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Abstract: This paper introduces a novel approach to analyze two-level overlapping Schwarz methods for

Nédélec and Raviart–Thomas vector field problems. The theory is based on new regular stable decompositions

for vector fields that are robust to the topology of the domain. Enhanced estimates for the condition num-

bers of the preconditioned linear systems are derived, dependent linearly on the relative overlap between the

overlapping subdomains. Furthermore, we present the numerical experiments which support our theoretical

results.
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1 Introduction

LetΩ be a bounded Lipschitz domain inℝ3. We assume that the domainΩ is scaled such that the diameter ofΩ
is equal to one.We first introduce the Hilbert spaceH(curl; Ω) that consists of square integrable vector fields on
the domainΩ that have square integrable curls. We consider the followingmodel problem posed inH(curl; Ω):
Find u ∈ H(curl; Ω) such that

ac(u,𝒗) =
(
f ,𝒗

)
∀𝒗 ∈ H(curl;Ω), (1)

where

ac(u,𝒗) := 𝜂c
(
curlu, curl𝒗

)
+ (u,𝒗) (2)

and (⋅, ⋅) is the standard inner product on (L2(Ω))3 or L2(Ω). We assume that the constant 𝜂c is positive and f ∈
(L2(Ω))3. We also consider the Hilbert space H(div; Ω) in a similar manner, i.e., the space of square integrable
vector fields onΩwith square integrable divergences. The correspondingmodel problem for a square integrable

vector field g ∈ (L2(Ω))3 onΩ is given as follows: Find p ∈ H(div; Ω) such that

ad
(
p,q

)
=

(
g,q

)
∀q ∈ H(div;Ω), (3)

where

ad
(
p,q

)
:= 𝜂d

(
div p, div q

)
+
(
p,q

)
. (4)

Similarly, we assume that 𝜂d is a positive constant.
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The first model problem (1) is originated from time-dependent Maxwell’s equation, specifically the eddy-

current problem; see [1], [2]. With a suitable time discretization, we have to solve the problem (1) in each time

step. The second problem (3) is developed for a first-order system of least-squares formulation for standard

second order elliptic problems. For more detail, see [3]. We also note that efficient numerical solution meth-

ods related to (3) are required for solving problems from a pseudostress-velocity formulation for the Stokes

equations and a sequential regularization method for the Navier–Stokes equations; see [4], [5].

A number of attempts have beenmade to develop domain decomposition methods for solving (1) and (3). In

[6]–[9], overlapping Schwarzmethods applied to (1) havebeen considered. Additionally, nonoverlappingdomain

decompositionmethods have been introduced in [10]–[12]. In regard to themodel problem (3), both overlapping

and nonoverlapping domain decomposition methods have been proposed in the literature. The former can be

found in [7], [8], [13], [14], while the latter can be found in [15], [16]. However, there are topological constraints

associated with the domains or subdomains; see [7]–[9], [13]–[15]. To be more precise, the theories in [7]–[9],

[13] are based on the assumption that the domain is convex, while the convexity of subdomains is assumed

to establish the results in [14], [15]. In recent constructions [6], [12] novel algorithms have been proposed to

handle irregularly shaped subdomains. However, no supporting theories have yet been formulated. Finally, the

theoretical results presented in [7], [9]–[11], [14], [16] are not sharp. Specifically, the results in [10], [11], [16]

depend on the material parameters used in the model problems, while the results in [7], [9], [11], [14] include

additional factors not present in the numerical experiments. This paper proposes a new theory that addresses

the shortcomings of the aforementioned references.

The framework for analyzing domain decomposition methods based on overlapping subdomains has been

introduced in [17] as a subspace correction method. The two-level overlapping Schwarz methods for scalar

elliptic problems have been introduced and analyzed in [18]; see also [19, Sect. 3] and references therein for

more detailed techniques. In [18], it is proved that the condition number of the preconditioned linear system is

bounded above by a constant multiple of (1 + H∕𝛿), whereH is the diameter of the subdomain and 𝛿 is the size

of the overlap between subdomains. In fact, the bound is shown to be optimal; see [20].

The purpose of this paper is to analyze two-level overlapping Schwarz methods for discretized problems

originated from (1) and (3) using appropriate finite elements, i.e., Nédélec and Raviart–Thomas elements of the

lowest order. Suchmethods have been first introduced and analyzed in [7], [9]. Historically, the authors in [7], [9]

proved an upper bound (1 + H2∕𝛿2) for the H(curl) and H(div) finite elements. They conjectured and numer-
ically tested that the best upper bound is (1 + H∕𝛿). This conjecture was numerically checked many times by
others. After twenty-three years, the open problemwas solved by [8]with the best upper bound (1 + H∕𝛿) being
proved. In this paper, we prove again the best upper bound (1 + H∕𝛿) without the H1-regularity assumption

used by [8] That is, we allow nonconvex domains and non-simply-connect domains.

Previously, the first author of this paper proved an improved bound, (1 + log(H∕h))(1 + H∕𝛿) versus
(1 + H2∕𝛿2), in [14] with a nonstandard coarse space method assuming that subdomains are convex, where

h is the size of the mesh for the finite elements. In this paper, we do not have any assumptions related to the

topological properties of the domain and subdomains. These properties may encompass nonconvex geometries,

potentially accompanied by holes. Consequently, our results offer insight into closely related practical applica-

tions, such as, in magnetohydrodynamics, a field in which simulating on a torus-like domain is of significant

importance. We remark that the algorithms in [7]–[9] and this paper are essentially the same but the technical

details for the theories are different.

The important ingredients for analyzing numerical methods for solving problems posed in H(curl) and

H(div) are the Helmholtz type decompositions. This is because the structures of the kernels of the curl and

the divergence operators are quite different from that of the gradient operator. In [7], [9], discrete orthogonal

Helmholtz decompositions based on those for continuous spaces have been suggested and used for analyzing

overlapping Schwarz methods. Since the discrete range spaces are not included in the continuous range spaces,

the authors had to introduce semi-continuous spaces to handle the difficulty. To do so, the convexity of the

domainwas needed to use a suitable embedding. In [8], the authors considered the same type of decompositions

so that the assumption for the domain has been inherited. In this paper, we consider a different type of regular
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decompositions. By introducing an additional term, an oscillatory component, and abandoning the orthogonal-

ity, we have more robust decompositions, cf. (10) and (11). The approaches have been originally introduced in

[21] and extended later in [22]–[24] based on the cochain projections constructed in [25]. Our theories will be

based on the decompositions suggested by Hiptmair and Pechstein; see [22]–[24].

The rest of the paper is organized as follows. In Section 2, we introduce the discrete model problems

and related finite elements. We describe overlapping Schwarz preconditioners in Section 3. We next provide

our theoretical results in Section 4. Finally, the numerical examples to support our theories are presented in

Section 5.

2 The discrete problems

We consider two triangulations, H and h. First, we introduce H , a coarse triangulation of the domainΩ, con-
sisting of shape-regular and quasi-uniform tetrahedral elements with a maximum diameterH. Subsequently, h
is generated as a finer mesh, a refinement of the coarse mesh H . It is assumed that the restriction of h to each
individual coarse element is both shape-regular and quasi-uniform.

We next introduce finite element spaces. The space of the lowest order tetrahedral Nédélec finite elements

associated with H(curl; Ω) and the triangulation h is defined by
h :=

{
u | u|K ∈ N(K ), K ∈ h and u ∈ H(curl;Ω)

}
,

where the set of the shape functions N(K) is given by

N(K ) :=
{
𝜶c + 𝜷c × x | 𝜶c and 𝜷c are constant vectors in ℝ3

}
(5)

for a tetrahedral element. We note that the values of two vectors 𝜶c and 𝜷c in (5) can be determined by the

average tangential components on the edges of K, i.e.,

𝜆
e (u) := 1

|e|∫
e

u ⋅ teds, e ⊂ 𝜕K,

where |e| is the length of the edge e and te is the unit tangential vector associated with e. We note that these

values can be considered as the degrees of freedom. The interpolation operator Π
h

for a sufficiently smooth

vector field u in H(curl; Ω) ontoh is defined as follows:

Π
h

u :=
∑
e∈h

𝜆
e (u)Φ

e
,

where h is the set of interior edges of h and Φ
e

is the standard basis function linked with e, i.e.,

𝜆
e

(
Φ

e

)
= 1 and 𝜆

e′
(Φ

e
) = 0 for e′ ≠ e.

Remark 1. In general, the interpolation operator Π
h

is not well defined in the entire space H(curl; Ω). This
is because additional regularity, e.g., curlu ∈ (Lp(K ))3 and u × n ∈ (Lp(𝜕K ))3 for p > 2 and K ∈ h, is needed
to define and the tangential component for u ∈ H(curl; Ω), where n is the outward unit normal vector.

We next consider the lowest order tetrahedral Raviart–Thomas finite element space corresponding to the

space H(div; Ω) that is defined by

 h :=
{
p | p|K ∈ R(K ), K ∈ h and p ∈ H(div;Ω)

}
.

Here, the set of shape functions R(K) associated with the tetrahedral element K is defined by

R(K ) :=
{
𝜶d + 𝛽d x | 𝜶d is a constant vector in ℝ3 and 𝛽d is a scalar

}
.
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The degrees of freedom related to an elementK are determined by the average values of the normal components

over its faces, namely

𝜆
f

(
p
)
:= 1

| f |∫
f

p ⋅ n f ds, f ⊂ 𝜕K.

Here, | f | is the area of the face f and n f is the unit normal vector corresponding to f . We note that 𝜶d and 𝛽d
can be completely recovered by the degrees of freedom associated with the four faces of K. Let h be the set of

interior faces of h. Similarly, we can define the interpolation operator Π
h

associated with H(div; Ω). For a
sufficiently smooth p ∈ H(div; Ω), the operator is defined by

Π
h

p :=
∑
f∈h

𝜆
f

(
p
)
Φ

f
.

Here, Φ
f

is the standard basis function corresponding to the face f , i.e., 𝜆
f
(Φ

f
) = 1 and 𝜆

f ′
(Φ

f
) = 0

for f ′ ≠ f .

Remark 2. Like the interpolation operator for edge elements, the normal component on the face must be well

defined to introduce the interpolation Π
h

. Thus, some additional regularity for p ∈ H(div; Ω) is required,
e.g., p ∈ (Hr(Ω))3 for r > 1∕2.

In addition, we need the piecewise linear space for our theories. Let h be the space of the continuous P1
finite elements associated with h. We recall that the degrees of freedom are given by the function evaluations

at the vertices. The corresponding interpolation operator for a sufficiently smooth function inH1(Ω) is given by
Π
h
. We also consider Π̃

h
, the Scott–Zhang interpolation operator introduced in [26]. We can also consider the

interpolation operators for H by replacing the subscript with H. We finally define the vector field finite space

(h )
3 in three dimensions, whose components are contained in h.

By restricting the model problems (1) and (3) to the finite element spacesh and h, respectively, we

obtain the following discrete problems: Find uh ∈ h such that

ac
(
uh,𝒗h

)
=

(
f ,𝒗h

)
∀𝒗h ∈ h

and find ph ∈  h such that

ad
(
ph,qh

)
=

(
g,qh

)
∀qh ∈  h.

We also define the operators Ac:h →h and Ad: h → h as follows:

(
Acuh,𝒗h

)
= ac

(
uh,𝒗h

)
∀uh,𝒗h ∈ h

and (
Adph,qh

)
= ad

(
ph,qh

)
∀ph,qh ∈  h.

3 Overlapping Schwarz methods

Wedecompose the domainΩ intoN nonoverlapping subdomainsΩi, a union of a few elements in H .We assume

that the number of coarse elements contained in each subdomain is uniformly bounded. The parameter Hi is

defined by the diameter of the subdomainΩi. We now consider an overlapping subdomainΩ′
i
originated from

the nonoverlapping subdomainΩi by extending layers of fine elements, i.e.,Ω′
i
containingΩi is a union of fine

elements. In addition, we consider the assumptions introduced in [19, Assumptions 3.1, 3.2, and 3.5].

Assumption 1. For i = 1, 2,… ,N , there exists 𝛿i > 0, such that, if x belongs toΩ′
i
, then

dist
(
x, 𝜕Ω′

j
∖𝜕Ω

)
⩾ 𝛿i (6)

for a suitable index j = j(x), possibly equal to i and may depend on x, with x ∈ Ω′
j
.
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Assumption 1 states that the overlap parameters 𝛿i, i = 1,… ,N , represent the width of the extended

regionsΩ′
i
∖Ωi.

Assumption 2. The partition {Ω′
i
} can be colored using at most N0 colors, in such a way that subregions with

the same color are disjoint.

Based on Assumption 2, every point x ∈ Ω belongs at most N0 overlapping subdomains.

Assumption 3. There exists a constantC independent of H and the subdomainΩ′
i
, such that, for i = 1, 2,… ,N ,

HK ⩽ CHi (7)

for any K ∈ H , such that K ∩Ω′
i
≠ ∅. Here, HK is the diameter of the coarse element K.

According to Assumption 3, the size of a coarse element should not be large compared to the size of the

overlapping subdomains that it intersects.

The aforementioned three assumptions play critical roles in both theoretical and computational aspects.

From a theoretical perspective, the parameters 𝛿i, Hi, and N0 are incorporated into the estimations of the con-

dition numbers of the preconditioned linear systems, which will be presented in Section 4. Consequently, these

assumptions can serve as effective guidelines for computational settings.

In our theories, a partition of unity technique plays an essential role. To do so, we construct the set {𝜃i},
consisting of piecewise linear functions associated with the overlapping subdomain, which has the following

properties:

0 ⩽ 𝜃i ⩽ 1,

supp
(
𝜃i
)
⊂ Ω′

i
,

N∑
i=1

𝜃i ≡ 1, x ∈ Ω,

‖‖∇𝜃i‖‖∞ ⩽ C

𝛿i
,

(8)

where C is a constant independent of the 𝛿i and the Hi and ‖⋅‖∞ is the standard L∞-norm. For more details, see

[19, Lem. 3.4].

We now construct our preconditioners based on overlapping Schwarzmethods.We first consider the coarse

component. The coarse operators A(0)c and A(0)
d

related to the coarse problems are defined as follows:

(
A(0)
c
uH ,𝒗H

)
= ac

(
uH ,𝒗H

)
∀uH ,𝒗H ∈ H

and (
A(0)
d
pH ,qH

)
= ad

(
pH ,qH

)
∀pH ,qH ∈  H .

The row entries of the operator R(0)c which maps a vector field in h to H consist of the coefficients

obtained through the interpolation of the standard basis functions associated withH onto the mesh h. We

remark that R(0)c

T
:H →h is the natural injection since the finite element spaces are nested. In a similar

way, we can define the operator R(0)
d
: h → H associated with the Raviart–Thomas spaces.

Regarding the local components, let us define the restriction operators R(i)c :h →(i)

h
in such a way

that R(i)c
T
:(i)

h
→h are natural injections. Here,(i)

h
is the subspace ofh spanned by the basis func-

tions corresponding to the fine edges inΩ′
i
. Similarly, the construction for R(i)

d
: h → (i)

h
is straightforward,

where the local space (i)

h
is defined in a similar way. Then, the local operators A(i)c and A(i)

d
can be defined as

follows:

A(i)
𝜉
= R(i)

𝜉
A𝜉R

(i)

𝜉

T
, 1 ⩽ i ⩽ N,

where 𝜉 corresponds c or d. We note that A(i)
𝜉
is just a principal minor of A𝜉 .
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We can now construct the preconditioners and the resulting preconditioned linear operator has the follow-

ing form:

M−1
𝜉
A𝜉 =

N∑
i=0

R(i)
𝜉

T
A(i)
𝜉

−1
R(i)
𝜉
A𝜉 , (9)

where 𝜉 corresponds c or d.

4 Condition number estimate

4.1 Preliminaries

In this subsection, we will describe several preliminary results for our theories.

We first consider standard Sobolev spaces and their norms and semi-norms. For any  ⊂ Ω, let us denote
by ‖ ⋅ ‖s, and | ⋅ |s, the norm and the semi-norm of the Sobolev space Hs(), respectively. Provided that

 = Ω, we will omit the subscript Ω for convenience. If there is no explicit confusion, the same norm and

semi-norm notations will be used for (Hs())3.

We next define the operator Q
H

: (L2(Ω))3 →H as the L2-projection onto H . Similarly, we define

the L2-projection operator Q
H

: (L2(Ω))3 → H . We then have the following lemma in [19, Ch. 10].

Lemma 1. For u,p ∈ (H1(Ω))3, the following estimates hold:

‖‖‖‖curl
(
Q
H

u
)‖‖‖‖0 ⩽ C|u|1,

‖‖‖u− Q
H

u
‖‖‖0 ⩽ CH|u|1,

‖‖‖div
(
Q
H

p
)‖‖‖0 ⩽ C|p|1,

‖‖‖p− Q
H

p
‖‖‖0 ⩽ CH|p|1

with constants independent of u, p, and H.

We also denote by Q0
H,K

: (L2(K ))3 → (P0(K ))
3, where K ∈ H and P0(K) is the space of constants, a local L

2-

projection operator. Then, we have the following result.

Lemma 2. Let K ∈ H. Then, for u ∈ (H1(K ))3, we have

‖‖‖u− Q0
H,K

u
‖‖‖0,K ⩽ CHK |u|1,K ,

where HK is the diameter of K.

The following lemma describes the stability of the interpolation operators, stated in [19, Ch. 10], for the

functions obtained by the product of a piecewise linear function and a vector field.

Lemma 3. Let u ∈ h, p ∈  h, and 𝜗i be any continuous, piecewise linear function supported in the subdo-

mainΩ′
i
. Then, we have the following estimates:

‖‖‖Π
h

(
𝜗iu

)‖‖‖0,Ω′
i

⩽ C‖‖𝜗iu‖‖0,Ω′
i
,

‖‖‖‖curl
(
Π
h

(
𝜗iu

))‖‖‖‖0,Ω′
i

⩽ C
‖‖‖curl

(
𝜗iu

)‖‖‖0,Ω′
i

,

‖‖‖Π
h

(
𝜗ip

)‖‖‖0,Ω′
i

⩽ C‖‖𝜗ip‖‖0,Ω′
i
,
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‖‖‖‖div
(
Π
h

(
𝜗ip

))‖‖‖‖0,Ω′
i

⩽ C
‖‖‖div

(
𝜗ip

)‖‖‖0,Ω′
i

.

In order to analyze overlapping Schwarz methods, it is necessary to find an appropriate estimate for func-

tions on the layer surrounding the subdomain Ωi. In [19, Lem. 3.10], an estimate for H1 functions has been

proposed. Subsequently, this estimate has been extended to include piecewiseH1 functions in [8, Lem. 3.3], on the

condition that the subdomainΩi ∈ H . We note that the estimate is equally valid with assumptions in the begin-

ning of Section 3 together with Assumptions 1, 2 and 3. We will now proceed to introduce the aforementioned

estimate.

Prior to this, we will define the regionΩi,𝛿 by

Ωi,𝛿 =
⋃
j∈Ii
j≠i
Ω′

i
∩Ω′

j
,

where Ii = { j:Ω′
i
∩Ω′

j
≠ ∅}.

Lemma 4. Let u be a piecewise H1 function, i.e., u|K ∈ (H1(K ))3 on each K ∈ H. We then have

𝛿−2
i
‖u‖2

0,Ωi,𝛿
⩽ C

∑
j∈Ii

∑
K∈H ,
K⊂Ω j

[(
1+ Hi

𝛿i

)
|u|2

1,K
+ 1

𝛿iHi

‖u‖2
0,K

]
.

4.2 Regular decompositions for vector fields

The discrete orthogonal regular decompositions provided in [8], [9] have the following forms:

h = ∇h ⊕⊥

h
,

 h = curlh ⊕ ⊥
h
,

(10)

where⊥

h
and ⊥

h
are orthogonal complements. Due to the orthogonality, the stabilities of the decomposi-

tions (10) can be anticipated straightforwardly. However, categorizing the orthogonal complements⊥

h
and

 ⊥
h
poses a significant challenge, hindering the development of effective analytical techniques for the study

of overlapping Schwarz methods. In order to overcome this difficulty, the authors of [8], [9] have considered an

additional assumption, the convexity of the domain, which enables an embedding into a related space with H1,

already equipped with numerous tools.

Due to a limitation of the orthogonal decomposition, a new approach of regular decompositions was devel-

oped in [21]. For each uh ∈ h and ph ∈  h, the decompositions are given in the following forms:

uh = ∇𝜒h +Π
h

𝒘h + ũh,

ph = curl𝝆h +Π
h

rh + p̃h,

(11)

where 𝜒h ∈ h, 𝒘h ∈ (h )
3, ũh ∈ h, 𝝆h ∈ h, rh ∈ (h )

3, p̃h ∈  h, and satisfy some stabilities. Com-

pared to the orthogonal decompositions in (10), the decompositions in (11) are no longer orthogonal. There are

also additional oscillatory terms, ũh and p̃h. However, (11) provides well-established theories that do not require

the assumption of convexity of the domain. As long as the domain is topologically equivalent to a sphere, we

can expect the stabilities of the decompositions. We note that the results in (11) have been successfully applied

to the theories in [10], [15].

Our next goal is to consider more generally shaped domains, e.g., domains with holes. Note that the decom-

positions in (11) are based on standard interpolating operatorsΠ
h

andΠ
h

. As we have briefly mentioned in

Remarks 1 and 2, we need additional regularities in the theories. This may restrict the appropriate topological

class of domains. To avoid this restriction, new types of projection operators, which do not require any regularity
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assumptions, have to be considered. To do so, we first introduce the cochain projections introduced in [25] and

extended in [22], [23]. Let

𝜋
h

:H(curl;Ω)→h,

𝜋
h

:H(div;Ω)→ h,

𝜋0
h
: L2(Ω)→ P0(Ω)

denote the cochain projection operators constructed in [25] and [22]. We note that the operators satisfy the

commuting properties on each element in h
curl

(
𝜋
h

u
)
= 𝜋

h

(
curlu

)
∀u ∈ H(curl;Ω),

div
(
𝜋
h

p
)
= 𝜋0

h

(
div p

)
∀p ∈ H(div;Ω)

(12)

and the local stability estimates

‖‖‖𝜋
h

u
‖‖‖0,K ⩽ C

(‖u‖0,𝜔K
+ hK‖curlu‖0,𝜔K

)
∀u ∈ H(curl;Ω),

‖‖‖𝜋
h

p
‖‖‖0,K ⩽ C

(‖p‖0,𝜔K
+ hK‖div p‖0,𝜔K

)
∀p ∈ H(div;Ω),

‖‖‖𝜋0
h
z
‖‖‖0,K ⩽ C‖z‖0,𝜔K

∀z ∈ L2(Ω),

(13)

where K ∈ h, hK is the diameter of K, and 𝜔K is the union of the neighboring elements of K. We also remark

that the fact that uh = 𝜋
h

uh for all uh ∈ h and ph = 𝜋
h

ph for all ph ∈  h, the inverse inequality, (13),

and a standard Bramble–Hilbert argument ensure the estimates

‖‖‖𝒘h − 𝜋
h

𝒘h
‖‖‖0 ⩽ Ch‖‖∇𝒘h

‖‖0 (14)

and ‖‖‖𝒘h − 𝜋
h

𝒘h
‖‖‖0 ⩽ Ch‖‖∇𝒘h

‖‖0 (15)

for all𝒘h ∈ (h )
3.

We next consider the following regular decomposition in [24, Thm. 10] for edge elements.

Lemma 5 (Hiptmair–Pechstein decomposition for edge elements). For each uh ∈ h, there exist a continu-

ous and piecewise linear scalar function 𝜒h ∈ h, a continuous and piecewise linear vector field𝒘h ∈ (h )
3, and

a remainder ũh ∈ h, all depending linearly on uh, providing the discrete regular decomposition

uh = ∇𝜒h + 𝜋
h

𝒘h + ũh (16)

and satisfying the stability estimates

‖‖∇𝜒h
‖‖0 + ‖‖𝒘h

‖‖0 + ‖‖ũh‖‖0 ⩽ C‖‖uh‖‖0, (17)

‖‖∇𝒘h
‖‖0 + ‖‖‖h̃−1ũh‖‖‖0 ⩽ C

(‖‖curluh‖‖0 + ‖‖uh‖‖0), (18)

where C is a generic constant that depends only on the shape of𝛺, but not on the shape-regularity constant of h.
Here, h̃ is the piecewise constant function that is equal to hK on every element K ∈ h.

The regular decomposition in [24, Thm. 13] for face elements is given in the following lemma.

Lemma 6 (Hiptmair–Pechstein decomposition for face elements). For each ph ∈  h, there exist a vector field

𝝆h ∈ h, a continuous and piecewise linear vector field rh ∈ (h )
3, and a remainder p̃h ∈  h, all depending

linearly on ph, providing the discrete regular decomposition

ph = curl𝝆h + 𝜋
h

rh + p̃h (19)
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with the bounds ‖‖curl𝝆h
‖‖0 + ‖‖𝝆h

‖‖0 + ‖‖rh‖‖0 + ‖‖p̃h‖‖0 ⩽ C‖‖ph‖‖0, (20)

‖‖∇rh
‖‖0 + ‖‖‖h̃−1p̃h‖‖‖0 ⩽ C

(‖‖div ph‖‖0 + ‖‖ph‖‖0), (21)

where C is a generic constant that depends only on the shape ofΩ, but not on the shape-regularity constant of h.
Here, h̃ is the piecewise constant function that is equal to hK on every element K ∈ h.
Remark 3. The Hiptmair–Pechstein decompositions in (16) and (19) are in the same spirit as those in (11), i.e.,

additional oscillatory components, ũh and p̃h, and no orthogonality. Therefore, (16) and (19) are a general-

ized versions of (11) and good alternatives to (10), since they can provide useful tools for establishing domain

decomposition theories, that are more robust to the topology of the domain.

Remark 4. We consider uh, u1,h, and u2,h, all in h, with uh = u1,h + u2,h. Based on Lemma 5, we can

construct the decompositions

uh = ∇𝜒h + 𝜋
h

𝒘h + ũh,

u1,h = ∇𝜒1,h + 𝜋
h

𝒘1,h + ũ1,h,

and

u2,h = ∇𝜒2,h + 𝜋
h

𝒘2,h + ũ2,h.

Then, 𝜒h = 𝜒 1,h + 𝜒 2,h, 𝒘h = 𝒘1,h + 𝒘2,h and ũh = ũ1,h + ũ2,h. We also have a similar linearity for face

elements associated with Lemma 6.

4.3 Schwarz framework

In this subsection, we summarize the abstract Schwarz framework, a key ingredient for analyzing domain

decomposition methods. For more detail, see [19, Ch. 2].

Lemma 7. If for all uh ∈ h there is a representation, uh =
∑N

i=0ui, where u0 ∈ H and ui ∈ (i)

h
for

i = 1, 2,… ,N, such that
N∑
i=0

ac
(
ui,ui

)
⩽ C2

c
ac
(
uh,uh

)
,

then the smallest eigenvalue of the preconditioned linear operator defined in (9) is bounded from below by C−2
c
.

Lemma 8. If for all ph ∈  h there is a representation, ph =
∑N

i=0pi, where p0 ∈  H and pi ∈  (i)

h
for

i = 1, 2,… ,N, such that
N∑
i=0

ad
(
pi,pi

)
⩽ C2

d
ad
(
ph,ph

)
,

then the smallest eigenvalue of the preconditioned linear operator defined in (9) is bounded from below by C−2
d
.

Lemma 9. The largest eigenvalue of the operator introduced in (9) is bounded from above by N0 + 1, where N0

is defined in Assumption 2.

4.4 Condition number estimate for H(curl)

For elliptic equations,whichhave a global dependence of the solution due to theGreen’s function representation,

the solution is generally nonzero throughout the entire domain, even if the forcing term or the boundary value

is nonzero only within a small subregion. Numerical algorithms for solving elliptic problems have to take this

characteristic into account. In overlapping Schwarzmethods, each iteration transfers information only between
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neighboring subdomains. Hence, several iterations may be required for the local change to be effective across

the entire domain without the incorporation of a global component, also known as a coarse component. We also

remark that, based on numerical experiments in [27], the constant C2
c
in Lemma 7, which plays an important

role in the performance of the preconditioner, is O(1∕(𝛿H)), where H is the diameter of the subdomain and 𝛿 is

the size of the overlap between subdomains, excluding the coarse component u0. We therefore need a suitable

coarse component to find a good bound in Lemma 7.

Based on Lemma 5, for any uh ∈ h, we can find 𝜒h, 𝒘h, and ũh, which satisfy (17) and (18). We then

consider
u0 :=∇𝜒0 +𝒘0,

ui :=∇𝜒i +𝒘i + ũi, i = 1, 2,… ,N,
(22)

where
𝜒0 = Π̃

H
𝜒h,

𝒘0 = Q
H

𝒘h,

𝜒i = Π
h

(
𝜃i
(
𝜒h − 𝜒0

))
,

𝒘i = Π
h

(
𝜃i

(
𝜋
h

𝒘h −𝒘0

))
,

ũi = Π
h

(
𝜃iũh

)
.

(23)

Here, the interpolation operators Π̃
H
, Π

h
, and Π

h
are defined in Section 2 and the set {𝜃i}, the L2-projection

operator Q
H

, and the cochain projection 𝜋
h

are mentioned in Section 3, 4.1, and 4.2, respectively. From

(22) and (23), we can easily check u0 ∈ H ,ui ∈ (i)

h
, and uh =

∑N

i=0ui. We separately estimate the coarse

component u0 and the local components, i.e., ui, i = 1,… ,N .

We first consider the coarse component. The next lemma shows the stability of u0.

Lemma 10. Assume that the constant 𝜂c in (2) is less than or equal to one. Then, we have the following estimate

for the coarse component in (22):

ac
(
u0,u0

)
⩽ Cac

(
uh,uh

)
, (24)

where the constant C does not depend on N, h, Hi, 𝛿i, and 𝜂c.

Proof . We note that u0 = ∇𝜒0 + 𝒘0. We estimate each term separately.

– Term 𝜒0:

From the property of Scott–Zhang interpolation, i.e., the operator Π̃
h
is stable with respect to the H1-norm,

and (17), we have

ac
(
∇𝜒0,∇𝜒0

)
= ‖‖∇𝜒0

‖‖20 ⩽ C‖‖∇𝜒h
‖‖20 ⩽ C‖‖uh‖‖20. (25)

– Term𝒘0:

By using the definition of Q
H

and (17), we obtain

‖‖𝒘0
‖‖20 = ‖‖‖Q

H
𝒘h

‖‖‖
2

0
⩽ ‖‖𝒘h

‖‖20 ⩽ C‖‖uh‖‖20. (26)

Due to Lemma 1 and (18), we have

𝜂c
‖‖curl𝒘0

‖‖20 = 𝜂c
‖‖‖‖curl

(
Q
H

𝒘h

)‖‖‖‖
2

0

⩽ C𝜂c
‖‖∇𝒘h

‖‖20
⩽ C

(
𝜂c
‖‖uh‖‖20 + 𝜂c

‖‖curluh‖‖20
)
⩽ Cac

(
uh,uh

)
. (27)

Hence, by combining (25), (26), and (27) and using Cauchy–Schwarz inequality, the estimate (24) holds. □
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We next consider an estimate for local components. Since the proof of the lemma is overlong, we estimate

each term in (22) individually using propositions and put them together later.

Proposition 1. Consider 𝜒 i defined in (23) and assume that 𝜂c ⩽ 1. Then, we have

N∑
i=1

ac
(
∇𝜒i,∇𝜒i

)
⩽ C

(
max
1⩽i⩽N

(
1+ Hi

𝛿i

))
ac
(
uh,uh

)
,

where the constant C is independent from N, h, Hi, 𝛿i, and 𝜂c.

Proof . We have the following estimate from [19, Lem. 3.12] and (17):

N∑
i=1

ac
(
∇𝜒i,∇𝜒i

)
⩽ C

(
max
1⩽i⩽N

(
1+ Hi

𝛿i

))‖‖∇𝜒h
‖‖20

⩽ C

(
max
1⩽i⩽N

(
1+ Hi

𝛿i

))‖‖uh‖‖20
⩽ C

(
max
1⩽i⩽N

(
1+ Hi

𝛿i

))
ac
(
uh,uh

)
. □

Proposition 2. Consider𝒘i defined in (23) and assume that 𝜂c ⩽ 1. Then, we have

N∑
i=1

ac
(
𝒘i,𝒘i

)
⩽ C

(
max
1⩽i⩽N

(
1+ Hi

𝛿i

))
ac
(
uh,uh

)
,

where the constant C is independent from N, h, Hi, 𝛿i, and 𝜂c.

Proof . By using Lemma 3, the properties of 𝜃i in (8), the triangle inequality, (13), the inverse estimate, the finite

covering property in Assumption 2, (26), and (17), we obtain

N∑
i=1

‖‖𝒘i
‖‖20,Ω′

i

⩽ C

N∑
i=1

‖‖‖‖𝜃i
(
𝜋
h

𝒘h −𝒘0

)‖‖‖‖
2

0,Ω′
i

⩽ C
(‖‖𝒘h

‖‖20 + ‖‖𝒘0
‖‖20
)

⩽ C‖‖𝒘h
‖‖20 ⩽ C‖‖uh‖‖20. (28)

Let 𝒗1 = 𝜋
h

𝒘h −𝒘h, 𝒗2 = 𝒘h −𝒘0 = 𝒘h − Q
H

𝒘h, and 𝒗 = 𝒗1 + 𝒗2. Due to Lemma 3, the construc-

tion of 𝜃i, Assumption 2, and the triangle inequality, we have

N∑
i=1

𝜂c
‖‖curl𝒘i

‖‖20,Ω′
i

⩽ C𝜂c‖curl𝒗‖20 + C𝜂c

N∑
i=1

𝛿−2
i
‖𝒗‖2

0,Ωi,𝛿

⩽ C𝜂c‖curl𝒗‖20 + C𝜂c

N∑
i=1

𝛿−2
i
‖‖𝒗1‖‖20,Ωi,𝛿

+ C𝜂c

N∑
i=1

𝛿−2
i
‖‖𝒗2‖‖20,Ωi,𝛿

:= E1 + E2 + E3. (29)

We first consider E1. By using the triangle inequality, Lemma 1, (12), (13), and (18), we obtain

E1 = C𝜂c‖curl𝒗‖20 ⩽ C𝜂c
‖‖‖‖curl

(
𝜋
h

𝒘h

)‖‖‖‖
2

0

+ C𝜂c
‖‖‖‖curl

(
Q
H

𝒘h

)‖‖‖‖
2

0

⩽ C𝜂c
‖‖‖𝜋

h

(
curl𝒘h

)‖‖‖
2

0
+ C𝜂c

‖‖∇𝒘h
‖‖20 ⩽ C𝜂c

‖‖curl𝒘h
‖‖20 + C𝜂c

‖‖∇𝒘h
‖‖20 ⩽ C𝜂c

‖‖∇𝒘h
‖‖20

⩽ C
(
𝜂c
‖‖uh‖‖20 + 𝜂c

‖‖curluh‖‖20
)
⩽ Cac

(
uh,uh

)
. (30)
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Regarding E2, the following estimate holds from the error estimate (14), the finite covering property in

Assumption 2, and (18):

E2 = C𝜂c

N∑
i=1

𝛿−2
i
‖‖𝒗1‖‖20,Ωi,𝛿

⩽ C𝜂c

N∑
i=1

h−2
‖‖‖𝜋

h
𝒘h −𝒘h

‖‖‖
2

0,Ω′
i

⩽ C𝜂c
‖‖∇𝒘h

‖‖20 ⩽ C
(
𝜂c
‖‖uh‖‖20 + 𝜂c

‖‖curluh‖‖20
)

⩽ Cac
(
uh,uh

)
. (31)

We finally estimate E3. Lemma 4 implies

E3 = C𝜂c

N∑
i=1

𝛿−2
i
‖‖𝒗2‖‖20,Ωi,𝛿

⩽ C𝜂c

N∑
i=1

∑
j∈Ii

∑
K∈H ,
K⊂Ω j

(
1+ Hi

𝛿i

)||𝒗2||21,K + C𝜂c

N∑
i=1

∑
j∈Ii

∑
K∈H ,
K⊂Ω j

1

𝛿iHi

‖‖𝒗2‖‖20,K

:= E3,1 + E3,2. (32)

We have the following estimate from the triangle inequality, the inverse estimate, and Lemma 2:

||𝒗2||1,K = |||𝒘h − Q
H

𝒘h
|||1,K ⩽ ||𝒘h

||1,K + |||Q
H

𝒘h
|||1,K

= ||𝒘h
||1,K + |||Q

H
𝒘h − Q0

H,K
𝒘h

|||1,K
⩽ ||𝒘h

||1,K + CH−1‖‖‖Q
H

𝒘h − Q0
H,K

𝒘h
‖‖‖0,K

⩽ ||𝒘h
||1,K + CH−1‖‖‖Q

H
𝒘h −𝒘h

‖‖‖0,K + CH−1‖‖‖𝒘h − Q0
H,K

𝒘h
‖‖‖0,K

⩽ C||𝒘h
||1,K + CH−1‖‖‖Q

H
𝒘h −𝒘h

‖‖‖0,K . (33)

Let Ξ = max1⩽i⩽n(Hi∕𝛿i ). Then, by using (33), Lemma 1 and (18), we have

E3,1 = C𝜂c

N∑
i=1

∑
j∈Ii

∑
K∈H ,
K⊂Ω j

(
1+ Hi

𝛿i

)||𝒗2||21,K ⩽ C𝜂c(1+ Ξ)
N∑
i=1

∑
j∈Ii

∑
K∈H ,
K⊂Ω j

||𝒗2||21,K

⩽ 𝜂c(1+ Ξ)

⎛⎜⎜⎜⎜⎝
C

N∑
i=1

∑
j∈Ii

∑
K∈H ,
K⊂Ω j

||𝒘h
||21,K + CH−2

N∑
i=1

∑
j∈Ii

∑
K∈H ,
K⊂Ω j

‖‖‖Q
H

𝒘h −𝒘h
‖‖‖
2

0,K

⎞⎟⎟⎟⎟⎠
⩽ 𝜂c(1+ Ξ)

(
C‖‖∇𝒘h

‖‖20 + CH−2‖‖‖Q
H

𝒘h −𝒘h
‖‖‖
2

0

)
⩽ C𝜂c(1+ Ξ)‖‖∇𝒘h

‖‖20
⩽ C(1+ Ξ)

(
𝜂c
‖‖uh‖‖20 + 𝜂c

‖‖curluh‖‖20
)
⩽ C(1+ Ξ)ac

(
uh,uh

)
. (34)

Moreover, from Assumption 3, Lemma 1, and (18), we obtain

E3,2 = C𝜂c

N∑
i=1

∑
j∈Ii

∑
K∈H ,
K⊂Ω j

1

𝛿iHi

‖‖𝒗2‖‖20,K ⩽ C𝜂cH
−2

N∑
i=1

∑
j∈Ii

∑
K∈H ,
K⊂Ω j

Hi

𝛿i

‖‖‖Q
H

𝒘h −𝒘h
‖‖‖
2

0,K
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⩽ C𝜂cΞH−2‖‖‖Q
H

𝒘h −𝒘h
‖‖‖
2

0
⩽ C𝜂cΞ‖‖∇𝒘h

‖‖20
⩽ CΞ

(
𝜂c
‖‖uh‖‖20 + 𝜂c

‖‖curluh‖‖20
)
⩽ CΞac

(
uh,uh

)
. (35)

Thus, by using (29), (30), (31), (32), (34), and (35), the following estimate holds:

N∑
i=1

𝜂c
‖‖curl𝒘i

‖‖20,Ω′
i

⩽ C max
1⩽i⩽N

(
1+ Hi

𝛿i

)
ac
(
uh,uh

)
. (36)

Combining (28) and (36), we have

N∑
i=1

ac
(
𝒘i,𝒘i

)
⩽ C

(
max
1⩽i⩽N

(
1+ Hi

𝛿i

))
ac
(
uh,uh

)
. □

Proposition 3. Consider ũi defined in (23) and assume that 𝜂c ⩽ 1. Then, we have

N∑
i=1

ac
(
ũi, ũi

)
⩽ ac

(
uh,uh

)
,

where the constant C is independent from N, h, Hi, 𝛿i, and 𝜂c.

Proof . From Lemma 3, (8), Assumption 2, the inverse inequality, (17), and (18), we have

N∑
i=1

‖‖ũi‖‖20,Ω′
i
⩽ C

N∑
i=1

‖‖𝜃iũh‖‖20,Ω′
i
⩽ C‖‖ũh‖‖20 ⩽ C‖‖uh‖‖20 (37)

and

N∑
i=1

𝜂c
‖‖curl ũi‖‖20,Ω′

i
⩽ C𝜂c

N∑
i=1

𝛿−2
i
‖‖ũh‖‖20,Ω′

i
+ C𝜂c

‖‖curl ũh‖‖20 ⩽ C𝜂ch
−2‖‖ũh‖‖20

⩽ C
(
𝜂c
‖‖uh‖‖20 + 𝜂c

‖‖curluh‖‖20
)
⩽ Cac

(
uh,uh

)
. (38)

We therefore have

N∑
i=1

ac
(
ũi, ũi

)
⩽ Cac

(
uh,uh

)
. □

Lemma 11. Assume that the constant 𝜂c in (2) is less than or equal to one. Then, we have the following estimate

for the local components in (22):

N∑
i=1

ac
(
ui,ui

)
⩽ C

(
max
1⩽i⩽N

(
1+ Hi

𝛿i

))
ac
(
uh,uh

)
, (39)

where the constant C does not depend on N, h, Hi, 𝛿i, and 𝜂c.

Proof . Based on Propositions 1, 2, and 3, we have (39). □
We finally have an estimate of the condition number for our H(curl) model problem.

Theorem 1. Let 𝜂c ⩽ 1. We then have the following estimate:

𝜘(M−1
c
Ac
)
⩽ C max

1⩽i⩽N

(
1+ Hi

𝛿i

)
, (40)

where the constant C does not depend on the mesh sizes, Hi, 𝛿i, 𝜂c, and the number of subdomains but may depend

on N0.
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Proof . We have (40) from Lemmas 7, 9, 10, and 11. □

Corollary 1. If the first Betti number of the domainΩ, i.e., the number of circular holes, vanishes, we have (40) in
Theorem 1 without the assumption 𝜂c ⩽ 1.

Proof . If the first Betti number of the domainΩ vanishes, we have a more favorable bound in (18), i.e., the right

hand side can be replaced by the curl term only. Thus, we can have (40) in Theorem 1 without the assumption

𝜂c ⩽ 1. For more detail, see [22, Sect. 5.1]. □

4.5 Condition number estimate for H(div)

Like the H(curl) case, we consider the following decomposition for any ph ∈  h based on Lemma 6:

p0 := curl𝝈0 + r0,

pi := curl

(
𝝈i + 𝝆̃i

)
+ ri + p̃i, i = 1, 2,… ,N,

(41)

where
𝝈0 = Q

H
𝝈h,

r0 = Q
H

rh,

𝝈i = Π
h

(
𝜃i

(
𝜋
h

𝝈h − 𝝈0

))
,

𝝆̃i = Π
h

(
𝜃i𝝆̃h

)
,

ri = Π
h

(
𝜃i
(
𝜋
h

rh − r0
))
,

p̃i = Π
h

(
𝜃ip̃h

)
.

(42)

Here, 𝝆h = ∇𝜇h +Π
h

𝝈h + 𝝆̃h is given based on Lemma 5. We note that the operators Π
h

and Π
h

are

introduced in Section 2. We also remark that the partition of unity set {𝜃i} is constructed in Section 3 and the L2-
projection operators are defined in Section 4.1. In addition, the cochain projections𝜋

h
and𝜋

h
are introduced

in Section 4.2. Obviously, we have p0 ∈  H , pi ∈  (i)

h
, and ph =

∑N

i=0 pi. Similarly, we consider estimates for

the coarse and the local components.

We first consider the stability of p0 in (41). We recall that we have the constant 𝜂d in the bilinear form (4).

Lemma 12. Assume that the constant 𝜂d in (4) is less than or equal to one. Then, we have the following estimate

for the coarse component p0 in (41):

ad
(
p0,p0

)
⩽ Cad

(
ph,ph

)
, (43)

where the constant C does not depend on N, h, Hi, 𝛿i, and 𝜂d.

Proof . Based on the decomposition p0 = curl 𝝈0 + r0, we consider each term one by one.

– Term 𝝈0:

With a similar argument to (27) in Lemma 10, (18), and (20), we have

ad
(
curl𝝈0, curl𝝈0

)
= ‖‖curl𝝈0

‖‖20 ⩽ C‖‖ph‖‖20. (44)

– Term r0:

From the projection property and (20), we obtain

‖‖r0‖‖20 = ‖‖‖Q
H

rh
‖‖‖
2

0
⩽ ‖‖rh‖‖20 ⩽ C‖‖ph‖‖20. (45)
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By using Lemma 1 and (21), the following estimate holds:

𝜂d
‖‖div r0‖‖20 = 𝜂d

‖‖‖div
(
Q
H

rh
)‖‖‖

2

0
⩽ C𝜂d

‖‖∇rh
‖‖20

⩽ C
(
𝜂d
‖‖div ph‖‖20 + 𝜂d

‖‖ph‖‖20
)
⩽ Cad

(
ph,ph

)
. (46)

We therefore have (43) from (44), (45), and (46). □
We next consider three propositions to estimate each term associated with the local components in (41)

separately.

Proposition 4. Assume that 𝜂d ⩽ 1. Let 𝝆i = 𝝈i + 𝝆̃i, where the terms 𝝈i and 𝝆̃i introduced in (42). We then have

N∑
i=1

ad
(
curl𝝆i, curl𝝆i

)
⩽ C max

1⩽i⩽N

(
1+ Hi

𝛿i

)
ad
(
ph,ph

)
,

where the constant C is independent from N, h, Hi, 𝛿i, and 𝜂d.

Proof . We can use the same methods in Propositions 2 and 3 and (20). We then have

N∑
i=1

ad
(
curl𝝆i, curl𝝆i

)
=

N∑
i=1

‖‖curl𝝆i
‖‖20,Ω′

i

⩽ C max
1⩽i⩽N

(
1+ Hi

𝛿i

)‖‖ph‖‖20

⩽ C max
1⩽i⩽N

(
1+ Hi

𝛿i

)
ad
(
ph,ph

)
. □

Proposition 5. Assume that 𝜂d ⩽ 1. Then, the term ri introduced in (42) has the following estimate:

N∑
i=1

ad
(
ri, ri

)
⩽ C max

1⩽i⩽N

(
1+ Hi

𝛿i

)
ad
(
ph,ph

)
,

where the constant C is independent from N, h, Hi, 𝛿i, and 𝜂d.

Proof . With the same process with (28), we obtain

N∑
i=1

‖‖ri‖‖20,Ω′
i

⩽ C‖‖rh‖‖20 ⩽ C‖‖ph‖‖20. (47)

Let q = q1 + q2 with q1 = 𝜋
h

rh − rh and q2 = rh − r0 = rh − Q
H

rh. By using a similar argument to

(29), we have

N∑
i=1

𝜂d
‖‖div ri‖‖20,Ω′

i

⩽ C𝜂d‖div q‖20 + C𝜂d

N∑
i=1

𝛿−2
i
‖‖q1‖‖20,Ωi,𝛿

+ C𝜂d

N∑
i=1

𝛿−2
i
‖‖q2‖‖20,Ωi,𝛿

:= F1 + F2 + F3. (48)

Regarding F1, we obtain the following estimate in a similar way to (30):

F1 = C𝜂d‖div q‖20 ⩽ C𝜂d
‖‖‖div

(
𝜋
h

rh
)‖‖‖

2

0
+ C𝜂d

‖‖‖div
(
Q
H

rh
)‖‖‖

2

0

⩽ C𝜂d
‖‖‖𝜋0

h

(
div rh

)‖‖‖
2

0
+ C𝜂d

‖‖∇rh
‖‖20 ⩽ C𝜂d

‖‖div rh‖‖20 + C𝜂d
‖‖∇rh

‖‖20
⩽ C𝜂d

‖‖∇rh
‖‖20 ⩽ C

(
𝜂d
‖‖div ph‖‖20 + 𝜂d

‖‖ph‖‖20
)

⩽ Cad
(
ph,ph

)
. (49)
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We next estimate F2 using the similar arguments in (32). The following bound can be found using (15), the

finite covering property in Assumption 2, and (21):

F2 = C𝜂d

N∑
i=1

𝛿−2
i
‖‖q1‖‖0,Ωi,𝛿

⩽ C𝜂d

N∑
i=1

h−2
‖‖‖𝜋

h
rh − rh

‖‖‖
2

0,Ω′
i

⩽ C𝜂d
‖‖∇rh

‖‖20 ⩽ C
(
𝜂d
‖‖div ph‖‖20 + 𝜂d

‖‖ph‖‖20
)

⩽ Cad
(
ph,ph

)
. (50)

Finally, we consider F3. Like (32), from Lemma 4, we have

F3 = C𝜂d

N∑
i=1

𝛿−2
i
‖‖q2‖‖20,Ωi,𝛿

⩽ C𝜂d

N∑
i=1

∑
j∈Ii

∑
K∈H ,
K⊂Ω j

(
1+ Hi

𝛿i

)||q2||21,K + C𝜂d

N∑
i=1

∑
j∈Ii

∑
K∈H ,
K⊂Ω j

1

𝛿iHi

‖‖q2‖‖20,K

:= F3,1 + F3,2. (51)

In the same way as (33), we obtain

||q2||1,K ⩽ C||rh||1,K + CH−1‖‖‖Q
H

rh − rh
‖‖‖0,K . (52)

Hence, in a similar way to (34), we have

F3,1 = C𝜂d

N∑
i=1

∑
j∈Ii

∑
K∈H ,
K⊂Ω j

(
1+ Hi

𝛿i

)||q2||21,K ⩽ C𝜂d(1+ Ξ)
N∑
i=1

∑
j∈Ii

∑
K∈H ,
K⊂Ω j

||q2||21,K

⩽ 𝜂d(1+ Ξ)
(
C‖‖∇rh

‖‖20 + CH−2‖‖‖Q
H

rh − rh
‖‖‖
2

0

)
⩽ C𝜂d(1+ Ξ)‖‖∇rh

‖‖20
⩽ C(1+ Ξ)

(
𝜂d
‖‖div ph‖‖20 + 𝜂d

‖‖ph‖‖20
)
⩽ C(1+ Ξ)ad

(
ph,ph

)
, (53)

where Ξ = max1⩽i⩽N (Hi∕𝛿i ).
In addition, the argument in (35) gives

F3,2 = C𝜂d

N∑
i=1

∑
j∈Ii

∑
K∈H ,
K⊂Ω j

1

𝛿iHi

‖‖q2‖‖20,Ωi
⩽ C𝜂dΞH−2‖‖‖Q

H
rh − rh

‖‖‖
2

0

⩽ C𝜂dΞ‖‖∇rh
‖‖20 ⩽ CΞ

(
𝜂d
‖‖div ph‖‖20 + 𝜂d

‖‖ph‖‖20
)

⩽ CΞad
(
ph,ph

)
. (54)

We therefore have the following inequality by using (48), (49), (50), (51), (53), and (54):

N∑
i=1

𝜂d
‖‖div ri‖‖20,Ω′

i

⩽ C max
1⩽i⩽N

(
1+ Hi

𝛿i

)
ad
(
ph,ph

)
. (55)

Due to (47) and (55), we finally have

N∑
i=1

ad
(
ri, ri

)
⩽ C max

1⩽i⩽N

(
1+ Hi

𝛿i

)
ad
(
ph,ph

)
. □
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Proposition 6. Assume that 𝜂d ⩽ 1. Then, the term p̃i introduced in (43) has the following estimate:

N∑
i=1

ad
(
p̃i, p̃i

)
⩽ Cad

(
ph,ph

)
,

where the constant C is independent from N, h, Hi, 𝛿i, and 𝜂d.

Proof . By using Lemma 3, the construction of the partition of unity set {𝜃i} in (8), and (20), we obtain

N∑
i=1

‖‖p̃i‖‖20,Ω′
i
⩽ C

N∑
i=1

‖‖𝜃ip̃h‖‖20,Ω′
i
⩽ C‖‖p̃h‖‖20 ⩽ C‖‖ph‖‖20. (56)

From (8), Lemma 3, the inverse inequality, and (21), we have

𝜂d

N∑
i=1

‖‖div p̃i‖‖20,Ω′
i
⩽ C𝜂d

N∑
i=1

𝛿−2
i
‖‖p̃h‖‖20,Ω′

i
+ C𝜂d

‖‖div p̃h‖‖20 ⩽ C𝜂dh
−2‖‖p̃h‖‖20

⩽ C
(
𝜂d
‖‖div ph‖‖20 + 𝜂d

‖‖ph‖‖20
)
⩽ Cad

(
ph,ph

)
. (57)

We therefore have

N∑
i=1

ad
(
p̃i, p̃i

)
⩽ Cad

(
ph,ph

)
. □

Lemma 13. Assume that the constant 𝜂d in (4) is less than or equal to one. Then, we have the following estimate

for the local components in (22):

N∑
i=1

ad
(
pi,pi

)
⩽ C

(
max
1⩽i⩽N

(
1+ Hi

𝛿i

))
ad
(
ph,ph

)
, (58)

where the constant C does not depend on N, h, Hi, 𝛿i, and 𝜂d.

Proof . Based on Propositions 4, 5, and 6, we have (58). □
Finally, We obtain an estimate of the condition number for our H(div) model problem.

Theorem 2. Let 𝜂d ⩽ 1. We then have the following estimate:

𝜘(M−1
d
Ad

)
⩽ C max

1⩽i⩽N

(
1+ Hi

𝛿i

)
, (59)

where the constant C does not depend on the mesh sizes, Hi, 𝛿i, 𝜂d, and the number of subdomains but may depend

on N0.

Proof . We obtain (59) by using Lemmas 8, 9, 12, and 13. □

Corollary 2. If the second Betti number of the domain Ω, i.e., the number of connected components of 𝜕Ω minus

one, is zero, we have (59) in Theorem 2 without the assumption 𝜂d ⩽ 1.

Proof . Provided that the second Betti number of the domain Ω is zero, we can replace the upper bound of (21)

by simply the divergence term. We therefore remove the assumption regarding the coefficient 𝜂d in Theorem 2;

see [22, Sect. 5.2] for more detail. □
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5 Numerical experiments

In this section, we perform one experiment on an H(div) problem and four numerical experiments for H(curl)

problems. We report the error profile associated with the following notations:

Error D1 := ‖Π
h

u− uh‖0,
Error D2 := ‖div(Π

h
u− uh

)‖0,
Error 1 := ‖Π

h
u− uh‖0,

Error 2 := ‖curl(Π
h

u− uh

)‖0 for 2D or ‖curl(Π
h

u− uh

)‖0 for 3D.

We also denote the number of iterations as follows.

I1 := Number of the conjugate gradient iterations,

I2 := Number of the domain− decomposition preconditioned conjugate gradient iterations.

In this work, we proved that

Clow
ac
(
uh,uh

)
(
1+ H∕𝛿

) ⩽ ac
(
M−1

c
Acuh,uh

)
⩽ Chighac

(
uh,uh

)
(60)

for some positive constants Clow and Chigh independent of h, 𝛿, andH. We also report the constants Clow and Chigh
obtained numerically in each example. For each h, i.e., on each mesh h, they are computed by

Chigh = 𝜆max(M ), Clow =
(
1+ H

𝛿

)
𝜆min(M ), M =

N∑
i=0

R(i)
c

T
A(i)
c

−1
R(i)
c
Ac, (61)

where 𝜆max and 𝜆min are the maximum eigenvalue and the minimum eigenvalue respectively, Ac is the stiffness

matrix on h, A(0)c is the stiffness matrix on H , A(i)c is the stiffness matrix on subdomain h ∩Ωi

h
for i > 0, and

R(i)c is the transfer matrix embedding the subspace functions to the fine space. For H(div) problems, we replace

the index c by d in the above notations.

5.1 Raviart–Thomas rectangular element

We solve the following grad div equations on two domains:

grad divuh + uh = f in Ω,

uh ⋅ n = g on 𝜕Ω,
(62)

where n is the unit outer normal vector, and

Ω = (−1, 1)2∖[0, 1) × (−1, 0], (63)

Ω = (0, 1)
2∖[1∕4, 3∕4]2. (64)

In both cases, the exact solution of (66) is chosen as

u =
(
y5

x4

)
. (65)
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In both cases, the meshes used in the computation are uniform square meshes, as shown in Figure 1. ForΩ
in (63), we have three subdomains, i.e., on Grid 1, H = {Ωi}, where

Ωi = {a size− 1 square}, i = 1, 2, 3,

Ω′
i
= Ωi ∪

⎛⎜⎜⎜⎝
⋃
K∈h ,

dist(K,Ω )⩽h

K

⎞⎟⎟⎟⎠
, i = 1, 2, 3.

Thus, on Grid 1, all three Ω′
i
= Ω. On a higher Grid h, Ω′

i
is the union of the square Ωi and all size-h squares

along its edges. ForΩ in (64), we have 12 subdomains, i.e., on Grid 1, H = {Ωi}, where

Ωi =
{
a size− 1

2
square

}
, i = 1,… , 12,

Ω′
i
= Ωi ∪

⎛⎜⎜⎜⎝
⋃
K∈h ,

dist(K,Ω )⩽h

K

⎞⎟⎟⎟⎠
, i = 1,… , 12.

On a high Grid h,Ω′
i
is again the union of the squareΩi and all size-h squares along its edges.

The results for computing (62) are listed in Table 1, where we can see that the finite element solution con-

verges at the optimal order in both norms on both domains. Additionally, we can see that the condition number

of domain-decomposition preconditioned system is roughly (1 + H∕𝛿).
We list the computer found constants of (60) in Table 2. As proved in the theory, the constants remain

bounded on the both non-convex domains.

Figure 1: The third level grids for domain Ω =
(−1, 1)2∖[0, 1) × (−1, 0] and (0, 1)2∖[1∕4, 3∕4]2, respectively.

Table 1: Error profile for (65) on grids as shown in Figure 1.

Grid Error D1 Order Error D2 Order I I

On𝛀 = (−1, 1)2∖[0, 1)× (−1, 0]
1 0.7610E+00 0.0 0.1080E+01 0.0 5 1

2 0.2561E+00 1.6 0.5896E+00 0.9 36 14

3 0.6919E-01 1.9 0.1633E+00 1.9 154 17

4 0.1763E-01 2.0 0.4180E-01 2.0 487 20

5 0.4428E-02 2.0 0.1051E-01 2.0 1,094 24

6 0.1108E-02 2.0 0.2631E-02 2.0 2,291 29

On𝛀=(,)∖[∕,∕]

1 0.3415E-01 0.0 0.7809E-01 0.0 16 5

2 0.8634E-02 2.0 0.2013E-01 2.0 125 21

3 0.2161E-02 2.0 0.5075E-02 2.0 530 23

4 0.5401E-03 2.0 0.1272E-02 2.0 1,298 27

5 0.1350E-03 2.0 0.3181E-03 2.0 2,708 32

6 0.3374E-04 2.0 0.7955E-04 2.0 5,610 40
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Table 2: The bounds for 3-subdomain and for 12-subdomain overlap DD shown as in Figure 1.

Grid Clow in () Chigh in () Clow in () Chigh in ()

On (−1, 1)2∖[0, 1)× (−1, 0] On (0, 1)2∖[1∕4, 3∕4]2

2 1.976790 3.429921 1.889383 3.492440

3 2.358270 3.119507 2.120117 3.140896

4 2.505871 3.025601 2.261999 3.030765

5 2.555174 3.005602 2.337076 3.006730

6 2.574040 3.001300 2.373954 3.001561

Table 3: Effects of varying H, h, and 𝛿 for (62) on domain (63), on 𝜆max(M) and 𝜆min(M) in (61).

H/𝜹 H 𝜹 h= 2−2 h= 2−3 h= 2−4 h= 2−5

𝝀max 𝝀min 𝝀max 𝝀min 𝝀max 𝝀min 𝝀max 𝝀min

4 20 2– 2 3.119 0.988 3.107 0.562 3.064 0.651 3.064 0.593

2–1 2– 3 – – 4.266 0.789 4.194 0.520 4.170 0.648

2–2 2– 4 – – – – 4.413 0.772 4.280 0.501

2–3 2– 5 – – – – – – 4.465 0.768

8 20 2– 3 – – 3.025 0.501 3.022 0.318 3.013 0.396

2–1 2– 4 – – – – 4.078 0.499 4.046 0.294

2–2 2– 5 – – – – – – 4.132 0.495

16 20 2– 4 – – – – 3.005 0.283 3.004 0.168

2–1 2– 5 – – – – – – 4.020 0.284

32 20 2– 5 – – – – – – 3.001 0.151

Next, we examine the impact of varying the parametersH, h, and 𝛿. This experiment is conducted using the

computational domain defined in (63) and the initial grid shown in the left of Figure 1.We obtain finer grid using

uniform refinements. We then apply our domain decomposition preconditioners using suitable combinations

ofH, h, and 𝛿 for each grid. Themaximum and theminimum eigenvalues ofM, introduced in (61), are presented

in Table 3. The results show that the maximum eigenvalues remain close to 3 for the coarsest subdomain grid

and around 4 for the finer grids. Additionally, we observe that the minimum eigenvalues decrease as the ratio

H∕𝛿 increases.

5.2 Nédélec type-1 rectangular element

We solve the following curl curl equations on two domains:

curl curluh + uh = f in Ω,

uh × n = g on 𝜕Ω,
(66)

where n is the unit outer normal vector, and

Ω = (0, 1)
2∖
(
([1∕4, 1∕2] × [1∕4, 1∕2]) ∪ ([1∕2, 3∕4] × [1∕2, 3∕4]), (67)

Ω = (0, 1)
2∖
((
[1∕4, 1)×[3∕4, 1)

)
∪
(
[1∕4, 1) × [1∕4, 1∕2]

)
. (68)

In both cases, the exact solution of (66) is chosen as

u =
(
x2y2

x2y3

)
. (69)
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Figure 2: The third level grids for domainsΩ in (67) (with 14

size-
1

4
square subdomainsΩi) and (70) (with 8 size-

1

4
square

subdomainsΩi), respectively.

Figure 3: Left: The level three function nodes in 14 subdo-

mains; Right: The 8 subdomain nodes.

In both cases, we use nested refinement square meshes, as shown in Figure 2.

We show theminimumoverlapping domain decomposition by Figure 3, where the third-level finite element

nodes are plotted for each subdomain.

The results are listed in Table 4, where we can see that the finite element solution converges at the optimal

order in both norms on both domains.

We list the computer found constants of (62) in Table 5. As proved in the theory, the constants are apparently

bounded above (Chigh) and below(Clow). But they seem to depend on the domain.

Table 4: Error profile for (69) on grids as shown in Figure 2.

Grid Error 1 Order Error 2 Order I I

On𝛀 in ()

1 0.1697E-01 0.0 0.1150E-01 0.0 42 14

2 0.4376E-02 2.0 0.2962E-02 2.0 244 25

3 0.1103E-02 2.0 0.7465E-03 2.0 758 28

4 0.2764E-03 2.0 0.1870E-03 2.0 1,701 32

5 0.6915E-04 2.0 0.4680E-04 2.0 3,467 38

6 0.1729E-04 2.0 0.1170E-04 2.0 6,979 45

On𝛀 in ()

1 0.1071E-02 0.0 0.1854E-02 0.0 20 9

2 0.1196E-02 0.0 0.7785E-03 1.3 159 23

3 0.3336E-03 1.8 0.2102E-03 1.9 636 25

4 0.8557E-04 2.0 0.5354E-04 2.0 1,447 27

5 0.2154E-04 2.0 0.1345E-04 2.0 3,027 33

6 0.5395E-05 2.0 0.3368E-05 2.0 6,159 40
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Table 5: The bounds for small-overlap DD shown as in Figure 3.

Grid Clow in () Chigh in () Clow in () Chigh in ()

On𝛀 in () On𝛀 in ()

2 1.883353 4.488207 1.976790 3.429921

3 2.083264 4.163713 2.358270 3.119507

4 2.221202 4.045254 2.505871 3.025601

5 2.296535 4.011663 2.555174 3.005602

5.3 Nédélec type-1 rectangular element again

We solve equations (66) again on

Ω = (0, 1)
2 or (0, 1)

2∖{1∕2} ×
(
0, 1∕2

]
.

In both cases, the exact solution of (66) is chosen as

u =
(
y5

x4

)
. (70)

In both cases, the meshes used in the computation are uniform square meshes, as shown in Figure 4. The results

are listed in Table 6, where we can see that the finite element solution converges at the optimal order in both

norms on both domains.

In this example, we subdivide bothΩ into four subdomains, as shown in Figure 5. We consider a minimum

overlapping domain decomposition. We plot the nodes of the third-level finite element function inside each

subdomain. We note that the horizontal nodes belong to the first component of the vector H(curl) function. The

difference between the graphs is at the nodes on the lower middle vertical edge, which is a boundary edge.

We list the computer found constants of (60) in Table 7. As proved in the theory, the constants remain

bounded when doing domain decompositionmethods on the non-convex domainΩ = (0, 1)2 ∖{1∕2} × (0, 1∕2].

Figure 4: The first three grids on Ω = (0, 1)2 (with 4 size-
1

2

square subdomainsΩi) for computing Tables 6–7.

Table 6: Error profile for (70) on grids as shown in Figure 4.

Grid Error 1 Order Error 2 Order Error 1 Order Error 2 Order

On𝛀= (0,1)2 On𝛀= (0,1)2 \{1/2}× (0, 1/2]

1 8.97E-2 0.0 3.11E-1 0.0 1.27E-1 0.0 2.77E-1 0.0

2 2.67E-2 1.7 8.80E-2 1.8 3.36E-2 1.9 8.19E-2 1.8

3 6.94E-3 1.9 2.26E-2 2.0 8.49E-3 2.0 2.13E-2 1.9

4 1.75E-3 2.0 5.69E-3 2.0 2.12E-3 2.0 5.37E-3 2.0

5 4.39E-4 2.0 1.43E-3 2.0 5.29E-4 2.0 1.35E-3 2.0

6 1.10E-4 2.0 3.56E-4 2.0 1.32E-4 2.0 3.37E-4 2.0

7 2.75E-5 2.0 8.91E-5 2.0 3.30E-5 2.0 8.43E-5 2.0

8 6.87E-6 2.0 2.23E-5 2.0 8.24E-6 2.0 2.11E-5 2.0
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Figure 5: Left: The level three function nodes in the four sub-

domains, where Ω = (0, 1)2; Right: The 4-subdomain nodes

forΩ = (0, 1)2 ∖{1∕2} × (0, 1∕2].

Table 7: The bounds for 4-subdomain small-overlap DD shown as in Figure 5.

Grid Clow in () Chigh in () Clow in () Chigh in ()

On𝛀= (0,1)2 On𝛀= (0,1)2 \{1/2}× (0, 1/2]

2 2.015473 4.485408 1.958618 4.349539

3 2.553089 4.162126 2.271621 4.092826

4 2.843341 4.044754 2.414993 4.022131

5 2.999805 4.011540 2.463830 4.005278

6 3.088654 4.002915 2.477246 4.001282

5.4 Triangular Nédélec element

We solve the curl curl equation (66) again on two domains

Ω = (0, 1)
2 or (0, 1)

2∖{1∕2} ×
(
0, 1∕2

]
.

The exact solution of (66) is chosen as

u =
(
x2y2

x2y

)
. (71)

In both cases, the meshes used in the computation are uniform triangular meshes, as shown in Figure 6. The

results are listed in Table 8, where we can see that the finite element solution converges at the optimal order in

both norms on both domains.

Again we do iterations based on domain decomposition methods with four subdomains for both domains

Ω, as shown in Figure 7. We plot the nodes of the third-level finite element function inside each subdomain,

in Figure 7. The difference between two graphs is at the nodes on the lower middle vertical edge, which is a

boundary edge.

We list the computer found constants of (60) in Table 9. As proved in the theory, the constants remain

bounded on the non-convex domainΩ = (0, 1)2 ∖{1∕2} × (0, 1∕2], in Table 9.

Figure 6: The first three grids on Ω = (0, 1)2 (with 4 size-
1

2

square subdomainsΩi) for the computation Tables 8–9.
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Table 8: Error profile for (71) on grids as shown in Figure 6.

Grid Error 1 Order Error 2 Order Error 1 Order Error 2 Order

On𝛀= (0,1)2 On𝛀= (0,1)2 \{1/2}× (0, 1/2]

1 1.17E-2 0.0 7.19E-2 0.0 1.19E-2 0.0 7.18E-2 0.0

2 3.19E-3 1.9 4.00E-2 0.8 3.29E-3 1.9 4.00E-2 0.8

3 8.12E-4 2.0 2.05E-2 1.0 8.35E-4 2.0 2.05E-2 1.0

4 2.04E-4 2.0 1.03E-2 1.0 2.10E-4 2.0 1.03E-2 1.0

5 5.10E-5 2.0 5.15E-3 1.0 5.24E-5 2.0 5.15E-3 1.0

6 1.27E-5 2.0 2.58E-3 1.0 1.31E-5 2.0 2.58E-3 1.0

7 3.19E-6 2.0 1.29E-3 1.0 3.28E-6 2.0 1.29E-3 1.0

8 7.97E-7 2.0 6.44E-4 1.0 8.19E-7 2.0 6.44E-4 1.0

Figure 7: Left: The level three function nodes in the four subdomains, whereΩ = (0, 1)2; Right: The 4-subdomain nodes for

Ω = (0, 1)2 ∖{1∕2} × (0, 1∕2].

Table 9: The bounds for 4-subdomain small-overlap DD shown as in Figure 7.

Grid Clow in () Chigh in () Clow in () Chigh in ()

On𝛀= (0,1)2 On𝛀= (0,1)2 \{1/2}× (0, 1/2]

2 3.575004 5.000000 3.628239 5.000000

3 2.609161 4.614568 2.641507 4.611478

4 3.750690 4.192807 3.381828 4.191696

5 4.932503 4.049440 4.015695 4.049120

6 5.554555 4.012045 4.459404 4.011962

5.5 Tetrahedral Nédélec element

We solve the equation

curl curluh + uh = f in Ω,

uh × n = g on 𝜕Ω,
(72)

on two 3D domains

Ω = (0, 2)3 or (0, 2)3∖{1} × [1, 2)
2.
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The exact solution of (72) is chosen as

u =
⎛⎜⎜⎜⎝

x2

x2

y2

⎞⎟⎟⎟⎠
. (73)

In both cases, the meshes used in the computation are uniform tetrahedral meshes, as shown in Figure 8. The

results are listed in Table 10, where we can see that the finite element solution converges at the optimal order

in both norms on both domains.

We perform domain decomposition iterations with eight subdomains for both domains of a cube and a

cube with a cut. The eight subdomains are the eight unit cubes in the left graph of Figure 8. We list the computer

found constants of (60) in Table 11. As proved in the theory, the constants remain bounded on the non-convex

domainΩ = (0, 2)3∖{1} × [1, 2)2, in Table 11. It seems the Clow in Table 11 may keep growing. It would break the

theory only when Clow decreases to 0. We note again that we improved previous theoretic lower bound from

O((1 + H∕𝛿)2) to O(1 + H∕𝛿). The Clow in the 2D examples seems to confirm that O(1 + H∕𝛿) is the optimal
lower bound. But we are not sure if the computation is done on high enough levels to enter the asymptotic range,

or if the lower bound O(1 + H∕𝛿) can be further improved in theory for 3D tetrahedral edge elements.

Figure8: The first twogrids onΩ = (0, 2)3 (with 8 size-1 cube

subdomainsΩi) for the computation in Tables 10–11.

Table 10: Error profile for (73) on grids as shown in Figure 8.

Grid Error 1 Order Error 2 Order Error 1 Order Error 2 Order

On𝛀= (0,2)3 On𝛀 = (0, 2)3∖{1} × [1, 2)2

1 8.24E-2 0.0 4.57E-1 0.0 8.53E-2 0.0 4.22E-1 0.0

2 2.82E-2 1.5 3.13E-1 0.5 2.82E-2 1.6 3.04E-1 0.5

3 7.75E-3 1.9 1.75E-1 0.8 7.75E-3 1.9 1.73E-1 0.8

4 2.01E-3 1.9 9.21E-2 0.9 2.01E-3 1.9 9.16E-2 0.9

5 5.09E-4 2.0 4.71E-2 1.0 5.10E-4 2.0 4.70E-2 1.0

6 1.28E-4 2.0 2.38E-2 1.0 1.29E-4 2.0 2.38E-2 1.0

Table 11: The bounds for 8-subdomain DD on meshes shown as in Figure 8.

Grid Clow in () Chigh in () Clow in () Chigh in ()

On𝛀= (0,2)3 On𝛀 = (0, 2)3∖{1} × [1, 2)2

1 1.525539 5.846509 1.662208 5.543800

2 1.792536 8.408068 1.815730 8.381018

3 2.845118 8.410624 2.856422 8.390277

4 4.741863 8.410624 4.760704 8.390277
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5.6 Hexahedral Nédélec and Raviart–Thomas elements

Regarding experiments in this subsection, we solve (72) using hexahedral Nédélec elements and (62) using

hexahedral Raviart–Thomas elements on the domain

Ω = (−1, 1)3∖(−1, 0]3. (74)

In each experiment, we start with the computational grid (Grid 1) that has a uniformmesh size of h = 1∕8,
as shown in Figure 9. Grid 2 and Grid 3 are then generated through uniform refinement, resulting in mesh

sizes of h = 1∕16 and h = 1∕32, respectively. On each grid, we apply overlapping Schwarz methods using 56
(H = 1∕2), 448 (H = 1∕4), and 3,584 (H = 1∕8) uniformly sized subdomains, with overlap widths 𝛿 = h,

2h, and 4h selected as appropriate. We report 𝜆max(M) and 𝜆min(M) introduced in (62) in Table 12 and Table 13

for solving (72) and (62), respectively. For both cases, we observe that 𝜆max(M) remains approximately 8, while

𝜆min(M) decreases linearly on H∕𝛿.

Remark 5. Across all experiments, we find that Chigh, or equivalently 𝜆max(M), is typlically around 4 for two-

dimensional problems and around 8 for three-dimensional problems. In some two-dimensional cases, Chigh is

close to 3. This value appears to be related to the maximum number of extended subdomains that intersect at

Figure 9: The first grid (Grid 1) onΩ = (−1, 1)3∖(−1, 0]3.

Table 12: Effects of varying H, h, and 𝛿 on 𝜆max(M) and 𝜆min(M) (hexahedral Nédélec element).

H/𝜹 H 𝜹 Grid 1 (h= 1/8) Grid 2 (h= 1/16) Grid 3 (h= 1/32)

𝝀max 𝝀min 𝝀max 𝝀min 𝝀max 𝝀min

4 1/2 1/8 8.148544 0.827472 8.144804 0.814285 8.145592 0.811781

1/4 1/16 – – 8.217663 0.800833 8.221615 0.784011

1/8 1/32 – – – – 8.239654 0.792617

8 1/2 1/16 – – 8.021819 0.499111 8.019272 0.496113

1/4 1/32 – – – – 8.033401 0.446827

16 1/2 1/32 – – – – 8.002735 0.269601

Table 13: Effects of varying H, h, and 𝛿 on 𝜆max(M) and 𝜆min(M) (hexahedral Raviart–Thomas element).

H/𝜹 H 𝜹 Grid 1 (h= 1/8) Grid 2 (h= 1/16) Grid 3 (h= 1/32)

𝝀max 𝝀min 𝝀max 𝝀min 𝝀max 𝝀min

4 1/2 1/8 8.098781 0.952532 8.097748 0.946058 8.098756 0.944307

1/4 1/16 – – 8.132513 0.937809 8.127692 0.932332

1/8 1/32 – – – – 8.129632 0.929873

8 1/2 1/16 – – 8.004314 0.690814 8.004023 0.686388

1/4 1/32 – – – – 8.000589 0.661720

16 1/2 1/32 – – – – 8.000311 0.394069
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a single point. In ideal scenarios with regularly shaped domains and subdomains (such as cubes), the expected

values are 4 in two dimensions and 8 in three dimensions. However, when the domain or subdomains are

irregularly shaped, these values may vary, as reflected in our experimental results.
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