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Abstract: This work focuses on the development of a novel, strongly-coupled, second-order partitioned method

for fluid–poroelastic structure interaction. The flow is assumed to be viscous and incompressible, and the poroe-

lastic material is described using the Biot model. To solve this problem, a numerical method is proposed, based

on Robin interface conditions combined with the refactorization of the Cauchy’s one-legged ‘𝜗-like’ method.

This approach allows the use of the mixed formulation for the Biot model. The proposed algorithm consists of

solving a sequence of Backward Euler–Forward Euler steps. In the Backward Euler step, the fluid and poroelas-

tic structure problems are solved iteratively until convergence. Then, the Forward Euler problems are solved

using equivalent linear extrapolations. We prove that the iterative procedure in the Backward Euler step is con-

vergent, and that the converged method is stable when 𝜗 ∈ [1∕2, 1]. Numerical examples are used to explore
convergence rates with varying parameters used in our scheme, and to compare our method to a monolithic

method based on Nitsche’s coupling approach.

Keywords: fluid–poroelastic structure interaction; partitioned method; second-order; strongly coupled; mixed

formulation

MSC 2010 Classification: 65M12; 76S05; 74F10

1 Introduction

Interactions between fluids and poroelastic materials occur from within the smallest microorganisms to large

waves crashing onto the shore. Natural materials such as biological tissue, soil, and rocks, as well as man-made

materials, such as cement, are poroelastic. Suchmaterials are often in contactwith fluids. Poroelasticity has been

used tomodelmultiple parts of the body, including the brain [1], and articular cartilage [2], and to study transport

of drugs in blood vessels [3], [4]. It has also been used widely in geomechanics, for example, to describe the oil

extraction from fractured reservoirs [5]–[7]. This wide variety of applications of the fluid–poroelastic structure

interaction (FPSI) has made it an area of study with increasing interest.

To model the FPSI, we use the Biot system to describe the poroelastic material, and the time-dependent

Stokes equations to describe the free-flowing fluid, similar as in [6]–[10]. In particular, the poroelastic structure

consists of an elastic solid phase and a fluid phase. Using the Biot model, the solid phase is described with a

mechanics equation, and the fluid phase with Darcy’s law. The two phases are mutually coupled. The poroe-

lastic structure is coupled to the fluid flow using a set of kinematic and dynamic coupling conditions. The FPSI

problems inherit the difficulties of both Stokes–Darcy [11]–[16] and fluid–structure interaction (FSI) [17]–[19]
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multiphysics problems. These difficulties include having to fulfill a total of three inf-sup conditions, one from

the fluid and two from the Biot subproblem, to be well-posed [20]–[22]. A difficulty that can be inherited from

FSI problems is the added mass effect, which arises when the physical parameters of the problem fall within a

certain range [23], [24] and cause the classical methods for FSI to be unconditionally unstable.

Another difficulty inherited from the Darcy’s problem comes from choosing which formulation to use, pri-

mal, primal-mixed, or dual-mixed. Primal and primal-mixed formulations lead to a simpler system with the

pressure in H1 and the velocity in L2, which is known to result in a poor approximation of the velocity. The

dual-mixed formulation, consisting of a system with the pressure in L2 and the velocity in Hdiv, can provide

a more accurate approximation of the velocity. When coupled with a fluid, the kinematic coupling condition

is imposed weakly in the primal and primal-mixed formulations. This can lead to large errors when approx-

imating problems which have a large amount of mass transfer across the interface. The kinematic condition

is imposed strongly, in the test space, when using a dual-mixed formulation, leading to accurate approxima-

tions of the interface dynamics. However, enforcing this condition at the discrete level is not straightforward

[25], [26].

In [6], [27], monolithic methods based on Lagrange multipliers are proposed for the Stokes–Biot problem

in the dual-mixed form. A dual-mixed formulation is also used in [7], where the kinematic condition is imposed

using Nitsche’s penalty method. A monolithic solver which employs an incomplete LU factorization was intro-

duced in [20]. This study also provides a strongly-coupled partitioned approach for the FPSI problem. We also

mention some other computational strategies based on the monolithic approach. In [28], a monolithic solver

was used to simulate blood flow and low density lipoproteins in arteries with porohyperelastic walls, and in

[29], a solver based on the discontinuous Galerkin method was proposed and analyzed. A dimensional model

reduction was designed in [5] for the Brinkman–Biot coupled problem, and used to model the flow in fractures.

Partitioned methods are often designed to decouple multiphysics problems into smaller, more manageable

subproblems. However, partitioned methods can have stability issues, or suffer from a loss of accuracy. The

loss in accuracy was seen in [7] due to the splitting of the system when a noniterative partitioned approach

based on Nitsche’s coupling was used. Recently, a partitioned method based on a semi-decoupled marker and

cell scheme was proposed in [30]. This study decouples the FPSI problem by first solving the Stokes–Darcy

coupled subproblem and then solving the elastic structure subproblem. A second-order convergence rates are

obtained in numerical examples. A moving domain FPSI problem was considered in [10] and solved using a

partitioned approach which splits the three components of free fluid, porous media flow, and solid mechan-

ics apart. This study used a dual-mixed Darcy formulation, where the interface conditions are imposed using

Nitsche’s method. Two loosely coupled partitioned methods based on Robin boundary conditions for a moving

domain FPSI problem were proposed in [8]. These methods use a dual-mixed Darcy formulation and the Robin

boundary conditions to impose the kinematic coupling condition. However, they are only first-order accurate

in time. Two other partitioned methods were introduced in [9], with one based on the second-order backward

differentiation formula and the other based on Crank–Nicolson and Leap Frog method. Both of these methods

are shown to have second-order convergence in time, however, in this work, primal formulation was used in

the Biot model. Second-order convergence in time was also obtained for a quasi-Newtonian fluid coupled with

a poroelastic structure in [31]. Here, the coupled problem is formulated as a least-squares problem with con-

straints, and two decoupling numerical methods based on second-order time discretization were proposed. The

first method decouples the Stokes and Biot problems, and is theoretically shown to be second-order accurate.

The second method decouples the Biot system further into a mechanics problem and a Darcy’s problem, but

results in a loss of accuracy.

In this work, we propose a strongly coupled, partitioned method for FPSI in the dual-mixed formulation.

Our approach is based on the Cauchy’s ‘𝜗-like’ method, which features second-order accuracy and no numerical

dissipation when 𝜗 = 1/2. For spatial discretization, we use the finite element method. The Cauchy’s ‘𝜗-like’

method is applied in combination with a partitioning strategy which uses Robin interface conditions to impose

the kinematic constraint [8]. This approach allows us to use the dual-mixed formulation for the Darcy’s law,

which helps to obtain accurate approximations of the interface dynamics. In particular, similar as in [32], [33],

Cauchy’s method is refactorized into sequential Backward Euler (BE)–Forward Euler (FE) problems. In the BE
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problem, the fluid and the structure are decoupled and solved iteratively until convergence. Then, the FE step is

then solved through linear extrapolations. We prove that the iterative process in the BE step is convergent, and

that the method is stable provided 𝜗 ∈ [1∕2, 1].
Numerical examples are used to study the computational properties of the proposed method. In the first

example, we investigate the convergence rates with varying values of 𝜗 and the combination parameter, L, used

in the Robin coupling condition.We also examine the numerical properties of themethodwhen no subiterations

are used in the BE step. In the second example, we consider a classical benchmark problem of the propagating

pressure wave, where we compare our method to a monolithic scheme based on Nitsche’s coupling approach

introduced in [7]. Excellent agreement is observed.

The outline of our paper is as follows: The problem is defined in Section 2 and the numerical method is

detailed in Section 3. In Section 4, we analyze and prove the convergence of the iterative procedure, and we

provide stability analysis in Section 5. Numerical examples are shown in Section 6. Conclusions and results are

highlighted in Section 7.

2 Problem description

We consider the interaction of a viscous, incompressible, Newtonian fluid with a poroelastic structure. The fluid

domain is denoted by𝛺F and the poroelastic structure domain is denoted by𝛺P. We assume thatΩF ,ΩP ⊂ ℝd,

where d = 2, 3, and that both domains are regular and bounded. The two domains are separated by an interface,

denoted by 𝛤 (see Figure 1). The external boundaries of 𝛺F and 𝛺P are denoted by 𝛴F and 𝛴P, respectively.

Therefore, we have 𝜕𝛺F = 𝛴F ∪ 𝛤 and 𝜕𝛺P = 𝛴P ∪ Γ.
Wemodel the fluid flow using the time dependent Stokes equations for an incompressible, Newtonian fluid:

𝜌F𝜕tu = ∇ ⋅ 𝝈F(u, pF )+ f F in ΩF × (0, T ),

∇ ⋅ u = 0 in ΩF × (0, T ),

u = 0 on ΣF × (0, T ),

where u is the fluid velocity, pF is the pressure, 𝜌F is the density, and 𝝈F(u, pF) = 2𝜇FD(u)− pFI is the Cauchy

stress tensor, with 𝜇F denoting the fluid viscosity and D(u) = 1

2
(∇u+ (∇u)T ) denoting the strain rate tensor.

To model the poroelastic structure, we use Biot’s poroelasticity equations, written as a system of equations

of first order:

𝜕t𝜼 = 𝝃 in ΩP × (0, T ),

𝜌P𝜕t𝝃 = ∇ ⋅ 𝝈P(𝜼, pP ) in ΩP × (0, T ),

K−1q = −∇pP in ΩP × (0, T ),

c0𝜕t pP + 𝛼∇ ⋅ 𝝃 +∇ ⋅ q = 0 in ΩP × (0, T ),

𝜼 = 0 on ΣP × (0, T ),

pp = 0 on ΣD
P
× (0, T ),

Figure 1: Fluid domain𝛺F , and poroelastic structure domain𝛺P , separated by a common inter-

face 𝛤 . The fluid and structure unit normals are also depicted as nF and nP , respectively.
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q ⋅ nP = 0 on ΣN
P
× (0, T ),

with ΣP = ΣN
P
∪ ΣD

P
. The structure displacement is denoted by 𝜼, the structure velocity is denoted by 𝝃, 𝜌P is

the solid density, K is the permeability tensor, c0 is the storage coefficient, 𝛼 is the Biot–Willis constant which

determines the coupling strength between the fluid and solid, and nP is the outward facing unit normal vector

on 𝜕𝛺P. The fluid pore pressure is denoted by pP and the Darcy fluid velocity is denoted by q. The Cauchy stress

tensor for the poroelastic structure is given by:

𝝈P(𝜼, pP ) = 𝜎E(𝜼)− 𝛼 pPI,

where 𝝈E(𝜼) = 2𝜇PD(𝜼)+ 𝜆P(∇ ⋅ 𝜼)I is the elastic stress tensor, and 𝜇P and 𝜆P are Lamé parameters. We define

a norm associated with the structure elastic energy as follows:

‖𝜼‖2
S
= 2𝜇P‖D(𝜼)‖2L2(ΩP )

+ 𝜆P‖∇ ⋅ 𝜼‖2
L2(ΩP )

. (2.1)

To couple the fluid and poroelastic structure, we impose coupling conditions consisting of the mass con-

servation, the Beavers–Joseph–Saffman condition with slip rate 𝛾 > 0, the balance of contact forces, and the

conservation of momentum in the fluid [20], [22], respectively:

nF ⋅ u = nF ⋅ (𝝃 + q) on Γ × (0, T ), (2.2a)

𝝉
i
F
⋅ 𝝈FnF = −𝛾(u− 𝝃 ) ⋅ 𝝉 i

F
, i = 1,… , d − 1, on Γ × (0, T ), (2.2b)

𝝈FnF = 𝝈PnF on Γ × (0, T ), (2.2c)

nF ⋅ 𝝈FnF = −pP on Γ × (0, T ), (2.2d)

where nF is the fluid boundary outward facing unit normal vector and 𝝉
i
F
are the corresponding tangent unit

vectors.

We note that the problempresented here corresponds to a linear, dynamic fluid–poroelastic structure inter-

actionproblem,where the structure displacement is assumed to be infinitesimal,which justifies theuse of afixed

domain. The theory of weak solutions for the dynamic Stokes–Biot system has been recently developed in [34].

3 Numerical method

Our goal is to design a second-order accurate, partitionednumericalmethod,which uses amixed formulation for

the fluid phase in the Biot’s model, i.e., the Darcy’s law. Recently, a partitionedmethod based on Robin boundary

conditions for FPSI problem in the mixed formulation was introduced in [8]. The Robin boundary conditions,

imposed on 𝛤 , used in this approach are given as follows:

nF ⋅ 𝝈
n+1
P

nF + L(𝝃
n+1 + qn+1 ) ⋅ nP = nF ⋅ 𝝈

n
F
nF + Lun ⋅ nP, (3.1)

nF ⋅ 𝝈
n+1
F

nF + Lun+1 ⋅ nF = nF ⋅ 𝝈
n
F
nF + L(𝝃

n+1 + qn+1 ) ⋅ nF . (3.2)

Condition (3.1) was obtained by multiplying the mass conservation Condition (2.2a) by a combination

parameter L > 0 and adding it to the normal component of (2.2c). Condition (3.2) was obtained similarly by

multiplying (2.2a) by L and adding the normal fluid stress to both sides, but each side is evaluated at a different

time. Using this approach, the solid problem is solved first, using Condition (3.1), followed by the fluid problem,

which uses (3.2).

In the tangential direction, we impose

𝝉
i
F
⋅ 𝝈n+1

P
nF = −𝛾(un − 𝝃

n+1
) ⋅ 𝝉 i

F
, i = 1,… , d − 1, on Γ
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in the solid problem, which was obtained by combining (2.2b) and (2.2c). In the fluid problem, we use

𝝉
i
F
⋅ 𝝈n+1

F
nF = −𝛾(un+1 − 𝝃

n+1
) ⋅ 𝝉 i

F
, i = 1,… , d − 1, on Γ.

Finally, the Darcy’s law is solved together with the mechanics equation in the first step, with a condition

that is obtained by using a combination of (2.2c) and (2.2d) to get

−pn+1
P

= nF ⋅ 𝝈
n+1
F

nF = nF ⋅ 𝝈
n+1
P

⋅ nF on Γ.

Then we plug this into (3.1), to obtain the following:

pn+1
P

+ L(𝝃
n+1 + qn+1 ) ⋅ nP = nF ⋅ 𝝈

n
F
nF + Lun ⋅ nP on Γ.

While this method decouples the fluid and the poroelastic structure and allows the use of the mixed for-

mulation in Biot’s model, it is only first order accurate in time. Hence, we propose to combine this method with

Cauchy’s one-legged ‘𝜗-like’ method, which can achieve second-order accuracy provided 𝜗 = 1∕2, in which case
it corresponds to the midpoint method. In particular, we propose to use Cauchy’s one-legged ‘𝜗-like’ method in

its refactorized form, as introduced in [33]. We describe the main steps of this approach as follows.

Let tn = n𝜏 for n = 0, . . . ,N , where 𝜏 denotes the time step, and tn+𝜗 = tn + 𝜗𝜏 for𝜗 ∈ [0, 1]. Given a general

initial value problem, y′ = f (t, y(t)), the Cauchy’s one-legged ‘𝜗-like’ method is defined as

yn+1 − yn

𝜏
= f (tn+𝜗, yn+𝜗 )

for 𝜗 ∈ [0, 1], where yn+𝜗 = 𝜗yn+1 + (1− 𝜗)yn. In the linear case, this method is equivalent to the ‘classical’ 𝜗-
method [35], although in fully nonlinear cases, the methods have different behaviors. It was shown in [33] that

the Cauchy’s one-legged ‘𝜗-like’ method can be written as a sequence of Backward Euler (BE) and Forward Euler

(FE) steps

BE:
yn+𝜗 − yn

𝜗𝜏
= f (tn+𝜗, yn+𝜗 ),

FE:
yn+1 − yn+𝜗

(1− 𝜗)𝜏 = f (tn+𝜗, yn+𝜗 ),

where the FE problem can be written as a linear extrapolation

yn+1 = 1

𝜗
yn+𝜗 −

(
1

𝜗
− 1

)
yn.

Themajority of the computational load in this algorithm lies in the implicit BE step, while the linear extrapo-

lation increases the accuracy of the schemewhile being computationally inexpensive. Furthermore, the stability

properties of this method are preserved even when it is used with variable time-stepping.

While this approach helps to easily increase accuracy of first-order methods, application of this scheme

together with partitioning of the fluid and poroelastic structure is not straightforward. Namely, if extrapola-

tions are added to the partitionedmethod introduced in [8], wewould not be able to prove stability using energy

estimates since we would not be able to bound the boundary terms which arise from the coupling conditions.

Therefore, we propose to sub-iterate the fluid and poroelastic structure problems in the BE step until conver-

gence, and then apply linear extrapolations. This approach has been previously applied tomodel the interaction

between a fluid and (purely) elastic structure, with promising results [32], [36]. The proposed algorithm is given

as follows.

Algorithm 1. Given u0 in𝛺F , and 𝜼
0, 𝝃

0
, p0

P
in𝛺P, we first need to compute p

𝜗
F
, p1+𝜗

F
, u1, u2 in𝛺F , and 𝜼

1, 𝜼2,

𝝃
1
, 𝝃

2
, p1

P
, p2

P
in𝛺P with a second-order method. Then, for all n ⩾ 2, compute the following steps.

Step 1. Set the initial guesses as the linearly extrapolated values:

𝜼
n+𝜗
(0)

=
(
1+ 𝜗

)
𝜼
n − 𝜗𝜼n−1,
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and similarly for 𝝃
n+𝜗
(0)
,un+𝜗

(0)
, pn+𝜗

P(0)
. The initial guess for the fluid pressure is defined as

pn+𝜗
F(0)

= (1+ 𝜏 )pn−1+𝜗
F

− 𝜏 pn−2+𝜗
F

For 𝜘 ⩾ 0, compute until convergence (as defined in Remark 3.3) the following Backward Euler partitioned

problem.

Poroelastic problem:

𝜼
n+𝜗
(𝜘+1) − 𝜼n

𝜗𝜏
= 𝝃

n+𝜗
(𝜘+1) in ΩP,

𝜌P
𝝃
n+𝜗
(𝜘+1) − 𝝃

n

𝜗𝜏
= ∇ ⋅ 𝝈P(𝜼

n+𝜗
(𝜘+1), p

n+𝜗
p(𝜘+1) ) in ΩP,

K−1qn+𝜗
(𝜘+1) = −∇pn+𝜗

p(𝜘+1) in ΩP,

c0
pn+𝜗
p(𝜘+1) − pn

p

𝜗𝜏
+ 𝛼∇ ⋅ 𝝃n+𝜗

(𝜘+1) −∇ ⋅ qn+𝜗
(𝜘+1) = 0 in ΩP,

nF ⋅ 𝝈P(𝜼
n+𝜗
(𝜘+1), p

n+𝜗
p(𝜘+1) )nF + L(𝝃

n+𝜗
(𝜘+1) + qn+𝜗

(𝜘+1) ) ⋅ nP

= nF ⋅ 𝝈F(u
n+𝜗
(𝜘 ) , p

n+𝜗
F(𝜘 ) )nF + Lun+𝜗

(𝜘 ) ⋅ nP on Γ,

𝝉P,i ⋅ 𝝈P(𝜼
n+𝜗
(𝜘+1), p

n+𝜗
p(𝜘+1) )nF

= −𝛾(un+𝜗
(𝜘 ) − 𝝃

n+𝜗
(𝜘+1) ) ⋅ 𝝉P,i, i = 1,… , d − 1, on Γ,

− pn+𝜗
p(𝜘+1) + L(𝝃

n+𝜗
(𝜘+1) + qn+𝜗

(𝜘+1) ) ⋅ nP

= nF ⋅ 𝝈F(u
n+𝜗
(𝜘 ) , p

n+𝜗
F(𝜘 ) )nF + Lun+𝜗

(𝜘 ) ⋅ nP on Γ.

Fluid problem:

𝜌F
un+𝜗
(𝜘+1) − un

𝜗𝜏
−∇ ⋅ 𝝈F(u

n+𝜗
(𝜘+1), p

n+𝜗
F(𝜘+1) ) = f F(t

n+𝜗 ) in ΩF ,

∇ ⋅ un+𝜗
(𝜘+1) = 0 in ΩF ,

nF ⋅ 𝝈F(u
n+𝜗
(𝜘+1), p

n+𝜗
F(𝜘+1) )nF + Lun+𝜗

(𝜘+1) ⋅ nF

= nF ⋅ 𝝈F(u
n+𝜗
(𝜘 ) , p

n+𝜗
F(𝜘 ) )nF + L(𝝃

n+𝜗
(𝜘+1) + qn+𝜗

(𝜘+1) ) ⋅ nF on Γ,

𝝉F,i ⋅ 𝝈F(u
n+𝜗
(𝜘+1), p

n+𝜗
F(𝜘+1) )nF

= −𝛾(un+𝜗
(𝜘+1) − 𝝃

n+𝜗
(𝜘+1) ) 𝝉F,i, i = 1,… , d − 1, on Γ.

Step 2. Denote the converged solutions by 𝜼n+𝜗, 𝝃n+𝜗,qn+𝜗, pn+𝜗
p
,un+𝜗, and pn+𝜗

F
. Compute the solution at

time tn+1 as the following linear extrapolations:

𝜼
n+1 = 1

𝜗
𝜼
n+𝜗 − 1− 𝜗

𝜗
𝜼
n in ΩP,

𝝃
n+1 = 1

𝜗
𝝃
n+𝜗 − 1− 𝜗

𝜗
𝝃
n

in ΩP,

pp
n+1 = 1

𝜗
pp

n+𝜗 − 1− 𝜗
𝜗

pp
n in ΩP,

un+1 = 1

𝜗
un+𝜗 − 1− 𝜗

𝜗
un in ΩF .
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Set n = n+ 1, and go back to Step 1.

Remark 3.1. We note that the converged solutions in Step 1,

𝜼
n+𝜗
(𝜘 ) , 𝝃

n+𝜗
(𝜘 ) ,qn+𝜗(𝜘 ) , p

n+𝜗
p(𝜘 ) ,u

n+𝜗
(𝜘 ) , p

n+𝜗
F(𝜘 )

𝜘→∞
←←←←←←←←←←←←←←←←←←←←←←←←→𝜼

n+𝜗, 𝝃n+𝜗,qn+𝜗, pn+𝜗
p
,un+𝜗, pn+𝜗

F
,

satisfy the following Poroelastic problem:

𝜼n+𝜗 − 𝜼n

𝜗𝜏
= 𝝃

n+𝜗
in ΩP, (3.3a)

𝜌P
𝝃
n+𝜗 − 𝝃

n

𝜗𝜏
= ∇ ⋅ (𝝈P

(
𝜼
n+𝜗, pn+𝜗

p

)
) in ΩP, (3.3b)

K−1qn+𝜗 = −∇pn+𝜗
p

in ΩP, (3.3c)

c0
pn+𝜗
p

− pn
p

𝜗𝜏
+ 𝛼∇ ⋅ 𝝃n+𝜗 −∇ ⋅ qn+𝜗 = 0 in ΩP, (3.3d)

nF ⋅ 𝝈P

(
𝜼
n+𝜗, pn+𝜗

p

)
nF = nF ⋅ 𝝈F

(
un+𝜗, pn+𝜗

F

)
nF on Γ, (3.3e)

𝝉P,i ⋅ 𝝈P

(
𝜼
n+𝜗, pn+𝜗

p

)
nF

= −𝛾(un+𝜗 − 𝝃
n+𝜗

) ⋅ 𝝉P,i, i = 1,… , d − 1, on Γ, (3.3f)

− pn+𝜗
p

= nF ⋅ 𝝈F

(
un+𝜗, pn+𝜗

F

)
nF on Γ. (3.3g)

Fluid problem:

𝜌F
un+𝜗 − un

𝜗𝜏
−∇ ⋅ 𝝈F

(
un+𝜗, pn+𝜗

F

)
= f F(t

n+𝜗 ) in ΩF , (3.4a)

∇ ⋅ un+𝜗 = 0 in ΩF , (3.4b)

un+𝜗 ⋅ nF = (𝝃
n+𝜗 + qn+𝜗 ) ⋅ nF on Γ, (3.4c)

𝝉F,i ⋅ 𝝈F

(
un+𝜗, pn+𝜗

F

)
nF

= −𝛾(un+𝜗 − 𝝃
n+𝜗

) ⋅ 𝝉F,i, i = 1,… , d − 1, on Γ. (3.4d)

Remark 3.2. While computationally we use linear extrapolations in Step 2, for the theoretical argumentation,

we will use their equivalent FE form:

𝜼n+1 − 𝜼n+𝜗

(1− 𝜗)𝜏 = 𝝃
n+𝜗

in ΩP, (3.5a)

𝜌P
𝝃
n+1 − 𝝃

n+𝜗

(1− 𝜗)𝜏 = ∇ ⋅ 𝝈P

(
𝜼
n+𝜗, pn+𝜗

p

)
in ΩP, (3.5b)

c0
pn+1
p

− pn+𝜗
p

(1− 𝜗)𝜏 + 𝛼∇ ⋅ 𝝃n+𝜗 −∇ ⋅ qn+𝜗 = 0 in ΩP, (3.5c)

𝜌F
un+1 − un+𝜗

(1− 𝜗)𝜏 −∇ ⋅ 𝝈F(u
n+𝜗, pn+𝜗 ) = f F(t

n+𝜗 ) in ΩF . (3.5d)
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Remark 3.3. Convergence in Step 1 is determined by the relative errors of the variables computed at two con-

secutive subiterations, defined as:

min

⎛⎜⎜⎜⎝

‖‖‖𝜼n+𝜗(𝜘+1) − 𝜼
n+𝜗
(𝜘 )

‖‖‖
2

L2(ΩP )‖‖‖𝜼n+𝜗(𝜘+1)
‖‖‖
2

L2(ΩP )

,

‖‖‖𝝃n+𝜗(𝜘+1) − 𝝃
n+𝜗
(𝜘 )

‖‖‖
2

L2(ΩP )‖‖‖𝝃n+𝜗(𝜘+1)
‖‖‖
2

L2(ΩP )

,

‖‖‖un+𝜗(𝜘+1) − un+𝜗
(𝜘 )

‖‖‖
2

L2(ΩP )‖‖‖un+𝜗(𝜘+1)
‖‖‖
2

L2(ΩP )

⎞⎟⎟⎟⎠
< 𝜀.

4 Convergence of the partitioned iterative method

In this section, we show that the iterative method defined in Step 1 converges. This will be done by subtracting

the equations at two consecutive iterations and using energy estimates to show that our variables define Cauchy

sequences in complete spaces. In the following, we use the polarized identity given by

2(a− c)b = a2 − c2 − (a− b)2 + (b− c)2. (4.1)

Our main result from this section is given in the following theorem.

Theorem 4.1. The sequences 𝜼n+𝜗
(𝜘 ) , 𝝃

n+𝜗
(𝜘 ) , pn+𝜗p(𝜘 ) ,u

n+𝜗
(𝜘 ) generated by the iterations in Step 1 converge as 𝜘 →∞:

𝜼
n+𝜗
(𝜘 ) → 𝜼

n+𝜗 in 𝓁2(S),

𝝃
n+𝜗
(𝜘 ) → 𝝃

n+𝜗
in 𝓁2(L2(ΩP )) ∩ 𝓁2(L2(Γ)),

pn+𝜗
P(𝜘 ) → pn+𝜗

P
in 𝓁2(H1(ΩP )),

un+𝜗
(𝜘 ) → un+𝜗 in 𝓁∞(H1(Γ)) ∩ 𝓁2(H1(ΩF )) ∩ 𝓁2(L2(Γ)),

where S denotes the S-norm defined in (2.1).

Proof. The following notation will be used in the proof to denote the differences of the solutions at two consec-

utive iteration steps:

𝜹
𝜂

𝜘+1 = 𝜼
n+𝜗
(𝜘+1) − 𝜼

n+𝜗
(𝜘 ) , 𝜹

𝜉

𝜘+1 = 𝝃
n+𝜗
(𝜘+1) − 𝝃

n+𝜗
(𝜘 ) ,

𝜹
q

𝜘+1 = qn+𝜗
(𝜘+1) − qn+𝜗

(𝜘 ) , 𝛿
pP𝜘+1 = pn+𝜗

P(𝜘+1) − pn+𝜗
P(𝜘 ) ,

𝜹
u
𝜘+1 = un+𝜗

(𝜘+1) − un+𝜗
(𝜘 ) , 𝛿

pF𝜘+1 = pn+𝜗
F(𝜘+1) − pn+𝜗

F(𝜘 ) .

We start by subtracting the equations in Step 1 at iteration (𝜘) from same equations at iteration (𝜘 + 1). The

resulting equations are given as follows.

Poroelastic problem:

𝜹
𝜂

𝜘+1
𝜗𝜏

= 𝜹
𝜉

𝜘+1 in ΩP, (4.2a)

𝜌P
𝜹
𝜉

𝜘+1
𝜗𝜏

= ∇ ⋅ (𝝈P

(
𝜹
𝜂

𝜘+1, 𝛿
p p

𝜘+1
)

in ΩP, (4.2b)

K−1
𝜹
q

𝜘+1 = −∇𝛿 p p

𝜘+1 in ΩP, (4.2c)

c0
𝛿
p p

𝜘+1
𝜗𝜏

+ 𝛼∇ ⋅ 𝜹𝜉𝜘+1 −∇ ⋅ 𝜹q𝜘+1 = 0 in ΩP, (4.2d)

nF ⋅ 𝝈P

(
𝜹
𝜂

𝜘+1, 𝛿
p p

𝜘+1
)
nF + L

(
𝜹
𝜉

𝜘+1 + 𝜹
q

𝜘+1
)
⋅ nP = nF ⋅ 𝝈F

(
𝜹
u
𝜘 , 𝛿 pF𝜘

)
nF + L𝜹

u
𝜘 ⋅ nP on Γ, (4.2e)
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𝝉P,i ⋅ 𝝈P

(
𝜹
𝜂

𝜘+1, 𝛿
p p

𝜘+1
)
nF = −𝛾

(
𝜹
u
𝜘 − 𝜹

𝜉

𝜘+1
)
⋅ 𝝉P,i, i = 1,… , d − 1, on Γ, (4.2f)

−𝛿 p p

𝜘+1 + L
(
𝜹
𝜉

𝜘+1 + 𝜹
q

𝜘+1
)
⋅ nP = nF ⋅ 𝝈F

(
𝜹
u
𝜘 , 𝛿 pF𝜘

)
nF + L𝜹

u
𝜘 ⋅ nP on Γ. (4.2g)

Fluid problem:

𝜌F
𝜹
u
𝜘+1
𝜗𝜏

−∇ ⋅ 𝝈F

(
𝜹
u
𝜘+1, 𝛿

pF𝜘+1
)
= 0 in ΩF , (4.3a)

∇ ⋅ 𝜹u𝜘+1 = 0 in ΩF , (4.3b)

nF ⋅ 𝝈F

(
𝜹
u
𝜘+1, 𝛿

pF𝜘+1
)
nF + L𝜹

u
𝜘+1 ⋅ nF = nF ⋅ 𝝈F

(
𝜹
u
𝜘 , 𝛿 pF𝜘

)
+ L

(
𝜹
𝜉

𝜘+1 + 𝜹
q

𝜘+1
)
⋅ nF on Γ, (4.3c)

𝝉F,i ⋅ 𝝈F

(
𝜹
u
𝜘+1, 𝛿

pF𝜘+1
)
nF = −𝛾

(
𝜹
u
𝜘+1 − 𝜹

𝜉

𝜘+1
)
⋅ 𝝉F,i, i = 1,… , d − 1, on Γ. (4.3d)

We multiply (4.2b) by 𝜹
𝜉

𝜘+1 and integrate over𝛺P. Using (4.2a) and (2.1), we have

0 = 𝜌P
𝜗𝜏

‖‖‖𝜹𝜉𝜘+1‖‖‖
2

L2(ΩP )
+ 1

𝜗𝜏

‖‖‖𝜹𝜂𝜘+1‖‖‖
2

S
− 𝛼∫

ΩP

𝛿
pP𝜘+1
(
∇ ⋅ 𝜹𝜉𝜘+1

)
− ∫

Γ

𝝈P

(
𝜹
𝜂

𝜘+1, 𝛿
pP𝜘+1
)
nP ⋅ 𝜹

𝜉

𝜘+1.

Using conditions (4.2e) and (4.2f) and polarization identity (4.1), we get

0 = 𝜌P
𝜗𝜏

∥ 𝜹
𝜉

𝜘+1∥2L2(ΩP )
+ 1

𝜗𝜏
∥ 𝜹

𝜂

𝜘+1∥2S − 𝛼∫
ΩP

𝛿
pP𝜘+1
(
∇ ⋅ 𝜹𝜉𝜘+1

)

+ L∫
Γ

[(
𝜹
𝜉

𝜘+1 + 𝜹
q

𝜘+1
)
⋅ nP − 𝜹

u
𝜘 ⋅ nP

](
𝜹
𝜉

𝜘+1 ⋅ nP
)

− 𝛾

2

d−1∑
i=1

∥ 𝜹
u
𝜘∥2L2(Γ) +

𝛾

2

d−1∑
i=1

∥ 𝜹
𝜉

𝜘+1∥2L2(Γ) +
𝛾

2

d−1∑
i=1

∥ 𝜹
u
𝜘 − 𝜹

𝜉

𝜘+1∥2L2(Γ)

− ∫
Γ

nF ⋅ 𝝈F

(
𝜹
u
𝜘 , 𝛿 pF𝜘

)
nF

(
𝜹
𝜉

𝜘+1 ⋅ nP
)
. (4.4)

Similarly, for the Darcy’s part of the poroelastic equations, we multiply (4.2c) by 𝜹
q

𝜘+1, (4.2d) by 𝛿
pP𝜘+1, integrate

over𝛺P, and add the resulting equations, obtaining the following:

0 = c0
𝜗𝜏

‖‖‖𝛿 pP𝜘+1
‖‖‖
2

L2(ΩP )
+ ‖‖‖K−1∕2

𝜹
q

𝜘+1
‖‖‖
2

L2(ΩP )
+ 𝛼∫

ΩP

𝛿
pP𝜘+1
(
∇ ⋅ 𝜹𝜉𝜘+1

)
+ ∫

Γ

𝛿
pP𝜘+1𝜹

q

𝜘+1 ⋅ nP.

Using the condition (4.2g), we have:

0 = c0
𝜗𝜏

‖‖‖𝛿 pP𝜘+1
‖‖‖
2

L2(ΩP )
+ ‖‖‖K−1∕2

𝜹
q

𝜘+1
‖‖‖
2

L2(ΩP )
+ 𝛼∫

ΩP

𝛿
pP𝜘+1
(
∇ ⋅ 𝜹𝜉𝜘+1

)

+ L∫
Γ

[(
𝜹
𝜉

𝜘+1 + 𝜹
q

𝜘+1
)
⋅ nP − 𝜹

u
𝜘 ⋅ nP

](
𝜹
q

𝜘+1 ⋅ nP
)

− ∫
Γ

(nF ⋅ 𝝈F

(
𝜹
u
𝜘 , 𝛿 pF𝜘

)
nF )

(
𝜹
q

𝜘+1 ⋅ nP
)
. (4.5)
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We address the fluid in a similar manner. Multiplying (4.3a) by 𝜹
u
𝜘+1, (4.3b) by 𝜹

pF𝜘+1, integrating over 𝛺F and

adding the resulting equations together, we obtain

0 = 𝜌F
𝜗𝜏

‖‖‖𝜹u𝜘+1‖‖‖
2

L2(ΩF )
+ 2𝜇F

‖‖‖D
(
𝜹
u
𝜘+1

)‖‖‖
2

L2(ΩF )
− ∫

Γ

𝝈F

(
𝜹
u
𝜘+1, 𝛿

p

𝜘+1
)
nF ⋅ 𝜹

u
𝜘+1.

Using conditions (4.3c) and (4.3d) and polarization identity (4.1), we have

0 = 𝜌F
𝜗𝜏

∥ 𝜹
u
𝜘+1∥2L2(ΩF )

+ 2𝜇F ∥ D
(
𝜹
u
𝜘+1

)
∥2
L2(ΩF )

− L

2
∥
(
𝜹
𝜉

𝜘+1 + 𝜹
q

𝜘+1
)
⋅ nF∥2L2(Γ)

+ L

2
∥ 𝜹

u
𝜘+1 ⋅ nF∥2L2(Γ) +

L

2
∥
(
𝜹
𝜉

𝜘+1 + 𝜹
q

𝜘+1 − 𝜹
u
𝜘+1

)
⋅ nF∥2L2(Γ)

+ 𝛾

2

d−1∑
i=1

∥ 𝜹
u
𝜘+1 ⋅ 𝝉F,i∥2L2(Γ) −

𝛾

2

d−1∑
i=1

∥ 𝜹
𝜉

𝜘+1 ⋅ 𝝉F,i∥2L2(Γ)

+ 𝛾

2

d−1∑
i=1

∥
(
𝜹
u
𝜘+1 − 𝜹

𝜉

𝜘+1
)
⋅ 𝝉F,i∥2L2(Γ) + ∫

Γ

nF ⋅ 𝝈F

(
𝜹
u
𝜘 , 𝛿 pF𝜘

)
nF
(
𝜹
u
𝜘+1 ⋅ nF

)
. (4.6)

Combining equations (4.4),(4.5) and (4.6), and using (4.1), we get

0 = 𝜌P
𝜗𝜏

‖‖‖𝜹𝜉𝜘+1‖‖‖
2

L2(ΩP )
+ c0
𝜗𝜏

‖‖‖𝛿 pP𝜘+1
‖‖‖
2

L2(ΩP )
+ 𝜌F
𝜗𝜏

‖‖‖𝜹u𝜘+1‖‖‖
2

L2(ΩF )

+ 1

𝜗𝜏

‖‖‖𝜹𝜂𝜘+1‖‖‖
2

S
+ 2𝜇F

‖‖‖D
(
𝜹
u
𝜘+1

)‖‖‖
2

L2(ΩF )
+ ‖‖‖K−1∕2

𝜹
q

𝜘+1
‖‖‖
2

L2(ΩP )

+ L

2

‖‖‖𝜹u𝜘+1 ⋅ nP‖‖‖
2

L2(Γ)
− L

2
‖‖𝜹u𝜘 ⋅ nP‖‖2L2(Γ)

+ L

2

‖‖‖‖
(
𝜹
𝜉

𝜘+1 + 𝜹
q

𝜘+1 − 𝜹
u
𝜘
)
⋅ nP

‖‖‖‖
2

L2(Γ)
+ L

2

‖‖‖‖
(
𝜹
𝜉

𝜘+1 + 𝜹
q

𝜘+1 − 𝜹
u
𝜘+1

)
⋅ nF

‖‖‖‖
2

L2(Γ)

+ 𝛾

2

d−1∑
i=1

‖‖‖𝜹u𝜘+1 ⋅ 𝝉P,i‖‖‖
2

L2(Γ)
− 𝛾

2

d−1∑
i=1

‖‖‖𝜹u𝜘 ⋅ 𝝉P,i
‖‖‖
2

L2(Γ)

+ 𝛾

2

d−1∑
i=1

‖‖‖‖
(
𝜹
u
𝜘+1 − 𝜹

𝜉

𝜘+1
)
⋅ 𝝉P,i

‖‖‖‖
2

L2(Γ)
+ 𝛾

2

d−1∑
i=1

‖‖‖‖
(
𝜹
u
𝜘 − 𝜹

𝜉

𝜘+1
)
⋅ 𝝉P,i

‖‖‖‖
2

L2(Γ)

− ∫
Γ

nF ⋅ 𝝈F

(
𝜹
u
𝜘 , 𝛿 pF𝜘

)
nF

(
𝜹
𝜉

𝜘+1 + 𝜹
q

𝜘+1 − 𝜹
u
𝜘+1

)
⋅ nP. (4.7)

Using (4.3c) and identity (4.1), the last term can be written as

∫
Γ

nF ⋅ 𝝈F

(
𝜹
u
𝜘 , 𝛿 pF𝜘

)
nF

(
𝜹
𝜉

𝜘+1 + 𝜹
q

𝜘+1 − 𝜹
u
𝜘+1

)
⋅ nP

= − 1

2L

‖‖‖nF ⋅ 𝝈F

(
𝜹
u
𝜘+1, 𝛿

pF𝜘+1
)
nF
‖‖‖
2

L2(Γ)
+ 1

2L

‖‖‖nF ⋅ 𝝈F

(
𝜹
u
𝜘 , 𝛿 pF𝜘

)
nF
‖‖‖
2

L2(Γ)

+ 1

2L

‖‖‖nF ⋅ 𝝈F

(
𝜹
u
𝜘+1, 𝛿

pF𝜘+1
)
nF − nF ⋅ 𝝈F

(
𝜹
u
𝜘 , 𝛿 pF𝜘

)
nF
‖‖‖
2

L2(Γ)
. (4.8)

Using again (4.3c) and combining (4.7) with (4.8), we have

0 = 𝜌P
𝜗𝜏

‖‖‖𝜹𝜉𝜘+1‖‖‖
2

L2(ΩP )
+ c0
𝜗𝜏

‖‖‖𝛿 pP𝜘+1
‖‖‖
2

L2(ΩP )
+ 𝜌F
𝜗𝜏

‖‖‖𝜹u𝜘+1‖‖‖
2

L2(ΩF )

+ 1

𝜗𝜏

‖‖‖𝜹𝜂𝜘+1‖‖‖
2

S
+ 2𝜇F

‖‖‖D
(
𝜹
u
𝜘+1

)‖‖‖
2

L2(ΩF )
+ ‖‖‖K−1∕2

𝜹
q

𝜘+1
‖‖‖
2

L2(ΩP )
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+ L

2

‖‖‖𝜹u𝜘+1 ⋅ nP‖‖‖
2

L2(Γ)
− L

2
‖‖𝜹u𝜘 ⋅ nP‖‖2L2(Γ)

+ L

2

‖‖‖‖
(
𝜹
𝜉

𝜘+1 + 𝜹
q

𝜘+1 − 𝜹
u
𝜘
)
⋅ nP

‖‖‖‖
2

L2(Γ)
+ 𝛾

2

d−1∑
i=1

‖‖‖𝜹u𝜘+1 ⋅ 𝝉P,i‖‖‖
2

L2(Γ)

− 𝛾

2

d−1∑
i=1

‖‖‖𝜹u𝜘 ⋅ 𝝉P,i
‖‖‖
2

L2(Γ)
+ 𝛾

2

d−1∑
i=1

‖‖‖‖
(
𝜹
u
𝜘+1 − 𝜹

𝜉

𝜘+1
)
⋅ 𝝉P,i

‖‖‖‖
2

L2(Γ)

+ 𝛾

2

d−1∑
i=1

‖‖‖‖
(
𝜹
u
𝜘 − 𝜹

𝜉

𝜘+1
)
⋅ 𝝉P,i

‖‖‖‖
2

L2(Γ)
+ 1

2L

‖‖‖nF ⋅ 𝝈F

(
𝜹
u
𝜘+1, 𝛿

pF𝜘+1
)
nF
‖‖‖
2

L2(Γ)

− 1

2L

‖‖‖nF ⋅ 𝝈F

(
𝜹
u
𝜘 , 𝛿 pF𝜘

)
nF
‖‖‖
2

L2(Γ)
.

Summing from 𝜘 = 1 to N − 1, we get

𝜌P
𝜗𝜏

N−1∑
𝜘=1

‖‖‖𝜹𝜉𝜘+1‖‖‖
2

L2(ΩP )
+ c0
𝜗𝜏

N−1∑
𝜘=1

‖‖‖𝛿 pP𝜘+1
‖‖‖
2

L2(ΩP )
+ 𝜌F
𝜗𝜏

N−1∑
𝜘=1

‖‖‖𝜹u𝜘+1‖‖‖
2

L2(ΩF )

+ 1

𝜗𝜏

N−1∑
𝜘=1

‖‖‖𝜹𝜂𝜘+1‖‖‖
2

S
+ 2𝜇F

N−1∑
𝜘=1

‖‖‖D
(
𝜹
u
𝜘+1

)‖‖‖
2

L2(ΩF )
+

N−1∑
𝜘=1

‖‖‖K−1∕2
𝜹
q

𝜘+1
‖‖‖
2

L2(ΩP )

+ L

2

N−1∑
𝜘=1

‖‖‖‖
(
𝜹
𝜉

𝜘+1 + 𝜹
q

𝜘+1 − 𝜹
u
𝜘
)
⋅ nP

‖‖‖‖
2

L2(Γ)

+ 𝛾

2

N−1∑
𝜘=1

d−1∑
i=1

‖‖‖‖
(
𝜹
u
𝜘+1 − 𝜹

𝜉

𝜘+1
)
⋅ 𝝉P,i

‖‖‖‖
2

L2(Γ)
+ 𝛾

2

N−1∑
𝜘=1

d−1∑
i=1

‖‖‖‖
(
𝜹
u
𝜘 − 𝜹

𝜉

𝜘+1
)
⋅ 𝝉P,i

‖‖‖‖
2

L2(Γ)

+ L

2
‖‖𝜹uN ⋅ nP‖‖2L2(Γ) + 𝛾

2

d−1∑
i=1

‖‖‖𝜹uN ⋅ 𝝉P,i
‖‖‖
2

L2(Γ)
+ 1

2L

‖‖‖nF ⋅ 𝝈F

(
𝜹
u
N
, 𝛿

pF
N

)
nF
‖‖‖
2

L2(Γ)

= L

2
‖‖𝜹u1 ⋅ nP‖‖2L2(Γ) + 𝛾

2

d−1∑
i=1

‖‖‖𝜹u1 ⋅ 𝝉P,i‖‖‖
2

L2(Γ)
+ 1

2L

‖‖‖nF ⋅ 𝝈F

(
𝜹
u
1
, 𝛿

pF
1

)
nF
‖‖‖
2

L2(Γ)
.

Hence, 𝜼n+𝜗
(𝜘 ) , 𝝃

n+𝜗
(𝜘 ) , pn+𝜗

p(𝜘 ) , and un+𝜗
(𝜘 ) are Cauchy sequences in 𝓁2(S), 𝓁2(L2(𝛺P) ∩ L2(Γ)), 𝓁2(H1(𝛺P)),

𝓁∞(H1(Γ)) ∩ 𝓁2(H1(𝛺F)) ∩ 𝓁2(L2(Γ)), respectively. The completeness of the spaces implies the convergence of
the iterations, completing the proof. □

5 Stability analysis

In this section, we prove the stability of the partitioned method presented in Algorithm 1. In particular, we con-

sider the converged solutions of the BE problem (3.3)–(3.4), followed by and FE steps (3.5a)–(3.5d). As noted in

Remark 3.2, the FE steps are equivalent to linear extrapolations used in Step 2.

Let n denote the sum of the kinetic and elastic energy of the solid, and kinetic energy of the fluid, defined

as:

n = 𝜌P
2
‖𝝃n‖2

L2(ΩP )
+ 1

2
‖𝜼n‖2

S
+ c0

2
‖pn

P
‖L2(ΩP )

+ 𝜌F
2
‖un‖2

L2(ΩF )
.

Letn denote the fluid viscous dissipation and the dissipation due to the slip between the fluid and the solid in

the tangential direction on Γ, defined as:

n = 𝜏𝜇F
n−1∑
k=2

‖D(uk+𝜗 )‖2
L2(ΩF )

+ 𝜏
n−1∑
k=2

‖K−1∕2qk+𝜗‖2



300 — C. Parrow and M. Bukač: A Robin–Robin method for fluid-poroelastic structure interaction

+ 𝜏𝛾
d−1∑
i=1

n−1∑
k=2

‖(uk+𝜗 − 𝝃
k+𝜗

) ⋅ 𝝉F,i‖2L2(Γ),
and let n denote the terms present due to numerical dissipation:

 n = 𝜌P(2𝜗− 1)

2

n−1∑
k=2

‖𝝃k+1 − 𝝃
k‖2

L2(ΩP )
+ (2𝜗− 1)

2

n−1∑
k=2

‖𝜼k+1 − 𝜼
k‖2

S

+ c0(2𝜗− 1)

2

n−1∑
k=2

‖pk+1
P

− pk
P
‖2
L2(ΩP )

+ 𝜌F(2𝜗− 1)

2

n−1∑
k=2

‖uk+1 − uk‖2
L2(ΩF )

.

Finally, let n denote the forcing term

n =
CkCp𝜏

4𝜇F

n−1∑
k=2

‖f F(tk+𝜗 )‖2L2(ΩF )
.

The stability result is given in the following theorem.

Theorem 5.1. Let
{
𝝃
n
,𝜼n, pn

P
,qn,un, pn

F

}
2⩽n⩽N be the solution of Algorithm 1. Assume that 𝜗 ∈ [1∕2, 1]. Then, the

following estimate holds:

N +N + N ⩽ 2 + N .

Proof. Wemultiply (3.3b) by 𝜗𝝃
n+𝜗

, integrate overΩP, and use (3.3a) and (4.1), obtaining

0 = 𝜌P
2𝜏

(‖𝝃n+𝜗‖2
L2(ΩP )

− ‖𝝃n‖2
L2(ΩP )

+ ‖𝝃n+𝜗 − 𝝃
n‖2

L2(ΩP )

)

+ 1

2𝜏

(‖𝜼n+𝜗‖2
S
− ‖𝜼n‖2

S
+ ‖𝜼n+𝜗 − 𝜼

n‖2
S

)

− 𝜗𝛼∫
ΩP

pn+𝜗
P

(∇ ⋅ 𝝃n+𝜗 )− 𝜗∫
Γ

𝝈P

(
𝜼
n+𝜗, 𝝃n+𝜗, pn+𝜗

P

)
nP ⋅ 𝝃

n+𝜗
. (5.1)

Similarly, we multiply (3.5b) by (1− 𝜗)𝝃n+𝜗, integrate over𝛺P and use (3.5a) and (4.1) to obtain

0 = 𝜌P
2𝜏

(‖𝝃n+1‖2
L2(ΩP )

− ‖𝝃n+𝜗‖2
L2(ΩP )

− ‖𝝃n+1 − 𝝃
n+𝜗‖2

L2(ΩP )

)

+ 1

2𝜏

(‖𝜼n+1‖2
S
− ‖𝜼n+𝜗‖2

S
− ‖𝜼n+1 − 𝜼

n+𝜗‖2
S

)

− (1− 𝜗)𝛼∫
ΩP

pn+𝜗
P

(∇ ⋅ 𝝃n+𝜗 )− (1− 𝜗)∫
Γ

𝝈P

(
𝜼
n+𝜗, pn+𝜗

P

)
nP ⋅ 𝝃

n+𝜗
. (5.2)

Adding (5.1) and (5.2), and using (3.3e) and (3.3f), we get

0 = 𝜌P
2𝜏

(‖𝝃n+1‖2
L2(ΩP )

− ‖𝝃n‖2
L2(ΩP )

+ ‖𝝃n+𝜗 − 𝝃
n‖2

L2(ΩP )
− ‖𝝃n+1 − 𝝃

n+𝜗‖2
L2(ΩP )

)

+ 1

2𝜏

(‖𝜼n+1‖2
S
− ‖𝜼n+𝜗‖2

S
+ ‖𝜼n+𝜗 − 𝜼

n‖2
S
− ‖𝜼n+1 − 𝜼

n+𝜗‖2
S

)

− 𝛼∫
ΩP

pn+𝜗
P

(∇ ⋅ 𝝃n+𝜗 )− 𝛾

2

d−1∑
i=1

‖un+𝜗 ⋅ 𝝉P,i‖2L2(Γ)

+ 𝛾

2

d−1∑
i=1

‖𝝃n+𝜗 ⋅ 𝝉P,i‖2L2(Γ) + 𝛾

2

d−1∑
i=1

‖(un+𝜗 − 𝝃
n+𝜗

) ⋅ 𝝉P,i‖2L2(Γ)



C. Parrow and M. Bukač: A Robin–Robin method for fluid-poroelastic structure interaction — 301

− ∫
Γ

nF ⋅ 𝝈F

(
un+𝜗, pn+𝜗

F

)
nF

(
𝝃
n+𝜗 ⋅ nP

)
. (5.3)

From (3.5b), we obtain:

‖𝝃n+𝜗 − 𝝃
n‖2

L2(ΩP )
− ‖𝝃n+1 − 𝝃

n+𝜗‖2
L2(ΩP )

= (2𝜗− 1)‖𝝃n+1 − 𝝃
n‖2

L2(ΩP )
, (5.4)

where we note that (2𝜗− 1) ⩾ 0 since 𝜗 ∈ [1∕2, 1] (and exactly equal to zero when 𝜗 = 1∕2). Similarly using
(3.5a), we can write ‖𝜼n+𝜗 − 𝜼

n‖2
S
− ‖𝜼n+1 − 𝜼

n+𝜗‖2
S
= (2𝜗− 1)‖𝜼n+1 − 𝜼

n‖2
S
. (5.5)

Using (5.4) and (5.5), the estimate (5.3) becomes:

0 = 𝜌P
2𝜏

(‖𝝃n+1‖2
L2(ΩP )

− ‖𝝃n‖2
L2(ΩP )

)
+ 𝜌P(2𝜗− 1)

2𝜏
‖𝝃n+1 − 𝝃

n‖2
L2(ΩP )

+ 1

2𝜏

(‖𝜼n+1‖2
S
− ‖𝜼n+𝜗‖2

S

)
+ 2𝜗− 1

2𝜏
‖𝜼n+1 − 𝜼

n‖2
S

− 𝛼∫
ΩP

pn+𝜗
P

(∇ ⋅ 𝝃n+𝜗 )− 𝛾

2

d−1∑
i=1

‖un+𝜗 ⋅ 𝝉P,i‖2L(Γ)

+ 𝛾

2

d−1∑
i=1

‖𝝃n+𝜗 ⋅ 𝝉P,i‖2L2(Γ) + 𝛾

2

d−1∑
i=1

‖(un+𝜗 − 𝝃
n+𝜗

) ⋅ 𝝉P,i‖2L2(Γ)
− ∫

Γ

nF ⋅ 𝝈F

(
un+𝜗, pn+𝜗

F

)
nF

(
𝝃
n+𝜗 ⋅ nP

)
. (5.6)

Similarly, we multiply (3.3d) by 𝜗pn+𝜗
P

, (3.3c) by qn+𝜗, and (3.5c) by (1− 𝜗)pn+𝜗
P

, add together and integrate over

𝛺P, which using (4.1) results in:

0 = c0
2𝜏

(‖pn+1
P
‖2
L2(ΩP )

− ‖pn
p
‖2
L2(ΩP )

+ ‖pn+𝜗
P

− pn
P
‖2
L2(ΩP )

− ‖pn+1
P

− pn+𝜗
P

‖2
L2(ΩP )

)
+ ‖K−1∕2qn+𝜗‖2

L2(ΩP )

+ 𝛼∫
ΩP

(∇ ⋅ 𝝃n+𝜗 )pn+𝜗
P

+ ∫
Γ

(
qn+𝜗 pn+𝜗

P

)
⋅ nP.

Using (3.3g), we get

0 = c0
2𝜏

(‖pn+1
P
‖2
L2(ΩP )

− ‖pn
p
‖2
L2(ΩP )

+ ‖pn+𝜗
P

− pn
P
‖2
L2(ΩP )

− ‖pn+1
P

− pn+𝜗
P

‖2
L2(ΩP )

)
+ ‖K−1∕2qn+𝜗‖2

L2(ΩP )
+ 𝛼∫

ΩP

(∇ ⋅ 𝝃n+𝜗 )pn+𝜗
P

− ∫
Γ

nF ⋅ 𝝈F

(
un+𝜗, pn+𝜗

F

)
nF
(
qn+𝜗 ⋅ nP

)
. (5.7)

Note that using (3.5c), we have

‖pn+𝜗
P

− pn
p
‖2
L2(ΩP )

− ‖pn+1
P

− pn+𝜗
p
‖2
L2(ΩP )

= (2𝜗− 1)‖pn+1
P

− pn
p
‖2
L2(ΩP )

.

Thus, (5.7) becomes

0 = c0
2𝜏

(‖pn+1
P
‖2
L2(ΩP )

− ‖pn
p
‖2
L2(ΩP )

)
+ (2𝜗− 1)c0

2𝜏
‖pn+1

P
− pn

p
‖2
L2(ΩP )

+ ‖K−1∕2qn+𝜗‖2
L2(ΩP )

+ 𝛼∫
ΩP

(∇ ⋅ 𝝃n+𝜗 )pn+𝜗
P

− ∫
Γ

nF ⋅ 𝝈F

(
un+𝜗, pn+𝜗

F

)
nF
(
qn+𝜗 ⋅ nP

)
. (5.8)
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Adding (5.6) and (5.8), the estimate for the poroelastic problem reads as follows:

0 = 𝜌P
2𝜏

(‖𝝃n+1‖2
L2(ΩP )

− ‖𝝃n‖2
L2(ΩP )

)
+ 𝜌P(2𝜗− 1)

2𝜏
‖𝝃n+1 − 𝝃

n‖2
L2(ΩP )

+ c0
2𝜏

(‖pn+1
P
‖2
L2(ΩP )

− ‖pn
p
‖2
L2(ΩP )

)
+ (2𝜗− 1)c0

2𝜏
‖pn+1

P
− pn

p
‖2
L2(ΩP )

+ 1

2𝜏

(‖𝜼n+1‖2
S
− ‖𝜼n+𝜗‖2

S

)
+ 2𝜗− 1

2𝜏
‖𝜼n+1 − 𝜼

n‖2
S

+ ‖K−1∕2qn+𝜗‖2
L2(ΩP )

− 𝛾

2

d−1∑
i=1

‖un+𝜗 ⋅ 𝝉P,i‖2L2(Γ)
+ 𝛾

2

d−1∑
i=1

‖𝝃n+𝜗 ⋅ 𝝉P,i‖2L2(Γ) + 𝛾

2

d−1∑
i=1

‖(un+𝜗 − 𝝃
n+𝜗

) ⋅ 𝝉P,i‖2L2(Γ)
− ∫

Γ

nF ⋅ 𝝈F

(
un+𝜗, pn+𝜗

F

)
nF(𝝃

n+𝜗 + qn+𝜗 ) ⋅ nP. (5.9)

In a similar way, to derive an estimate for the fluid part we multiply (3.4a) by 𝜗un+𝜗, (3.4b) by pn+𝜗, and (3.5d)

by (1− 𝜗)un+𝜗, add together and integrate over𝛺F , which results in

𝜌F
2𝜏

(‖un+1‖2
L2(ΩF )

− ‖un‖2
L2(ΩF )

+ ‖un+𝜗 − un‖2
L2(ΩF )

)

− 𝜌F
2𝜏
‖un+𝜗 − un+1‖2

L2(ΩF )
+ 2𝜇F‖D(un+𝜗 )‖2L2(ΩF )

= ∫
Γ

𝝈F(u
n+𝜗, pn+𝜗 )nF ⋅ u

n+𝜗 + ∫
ΩF

f F(t
n+𝜗 ) ⋅ un+𝜗.

Note that using (3.5d), we have

‖un+𝜗 − un‖2
L2(ΩF )

− ‖un+𝜗 − un+1‖2
L2(ΩF )

= (2𝜗− 1)‖un+1 − un‖2
L2(ΩF )

.

Hence, employing this result and (3.4c) and (3.4d), the estimate for the fluid problem reads as follows:

𝜌F
2𝜏

(‖un+1‖2
L2(ΩF )

− ‖un‖2
L2(ΩF )

)
+ 𝜌F(2𝜗− 1)

2𝜏
‖un+1 − un‖2

L2(ΩF )

+ 2𝜇F‖D(un+𝜗 )‖2L2(ΩF )
+ 𝛾

2

d−1∑
i=1

‖un+𝜗 ⋅ 𝝉F,i‖2L2(Γ)
− 𝛾

2

d−1∑
i=1

‖𝝃n+𝜗 ⋅ 𝝉F,i‖2L2(Γ) + 𝛾

2

d−1∑
i=1

‖(𝝃n+𝜗 − un+𝜗 ) ⋅ 𝝉F,i‖2L2(Γ)
= ∫

ΩF

f F(t
n+𝜗 ) ⋅ un+𝜗 + ∫

Γ

nF ⋅ 𝝈F

(
un+𝜗, pn+𝜗

F

)
nF(𝝃

n+𝜗 + qn+𝜗 ) ⋅ nF . (5.10)

Combining solid (5.9) and fluid (5.10) estimates, we obtain:

𝜌P
2𝜏

(‖𝝃n+1‖2
L2(ΩP )

− ‖𝝃n‖2
L2(ΩP )

)
+ 𝜌P(2𝜗− 1)

2𝜏
‖𝝃n+1 − 𝝃

n‖2
L2(ΩP )

+ c0
2𝜏

(‖pn+1
P
‖2
L2(ΩP )

− ‖pn
p
‖2
L2(ΩP )

)
+ (2𝜗− 1)c0

2𝜏
‖pn+1

P
− pn

p
‖2
L2(ΩP )

+ 𝜌F
2𝜏

(‖un+1‖2
L2(ΩF )

− ‖un‖2
L2(ΩF )

)
+ 𝜌F(2𝜗− 1)

2𝜏
‖un+1 − un‖2

L2(ΩF )

+ 1

2𝜏

(‖𝜼n+1‖2
S
− ‖𝜼n+𝜗‖2

S

)
+ 2𝜗− 1

2𝜏
‖𝜼n+1 − 𝜼

n‖2
S
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+ ‖K−1∕2qn+𝜗‖2
L2(ΩP )

+ 2𝜇F‖D(un+𝜗 )‖2L2(ΩF )

+ 𝛾
d−1∑
i=1

‖(un+𝜗 − 𝝃
n+𝜗

) ⋅ 𝝉P,i‖2L2(Γ) = ∫
ΩF

f F(t
n+𝜗 ) ⋅ un+𝜗. (5.11)

Using the Cauchy–Schwartz, Young’s, Poincaré, and Korn inequalities, we can estimate:

∫
ΩF

f F(t
n+𝜗 ) ⋅ un+𝜗 ⩽ CPCK

4𝜇F
‖f F(tn+𝜗 )‖2L2(ΩF )

+ 𝜇F‖D(un+𝜗 )‖2L2(ΩF )
,

where Cp and Ck do not depend on the time-discretization parameter 𝜏 . Combining this estimate with (5.11),

summing over n from 2 to N − 1 and multiplying by 𝜏 yields the desired estimate. □

6 Numerical examples

In this section, we investigate the rates of convergence and the accuracy of the proposed method. In space, we

discretize the problem using the finite element method with uniform, conforming meshes of size h. The finite

element solver FreeFem++ [37] is used to implement the proposednumericalmethod. Example 1 is a benchmark

problem based on the method of manufactured solutions. In this example, we compute convergence rates using

Algorithm 1 with different values of 𝜗, L, and the tolerance 𝜀, which is used as a stopping criterion in the BE

step. In the second example, we consider a classical benchmark problem of a propagating pressure wave in a

two-dimensional channel, where we compare the results obtained using Algorithm 1 to the ones obtained using

a monolithic solver based on Nitsche’s method [7].

6.1 Example 1

In this example, the method of manufactured solutions is used to investigate the accuracy of the scheme pro-

posed in Algorithm 1. For this purpose, the time-dependent Stokes equations and Biot equations with added

forcing terms are used:

𝜌F𝜕tu = ∇ ⋅ 𝝈F(u, pF )+ FF in ΩF × (0, T ),

∇ ⋅ u = gF in ΩF × (0, T ),

𝜕t𝜼 = 𝝃 in ΩP × (0, T ),

𝜌P𝜕t𝝃 = ∇ ⋅ 𝝈P(𝜼, pp )+ FP in ΩP × (0, T ),

q = −∇pP in ΩP × (0, T ),

c0𝜕t p p + 𝛼∇ ⋅ 𝝃 +∇ ⋅ q = gp in ΩP × (0, T ).

The FPSI problem is defined in a rectangular domain such that the fluid domain resides in the upper half,𝛺F =
(0, 1) × (0, 1), and the solid domain is the lower half, 𝛺P = (0, 1) × (−1, 0). The following physical parameters
are used: 𝜌P = 𝜇P = 𝜆P = 𝛼 = c0 = 𝛾 = 𝜌F = 𝜇F = 1, and K = I . The final time is T = 0.8 s. The exact solutions

are given by

𝜼ref = sin(𝜋t)

[
−3x + cos(y)

y+ 1

]
,

qref = 𝜋et
⎡⎢⎢⎢⎣
− cos(𝜋x) cos

(
𝜋y

2

)
1

2
sin(𝜋x) sin

(
𝜋y

2

)
⎤⎥⎥⎥⎦
,
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pPref = et sin(𝜋x) cos
(
𝜋y

2

)
,

uref = 𝜋 cos(𝜋t)

[
−3x + cos(y)

y+ 1

]
,

pFref = et sin(𝜋x) cos
(
𝜋y

2

)
+ 2𝜋 cos(𝜋t).

Using the exact solutions, we compute the forcing terms, FF , gF , FP, and gP. Neumann boundary conditions are

applied on the right side of the fluid domain and on the bottom of the solid domain for pP. Dirichlet conditions

are used on all other external boundaries. The subiterative part of the scheme, described in Step 1, is run until

the relative errors between two consecutive approximations for the fluid velocity, structure displacement, and

Darcy fluid pressure are less than a given tolerance, 𝜀. We used ℙ2 elements for the fluid velocity, structure

displacement, structure velocity, and Darcy velocity, and ℙ1 elements for the fluid and Darcy pressures.

To compute the rates of convergence, we define the errors of for the structure displacement and velocity,

the Darcy pressure, and the fluid velocity, respectively, as

e𝜼 =
‖‖𝜼− 𝜼ref

‖‖2S‖‖𝜼ref‖‖2S , e𝝃 =
‖‖𝝃 − 𝝃ref

‖‖L2(ΩP )‖‖𝝃ref‖‖L2(ΩP )

,

epP =
‖‖‖pP − pPref

‖‖‖L2(ΩP )‖‖‖pPref‖‖‖L2(ΩP )

, eu =
‖‖u− uref

‖‖L2(ΩF )‖‖uref‖‖L2(ΩF )

.

Recall that the Robin-type boundary conditions at the fluid–structure interface include a combination

parameter, L, which determines how strongly the kinematic and dynamic conditions are imposed. The case

when L = 0 recovers the dynamic coupling condition, while L = ∞ leads to the kinematic coupling condition.

In our first test, we investigate the impact of selecting different values of L on the convergence rates, as well as

on the number of subiterations in the BE step. We use the following set of discretization parameters, and values

of 𝜀:

{𝜏, h, 𝜀} =
{
0.01

2i
,
0.02

2i
,
10−6

2i

}3

i=0
.

We note that 𝜀 is refined at the same rate as the discretization parameters since it was shown in [32] that

otherwise it might affect the convergence rates.

The rates of convergence obtained for different values of L and both 𝜗 = 1∕2 and 𝜗 = 1 are shown in

Figure 2. When 𝜗 = 1 is used, the rates of convergence average around or above 1 for all variables. In this case,

the errors are almost indistinguishable for different values of L, with the slight exceptionwhen the fluid velocity

is considered, where L = 1, 000 shows a greater error than the other values of L. When 𝜗 = 1∕2, the structure
displacement and velocity produce similar errors for all values of L except for L = 1, 000, inwhich case a slightly

suboptimal rate is observed, as well as a larger error overall. Similar, but with a more drastic discrepancy, holds

for the fluid velocity. Namely, the results obtained using L = 1, 000 produce an error that is one order of mag-

nitude larger than the error in other cases, and also only first-order accurate. Finally, the errors for the Darcy’s

pressure are almost indistinguishable for different values of L, all showing a second-order convergence.

The average number of subiterations needed in the first step of Algorithm 1 is shown in Table 1, obtained

with different parameter values. For both𝜗 = 1∕2 and𝜗 = 1, the average number of subiterations for allL values

decreases as the parameters 𝜀, h, and 𝜏 decrease. The largest number of subiterations occurs when L = 1, 000

and 𝜀, h, and 𝜏 are the largest. In almost all the cases, fewer subiterations are needed when 𝜗 = 1∕2 is used,
compared with 𝜗 = 1.

We also investigate the errors obtained by setting L = 10, and taking 𝜗 ∈ {0.5, 0.5+ 𝜏, 0.6, 0.7, 0.8, 0.9, 1}.
We use the same refinement technique for {𝜏, h, 𝜀} as in the previous test. For most variables, Figure 3 shows
a decrease in errors as 𝜗 decreases from 1 to 1∕2. The case when 𝜗 = 1∕2+ 𝜏 converges at the same rate as
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Figure 2: Example 1: Errors for the structure displacement (top left), structure velocity (top right), fluid velocity (bottom left), and Darcy

pressure (bottom right) at the final time, obtained with 𝜗 = 1∕2 (solid line) and 𝜗 = 1 (dashed line), and a range of different values of L.

Table 1: Average number of subiterations needed in step 1 of Algorithm 1 for 𝜗 = 1∕2 and 𝜗 = 1.

𝝑= 1/2 𝝑= 1

L: 1 10 100 1,000 1 10 100 1,000

𝜏 , h, 𝜀 4.16 3.73 4.71 11.50 4.86 4.33 7.19 21.06

𝜏

2
,
h

2
,
𝜀

2
3.30 2.81 3.28 6.60 3.79 3.59 4.34 10.96

𝜏

4
,
h

4
,
𝜀

4
2.68 2.31 2.71 3.97 3.11 2.45 3.13 6.12

𝜏

8
,
h

8
,
𝜀

8
2.31 2.11 2.15 2.88 2.61 2.17 2.10 3.41

𝜗 = 1∕2, and shows the smallest errors for u and 𝝃. The rates of convergence are approximately 1 for the struc-
ture displacement and velocity, and fluid velocity, for all 𝜗 values except 1∕2 and 1∕2+ 𝜏 , for which rate 2 is

obtained. For pP, errors decrease with 𝜗, but as in Figure 2, the errors are initially almost indistinguishable,

and start showing rates smaller than 2 only for the smallest values of time steps. Thus, when choosing 𝜗 for

simulations, a value of 𝜗 = 1∕2 will provide second order accuracy. However, in this case there is no numeri-

cal dissipation. Alternatively, a choice of 𝜗 = 1∕2+ 𝜏 will retain a second-order accuracy [33], but add a small
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Figure 3: Example 1: Errors for the structure displacement (top left), structure velocity (top right), fluid velocity (bottom left), and Darcy

pressure (bottom right) at the final time, obtained with a range of 𝜗 values between 1∕2 and 1, and L = 10. In the e pP graph, the

𝜗 = 1∕2+ 𝜏 line is dashed so that the 𝜗 = 1∕2 line can be seen.

amount of dissipation. As we further increase 𝜗 towards 1, more numerical dissipation will be added, but the

accuracy will be reduced to first order.

As mentioned in Section 3, subiterations are required in Step 1 of our algorithm in order to show that the

method is stable using energy estimates. However,wewanted to computationally explore the casewhenno subit-

erations are used in theBEproblem in Step 1. Therefore, Figure 4 shows the errors for the structure displacement,

structure velocity, fluid velocity and Darcy pressure obtainedwith no subiterations, for different values of L and

𝜗. When 𝜗 = 1, the structure displacement converges with rate 1 for all values of L, with almost no difference in

themagnitude of the error.When𝜗 = 1∕2, the optimal, second-order convergence rate is obtainedwhen L = 100

and L = 1, 000, while only first order convergence is reached when L = 1 and L = 10. Interestingly, the errors

are the smallest when L = 10 and L = 100, staying close together when the discretization parameters are large,
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Figure 4: Example 1: Errors for the structure displacement (top left), structure velocity (top right), fluid velocity (bottom left), and Darcy

pressure pP (bottom right) at the final time, obtained with 𝜗 = 1∕2 and 𝜗 = 1, and varying values of L, with no subiterations used in step 1.

but then showing a difference in convergence rates as the parameters decrease. Similar fashion is also obtained

for the structure velocity when 𝜗 = 1∕2. In case when 𝜗 = 1, first-order of convergence is seen for all values of

L, with small differences in the error values, showing that the error decreases as L decreases.

Surprisingly, the errors for the fluid velocity are first-order convergent when L = 1 and L = 10 for both

𝜗 = 1 and 𝜗 = 1∕2, while the second-order of convergence is obtained when L = 100 and L = 1, 000. In all cases

but L = 1, a smaller error is obtained when 𝜗 = 1∕2 is used, compared to 𝜗 = 1. Finally, for the Darcy pressure,

a first-order of convergence is observed when L = 1 for both values of 𝜗. Rates between 1 and 2 are obtained for

other values of L when 𝜗 = 1, with a small difference in the size of the errors. For 𝜗 = 1∕2, similar results, and
optimal, second-order convergence rates are obtained when L = 100 and L = 1, 000, while L = 10 exhibits some

suboptimality. We note that no instabilities were observed in all the cases we considered.
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6.2 Example 2

In this example, we consider a classic benchmark problem describing a propagation of a single pressure wave

in a two-dimensional (2D) channel, with amplitude comparable to the pressure difference between the systolic

and diastolic phases of the heartbeat [7], [38].

We use the same set up as in [7], where the fluid domain is defined by𝛺F = (0, l) × (0, r) and the poroelastic

structure domain is defined by 𝛺P = (0, l) × (r, r + h), where the parameters are specified in Table 2. At the

inflow of the fluid domain (corresponding to the left boundary of𝛺F), the following time-dependent forcing is

imposed as a Neumann boundary condition:

𝝈FnF =
⎧⎪⎨⎪⎩
− pmax

2

(
1− cos

(
2𝜋t

Tmax

))
nF , t ⩽ Tmax,

0, t > Tmax,

where pmax = 13, 333 dyne/cm2 and Tmax = 0.003 s. Assuming axial symmetry, the domains used in this example

correspond to the top part of the channel. Therefore, symmetry boundary conditions are imposed at the bottom

fluid boundary [39]:

uy = 0,
𝜕ux
𝜕y

= 0.

At the outlet (right boundary of𝛺F), we impose zero normal stress. The same condition is imposed at the

top boundary of𝛺P, while zero displacement is imposed at the sides.

As it is commonly done in 2D simulations of FSI problems in channel-like geometries, we add a ‘spring term’,

𝜁𝜼, to themechanics equation in the Biot’s model to account for the recoil from the circumferential strainwhose

effects are lost in the transition from 3D to 2D [40]. Therefore, the model used in this example is given as follows:

𝜌P𝜕t𝝃 + 𝜁𝜼 = ∇ ⋅ 𝝈P(𝜼, pPI ).

We use values for the parameters in this problem, reported in Table 2, that are within the range of physio-

logical values for blood flow. The propagation of the pressure wave is studied over the time interval [0, 0.014] s.

The final timewas chosen such that thewave just reaches the outflow section andwhichminimizes the pollution

of non-physical reflected waves on the solution.

In order to verify the accuracy of ourmethod,we compared our solutions to the ones obtained using amono-

lithic method for the FPSI problem in the mixed formulation, where the coupling conditions are imposed using

Nitsche’s method [7]. Since the monolithic scheme we are using for comparison is only first-order accurate, we

preform simulations using both 𝜗 = 1 and 𝜗 = 1∕2. In both cases, we set 𝜀 = 10−3 and L = 1 000. A larger value

Table 2: Geometry, fluid, and structure parameters.

Parameter Symbol Units Reference value

Radius r (cm) 0.5

Length l (cm) 6

Poroelastic wall thickness h (cm) 0.1

Poroelastic wall density 𝜌P (g/cm3) 1.1

Fluid density 𝜌F (g/cm3) 1

Dyn. viscosity 𝜇F (g/cm s) 0.035

Lame coeff. 𝜇P (dyne/cm2) 1.7 × 106

Lame coeff. 𝜆P (dyne/cm2) 5.575 × 105

Hydraulic conductivity K (cm3 s/g) 10−6 I

Mass storativity coeff. c0 (cm2/dyne) 10–3

Biot–Willis constant 𝛼 — 1

Spring coeff. 𝜁 (dyne/cm3) 4 × 106
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of L is used here since this benchmark problem is characterized by a strong mass transfer across the interface

between the fluid and the structure. Moreover, L plays a similar role in our scheme as a penalty parameter used

in Nitsche’s method in order to impose the conservation of mass.

For the space discretization for both themonolithic scheme and ourmethodwith 𝜗 = 1, we useℙ1 elements

for all the variables, and add the following stabilization term to the Stokes problem:

∫
ΩF

𝛾stabh
2∇pF ⋅∇𝜓,

where 𝛾 stab = 10−3 and𝜓 is a test function corresponding to the fluid pressure. For ourmethodwith𝜗 = 1∕2, we
use the same space discretization elements as we used in Example 1. The mesh size for both methods is h = 0.02

and the time step is 𝜏 = 10−4.

Figure 5 shows the structure displacement and the pressure at the interface, aswell as the axial fluid velocity

at the bottom boundary of the fluid domain. We observe near perfect matching with the monolithic scheme

for all the variables when 𝜗 = 1. When 𝜗 = 1∕2 is used, some differences in the solutions are visible. This is

due to the stiffness of the benchmark problem and the fact that the solutions have not yet fully converged.

Near perfect alignment between the pressure obtained using the monolithic method and the proposed scheme

when 𝜗 = 1 can again be seen in the snapshots of the solutions at t = 0.0035, 0.007, and t = 0.0105 s, shown in

Figure 6.

The average number of subiterations in Step 1 of our method is 5.08 when 𝜗 = 1 and 4.16 when 𝜗 = 1∕2,
which is less thanmost of the values in Table 1 for L= 1 000. Overall, this example demonstrates that ourmethod

Figure 5: Example 2: Numerical results for 𝜂 y and pF on the fluid–solid interface and ux on the bottom fluid boundary obtained

Algorithm 1 with 𝜗 = 1∕2 and 𝜗 = 1, and Nitsche’s method [7] at times t = 0.0035, 0.007, 0.0105.
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Figure 6: Example 2: Pressure surface plots for both Nitsche’s method (top) and our method (bottom) obtained with 𝜗 = 1 at times

t = 0.0035, 0.007, 0.0105 s. The domain has been reflected in ParaView to recover the full channel.

is on par with themonolithic scheme based on Nitsche’s methodwhen 𝜗 = 1, and that it can easily providemore

accurate solution by taking 𝜗 = 1∕2.

7 Conclusions

In this work, we present a partitioned, strongly-coupled method for the interaction between a fluid and a

poroelastic structure. This method uses the Biot’s problem in the dual-mixed formulation, which is enabled by

employing the Robin boundary conditions at the interface. The proposed method features second-order accu-

racy when 𝜗 = 1∕2, in which case it has no numerical dissipation.We proved that themethod is unconditionally

stable provided 𝜗 ∈ [1∕2, 1], and that the subiterative process in Step 1 of our algorithm is convergent.

We investigated the properties of the proposed method in numerical examples. In Example 1, we inves-

tigated the rates of convergence with respect to the combination parameter, L, used in the Robin boundary
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conditions and with respect to parameter 𝜗. While for most of the L values we considered, optimal convergence

was obtained, we noticed some loss of accuracy if Lwas too large. For a fixed value of L, we observed an increase

in the error as 𝜗 was increased from 1∕2 to 1, with an exception of 𝜗 = 1∕2+ 𝜏 , which exhibited the smallest
errors. The first order convergence was obtained for all 𝜗 values except 𝜗 = 1∕2 and 𝜗 = 1∕2+ 𝜏 , which gave
second order convergence.We also examined the properties of the proposedmethod if no subiterations are used

in Step 1. While no instabilities are observed in this case, the convergence rates appear to be quite sensitive with

respect to L. In particular, we observe the second order convergence rates for the Darcy velocity when certain

values of L are used even with 𝜗 = 1, but also suboptimal convergence rates for the structure displacement for

some values of L and 𝜗 = 1∕2. To understand the relation between the convergence rates and the parameter L,
we need to carefully derive the rates of convergence for the loosely coupled scheme while tracking the problem

parameters, which is the focus of our ongoing work.

Finally, we compared the solutions obtained using our method to the ones obtained using a monolithic

scheme on a 2D example of a propagating pressurewave. Our results shownear perfect alignment of ourmethod

with the monolithic scheme when the same discretization parameters are used.
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