate that both types of couplings are considered. Using this convention, the forward Euler time
discretization reads

= S0 ) = (1) gy = B )

e,FE

where u and u; - are the old and new nodal values. Next, we adapt [24, Thm. 4.7] to our setting.

Proposition 1 (fully discrete local entropy inequalities, [24]). Consider an explicit SSP time discretization of (24).
The low-order method, in which flj* = fl.e;: = 0, satisfies the local discrete entropy inequalities

<o 3 (e o) - (7-F) )

i j#i

w.rit. all entropy pairs (U, F) consistent with system (1) if the CFL condition (5) holds.
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Proof. Our low-order method fits in the framework of [24, Thm. 4.7] and the proof directly carries over. O

Remark 3. Inequalities such as (26) cannot be derived for flux-limiters because (26) is based on properties that
hold for g, j but not for ﬁl* in the MCL case nor for FCT-like alternatives as in refs. [11], [44]. Thus, results akin to
Proposition 1 are of limited practical relevance except for the analysis of first-order schemes. For comments on
which entropy conditions should be enforced, we refer to refs. [7], [27] and the references therein.

Proposition 2 (local conservation property). Let af, € [0, 1]™ be the vectors of effective correction factors, with
which each component of the interfacial antidiffusive flux ffk is multiplied to obtain fl"k* for (24), then

e L3 foltn-on () ol o

i=1 ke?e

where fi'f(u,v) = %[(ﬂu) + flv)) - n+ A, (u, v)(u — v)] is the local Lax-Friedrichs (LLF) flux and o denotes
componentwise multiplication of vectors of the same size.

Proof Exploiting de] = dj.l., (16b) and (16¢), skew-symmetry of antidiffusive fluxes, as well as the definitions of
and of fe see [25, Eq. (4.3)], we sum (24) over all local nodes, which yields the claim. O

The following two results were implied in ref. [25] but have not been formulated as such.

Proposition 3 (preservation of global bounds, [13], [24]). Consider an SSP time discretization of (24) satisfying
the CFL condition (5). Let u i € Aforalli € {1,...,N}, j # i, and all element indices e, where A is the largest
admissible set. Then the solutlon at the next time step is also in A.

Proof. Again, it suffices to consider the forward Euler case, in which the updated solution uf’FE is a convex
combination of uf and the af]* under the CFL condition (5). The claim follows because .A is convex. O

Proposition 3 implies that constraints such as global lower and upper bounds hold for numerical solutions to
scalar conservation laws. For the Euler equations, limiting of ﬂf}* w.r.t. density and pressure (see Section 2.3)
can be used to guarantee nonnegativity of these two quantities (naturally only up to machine precision). For
shock-capturing purposes, limiting w.r.t. local bounds may also be desirable.

Corollary 1 (preservation of local bounds, [13], [24]). Consider an SSP time discretization of (24) satisfying the
CFL condition (5). Let u, af]* € A, for all j # iin the DG stencil (volumetric and interfacial neighbors, the former

depending on the sparsity of C°), where A; C A is convex. Then uf’FE € A,

Proof. The arguments used in the proof of Proposition 3 directly carry over to this setting. O

4.3 Results exploiting skew-symmetric discrete gradients

4.3.1 Two issues regarding sequential limiters

In the process of algebraic flux correction, it is not uncommon to perform more than one limiting step. For the
Euler equations (and similar systems), we adopt the sequential approach [13], [21], [25], [49] of first adjusting den-
sity, followed by limiting of velocity components and specific total energy (the latter are limited independently
of each other). Additionally, a pressure correction should always be performed and an entropy fix may also be
desirable. These two steps each multiply all components of the antidiffusive flux by the same correction fac-
tors. However, due to the sequential approach used to limit specific unknowns rather than conserved ones [49],
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these synchronized steps may violate the maximum principles enforced beforehand for specific unknowns. This
issue may not be of critical importance because such constraints are used for shock-capturing purposes rather
than for enforcing nonnegotiable solution properties. Nevertheless, it would be desirable to show that this issue
can be avoided. In ref. [28, Lem. 3.16], a sufficient condition for such compatibility of sequential limiters with
subsequent synchronized limiters is given, which reads

e,min

pe7™" < (o) < pLei™™ Vj#i. @7

Here p is the main unknown (e.g., density), ¢ the specific unknown (e.g., velocity), and (p¢g) the conserved
unknown (e.g., momentum) with corresponding bar states ﬁfj,

_ (o) + (g,

. o 28)
7 Py + P

-_e|

and ( p(p)fj, respectively [13]. If the discrete gradient is skew symmetric, we have afj = a;, hence (28) simplifies to

@5 = (o), / p;; and (27) becomes (pf’mm <@f <
e,min e,max

tion is nothing else than a design criterion for the definition of local bounds ;™" and ¢;™". It is automatically
satisfied for the canonical choice [13, Eq. (78)] (p?‘m = min iPij» (p?‘"’IX = max;@;;, while for nonskew-symmetric
discrete gradients, the validity of (27) is more difficult to guarantee.

A related issue is that if all correction factors of the sequential limiter are set to zero, the semi-discrete
low-order method for product type variables (such as momentum or total energy) actually reads

@™ Yj +# i(since p > 0). This simplified compatibility condi-

1

d(pe)? o
m¢ i L= Zdej[pfj(pfj—(pqo)f] (29)
J#
instead of dr0)
PP, —
me 2 = sz;[(p(p);—(p(p)f]. (30)
J#

If ag}. = aji, (29) and (30) are equivalent but the symmetry of bar states generally requires skew symmetry of dis-
crete gradients. The low-order method (29) is less theoretically justified than (30). For instance, the fully discrete
entropy inequalities derived in Proposition 1 and [24, Thm. 4.7] can only be shown for (30). Skew symmetry of
volumetric discrete gradients is therefore desirable for sequential limiters.

4.3.2 Discrete entropy stability

As discussed in Remark 3, high-resolution schemes cannot be expected to satisfy fully discrete local entropy
inequalities w.r.t. all admissible entropy pairs as the low-order method does (see Proposition 1). A different
concept to achieve entropy stability is to make use of Tadmor’s semi-discrete theory [30], [31]. Kuzmin and
Quezada de Luna [18] derived Tadmor’s condition for AFC schemes and proposed a limiter that enforces local
semi-discrete entropy inequalities. Further results on these techniques can be found in refs. [7], [27], [29]. Rueda-
Ramirez et al. [21] were the first to use this limiter in the AFC-DG context, but no theoretical results are derived
therein. Since their LGL framework uses skew-symmetric discrete gradients, one can derive results similar to
the next two statements, which apply to our Bernstein-DG methods.

Proposition 4 (local semi-discrete entropy inequalities, [18], [30]). Let yw(u) = v(u)" f(u) — F(u), where v = U,
be the entropy potential and let Tadmor’s condition [18], [30] for volumetric and interfacial fluxes:

v —1°

() - (en) gy < (vi-vi) & viedn ew

A

vé —

ST e (a0, —ut) = (B + ) e+ 1] < (0 —wt) -, VReF (31b)
2 ik\ Yik i ik i ik ik | S\Wi —¥; ik i
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hold. Then scheme (24) satisfies the inequality:

< Y (o (r-E) gl 3o+ (F-F) -l @

JENAL) keF?

where

e —_—

o= "5 o) o |+ 1)

e+ 0¢ Ve — ¢
e __ 1 iklqe (ne _ ;€ e, i i,k i e
Gie="> [di,k<ui,k “i) + i ] Tt (ﬁ ﬁk) Cik:

Proof. Following[7], [18], [30], [31], we multiply (24) by vf, which yields the left-hand side of (32). On the right, vf is
split into symmetric and antisymmetric parts. After exploiting Tadmor’s condition, the rest of the proof follows
from algebraic manipulations. We refer to ref. [27, Sect. 4.1] for a proof in the CG context that can directly be
adapted to handle both the volumetric and interfacial terms appearing in (24). |

Corollary 2 (elementwise entropy inequalities, [18]). Let the assumptions of Proposition 4 hold for all i €
{1,...,N}, and, additionally, let E'fj = —Z'jl. foralli,j € {1,...,N}, j # i then (24) satisfies the inequality

U"dx+z YR, ) <0, R (ug )= (F+ B )€ — Gl (33)

i=1 keFf

Proof. Summing (32) overi € {1,...,N}, exploiting (16a)—(16¢) (thus G:?j = —G;l.), and (25) we obtain:

N dUe N N
LS DID) [Gfi-l_(F?_F?)'E?j]—i-zZ[Gik—i_(Fie_F?,k)'cik]
i=1 i=1 jeN\{i} i=1 keFf
N N
=-Y - /w wr iy z/(p fas+ Y X [or - Bl
j=1 l 1 keF? i=1 keFy{
N N N
SENADNIEDIPI A ATA RSN AT}
i=1 keF? i=1 keF? i=1 keF?
Extracting the time derivative, we find that the left-hand side of this inequality is equal to % Jice Uy dx. O

Corollary 3 (global entropy inequality, [18]). Let i, be the input for the Riemann solver at every domain boundary
segment. Under the assumptions of Corollary 2, scheme (24) satisfies the global entropy inequality:

E N

Uh dx + Z Z Z R, (uy, ) < (34)

e=1i=1 ke?f
x¢€0Q

i

Proof. Summing (33) over all elements, we rewrite the sum of fluxes as a sum over faces, which we split into
interior and boundary faces. As is common in the DG setting, all interior fluxes cancel, yielding (34). O

Tadmor’s conditions (31) is enforced as in refs. [18], [27]. In the DG context, we compute the entropy-adjusted
fluxes for both, volumetric and interfacial contributions w.r.t. the same entropy pairs.
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5 CFL-like time step restrictions for AFC schemes with SSP-RK

The fact that the SSP update (4) is a convex combination of admissible states is essential for many algebraic
limiting techniques, e.g., [11], [13], [20], [21], [24], [25], which imposes the CFL time step restriction (5). In simple
settings, the right-hand side of (5) can be evaluated, allowing for an a priori comparison of different baseline
discretizations in terms of their efficiency. We consider three different DG discretizations of the 1D advection
equation % + u% = 0 with constant velocity v € R\{0} on a periodic domain. Let the 1D mesh be tessellated
using intervals of uniform length h > 0. For the new Bernstein sparsification (19), we have

e_ N

me= |v]
Lop+1

75

v
s = o max{ |c, |e5|} = @, = 1ol 15l = 121, (35)
Due to sparsity (16d), every node has exactly two neighbors. Interior nodes within the element possess two
neighbor nodes within the same element, while nodes on the element boundaries have exactly one neighbor in

that element and one outside of it. Thus, )’ jen\(pdip = vl /2+1/2) = |v|, and (5) reduces to

h

<o 36
2(p+Djv| (36)

which is only slightly more restrictive than the common CFL condition 7 € ——— a +1) E
order DG discretization combined with a (p + 1)-order Runge—Kutta method.
For the non-skew-symmetric Bernstein sparsification [14], [25], [32], the value of

Y=ol (max{1e, 118, ) |+ max{ 18,1 12,0 }) 37

JENAL)

[50, Eq. (2.35)] for a (p + 1)-

varies while m{ and df, remain unchanged compared to (35). Using [14, Eq. (B.4)], it is possible to evaluate (37)
for eachi € {0 . p} To avoid tedious calculations, we only show that for p > 1, this scheme requires time
steps = smaller than (36). Indeed, for i = 0, we have

(p+D+2p

1
+ 3 diy= 1l poimax{1cf 1651} = |v|[ +max{p,|—1|}]=|u| e D

jerii) +1

which is larger than |v] if p > 1. Thus, the use of (19) instead of our old approach [14], [25], [32] leads to less
restrictive CFL conditions for Bernstein elements.

Finally, we study the case of LGL discretizations [20], [21], in which m{ = haw;, |cfj| = % Vje M\{i}, g | =
%, where w; are the LGL quadrature weights. For p > 2, the LGL nodes are not uniformly distributed within the
elements but are concentrated around the element boundaries Generally, the weights of the two boundary nodes

for the unit interval [0, 1] are given byw, =w, = , (p+ o . Thus, the largest possible time step satisfying the CFL

condition (5) is bounded by 0ot 1)| E , which is more restrictive than the optimal Bernstein-CFL (36) by a factor
of p. This unfortunate drawback of LGL discretizations could potentially be cured by replacing elementwise
discrete gradient operators [20], [21] (which are identical to the ones we use here for the Bernstein ansatz) with
matrices that account for variations in the LGL quadrature weights.

In conclusion, for p > 1, our new sparsification can use somewhat larger time steps (depending on p) than
the previous one [14], [25], [32], while improvements over time steps for LGL are significant. For p = 1, Bernstein
polynomials are simply the Lagrange basis functions, which makes the scheme equivalent to the LGL space
discretization. In 1D and on box elements, the old and new sparsifications are also identical.
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Remark 4. The comparisons made here can be easily adapted to discretizations of nonlinear systems in multiple
space dimensions, where the same conclusions can be drawn. For instance, the multidimensional version of the
optimal Bernstein-CFL (36) reads

m; [(h/(p+ D) _ h

= = s (38)
2% iy sz#iélv -ny|[h/(p + DIt (p+ DY ulv - nyl

T <

where the n;; € R? are either the volumetric or interfacial integrals in the stencil.

Remark 5. The CFL restrictions derived here apply to low-order and flux-limited approximations. CFL numbers
w.rt. the target scheme may be more restrictive, see e.g., [51], [52] for further analysis on this topic. Violations
of CFL conditions typically lead to severe blowups, in which case the limiter would adapt the unstable target
solution to satisfy all constraints that are being enforced. In this manner, one can, for instance, guarantee non-
negativity. However, it is usually preferable to limit an already stable target scheme rather than to rely on limiting
for that purpose as well. The numerical example in Section 6.1 provides an illustration of how our limiters work
if applied to such an unstable baseline discretization. CFL conditions of standard DG methods combined with
appropriate time stepping schemes can be relaxed by modifying the numerical fluxes [53]. While this may lead
to a loss of the superconvergence property, all other advantages of standard DG remain valid. In practice, we
have not observed any cases, where the DG target discretization combined with SSP-RK schemes produces more
restrictive CFL conditions than the limiter does.

6 Numerical experiments

We now apply the proposed AFC schemes to common test problems for the compressible Euler equations, where
y = 1.4 by default. The application to other conservation laws is straightforward. Time discretization is per-
formed using the SSP Runge—Kutta paradigm [37]-[39]. The methods are implemented in the open-source C++
library mfem [54], [55] and snapshots are visualized with the accompanying GLVis toolbox [56].

To distinguish between different variants of MCL schemes, we use the following conventions: If all antidiffu-
sive fluxes are set to zero, the low order method is employed. The sequential limiter enforcing discrete maximum
principles following [25], shall be labelled ‘seq’. All MCL-type schemes enforcing global bounds are referred to
by a tuple or triple of quantities that are being limited, e.g., (p, p) first enforces nonnegativity of density fol-
lowed by the pressure fix, while (p, p, U) subsequently also enforces Tadmor’s entropy stability conditions (31).
Often, we append a suffix indicating which numerical flux (LLE, HLL, etc.) is used. To distinguish between the
nonskew-symmetric and skew-symmetric sparsifications, we simply use the terminology old versus new. Unless
stated otherwise, we use adaptive SSP time stepping of the same order as the polynomial space, e.g., SSP2 for
p = 1. The time step is set equal to v € (0, 1] times the right-hand side of (5), where the constant v is chosen to
be 0.51in all tests for the Euler equations.

6.1 1D blast wave
We begin our experiments with a challenging 1D test problem studied first in ref. [57]. The spatial domain Q =
(0,1) is equipped with reflecting wall boundaries, and the initial flow configuration is as follows:
1,000 ifx <0.1,
P =1, v =0, Po(x) =40.01 if0.1 < x < 0.9,

100 if 0.9 < x.

The solution exhibits strong shocks due to the vastly different pressure values, which makes this benchmark an
extreme test for preservation of positive internal energies. For small times, the exact solution can be obtained by



394 = H.Hajduk: Improvements of AFC schemes based on Bernstein finite elements DE GRUYTER

7 T T

—Reference —Reference

g [=-(p.p)-mean -*(p,p,U)-mean |
~(pP}LLF

,p,U)-LLF
5L (p,p,U) |
4 4r E
3 3r E
2F 2F E
1 3 1r E
0k == 1
0 0.2 0.4 0.6 0.8 1 0 0.2 1

Figure 3: Density profiles of the 1D blast wave solved on 500 P, elements.

solving two Riemann problems [58, Ch. 4] but at the end time ¢ = 0.038, interactions with the domain boundaries
and shock collisions have occurred. Therefore, only reference solutions are available.

Since these do not contain any highly oscillatory features, the most economical choice in terms of accuracy
versus computational cost is to use second-order schemes on rather fine meshes. We use our P,-DG discretization
to solve this problem on a grid consisting of 500 uniformly spaced elements. As our MCL approach is capable
of using any numerical flux and performing limiting to guarantee various constraints, we begin by using mean
value fluxes f,(u, v) = %(f (w) + f(v)) - nand ensure only nonnegativity of density and pressure. Since limiting is
carried out w.rt. global bounds only, the result in the left panel of Figure 3 is extremely poor. Performing entropy
limiting subsequently to the other steps significantly enhances the solution quality, as seen in the red curve in
the right panel of Figure 3 but some spurious oscillations remain.

A more reasonable approach than using mean value fluxes is to employ the local Lax—Friedrichs Riemann
solver f,(u,v) = %[(f(u) + f(v)) - n+ A(u — v)]. We combine this scheme with (p, p)-limiting for the volume
terms (the interfacial LLF fluxes do not require limiting to ensure any properties in the 1D case [25]). Comparing
this result with the (p, p, U)-limited profile, we observe less smearing of the contact discontinuity at x =~ 0.6,
which occurs if entropy limiting is enabled. We investigate this issue further in the following section. At this
stage, it is safe to say that entropy limiting in our context can drastically improve unstable schemes by adding
sufficient amounts of dissipation. The question is, are these amounts also necessary?

6.2 2D isentropic vortex

Let us now numerically assess the convergence order of schemes by considering an example with a smooth
solution [59, Sect. 5.1]. Here, the doubly-periodic domain is = (—5,5)* and at every time t = 10k, k € N, the
solution coincides with the initial condition, which reads

- 1 £ - -y
2006 Y) = 0,06, MYV pi(x, y) = H +o e031-0¢+y") [ . ]

2
(r—De el-0P )

8)/7[2 e =5

Pot, y) = B,06, Yy /U0, Gy, y) =1~

We use structured, uniform meshes and perform the tests that were alluded to in Section 3. In addition,

the convergence rate with entropy limiting enabled is checked for the Q, space. Other than entropy stability,

only nonnegativity of density and pressure are enforced. Since the solution is smooth, we do not rely on limiters

enforcing local bounds (these would deteriorate optimal rates). In Tables 1-3, we present the L(€2) errors in
density at the final time ¢ = 10 and the corresponding experimental orders of convergence (EOC).

First, we observe that the entropy fix leads to a catastrophic reduction of the convergence order. This serves

as an explanation for our earlier results, in particular, it explains why the entropy fix is capable of fixing the

oscillatory profile on the left of Figure 3. It is still shocking that the order is reduced by that much. Since the
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Table 1: Isentropic vortex, Q;-HLL on square cells.

10

32 1.76E-02 — 9.32E-04 —
64 1.23E-02 0.52 1.58E-04 2.56
128 7.56E-03 0.70 2.90E-05 2.44
256 4.29E-03 0.82 6.28E-06 2.21
Avg. EOC 0.68 240

Table 2: Isentropic vortex, Q,-(p, p) on square cells.

% New-LLF EOC New-HLL EOC Old-HLL EOC
32 5.07E-05 — 2.60E-05 - 2.60E-05 —
64 7.84E-06 2.69 2.35E-06 3.47 2.35E-06 3.47
128 1.22E-06 2.68 2.70E-07 3.12 2.70E-07 3.12
256 1.79-07 2.78 3.31E-08 3.03 3.31E-08 3.03
Avg. EOC 2.72 3.21 3.21

Table 3: Isentropic vortex, (p, p)-HLL on triangles with different gradients, compare Figure 1.

@ P,,Figurela EOC [P, Figurelb EOC [P, Figureld EOC [P, Figurela EOC P, Figureld EOC
32 1.07E-03 — 3.24E-03 — 9.78E-04 — 4.08E-05 — 4.08E-05 —
64 1.66E-04  2.69 113E-03  1.52 1.66E-04  2.56 3.60E-06 3.50 3.60E-06 3.50
128 3.08E-05 243 4.16E-04 1.44 3.08E-05 243 3.96E-07 3.18 3.96E-07 3.8
256 6.70E-06  2.20 1.88E-04 1.15 6.70E-06  2.20 4.85E-08 3.03 4.85E-08 3.03
Avg. EOC 2.44 1.37 2.40 3.24 3.24

solution to this test is smooth, its exact entropy integrated over the domain remains constant in time. Numerical
schemes may fail to mirror this behavior due to quadrature errors, numerical entropy production, or dissipation.
It seems that Tadmor’s entropy fix designed to make discretizations entropy conservative (not dissipative) does
not work well in the DG case even for Q, spaces (where Bernstein polynomials are simply the nodal Lagrange
basis functions). In principle, an unnecessarily high rate of entropy dissipation can be attributed to too diffusive
numerical fluxes such as LLF or HLL. However, the culprit here is clearly the volumetric entropy limiting, as
we obtain second-order rates by disabling this fix. A comparison with the CG case and similar entropy-limited
AFC schemes is in order to gain further understanding of this issue and how to resolve it. Second, we notice that
LLF fluxes are too diffusive to exhibit third-order convergence for Q, discretizations [28, Sect. 6.3]. This problem
can be cured using more accurate numerical fluxes such as HLL. Finally, we confirm the results regarding the
different gradients. The old and new sparsification approaches are almost identical in terms of error values and
convergence orders. In particular, the fact that three leading digits in the error values are identical for third-
order schemes is striking given that the new sparsification requires noticeably fewer time steps, cf. Table 5. Out
of the five triangular gradients in Figure 1 only (b) does not converge with optimal accuracy (rates for Figures 1c
and le not printed for brevity) but the gradient in Figure 1d generally requires the fewest time steps, cf. Tables 4
and 5.
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Table 4: Isentropic vortex: number of time steps required by P;-HLL on triangles with different gradients, compare Figure 1.

@ Figure 1a (old) Figure 1b Figure 1c Figure 1d (new) Figure 1e
32 177N 2,121 2,552 1742 4,130
64 3,557 4,254 5,080 3,453 8,272
128 7,068 8,496 10,119 6,366 16,535
256 14,126 16,966 20,193 13,688 33,062

Table 5: Isentropic vortex: number of time steps required by P,-HLL on triangles with different gradients, compare Figure 1, and Q,-HLL
on square cells with old and new sparsification approaches.

@ [P,, Figure 1a (old) [P,, Figure 1b [P,, Figure 1c [P,, Figure 1d (new) % Q, (old) Q, (new)
32 2,833 2,856 4,613 2,497 32 2,800 2,100
64 5,659 5,657 9,216 4,954 64 5,557 4,168
128 11,304 11,298 18,419 9,863 128 11,076 8,307
256 22,595 22,587 36,820 19,681 256 22,119 16,589

6.3 Modified Sod shock tube

Sod’s shock tube is a common test case that we solved with Bernstein-DG-MCL and the old sparsification in ref.
[25]. A popular variant of this benchmark [58, Sect. 8.5.1] slightly changes the classical setup such that a sonic
point appears in the exact solution. Many numerical schemes fail in the proximity of this location, where one of
the eigenvalues of the flux changes its sign, by producing a nonphysical entropy shock (see Figure 4a). The setup
of this test is as follows: the domain € = (0, 1) has an inlet boundary on the left and an outlet on the right. The
inlet boundary profile is identical to u; for all times, where

up if x < 0.25, - -
Uy(x) = u; =(1,0.75,2.78125) ', up = (0.125,0,0.25) ",

Up if x > 0.25,

are the initial conditions. This Riemann problem admits an exact entropy solution that can be determined with
arbitrary accuracy by solving a nonlinear equation for a single pressure state [58, Ch. 4]. It consists of a left
rarefaction wave, a right shock wave, and contains a contact discontinuity in between.

First, we solve this problem up to ¢t = 0.2 with continuous P, elements and Roe [60] target fluxes (see [27]
for details) employing uniform meshes of increased resolution and fixed time steps determined by the most
restrictive CFL condition. The profiles in Figure 4a illustrate the appearance of the entropy shock.

Next, we use a coarser uniform mesh with only 16 uniform DG elements and polynomial degree p = 7.
The result of the (p, p, U)-limited solution is displayed in Figure 4h. These profiles are obtained with the new
sparsification approach but the old one looks quite similar. The availability of the exact solution allows us to
compute the exact entropy evolution for this test. Luckily, in this example, the entropy flux F(u) at both domain
boundaries is zero. Thus, entropy is only changed via dissipation at nonsmooth solution features. We see from
Figure 4c and d that entropy decays linearly. Since we use entropy fixes, one would hope that this property holds
true for all discrete entropy evolutions as well but we see that this is only the case for the new sparsification.
Indeed, all three considered Riemann solvers produce entropy with the old sparsification at the beginning of
the simulation. Since the old sparsification does not use skew-symmetric discrete gradients, this result does
not contradict Corollary 3. Besides provable semi-discrete entropy stability, the new sparsification also has the
advantage of needing significantly fewer time steps than the old one.
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(a) CG-P;-seq.-MCL-Roe, density (b) DG-P7-(p,p,U), E = 16
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Figure 4: Modified Sod shock tube: solution profiles (a)-(b) and entropy evolutions (c)-(d). DG solutions use adaptive SSP3.

A few further remarks are in order. First, the red curve in Figure 4d is actually not monotone. This is also not
in contradiction to Corollary 3 because our entropy fixes guarantee semi-discrete entropy stability rather than
in the fully discrete setting. It is known that explicit time stepping schemes may result in entropy production
proportional to a certain power of the time step [61]. Time step reductions can be used to make the red curve in
Figure 4d monotonically decreasing. However, this approach does not remove the wiggles observed in Figure 4c,
which are therefore indeed due to the spatial discretization, which fails to dissipate entropy even though an
entropy limiter is used. Second, despite these small entropy productions, we do not actually observe the forma-
tion of entropy shocks. This is consistent with our previous assessment [27] that entropy limiting does not seem
to be necessary for this system. Instead, preservation of nonnegotiable constraints and shock-capturing should
be implemented. Finally, if we use the sequential approach in combination with either sparsification, all entropy
evolutions become monotone. This observation shows that enforcing constraints such as maximum principles
via AFC leads to dissipation of entropy even though entropy does not play a role in the sequential limiter. Since
sufficient entropy dissipation cannot be guaranteed by this scheme, our above arguments regarding entropy
evolutions remain valid and we recommend using the new sparsification rather than the old one.

6.4 High-Mach number astrophysical jet

Finally, we apply our schemes to a hypersonic test problem, in which the Mach number is more than 2,000 [62].
The spatial domain is Q = (0, 1), the adiabatic constant is y = 5/3, and the initial conditions for the primitive
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unknowns are p, = 0.5, v, = 0, p, = 0.4127. A jet enters at the left boundary {0} X [0,1], where the inflow
profile is set according to

- (5,[800,0],0.4127)  if |y —0.5] < 0.05,
(p,v’, p)O,y,t) = y €10,1].
(0.5,[0,0],0.4127) otherwise,

For the end time t = 1073, the other three boundaries can be set somewhat arbitrarily (we use free outflow).

We solve this problem numerically on a uniform quadrilateral mesh with 5122 cells and an unstructured
triangular mesh with 543,744 elements. Generally, we compare results of the (p, p)-limiter with the sequential
approach using @, and P, spaces with p € {1,2} and contrast the old and new sparsification approaches (not
for Q,, as old and new are identical for these). The results are shown in Figures 5-8; Figure 5 additionally displays
the low order solution. Note that the color bar (which is the same for all plots) is logarithmic. The number of
required time steps (t.s.) is shown in the figure captions for each snapshot. These were computed using HLL
fluxes [23] with wave speed estimates

s_=min{v, -n—a;,vy-n—ag}, s, =max{v; -n+a;,vp-n+ay},

where L and R denote the two input states of the flux, n is the normal, and a = /¥ p/p the sound speed.
Overall, all numerical approximations agree well with each other and no unsurprising results are observed.
The two sparsification approaches produce essentially indistinguishable results but the reduced number of time
steps makes us favor the new technique. As before, sequential limiting usually requires fewer time steps but in
this example, there are some exceptions (P; with either sparsification, ’, with the new one). The sequential
limiter introduces some additional streaks along the transition between the head of the jet and the background.
It seems that these features are spurious and can be attributed to a choice of bounds for numerical admissibility
that are not well-suited for this example. On the other hand, only enforcing nonnegativity of density and pressure

(a) Low order method, 5696 t.s. (b) (p,p), 6327 t.s. (c) seq., 6141 t.s.

25.48

3321

04328

005641

0007352

Figure 5: Density profiles of the astrophysical jet on a uniform quadrilateral mesh, Q, solutions.

(a) Old-(p, p), 13086 t.s. (b) New-(p, p), 9638 t.s. (c) seq.-old, 12471 t.s. (d) seq.-new, 9276 t.s.

Figure 6: Density profiles of the astrophysical jet on a uniform quadrilateral mesh, Q, solutions.
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(a) Old (p, p), 15484 t.s. (b) New (p,p), 14228 t.s. (c) seq.-old, 15497 t.s. (d) seq.-new, 14230 t.s.

Figure 7: Density profiles of the astrophysical jet on an unstructured triangular mesh, P, solutions.

(a) Old (p, p), 24941 tss. (b) New (p,p), 19246 t.s. (c) seq.-old, 24910 t.s. (d) seq.-new, 19300 t.s.

Figure 8: Density profiles of the astrophysical jet on an unstructured triangular mesh, [P, solutions.

seems to work quite well here despite the severity of this test case. Naturally, there exist examples where the
oscillations arising because the numerical viscosity along shocks is too low will reverse the situation. Finding a
framework that introduces precisely the right amount of diffusion in high-order methods, which also converge
with optimal orders of accuracy is an open problem.

7 Conclusions

A new, skew-symmetric variant of discrete gradient operators, commonly used in finite element methods,
and in particular algebraic flux correction schemes, was proposed and analyzed. For continuous and discon-
tinuous Galerkin discretizations using Bernstein basis functions, the feasibility of the novel techniques was
demonstrated in various geometries. We used the new operators in the context of our monolithic convex lim-
iting scheme and compared it with existing techniques, based on non-skew-symmetric discrete gradients and
LGL approaches. In the context of semi-discrete entropy stabilizations via MCL, the necessity of having skew-
symmetric off-diagonal entries was demonstrated numerically. Moreover, additional theoretical results for the
new and old versions of this approach were derived. Finally, we showed the optimality of the novel technique
in terms of explicit time step restrictions. Numerical tests demonstrated that the new version of the scheme
performs well in terms of shock capturing and also preserves optimal orders of accuracy.

The discrete gradients developed in this work are by no means restricted to flux-correction schemes nor
monolithic limiting. In fact, they can readily be employed in the context of FCT algorithms for both continu-
ous and discontinuous ansatz spaces using elementwise operators. Potential future studies include their use
for other types of equations, such as incompressible flows [63]. Moreover, we plan to further develop our flux-
correction techniques by adding additional features to the described methodology. These include smoothness
indicators [47], flux limiting using general Runge—Kutta time discretizations [33], as well as the inclusion of
diffusive [40] and source [12] terms. These topics shall be addressed in future publications.
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