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Abstract: This paper introduces a novel approach to analyze two-level overlapping Schwarz methods for
Nédélec and Raviart-Thomas vector field problems. The theory is based on new regular stable decompositions
for vector fields that are robust to the topology of the domain. Enhanced estimates for the condition num-
bers of the preconditioned linear systems are derived, dependent linearly on the relative overlap between the
overlapping subdomains. Furthermore, we present the numerical experiments which support our theoretical
results.
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1 Introduction

Let Q be a bounded Lipschitz domain in R3, We assume that the domain  is scaled such that the diameter of Q
is equal to one. We first introduce the Hilbert space H(curl; Q) that consists of square integrable vector fields on
the domain Q that have square integrable curls. We consider the following model problem posed in H(curl; €):
Findu € H(curl; ) such that

a(u,v)= (f,v) Vv e H(curl;Q), o)

where
a.(u,v):=n,(curly, curlv) + (u, v) 2

and (-, -) is the standard inner product on (L2(£2))® or L?(€). We assume that the constant 7. is positive and f €
(L2(L2))3. We also consider the Hilbert space H(div; ) in a similar manner, i.e., the space of square integrable
vector fields on Q with square integrable divergences. The corresponding model problem for a square integrable
vector field g € (L%(€2))® on Q is given as follows: Find p € H(div; Q) such that

a(p.q) = (8.9) Vq € H(div; Q), 3)

where
a4(p, q) :=ny(divp,divq) + (p.q). (€))]

Similarly, we assume that 7, is a positive constant.
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The first model problem (1) is originated from time-dependent Maxwell’s equation, specifically the eddy-
current problem; see [1], [2]. With a suitable time discretization, we have to solve the problem (1) in each time
step. The second problem (3) is developed for a first-order system of least-squares formulation for standard
second order elliptic problems. For more detail, see [3]. We also note that efficient numerical solution meth-
ods related to (3) are required for solving problems from a pseudostress-velocity formulation for the Stokes
equations and a sequential regularization method for the Navier—Stokes equations; see [4], [5].

A number of attempts have been made to develop domain decomposition methods for solving (1) and (3). In
[6]-[9], overlapping Schwarz methods applied to (1) have been considered. Additionally, nonoverlapping domain
decomposition methods have been introduced in [10]-[12]. In regard to the model problem (3), both overlapping
and nonoverlapping domain decomposition methods have been proposed in the literature. The former can be
found in [7], [8], [13], [14], while the latter can be found in [15], [16]. However, there are topological constraints
associated with the domains or subdomains; see [7]-[9], [13]-[15]. To be more precise, the theories in [7]-[9],
[13] are based on the assumption that the domain is convex, while the convexity of subdomains is assumed
to establish the results in [14], [15]. In recent constructions [6], [12] novel algorithms have been proposed to
handle irregularly shaped subdomains. However, no supporting theories have yet been formulated. Finally, the
theoretical results presented in [7], [9]-[11], [14], [16] are not sharp. Specifically, the results in [10], [11], [16]
depend on the material parameters used in the model problems, while the results in [7], [9], [11], [14] include
additional factors not present in the numerical experiments. This paper proposes a new theory that addresses
the shortcomings of the aforementioned references.

The framework for analyzing domain decomposition methods based on overlapping subdomains has been
introduced in [17] as a subspace correction method. The two-level overlapping Schwarz methods for scalar
elliptic problems have been introduced and analyzed in [18]; see also [19, Sect. 3] and references therein for
more detailed techniques. In [18], it is proved that the condition number of the preconditioned linear system is
bounded above by a constant multiple of 1 + H/§), where H is the diameter of the subdomain and 6 is the size
of the overlap between subdomains. In fact, the bound is shown to be optimal; see [20].

The purpose of this paper is to analyze two-level overlapping Schwarz methods for discretized problems
originated from (1) and (3) using appropriate finite elements, i.e., Nédélec and Raviart—-Thomas elements of the
lowest order. Such methods have been first introduced and analyzed in [7], [9]. Historically, the authors in [7], [9]
proved an upper bound (1 + H? /8% for the H(curl) and H(div) finite elements. They conjectured and numer-
ically tested that the best upper bound is (1 + H/§). This conjecture was numerically checked many times by
others. After twenty-three years, the open problem was solved by [8] with the best upper bound (1 + H/4) being
proved. In this paper, we prove again the best upper bound (1 + H/§) without the H'-regularity assumption
used by [8] That is, we allow nonconvex domains and non-simply-connect domains.

Previously, the first author of this paper proved an improved bound, (1 + log(H/h))(1 + H/§) versus
a + H%/ %), in [14] with a nonstandard coarse space method assuming that subdomains are convex, where
h is the size of the mesh for the finite elements. In this paper, we do not have any assumptions related to the
topological properties of the domain and subdomains. These properties may encompass nonconvex geometries,
potentially accompanied by holes. Consequently, our results offer insight into closely related practical applica-
tions, such as, in magnetohydrodynamics, a field in which simulating on a torus-like domain is of significant
importance. We remark that the algorithms in [7]-[9] and this paper are essentially the same but the technical
details for the theories are different.

The important ingredients for analyzing numerical methods for solving problems posed in H(curl) and
H(div) are the Helmholtz type decompositions. This is because the structures of the kernels of the curl and
the divergence operators are quite different from that of the gradient operator. In [7], [9], discrete orthogonal
Helmbholtz decompositions based on those for continuous spaces have been suggested and used for analyzing
overlapping Schwarz methods. Since the discrete range spaces are not included in the continuous range spaces,
the authors had to introduce semi-continuous spaces to handle the difficulty. To do so, the convexity of the
domain was needed to use a suitable embedding. In [8], the authors considered the same type of decompositions
so that the assumption for the domain has been inherited. In this paper, we consider a different type of regular
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decompositions. By introducing an additional term, an oscillatory component, and abandoning the orthogonal-
ity, we have more robust decompositions, cf. (10) and (11). The approaches have been originally introduced in
[21] and extended later in [22]-[24] based on the cochain projections constructed in [25]. Our theories will be
based on the decompositions suggested by Hiptmair and Pechstein; see [22]-[24].

The rest of the paper is organized as follows. In Section 2, we introduce the discrete model problems
and related finite elements. We describe overlapping Schwarz preconditioners in Section 3. We next provide
our theoretical results in Section 4. Finally, the numerical examples to support our theories are presented in
Section 5.

2 The discrete problems

We consider two triangulations, 7; and 7;,. First, we introduce 7, a coarse triangulation of the domain €, con-
sisting of shape-regular and quasi-uniform tetrahedral elements with a maximum diameter H. Subsequently, 7},
is generated as a finer mesh, a refinement of the coarse mesh 7. It is assumed that the restriction of 7, to each
individual coarse element is both shape-regular and quasi-uniform.

We next introduce finite element spaces. The space of the lowest order tetrahedral Nédélec finite elements
associated with H(curl; €2) and the triangulation 7}, is defined by

NDy:={u| ug € NK), K € T, and u € H(curl; Q)},
where the set of the shape functions N(K) is given by
N(K):={a,+ B. XX | a, and f_ are constant vectors in R*} (5)

for a tetrahedral element. We note that the values of two vectors «, and S, in (5) can be determined by the
average tangential components on the edges of K| i.e.,

NDgpy . 1 )
/19 w):= |e|/u t,ds, ecCOK,
e

where |e| is the length of the edge e and ¢, is the unit tangential vector associated with e. We note that these
values can be considered as the degrees of freedom. The interpolation operator H;:f D for a sufficiently smooth
vector field u in H(curl; Q) onto N'D,, is defined as follows:

M Puz=y ANPw) @',

e€é,

where &, is the set of interior edges of 7, and <I>£/ D'is the standard basis function linked with e, ie.,

/lé*fD<(I>ﬁ/D) =1and /lg}/D(CI)';‘/D) =0fore +#e.

Remark 1. In general, the interpolation operator Hh"/ D is not well defined in the entire space H(curl; ). This
is because additional regularity, e.g., curlu € (L?(K))* and u X n € (LP(0K))® for p > 2and K € T;, is needed
to define and the tangential component for u € H(curl; Q), where n is the outward unit normal vector.

We next consider the lowest order tetrahedral Raviart—Thomas finite element space corresponding to the
space H(div; €2) that is defined by

RTp:={p | Pk ERK), KET, and p € H(div; Q)}.
Here, the set of shape functions R(K) associated with the tetrahedral element K is defined by

R(K):={a,+ f;x | @ is a constant vector in R® and f, is a scalar }.
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The degrees of freedom related to an element K are determined by the average values of the normal components
over its faces, namely

JRT :=i/ ‘n,ds, fC oK.

Here, |f| is the area of the face f and n; is the unit normal vector corresponding to f. We note that @, and g,
can be completely recovered by the degrees of freedom associated with the four faces of K. Let 7}, be the set of
interior faces of 7;,. Similarly, we can define the interpolation operator Hfr associated with H(div; ). For a
sufficiently smooth p € H(div; €2), the operator is defined by

0 p:= ) A% (p) @F.

fEF

Here, @?T is the standard basis function corresponding to the face f, ie., A?T(CI)?T) =1land A?T((I)?T) =0

for f' # f.

Remark 2. Like the interpolation operator for edge elements, the normal component on the face must be well
defined to introduce the interpolation H}?T. Thus, some additional regularity for p € H(div; €) is required,
e.g,p € (H(Q)): forr > 1/2.

In addition, we need the piecewise linear space for our theories. Let S, be the space of the continuous P,
finite elements associated with 7. We recall that the degrees of freedom are given by the function evaluations
at the vertices. The corresponding interpolation operator for a sufficiently smooth function in H(Q) is given by
Hf. We also consider ﬁf , the Scott-Zhang interpolation operator introduced in [26]. We can also consider the
interpolation operators for 7; by replacing the subscript with H. We finally define the vector field finite space
(Sp)® in three dimensions, whose components are contained in S,

By restricting the model problems (1) and (3) to the finite element spaces N'D,, and RT ;, respectively, we
obtain the following discrete problems: Find u, € N 'Dj, such that

a.(up, vy) = (f,v;) Vv, € NDy

and find p, € RT, such that
aq(Pr 4n) = (8-9) V0 € RT -
We also define the operators A.: N'D, — N'D, and A;: RT ), — RT , as follows:

(Acuh, vh) = ac(uh, vh) Vuh, vh (S NDh

and
(Aaby-an) = a4(Pp-41) VPn-qn € RT .

3 Overlapping Schwarz methods

We decompose the domain Q into N nonoverlapping subdomains €2;, a union of a few elements in 7. We assume
that the number of coarse elements contained in each subdomain is uniformly bounded. The parameter H; is
defined by the diameter of the subdomain £2;. We now consider an overlapping subdomain Ql{ originated from
the nonoverlapping subdomain £, by extending layers of fine elements, i.e., Q; containing €2, is a union of fine
elements. In addition, we consider the assumptions introduced in [19, Assumptions 3.1, 3.2, and 3.5].

Assumption1. Fori = 1,2,...,N, there exists 5; > 0, such that, if x belongs to Q;, then
dist(x, ag;\asz) > 6, 6)

for a suitable index j = j(x), possibly equal to i and may depend on x, with x € Q;..
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Assumption 1 states that the overlap parameters 6;, i = 1,...,N, represent the width of the extended
regions Q'\Q,.

Assumption 2. The partition {Ql{} can be colored using at most N, colors, in such a way that subregions with
the same color are disjoint.
Based on Assumption 2, every point x € € belongs at most N, overlapping subdomains.

Assumption 3. There exists a constant C independent of 7; and the subdomain Q: ,suchthat,fori = 1,2,...,N,
Hy < CH; 7

for any K € Ty, such that K n Ql' # @. Here, Hy, is the diameter of the coarse element K.

According to Assumption 3, the size of a coarse element should not be large compared to the size of the
overlapping subdomains that it intersects.

The aforementioned three assumptions play critical roles in both theoretical and computational aspects.
From a theoretical perspective, the parameters o;, H;, and N, are incorporated into the estimations of the con-
dition numbers of the preconditioned linear systems, which will be presented in Section 4. Consequently, these
assumptions can serve as effective guidelines for computational settings.

In our theories, a partition of unity technique plays an essential role. To do so, we construct the set {6,},
consisting of piecewise linear functions associated with the overlapping subdomain, which has the following
properties:

N
8
Y 6=1 xeQ ®
i=1
C
Vol < 5

where C is a constant independent of the ; and the H; and ||-||, is the standard L*-norm. For more details, see
[19, Lem. 3.4].

We now construct our preconditioners based on overlapping Schwarz methods. We first consider the coarse
component. The coarse operators AEO) and ASIO) related to the coarse problems are defined as follows:

(APuy,vy) = a.(uy,vy) Vug, vy € NDy

and
(AEO)PH»‘IH) = ad(pH’qH) Py, qy € RT .

The row entries of the operator R which maps a vector field in N'D, to N'Dy, consist of the coefficients
obtained through the interpolation of the standard basis functions associated with N'D;; onto the mesh 7;. We
remark that R(CO)T: N'Dy - N'Dy, is the natural injection since the finite element spaces are nested. In a similar
way, we can define the operator R): RT, - RT ; associated with the Raviart—Thomas spaces.

Regarding the local components, let us define the restriction operators R(Ci): ND, > N D;f’ in such a way
that R(C”T: N D;i) — N'D, are natural injections. Here, N D;i) is the subspace of A" D), spanned by the basis func-
tions corresponding to the fine edges in Q;. Similarly, the construction for szi): RT,—>RT ;l” is straightforward,
where the local space RT ;f) is defined in a similar way. Then, the local operators A(C” and A(di) can be defined as
follows:

AV = ROARD 1<igN,

where £ corresponds ¢ or d. We note that Ag) is just a principal minor of A;.
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We can now construct the preconditioners and the resulting preconditioned linear operator has the follow-

ing form:
N
1, _ OUOREND
M;'A: = ) RO AP RVA, )
i=0

where & corresponds c or d.

4 Condition number estimate

4.1 Preliminaries

In this subsection, we will describe several preliminary results for our theories.

We first consider standard Sobolev spaces and their norms and semi-norms. For any D C £, let us denote
by || llsp and |-|sp the norm and the semi-norm of the Sobolev space H*(D), respectively. Provided that
D = Q, we will omit the subscript Q for convenience. If there is no explicit confusion, the same norm and
semi-norm notations will be used for (H(D)).

We next define the operator Qﬁf D1 (L2(Q))* - N'Dy, as the L>-projection onto N Dy,. Similarly, we define
the L*-projection operator Q%7 (L())* — RT . We then have the following lemma in [19, Ch. 10].

Lemma 1. For u,p € (H'(Q)), the following estimates hold:

chrl < ;}/Du)
0

| — 0u, < cHlul;,

< Cluly,

|aiv (057p) |, < Il

lp - 0%7p||, < cHIpI,

with constants independent of u, p, and H.

We also denote by Q?{ K (LA(K))® — (Py(K))®, where K € T;; and P,(K) is the space of constants, a local L*-
projection operator. Then, we have the following result.

Lemma 2. Let K € Ty Then, for u € (H'(K))3, we have

0
”u B QH’Ku“o,K < CHy|ulyx

where Hy, is the diameter of K.

The following lemma describes the stability of the interpolation operators, stated in [19, Ch. 10], for the
functions obtained by the product of a piecewise linear function and a vector field.

Lemma3. Letu € N'Dy, p € RT,, and 9; be any continuous, piecewise linear function supported in the subdo-
main Q: . Then, we have the following estimates:

”HhND('S’i“) Hmlq < Cl|9ullo 0

curl <th\/D (19iu)> < C”curl (19iu) “

7
0.

0,9

“HhRT(&ip)Ho,gg < C“’9ip||o,g;>
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div (1177 (9:p) )

o <l o).

In order to analyze overlapping Schwarz methods, it is necessary to find an appropriate estimate for func-
tions on the layer surrounding the subdomain €;. In [19, Lem. 3.10], an estimate for H! functions has been
proposed. Subsequently, this estimate has been extended to include piecewise H ! functionsin [8, Lem. 3.3], on the
condition that the subdomain €; € 7;;. We note that the estimate is equally valid with assumptions in the begin-
ning of Section 3 together with Assumptions 1, 2 and 3. We will now proceed to introduce the aforementioned
estimate.

Prior to this, we will define the region Q, ; by

Q; =Joing,
Jel
J#

where I; = {j:Ql{ nQ; + @}

Lemma 4. Let u be a piecewise H! function, i.e., u|; € (HY(K))} oneachK € T, - We then have

- H; 1

57 ullf g, <CY, X [(1 + 5}) Julf + Il |

JELKET,, i [t
KcQ;

4.2 Regular decompositions for vector fields
The discrete orthogonal regular decompositions provided in [8], [9] have the following forms:

ND,=VS, ®ND},
(10)
RT, =curl N'D, ® RT+,

where N Dﬁ and RT ﬁ are orthogonal complements. Due to the orthogonality, the stabilities of the decomposi-
tions (10) can be anticipated straightforwardly. However, categorizing the orthogonal complements N Dﬁ and
RT ﬁ poses a significant challenge, hindering the development of effective analytical techniques for the study
of overlapping Schwarz methods. In order to overcome this difficulty, the authors of [8], [9] have considered an
additional assumption, the convexity of the domain, which enables an embedding into a related space with H,
already equipped with numerous tools.

Due to a limitation of the orthogonal decomposition, a new approach of regular decompositions was devel-
oped in [21]. For each u;, € N'D;, and p,, € RT;,, the decompositions are given in the following forms:

uh = V?h + HhNth + ﬁh’
" (11
— RT = =
pn = curl p, + 15,7 1, + py,

where 7, € S, w), € (S),)%, ﬁh € N'Dy, p, € ND),, 1, € (S, 1:7h € RT, and satisfy some stabilities. Com-
pared to the orthogonal decompoNSitions in (10), the decompositions in (11) are no longer orthogonal. There are
also additional oscillatory terms, u, and p,. However, (11) provides well-established theories that do not require
the assumption of convexity of the domain. As long as the domain is topologically equivalent to a sphere, we
can expect the stabilities of the decompositions. We note that the results in (11) have been successfully applied
to the theories in [10], [15].

Our next goal is to consider more generally shaped domains, e.g., domains with holes. Note that the decom-
positions in (11) are based on standard interpolating operators Hh"f D and HhRT. As we have briefly mentioned in
Remarks 1 and 2, we need additional regularities in the theories. This may restrict the appropriate topological
class of domains. To avoid this restriction, new types of projection operators, which do not require any regularity
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assumptions, have to be considered. To do so, we first introduce the cochain projections introduced in [25] and

extended in [22], [23]. Let
ﬂ}f/D:H(curl; Q) - N'Dy,

T H(div; Q) » RT,
7 LH(Q) — Py(Q)

denote the cochain projection operators constructed in [25] and [22]. We note that the operators satisfy the
commuting properties on each element in 7;,

curl (nﬁ”u) =z (curlu) Yu € H(curl; Q),

(12)
div (7" p) = =} (divp) Vp € H(div; Q)
and the local stability estimates
“n,ffDuHM < C(llullg g, + hgllcurlull,,, )  Vu € Hcurl;Q),
|=27],, < C(IPllow, + helldivplly,, ) VP € H(iV; ), (13)

||n,2zHO’K < Clizllg g, Vz € LAQ),

where K € Ty, hy is the diameter of K, and wy is the union of the neighboring elements of K. We also remark
that the fact that u;, = n,’l‘f Py, for allu, € N'Dy, and p, = nfrph for all p,, € RT}, the inverse inequality, (13),
and a standard Bramble—Hilbert argument ensure the estimates

Hwh - ”rf/D“’hHO < Ch|[Vawy |, (14)

and
en = 777w, < il Ve, (15)

for all w), € (S)3.
We next consider the following regular decomposition in [24, Thm. 10] for edge elements.

Lemma 5 (Hiptmair—Pechstein decomposition for edge elements). For each u, € N'D,, there exist a continu-
ous and piecewise linear scalar function y, € S,, a continuous and piecewise linear vector field w,, € (S,)?, and
a remainder u, € N'D,, all depending linearly on u,, providing the discrete regular decomposition

w, =V + Y Pwy + (16)

and satisfying the stability estimates
IV 2o + llwnlly + lfinlly < Cllueallo an
[Vl + 5|, < C(leurtuy, + ). as)

where C is a generic constant that depends only on the shape of €2, but not on the shape-regularity constant of Ty,.
Here, h is the piecewise constant function that is equal to hy on every element K € T,

The regular decomposition in [24, Thm. 13] for face elements is given in the following lemma.

Lemma 6 (Hiptmair—Pechstein decomposition for face elements). For each p;, € RT ;, there exist a vector field
Pn € N'D,, a continuous and piecewise linear vector field r, € (S,)% and a remainder p, € RT ), all depending
linearly on p,, providing the discrete regular decomposition

py = curl p, + 277 r, + P, (19)
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with the bounds
[lcurl pyly + [l onllo + [I7allo + [1Pallo < Cllpnllo- (20)

IVrallo + A8, < cllldivpnllo + pallo)- @1

where C is a generic constant that depends only on the shape of Q, but not on the shape-regularity constant of T;,.
Here, h is the piecewise constant function that is equal to hy on every element K € T,

Remark 3. The Hiptmair-Pechstein decompositions in (16) and (19) are in the same spirit as those in (11), i.e.,
additional oscillatory components, i, and p,, and no orthogonality. Therefore, (16) and (19) are a general-
ized versions of (11) and good alternatives to (10), since they can provide useful tools for establishing domain
decomposition theories, that are more robust to the topology of the domain.

Remark 4. We consider uy, u,, and u,,, all in N'D,, with u, = u,; + u,,. Based on Lemma 5, we can
construct the decompositions
uh = V)(h + ﬂl“/l\/th +ﬁh,

_ ND ~
W=Vt "W+ U,

and
— ND 5
uzgh = VXZ,h + ﬂh wZQh + u2,h.

Then, y, = xin + Xop Wy = Wy, + W,y and U, = U, + U, ,. We also have a similar linearity for face
elements associated with Lemma 6.

4.3 Schwarz framework

In this subsection, we summarize the abstract Schwarz framework, a key ingredient for analyzing domain
decomposition methods. For more detail, see [19, Ch. 2].

Lemma 7. If for all u, € N'D,, there is a representation, u, = Z?L U, Where uy € NDy; and u; € N' D;i) for
i =12,...,N, such that

M=

Il
o

a.(u, u;) < Coac(up, wy),
then the smallest eigenvalue of the preconditioned linear operator defined in (9) is bounded from below by CC‘Z.

Lemma 8. If for all p, € RT,, there is a representation, p, = Zf; oP» Where p, € RT y and p; € RT ;1” for

i =1,2,...,N, such that
N

Z a;(pi.p;) < Céad(ph’ph)’

i=0

then the smallest eigenvalue of the preconditioned linear operator defined in (9) is bounded from below by C{;Z.

Lemma 9. The largest eigenvalue of the operator introduced in (9) is bounded from above by N, + 1, where N,
is defined in Assumption 2.

4.4 Condition number estimate for H(curl)

For elliptic equations, which have a global dependence of the solution due to the Green’s function representation,
the solution is generally nonzero throughout the entire domain, even if the forcing term or the boundary value
is nonzero only within a small subregion. Numerical algorithms for solving elliptic problems have to take this
characteristic into account. In overlapping Schwarz methods, each iteration transfers information only between
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neighboring subdomains. Hence, several iterations may be required for the local change to be effective across
the entire domain without the incorporation of a global component, also known as a coarse component. We also
remark that, based on numerical experiments in [27], the constant Cﬁ in Lemma 7, which plays an important
role in the performance of the preconditioner, is O(1/(6H)), where H is the diameter of the subdomain and § is
the size of the overlap between subdomains, excluding the coarse component u,. We therefore need a suitable
coarse component to find a good bound in Lemma 7.

Based on Lemma 5, for any u, € N'D;, we can find y,, w,, and ﬁh, which satisfy (17) and (18). We then

consider
u,:=Vy, +w,,

~ (22)
ulZ=V)(l+w,+ul, i=1,2,...,N,
where ~
Xo = Hf;)(h’
w, = Qﬁ/th,
X =15 (0:(xn — 10))» 23)
w; = HhND(9i<7t}fwah - w0>>,
ﬁi = HhND(elﬁh)

Here, the interpolation operators s , Hf, and Hh“v D are defined in Section 2 and the set {6}, the Lz-projection

operator Q;I‘/ P, and the cochain projection n}ff D are mentioned in Section 3, 4.1, and 4.2, respectively. From

(22) and (23), we can easily check uy € N Dy, u; € N D;f), and u;, = Zfi oU;- We separately estimate the coarse
component u, and the local components, i.e., u;,i = 1,...,N.
We first consider the coarse component. The next lemma shows the stability of u,.

Lemma 10. Assume that the constant n, in (2) is less than or equal to one. Then, we have the following estimate
for the coarse component in (22):
ac(uo’uo) < Cac(uh’uh)a (24)

where the constant C does not depend on N, h, H;, 6;, and ..

Proof. We note thatu, = Vy, + w,. We estimate each term separately.
—  Term y,:
From the property of Scott—Zhang interpolation, i.e., the operator Hf is stable with respect to the H!-norm,
and (17), we have
2 2 2
(V0. Vo) = |V ollo < €IV 2lly < Cllunl: (25)

- Term wy:

By using the definition of QIQ/ D and (17), we obtain

2
lwolls = | @ Pwal|, < llenlls < Cllunlo- (26)
Due to Lemma 1 and (18), we have

2
< Cne|| Vg

ND
curl( p wh> .

e[| curlw, |2 = 7,

< C(ellunlly + nellcurtug) < Ca(wy,wy). @7)

Hence, by combining (25), (26), and (27) and using Cauchy-Schwarz inequality, the estimate (24) holds. O
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We next consider an estimate for local components. Since the proof of the lemma is overlong, we estimate
each term in (22) individually using propositions and put them together later.

Proposition 1. Consider y; defined in (23) and assume that n. < 1. Then, we have

N o
Zac(v)(i’ Vi) < <123<)1§<1+ 5'l>>ac(uh’uh)’
1

i=1

where the constant C is independent from N, h, H;, 6;, and 7,..

Proof. We have the following estimate from [19, Lem. 3.12] and (17):

H;

Mmm

)ac(uh,uh). O

el
—_ — ~—

N

o
g

=

§

Lk
7N

—_

+

" >

Proposition 2. Consider w; defined in (23) and assume that n, < 1. Then, we have

N
H.
Zac C(lqui)l\;]<1+ ({))ac(uh,uh),
1

i=1

where the constant C is independent from N, h, H;, 6;, and 7,..

Proof. By using Lemma 3, the properties of 6, in (8), the triangle inequality, (13), the inverse estimate, the finite
covering property in Assumption 2, (26), and (17), we obtain

Zwmgcz 6,7 Py — wy )

* <l + ol
0,Q]

i=1 i=1
C”whuo C”uh”o (28)
Letv, = n,f/th — WV =W, — Wy =Wy, — Q#th, andv = v; + v, DuetoLemma 3, the construc-

tion of 6;, Assumption 2, and the triangle inequality, we have

N N
Z 1| curl w"”?LQE < Cnlleurlw|? + Cncz 51“2||1/'||(2),Qi[S
i=1 i=1 '

N N
< Cnelleurlvlly +Cn Y. 67 [vrlloq,, +Cne Y, 87 vall g,
i=1 ’ i=1 ’

:=E, +E, +E,. (29)

We first consider E;. By using the triangle inequality, Lemma 1, (12), (13), and (18), we obtain

2
E = C;1C||curlv||0 Cn, curl( wh> .

curl ( wh)

+ Cn,

< Cn|| 7R (curl w,) (| + Cne|| Vawy|[% < Cnl|eurl wy |3 + Cre|| Vawy || < Crel[ Ve[

dwwhmmmﬁkmew (30)
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Regarding E,, the following estimate holds from the error estimate (14), the finite covering property in
Assumption 2, and (18):

E, —CnCZ(S 2””1”09,; C”CZ h? ” wh_wh”

i=1
< nel| Ve < €(nellunl; + nelleurt w3 )
< Ca,(up, uy). (€1))
We finally estimate E;. Lemma 4 implies

N
Es=Cnc), 51-_2””2”3,9,.,5

i=1

5339 (RS I RE 35 3 e m S

i=1 jel;KETy, i=1 jel;KETy,
KcQ; KcQ;

i=Ey; +E;,. (32)

We have the following estimate from the triangle inequality, the inverse estimate, and Lemma 2:

V2|1 = |wh - QﬁwahLK < |whlix + |QIJ-}wah|LK
= |whi1,1< + |ij}/th - Qg{vahL,K
< |why e + CH_1||Q#th - Q%J(whHo,K
< il CH 0 Py = wy ]+ CH e — G amn ],

< Clayy o+ CH™ | @ Pwi — wy - (33)

Let & = max,,(H;/4;). Then, by using (33), Lemma 1 and (18), we have

Egl_cnczz D <1+ >|v2|lK Cnc(1+_)22 > |v2|1K

i=1 jEI;KETy, i=1 jEL,KETy,
KcQ; KCQ

N N
<7.(1+E) CZZ Z |wh|iK+CH_ZZZ Z ||QIJ~}/Dw“_whH§,K

i=1 jel, KeTy, i=1 jel, KeTy,
KCQ; KcQ;

2
<nl+ a)(cnwhnf, + CH ||} Pw), - wh|)0> < Cne1+B)| Ve

<+ E)(neun; + nelleurlu g ) < €A+ Da (wy, ). (34)

Moreover, from Assumption 3, Lemma 1, and (18), we obtain

DY) YR I NS 10 )9 e ol

i=1 jeI,KeTy, i=1 jel,KETy,
KCQ KCQ
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2
< CnEHY| 0 Py — w | < Cn E|[Vuy
< CE (e + nellewrtuy [} ) < CZa (wy, w,). (35)

Thus, by using (29), (30), (31), (32), (34), and (35), the following estimate holds:

N
Z 1 ||curl wi||(2m( < Cmax (1 + ?)ac(uh, u). (36)
‘ i

4 1<iSN
i=1

Combining (28) and (36), we have

N
H.
Zac(wi,wi) <C<112i3)]\(]<1+ (;))ac(uh,uh). O

i=1 i

Proposition 3. Consider u; defined in (23) and assume that 5, < 1. Then, we have

where the constant C is independent from N, h, H;, 6;, and 7,..

Proof. From Lemma 3, (8), Assumption 2, the inverse inequality, (17), and (18), we have

N N
Z ||ﬁz||3szl’ < CZ Heiﬁh“f),sz; < C”ﬁh”?) < C”"h“g @7
i=1 i=1

and

N N
X cllewrl o o, < Cne Y, 672 [ g + Crnellewrlyly < Crh™? [

i=1 i=1
2 2
< C(11C||uh||0 + 11| curl uh||0) < Ca,(up, uy). (38)
We therefore have
N
Z a. (U, ;) < Ca(uy, uy). O

i=1

Lemma 11. Assume that the constant n.. in (2) is less than or equal to one. Then, we have the following estimate
for the local components in (22):

N
Zac(ui, u;) < C<max(1+ ?))ac(uh,uh), (39)

1<iSN ;

i=1
where the constant C does not depend on N, h, H;, 6;, and .

Proof . Based on Propositions 1, 2, and 3, we have (39). O
We finally have an estimate of the condition number for our H(curl) model problem.

Theorem 1. Let n, < 1. We then have the following estimate:

x(M'A,.) < Cmax <1 + I;’) (40)

1IN ;

where the constant C does not depend on the mesh sizes, H;, 6, ., and the number of subdomains but may depend
onN,.
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Proof. We have (40) from Lemmas 7, 9, 10, and 11. O

Corollary 1. If the first Betti number of the domain €, i.e., the number of circular holes, vanishes, we have (40) in
Theorem 1 without the assumption n. < 1.

Proof . If the first Betti number of the domain € vanishes, we have a more favorable bound in (18), i.e., the right
hand side can be replaced by the curl term only. Thus, we can have (40) in Theorem 1 without the assumption
n. < 1. For more detail, see [22, Sect. 5.1]. O

4.5 Condition number estimate for H(div)

Like the H(curl) case, we consider the following decomposition for any p, € R7 ;, based on Lemma 6:

po:=curlc, +ry,

~ _ (41)
pi:=curl (6;+p;) +r;+p;, i=12..,N,
where
oy = I“:,/Dah,
ro=08r,
o, = HhND<9i(7rf’fD0'h - 0'0>>,
(42)

ﬁi :H}?/D(giﬁh)’
r; :HhRT(Hi(”ZfT"h -19)),

p; =11, (6:p,)-
Here, p, = Vuy, + I1N'P6, + B, is given based on Lemma 5. We note that the operators IT'” and IT” are
introduced in Section 2. We also remark that the partition of unity set {6, } is constructed in Section 3 and the L*-
projection operators are defined in Section 4.1. In addition, the cochain projections ﬂ}ff Pand ﬂ{fT areintroduced
in Section 4.2. Obviously, we have p, € RT g, p; € RT ;li), andp, = Zﬁi o P;- Similarly, we consider estimates for
the coarse and the local components.

We first consider the stability of p, in (41). We recall that we have the constant 7, in the bilinear form (4).

Lemma 12. Assume that the constant n; in (4) is less than or equal to one. Then, we have the following estimate
for the coarse component p, in (41):

aq(Po>Po) < Cag(pn-Pn) 43)

where the constant C does not depend on N, h, H;, 6;, and n,.

Proof. Based on the decomposition p, = curl o, + r,, we consider each term one by one.
- Termoy:
With a similar argument to (27) in Lemma 10, (18), and (20), we have

ay(curl oy, curl 6y) = |jcurl o[} < Cllpy |- (44)

- Termrg:
From the projection property and (20), we obtain

2
Irolls = @& ra], < lIralls < Cllpwlc (45)
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By using Lemma 1 and (21), the following estimate holds:
; 2 ; RT 2 2
Mal|divro|lg = ”d“d“’( H '"h)”0 < Cngl|Vrallg

< C(nalldivpy; + nallpally) < Cag(propy). (46)

We therefore have (43) from (44), (45), and (46). O
We next consider three propositions to estimate each term associated with the local components in (41)
separately.

Proposition 4. Assume that n,; < 1. Let p; = o; + p;, where the terms o; and p; introduced in (42). We then have

N
H.
Z ay(curl p;, curl p;) < C{nq:i)]%(l + (;)ad (PrsPy)-
~ <i< ;

where the constant C is independent from N, h, H;, 6;, and n,;.

Proof. We can use the same methods in Propositions 2 and 3 and (20). We then have

N N
H.
Z ay(curl p;, curl p;) = 2 [|curl Pi||§,g; < Cmax (1 + 5’) ||ph||3
13

i=1 i=1 ISiSN
<Cmax(1+ as(py.pn) O
Stmax 5, )@\ PrPn):

Proposition 5. Assume that n,; < 1. Then, the term r; introduced in (42) has the following estimate:

N
Zad(ri’ri) < CmaX<1+ ?)ad(ph,ph)$

= 1<ISN

where the constant C is independent from N, h, H;, 6;, and n,;.

Proof. With the same process with (28), we obtain

N

2 2 2
2 lIrilloey < Clirally < Clpallo @7
=

Letq = q; + q, with q, = n}?rrh —rpand q,=r, —ro=r, — Q}jTrh. By using a similar argument to
(29), we have

N N N
2 Aalldivriflo o < Crglldivalll +Cna Y, 57| aulls g, + Cna Y, 67 llo.0,
i=1 i

i=1 i=1
:=F,+F,+F;. (48)

Regarding F,, we obtain the following estimate in a similar way to (30):

F, = Cglldiv qllf < Cng|div (n;”rh)”z + Crpg | div ( gfrh)”z

. 2 .
< Cngl| 7R (divey) ||| + CrallVralls < Crglldivry 5 + Cral| Vruls
< onal|Vraly < €(nalldivpal; + nallpall;)

< Cay(pp-py)- (49)
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We next estimate F, using the similar arguments in (32). The following bound can be found using (15), the
finite covering property in Assumption 2, and (21):

N N
2
B = Y, 5 il < Cra 1w r =il
i=1 i=1 T

<Cnal| Vralls < (nalldivpy s + nallpally)

< Cag(pys pr)- (50)

Finally, we consider F;. Like (32), from Lemma 4, we have

N
F3 = CI’]dZ 5[._2”‘12“?),91.76

i=1

0030 (RS [ERR:5 35 ) Y ATH

i=1 jEl, KETy, i=1 jEl, KETy,
KcQ; KcQ;
:=F3; + F;,. (51)
In the same way as (33), we obtain
|Gzl < Clrnly g + CH|QFTPh =1 - (52)

Hence, in a similar way to (34), we have

F31—C71d22 2 <1+ >|q2|11< Cﬂd(1+~)22 Z |q2|1K

i=1 jeI,KeTy, i=1 jel,KETy,
KcQ; KcQ;

2
<N+ E)(CllVthi +CH™[[ QR 7, — rh||0) < O+ )|V

<Cl+ E)(’?deiVPh“é + ”d||ph||?)> < C+ E)ay(Pp: Pr), (33)

where E = max, .y (H;/5)).
In addition, the argument in (35) gives

F;, = Cﬂdz 2 Z 5.H, ”qZ”OQ C”d“H_ZHQ - rh”z

i=1 jEI; KETy,
KCQ

< CnEIVralls < CE(nalldivpalls + nallenll; )
< CEay(pp.pyp)- (54)
We therefore have the following inequality by using (48), (49), (50), (51), (53), and (54):

N
2 alldivrily o) < € max <1 + I; )ad(ph,ph) (55)
i=1

I<iSN

Due to (47) and (55), we finally have
N

Z ay(ri,r;) < Cmax<1+ I; >ad(ph,ph) O

= 1<isN
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Proposition 6. Assume that n, < 1. Then, the term p; introduced in (43) has the following estimate:

N

Z a,(pi.p;) < Cay(pp-py)-

i=1

where the constant C is independent from N, h, H;, 6;, and n,;.

Proof . By using Lemma 3, the construction of the partition of unity set {#;} in (8), and (20), we obtain

N N
~ 112 ~ 2 ~ 2 2
2 IBillogy < € 116@llo.o; < CliBlly < Cllpalle (56)

i=1 i=1

From (8), Lemma 3, the inverse inequality, and (21), we have

N N
Ma 2 |4V Billg.cr < C1a Y, 67 Bullg.cy + CralldivBally < Cal™|[Billy

i=1 i=1
. 2 2
< C(nalaivpallg + nallenll; ) < Caa(prpr). 7
We therefore have
N
Z a,(p;i»P;) < Cay(pp-py)- O
i=1

Lemma 13. Assume that the constant n, in (4) is less than or equal to one. Then, we have the following estimate
for the local components in (22):

N
H.
5 atoum) <c{pag(+ ) i)

" 1<isN
i=1

where the constant C does not depend on N, h, H;, 6;, and n,.

Proof . Based on Propositions 4, 5, and 6, we have (58). O
Finally, We obtain an estimate of the condition number for our H(div) model problem.

Theorem 2. Let n; < 1. We then have the following estimate:
I<iSN ;

x(M;'A;) < C max <1 + % > (9

where the constant C does not depend on the mesh sizes, H;, ;, n,, and the number of subdomains but may depend
onN,.

Proof . We obtain (59) by using Lemmas 8, 9, 12, and 13. [

Corollary 2. Ifthe second Betti number of the domain €, i.e., the number of connected components of €2 minus
one, is zero, we have (59) in Theorem 2 without the assumption n; < 1

Proof . Provided that the second Betti number of the domain €2 is zero, we can replace the upper bound of (21)
by simply the divergence term. We therefore remove the assumption regarding the coefficient #, in Theorem 2;
see [22, Sect. 5.2] for more detail. O
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5 Numerical experiments

In this section, we perform one experiment on an H(div) problem and four numerical experiments for H(curl)
problems. We report the error profile associated with the following notations:

Error D1 := ||ITX7 u — I,
Error D2 := ||div<1'[,7fru - uh) llo»
Error 1 := |[T1YPu — uyl,,
Error2 := ||cur1<l'[hNDu - uh) o, for2D or ||curl<1'[hNDu - uh> llo for3D.
We also denote the number of iterations as follows.

I, := Number of the conjugate gradient iterations,

I, := Number of the domain — decomposition preconditioned conjugate gradient iterations.

In this work, we proved that

ac(uhv uh)

Clowm <4 (Mc_lAcuh’ u,) < Chighac(uh’ uy) (60)

for some positive constants Cy,, and Cyg, independent of h, 6, and H. We also report the constants Cy,,, and Cygy
obtained numerically in each example. For each h, i.e., on each mesh 7;, they are computed by

N

H 0T (=1

Chign = Amax(M), Cioyr = (1 + §>/lmm(M), M=y ROTAVTROA,, 61)
i=0

where A, and A, are the maximum eigenvalue and the minimum eigenvalue respectively, A. is the stiffness
matrix on 7, A is the stiffness matrix on 7, A? is the stiffness matrix on subdomain 7, N Q; for i > 0, and
R(Ci) is the transfer matrix embedding the subspace functions to the fine space. For H(div) problems, we replace
the index ¢ by d in the above notations.

5.1 Raviart-Thomas rectangular element

We solve the following grad div equations on two domains:

graddivu, +u, =f in Q,

(62)
w,-n=g on 0L,
where n is the unit outer normal vector, and
Q = (-1, D*\[0,1) x (—1,0], (63)
Q = (0,1)*\[1/4,3/4]% (64)

In both cases, the exact solution of (66) is chosen as

%
u= (X4). (65)
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In both cases, the meshes used in the computation are uniform square meshes, as shown in Figure 1. For Q
in (63), we have three subdomains, i.e., on Grid 1, 7; = {€;}, where

Q, = {asize —1square}, i=12,3,

Q=Qul |J k| i=123
KETh,
dist(K,Q)<h
Thus, on Grid 1, all three Ql{ = Q. On a higher Grid 73, Ql{ is the union of the square €2; and all size-h squares
along its edges. For Q in (64), we have 12 subdomains, i.e., on Grid 1, 7;; = {€;}, where

Q= {asize— % square}, i=1,...,12,

Q=qul (J k| i=1...12
KETh.
dist(K,Q)<h

On a high Grid 7,,, Q: is again the union of the square €2, and all size-h squares along its edges.

The results for computing (62) are listed in Table 1, where we can see that the finite element solution con-
verges at the optimal order in both norms on both domains. Additionally, we can see that the condition number
of domain-decomposition preconditioned system is roughly 1 + H/$§).

We list the computer found constants of (60) in Table 2. As proved in the theory, the constants remain
bounded on the both non-convex domains.

Figure 1: The third level grids for domain Q=
(—=1,12\[0,1) X (=1,0] and (0, 1)>\[1/4, 3/41?, respectively.

Table 1: Error profile for (65) on grids as shown in Figure 1.

Grid Error D1 Order Error D2 Order I, I,

onQ = (—1,1)2\[0,1) X (—1,0]

1 0.7610E+00 0.0 0.1080E+01 0.0 5 1
2 0.2561E+00 1.6 0.5896E+00 0.9 36 14
3 0.6919E-01 1.9 0.1633E+00 1.9 154 17
4 0.1763E-01 2.0 0.4180E-01 2.0 487 20
5 0.4428E-02 2.0 0.1051E-01 2.0 1,094 24
6 0.1108E-02 2.0 0.2631E-02 2.0 2,291 29
On Q=(0,1)?\[1/4,3/4]?
1 0.3415E-01 0.0 0.7809E-01 0.0 16 5
2 0.8634E-02 2.0 0.2013E-01 2.0 125 21
3 0.2161E-02 2.0 0.5075E-02 2.0 530 23
4 0.5401E-03 2.0 0.1272E-02 2.0 1,298 27
5 0.1350E-03 2.0 0.3181E-03 2.0 2,708 32
6 0.3374E-04 2.0 0.7955E-04 2.0 5,610 40
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Table 2: The bounds for 3-subdomain and for 12-subdomain overlap DD shown as in Figure 1.

Grid Ciow in (60) Chign in (60) Ciow in (60) Chign in (60)
on (—1,1)2\[0,1) X (—1,0] on (0,1)2\[1/4,3/4)®

2 1.976790 3.429921 1.889383 3.492440

3 2.358270 3.119507 2.12017 3.140896

4 2.505871 3.025601 2.261999 3.030765

5 2.555174 3.005602 2.337076 3.006730

6 2.574040 3.001300 2.373954 3.001561

Table 3: Effects of varying H, h, and ¢ for (62) on domain (63), on A, (M) and A,;,(M) in (61).

HIS H 5 h=2"2 h=273 h=2"* h=2"5
;Lmax 'lmin Amax '1min lmax Amin Amax Amin
4 20 272 3.119 0.988 3.107 0.562 3.064 0.651 3.064 0.593
27! 273 - - 4.266 0.789 4.194 0.520 4.170 0.648
272 274 - - - - 4.413 0.772 4.280 0.501
273 2-° - - - - - - 4.465 0.768
8 20 2-3 - - 3.025 0.501 3.022 0.318 3.013 0.396
27! 274 - - - - 4.078 0.499 4.046 0.294
272 2-5 - - - - - - 4.132 0.495
16 20 274 - - - - 3.005 0.283 3.004 0.168
27 275 - - - - - - 4.020 0.284
32 20 2-° - - - - - - 3.001 0.151

Next, we examine the impact of varying the parameters H, h, and §. This experiment is conducted using the
computational domain defined in (63) and the initial grid shown in the left of Figure 1. We obtain finer grid using
uniform refinements. We then apply our domain decomposition preconditioners using suitable combinations
of H, h, and ¢ for each grid. The maximum and the minimum eigenvalues of M, introduced in (61), are presented
in Table 3. The results show that the maximum eigenvalues remain close to 3 for the coarsest subdomain grid
and around 4 for the finer grids. Additionally, we observe that the minimum eigenvalues decrease as the ratio
H /6 increases.

5.2 Nédélec type-1rectangular element
We solve the following curl curl equations on two domains:

curlcurluy +u, =f  inQ,

(66)
u,Xn=g onoQ,
where n is the unit outer normal vector, and
Q = (0, D*\(([1/4,1/2] x [1/4,1/2]) U ([1/2,3/4] X [1/2,3/4]), (67)
Q = (0, D\ (([1/4, D x[3/4,1) U ([1/4,1) x [1/4,1/2]). (68)

In both cases, the exact solution of (66) is chosen as

XZ y2
= . 69
(3) .
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Figure 2: The third level grids for domains € in (67) (with 14

size-% square subdomains €2;) and (70) (with 8 size-% square

subdomains €2,), respectively.

[ 1]

[ mains; Right: The 8 subdomain nodes.

In both cases, we use nested refinement square meshes, as shown in Figure 2.
We show the minimum overlapping domain decomposition by Figure 3, where the third-level finite element

nodes are plotted for each subdomain.

Figure 3: Left: The level three function nodes in 14 subdo-

The results are listed in Table 4, where we can see that the finite element solution converges at the optimal

order in both norms on both domains.

We list the computer found constants of (62) in Table 5. As proved in the theory, the constants are apparently
bounded above (Cy;g,) and below(Cy,,,). But they seem to depend on the domain.

Table 4: Error profile for (69) on grids as shown in Figure 2.

Grid Error 1 Order Error 2 Order I, I,
On Qin (67)
1 0.1697E-01 0.0 0.1150E-01 0.0 42 14
2 0.4376E-02 2.0 0.2962E-02 2.0 244 25
3 0.1103E-02 2.0 0.7465E-03 2.0 758 28
4 0.2764E-03 2.0 0.1870E-03 2.0 1,701 32
5 0.6915E-04 2.0 0.4680E-04 2.0 3,467 38
6 0.1729E-04 2.0 0.1170E-04 2.0 6,979 45
On Qin (68)
1 0.1071E-02 0.0 0.1854E-02 0.0 20 9
2 0.1196E-02 0.0 0.7785E-03 13 159 23
3 0.3336E-03 1.8 0.2102E-03 1.9 636 25
4 0.8557E-04 2.0 0.5354E-04 2.0 1,447 27
5 0.2154E-04 2.0 0.1345E-04 2.0 3,027 33
6 0.5395E-05 2.0 0.3368E-05 2.0 6,159 40
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Table 5: The bounds for small-overlap DD shown as in Figure 3.

Grid Ciow in (60) Chign in (60) Ciow iN (60) Chign in (60)
On Qin (69) Oon Qin (70)

2 1.883353 4.488207 1.976790 3.429921

3 2.083264 4163713 2.358270 3.119507

4 2.221202 4.045254 2.505871 3.025601

5 2.296535 4.011663 2.555174 3.005602

5.3 Nédélec type-1 rectangular element again

We solve equations (66) again on
Q=01 or (0,1)%\{1/2} x (0,1/2].

In both cases, the exact solution of (66) is chosen as

35
u= (x4>' (70)

In both cases, the meshes used in the computation are uniform square meshes, as shown in Figure 4. The results
are listed in Table 6, where we can see that the finite element solution converges at the optimal order in both
norms on both domains.

In this example, we subdivide both Q into four subdomains, as shown in Figure 5. We consider a minimum
overlapping domain decomposition. We plot the nodes of the third-level finite element function inside each
subdomain. We note that the horizontal nodes belong to the first component of the vector H(curl) function. The
difference between the graphs is at the nodes on the lower middle vertical edge, which is a boundary edge.

We list the computer found constants of (60) in Table 7. As proved in the theory, the constants remain
bounded when doing domain decomposition methods on the non-convex domain Q = (0,1)? \ {1/2} x (0,1/2].

Figure 4: The first three grids on Q = (0, 1)? (with 4 size-%
square subdomains €2;) for computing Tables 6-7.

Table 6: Error profile for (70) on grids as shown in Figure 4.

Grid Error 1 Order Error 2 Order Error1 Order Error 2 Order
Oon Q = (0,1)? on Q = (0,1)2 \{1/2} x (0, 1/2]
1 8.97E-2 0.0 3.11E-1 0.0 1.27E41 0.0 2.77E1 0.0
2 2.67E-2 17 8.80E-2 1.8 3.36E-2 1.9 8.19E-2 1.8
3 6.94E-3 1.9 2.26E-2 2.0 8.49E-3 2.0 2.13E-2 1.9
4 1.75E-3 2.0 5.69E-3 2.0 2.12E-3 2.0 5.37E-3 2.0
5 4.39E-4 2.0 1.43E-3 2.0 5.29E-4 2.0 1.35E-3 2.0
6 1.10E-4 2.0 3.56E-4 2.0 1.32E-4 2.0 3.37E-4 2.0
7 2.75E-5 2.0 8.91E-5 2.0 3.30E-5 2.0 8.43E-5 2.0
8 6.87E-6 2.0 2.23E-5 2.0 8.24E-6 2.0 2.11E-5 2.0
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““““““““““““““““““““““ Figure5: Left: The level three function nodes in the four sub-
evele]s S EOE I R D <ot domains, where Q = (0,1)%; Right: The 4-subdomain nodes
nnnnnnnnnnnnnnnnnnnnnnn for Q= (0.2 \{1/2} x (0.1/2].

Table 7: The bounds for 4-subdomain small-overlap DD shown as in Figure 5.

Grid Clow in (60) Chign in (60) Clow in (60) Chign in (60)
on Q = (0,1)? on Q = (0,12 \{1/2} X (0, 1/2]

2 2.015473 4.485408 1.958618 4349539

3 2553089 4162126 2.271621 4.092826

4 2.843341 4.044754 2.414993 4.022131

5 2.999805 4.011540 2.463830 4.005278

6 3.088654 4.002915 2.477246 4.001282

5.4 Triangular Nédélec element

We solve the curl curl equation (66) again on two domains

Q=(0,1" or (0,1\{1/2} x (0,1/2].

2,2
u=<’;fy) (71)

In both cases, the meshes used in the computation are uniform triangular meshes, as shown in Figure 6. The
results are listed in Table 8, where we can see that the finite element solution converges at the optimal order in
both norms on both domains.

Again we do iterations based on domain decomposition methods with four subdomains for both domains
Q, as shown in Figure 7. We plot the nodes of the third-level finite element function inside each subdomain,
in Figure 7. The difference between two graphs is at the nodes on the lower middle vertical edge, which is a
boundary edge.

We list the computer found constants of (60) in Table 9. As proved in the theory, the constants remain
bounded on the non-convex domain Q = (0,1)? \{1/2} x (0,1/2], in Table 9.

The exact solution of (66) is chosen as

Figure 6: The first three grids on Q = (0, 1)? (with 4 size—%
square subdomains €2;) for the computation Tables 8-9.
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Table 8: Error profile for (71) on grids as shown in Figure 6.

Grid Error 1 Order Error 2 Order Error 1 Order Error 2 Order
on Q = (0,1)2 on Q = (0,1)2 \{1/2} x (0, 1/2]
1 1.17E-2 0.0 7.19E-2 0.0 1.19E-2 0.0 7.18E-2 0.0
2 3.19E-3 1.9 4.00E-2 0.8 3.29E-3 1.9 4.00E-2 0.8
3 8.12E-4 2.0 2.05E-2 1.0 8.35E-4 2.0 2.05E-2 1.0
4 2.04E-4 2.0 1.03E-2 1.0 2.10E-4 2.0 1.03E-2 1.0
5 5.10E-5 2.0 5.15E-3 1.0 5.24E-5 2.0 5.15E-3 1.0
6 1.27E-5 2.0 2.58E-3 1.0 1.31E-5 2.0 2.58E-3 1.0
7 3.19E-6 2.0 1.29E-3 1.0 3.28E-6 2.0 1.29E-3 1.0
8 7.97E-7 2.0 6.44E-4 1.0 8.19E-7 2.0 6.44E-4 1.0
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Figure 7: Left: The level three function nodes in the four subdomains, where Q = (0,
Q=(0,1\{1/2} x (0,1/2].

Table 9: The bounds for 4-subdomain small-overlap DD shown as in Figure 7.

1)?; Right: The 4-subdomain nodes for

Grid Ciow in (60) Chign in (60) Ciow in (60) Chign in (60)
onQ = (0,12 0n Q = (0,1)2 \{1/2} X (0, 1/2]

2 3.575004 5.000000 3.628239 5.000000

3 2.609161 4.614568 2.641507 4611478

4 3.750690 4192807 3381828 4191696

5 4.932503 4.049440 4.015695 4.049120

6 5.554555 4.012045 4.459404 4.011962

5.5 Tetrahedral Nédélec element

We solve the equation

curlcurlu, +u, =f in Q,

(72)

u,Xn=g on 0Q2,

on two 3D domains

Q=(0,2° or (0,2°\{1}x[1,2%
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The exact solution of (72) is chosen as

u=|x*| (73)

In both cases, the meshes used in the computation are uniform tetrahedral meshes, as shown in Figure 8. The
results are listed in Table 10, where we can see that the finite element solution converges at the optimal order
in both norms on both domains.

We perform domain decomposition iterations with eight subdomains for both domains of a cube and a
cube with a cut. The eight subdomains are the eight unit cubes in the left graph of Figure 8. We list the computer
found constants of (60) in Table 11. As proved in the theory, the constants remain bounded on the non-convex
domain Q = (0,2)%\ {1} X [1,2)?, in Table 11. It seems the C,,, in Table 11 may keep growing. It would break the
theory only when C,,,, decreases to 0. We note again that we improved previous theoretic lower bound from
o + H/ 6 too(l + H /6). The C,,, in the 2D examples seems to confirm that O(1 + H/$6) is the optimal
lower bound. But we are not sure if the computation is done on high enough levels to enter the asymptotic range,
or if the lower bound O(1 + H/§) can be further improved in theory for 3D tetrahedral edge elements.

Grid 1: Grid 2:

Figure 8: The firsttwo grids on Q = (0, 2)3 (with 8 size-1 cube
subdomains ;) for the computation in Tables 10-11.

Table 10: Error profile for (73) on grids as shown in Figure 8.

Grid Error1 Order Error 2 Order Error1 Order Error 2 Order
onQ = (0,2 onQ = (0,2)3\{1} x [1,2)?
1 8.24E-2 0.0 4.57E-1 0.0 8.53E-2 0.0 4.22E41 0.0
2 2.82E-2 1.5 3.13E-1 0.5 2.82E-2 1.6 3.04E-1 0.5
3 7.75E-3 1.9 1.75E-1 0.8 7.75E-3 1.9 1.73E-1 0.8
4 2.01E-3 1.9 9.21E-2 0.9 2.01E-3 1.9 9.16E-2 0.9
5 5.09E-4 2.0 4.71E-2 1.0 5.10E-4 2.0 4.70E-2 1.0
6 1.28E-4 2.0 2.38E-2 1.0 1.29E-4 2.0 2.38E-2 1.0

Table 11: The bounds for 8-subdomain DD on meshes shown as in Figure 8.

Grid Ciow in (60) Chign in (60) Ciow in (60) Chign in (60)
onQ = (0,2} onQ = (0,2°\{1} x [1,2)?

1 1.525539 5.846509 1.662208 5.543800

2 1792536 8.408068 1.815730 8.381018

3 2.845118 8.410624 2.856422 8.390277

4 4741863 8.410624 4760704 8.390277




26 = D.-S.0OhandS.Zhang: OS for vector fields with generally shaped domains DE GRUYTER

5.6 Hexahedral Nédélec and Raviart-Thomas elements

Regarding experiments in this subsection, we solve (72) using hexahedral Nédélec elements and (62) using
hexahedral Raviart-Thomas elements on the domain

Q = (-1,1)*\(-1, 0. (74)

In each experiment, we start with the computational grid (Grid 1) that has a uniform mesh size of h = 1/8,
as shown in Figure 9. Grid 2 and Grid 3 are then generated through uniform refinement, resulting in mesh
sizesof h = 1/16 and h = 1/32, respectively. On each grid, we apply overlapping Schwarz methods using 56
(H = 1/2),448 (H = 1/4), and 3,584 (H = 1/8) uniformly sized subdomains, with overlap widths 6 = h,
2h, and 4h selected as appropriate. We report A,,,.(M) and A.,;,(M) introduced in (62) in Table 12 and Table 13
for solving (72) and (62), respectively. For both cases, we observe that A,,,(M) remains approximately 8, while
Amin(M) decreases linearly on H /6.

Remark 5. Across all experiments, we find that Cyyg,, or equivalently A, (M), is typlically around 4 for two-
dimensional problems and around 8 for three-dimensional problems. In some two-dimensional cases, Cy;g, is
close to 3. This value appears to be related to the maximum number of extended subdomains that intersect at
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Figure 9: The first grid (Grid 1) on Q = (—1,1)*\ (-1, 0.

Table 12: Effects of varying H, h, and 6 on A,,,,,(M) and A,;,(M) (hexahedral Nédélec element).

HI® H 5 Grid 1(h =1/8) Grid 2 (h = 1/16) Grid 3 (h = 1/32)
imax /lmin lmax 2'min lmax imin
4 1/2 1/8 8.148544 0.827472 8.144804 0.814285 8.145592 0.811781
1/4 116 - - 8.217663 0.800833 8.221615 0.784011
1/8 1/32 - - - - 8.239654 0.792617
8 1/2 116 - - 8.021819 0.499111 8.019272 0.496113
/4 1/32 - - - - 8.033401 0.446827
16 172 1/32 - - - - 8.002735 0.269601

Table 13: Effects of varying H, h, and 6 on A,,,(M) and A.,;,(M) (hexahedral Raviart-Thomas element).

max

H/6 H o Grid 1 (h =1/8) Grid 2 (h =1/16) Grid 3 (h =1/32)
lmax lmin '1max ﬂ'min lmax '1min
4 172 1/8 8.098781 0.952532 8.097748 0.946058 8.098756 0.944307
1/4 1716 - - 8.132513 0.937809 8.127692 0.932332
1/8 1/32 - - - - 8.129632 0.929873
8 1/2 1716 - - 8.004314 0.690814 8.004023 0.686388
174 1/32 - - - - 8.000589 0.661720

16 172 1/32 - - - - 8.000311 0.394069




DE GRUYTER D.-S. Oh and S. Zhang: OS for vector fields with generally shaped domains == 27

a single point. In ideal scenarios with regularly shaped domains and subdomains (such as cubes), the expected
values are 4 in two dimensions and 8 in three dimensions. However, when the domain or subdomains are
irregularly shaped, these values may vary, as reflected in our experimental results.
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