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Abstract: In this paper, a stabilized space-time finite element scheme on anisotropic quadrilateral meshes for
general linear parabolic problems is considered. The scheme is devised on the basis of a unified space-time
variational formulation, and uses continuous piece-wise polynomial spaces. The stabilization is achieved by
incorporating Streamline-Upwind Petrov—Galerkin (SUPG) techniques. Defining appropriately the stability coef-
ficients, we initially show anisotropic interpolation estimates and then a priori error estimates by following a
classical finite element methodology. A series of numerical examples illustrates the theoretical findings.
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1 Introduction

Many transport physical problems are often described by using general second order parabolic equations of the
formu, + Lu = f,where Lu:= —div(eV,u) + f - V,u + ruis the second order differential operator, and V,u s
the spatial gradient of u, f is a constant vector representing the convection velocity and the parameters € > 0, r
> 0 represent the diffusion and reaction coefficients, respectively, [1]. The numerical solution of these problems
hasbeen a subject of investigation by many authors in the past decades (cf. [2]). Standard Galerkin Finite Element
Methods (FEMs) with continuous spaces may appear numerical instabilities, which are produced due to the
advection character of the problem, (advection dominant case). Very often Streamline-Upwind (SU) stabilization
terms are added to treat the problem numerically and to ensure the stability of the FE discretization, see, e.g.,
[3], [4], and in refs. [2], [5], [6] for an overview and computational results for SU methods. The full discretization
of the problem is completed by applying a time-stepping scheme, e.g., Runge—Kutta, which results to sequential
approximations of the solution in time (see, e.g., [7]-[9]). These approaches typically impose a restriction on the
time step relative to the spatial mesh size, which can lead to additional difficulties when highly refined meshes
are required.

In contrast to these methods, the last proposed space-time finite element methods (STFEMs) discretize time
evolution problems by applying a unified and simultaneous finite element discretization in space and in time
directions, [10]. The main idea is to see the time variable t as another spatial variable, let's say, x, ;, ifx;, ..., Xy,
are the spatial variables, and the time derivative u, as a convection in the direction x, ;. In view of this, an asso-
ciated global space-time variational formulation is derived and the time-dependent problem is considered as a
stationary problem into a domain (i.e., the space-time cylinder) with one higher dimension. This idea is not
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new and has been used by many authors for developing different STFE discretizations for time evolution prob-
lems. Specifically, in the past few years the proposed STFEMs are mainly based on a corresponding space time
variational formulation, see, e.g., [11]-[14], and [15], [16] for alternative stabilization approaches, also [17] for
nonlinear problems. In refs. [18], [19], space-time methods the Isogeometric Analysis framework are discussed
and see the survey paper [20] for applications to engineering problems. The proposed STFEMs offer some fur-
ther advantages compared to the traditional discretization methods, as for example, the direct use of existing
FEM solvers developed for stationary problems, the generalization of adaptivity techniques which have been
studied for stationary problems, the use of coarse/fine unstructured space-time meshes in order to compute
highly accurate and efficient solutions without having time step limitations, and lastly are more flexible to be
implemented in parallel environments and to perform computations in such architectures. We refer to refs. [21],
[22] for a discussion on different parallelization approaches for STFEMs. However, many of these techniques do
not directly carry over when solving problems in four-dimensional (4D) space-time domains. The construction
of unstructured meshes in 4D space-time domains seems to be a challenging task, [23].

In this paper, inspired by the ideas presented in ref. [24], where SU stabilized finite element methods for
steady advection—diffusion problems are analysed, we devise a stable STFEM for solving the general parabolic
problem mentioned above. The method is considered on anisotropic quadrilateral meshes, which are aligned
to the coordinate axes. The aim is to derive error estimates in the related energy norm uniformly with respect
to the diffusion parameter ¢, by taking into account the anisotropic mesh sizes of the triangulation of the space-
time cylinder. Animated by the interpolation results given in ref. [25], anisotropic interpolation error estimates
are derived here, where the associated interpolation constants depend on the directional stretching proper-
ties of the mesh. The additional SU stability terms appearing in the final space-time scheme are weighted by
a numerical parameter, see (3.18), which is accordingly formed by the anisotropic character of the mesh. This
parameter is determined through the stability of the resulting bilinear form and includes the local, i.e., per ele-
ment, spatial mesh sizes. The numerical results confirm the theoretical findings. It is known that the solution of
the aforementioned general parabolic problem can exhibit interior boundary layers. In practical applications,
the resolution of this layer is of main interest and can be typically treated by applying an anisotropic meshing
technique, [26], [27]. This work is the first step to devise STFEMs in this direction. Extensions of the proposed
work to more general fluid flow problems with boundary layers are under preparation.

The outline of the paper can be stated as follows. In Section 2, some preliminaries together with the nota-
tion of the related Sobolev spaces are given. In Section 3, the general parabolic problem is given, and the weak
space-time formulation is described. In the last part of Section 3 the ST-FE discretization in presented and the dis-
cretization error analysis is developed. Finally, in Section 4 we show a series of numerical examples for verifying
the theoretical results. The paper closes with the conclusions.

2 Preliminaries

2.1 Notations

Let Q be a bounded Lipschitz domain in R4 d=2, ..., 4, with boundary I' = 9Q. For any multi-index a =
(ay, ..., ay) of non-negative integers ay, ..., a4 we use the following notations, (i) |a| = Zlea,-, (i) set x =
X ...xs‘i for x € RY, (iii) moreover introduce the differential operator D% := 92 = 0;:11 a;'; with 9, (1) =
a(.)/ax,., j=1,...,d Let 1< p < oo be fixed and # be a non-negative integer. As usual, L?(Q) denotes the

1/p
Lebesgue spaces for which /Q|(p(x)|1’ dx < co, endowed with the norm |||,y = (/Q|(p(x)|!’ dx) , and

W?P(Q) is the Sobolev space, which consists of the functions ¢: Q — R such that their weak derivatives D*¢
with || < # exist and belong to LP(Q). If ¢ € W*-P(Q), then its norm is defined by

1/p
— a p — a
||(p||wf,p(g)—< > D (pumg)) o N9l = max [1D%0]le,

(US[:4154
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for1 < p < o0 and p = oo, respectively. We further define the spaces

W, P(Q):={g € W’P(Q) such that @|,, =0}, 2.1a)

WgP(Q):={p € W"P(Q) such that ¢|y-cso = 0}. @.1b)

Remark 2.1. If p = 2 we usually use the notation H*(Q):= W%%(Q), # =0,1,2, ...

Let the fixed integer # > 1 and let the set A of all multi-indices having the form A:={a:a = (..., me;, ...)}
where0 <m; <7,i=1,...,d, and ¢; is the unit vector in the i-th direction. For ¢ € W¢%:P(Q) denote

d
D ND?@lngy = X 105 @l o (2.2)

acA i=1

We refer the reader to ref. [28] for more details about Sobolev spaces.

2.1.1 Differential operators on the space-time domain

Next, we define certain differential operators which are related to the time and the spatial variables. Let
J = (0, T]1be the time interval with some final time T > 0 and let Q2 be a bounded domain in R%, d,=12o0r3.
For later use, we consider the space-time cylinder Q C R¢withd = d, + 1, definedby Q = J X €, and its bound-
aryparts 2 =0Q X J,Z; =Q X {T}, and £, = Q X {0} such that 0Q =X Ufo UET. Accordingly to the
definition of 0%, we now define the operator a;" “ and also define the spatial gradient V, ¢ = (dxl(p, ,dxdx @),
and the whole gradient Vg := (0,9, V, ).

2.2 Known inequalities and identities

The following inequalities are going to be used in several places in the text. Holder’s and Young’s inequalities
read: For any 6,0 < 6 < o0,and 1 < p, q < oo such that % + % =1, for f € LP(Q) and g € L1(Q), there holds

Fy p 5-a/p q
f8 x| < Iflnllisgr < TNy + =~ 8oy (2.3)
Q

Poincaré-Friedrichs inequality, see [28], [29]: Let Q C R?be a parallelepiped (cuboid) and let the face X* C 0Q
vertical to the Xj, 1< j < d, coordinate plane. Then for any f € W;;p (Q), it holds

/IfldeSC(Q)/Iaxifl”dx, 1<i<d, (23b)
Q Q
Let the vector f = (f,, ..., By), the function f € WLP(Q) and the outward normal vector n to Q. In several
places we will use the identities:
V-BH=B-Vf+(V-Pf, (2.4a)

24ﬂ-fodx=—éV-ﬂfzdx+2/ﬁ~nf2ds. (2.4D)

Q
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3 The continuous problem

Let Q be a bounded cuboid domain in R%, with d, =1,2,3, with smooth boundary I" = dQ2. We define the
space-time cylinder Q;:=Q x [0, T], where T is the final time, and boundary dQ, = ZU £, U £;, where
2:=I" X (0, 7) is the lateral boundary, X,:=Q X {0} and X;:=Q X {T}. Consider the differential operator
L in the form

Lu:= —div(eV,u)+ - Vu+ru, (3.1

where V,u is the spatial gradient of u, and € > 0 is the constant diffusion coefficient. The constant vector
B:=(By. By, B,) takes values in R% and the reaction parameter r takes values in R .. We consider the following
initial-boundary value problem: Find u(x, t): Q7 — R such that

u+Lu=f in Qr, (3.2a)
u=us=0 on 2, (3.2b)
u(x, 0) = uy(x) on £, (3.2¢)

where f, u, are given functions. For simplicity, we only consider homogeneous Dirichlet boundary conditions
on X. However, the analysis presented in this work can easily be generalized to other constellations of boundary
conditions, cf., [10].

In literature, usually the main point of the concept for defining a weak formulation of (3.2) is to consider
that u, lives in the dual space (or in some sub-space) of the space where u lives, [1]. Anyway, as we mentioned
before, in recent years appropriate space-time weak formulations for parabolic problems similar to (3.2) have
been presented, where the regularity of the solution is considered uniformly in all the space time cylinder; i.e.,
ue WZ”’(QT), see, e.g., [10] and the reference therein.

3.1 Weak space-time form

Assume that u, € H(l)(Q) and f € L*(Qy). Multiplying (3.2a) by a smooth function v(x, t) vanishing on £ U X,
and after applying Green’s theorem and an integration by parts with respect to both t and x, and the usage of
the boundary conditions, we can obtain

/{—uut +eVau-Vo+p-Vauv+ruv}dxdt= /fvdxdt + /uo(x)u(x,O)dx. (3.3)
Qr Qr Q
Introducing the appropriate regularity properties for the data, global regularity properties can be shown for the
generalized solution u of (3.3) in Qy, i.e., u, € L2(0, T; L*(Y), [1], and furthermore, it can be inferred by using

embeddings that u € W?(Q,), cf, [30], [31]. Applying a formal integration by parts with respect to time variable
we can arrive at the space-time weak formulation: Find u € H%(QT) with u(0, x) = uy(x), such that

/{utv+£VXu-VXu+ﬂ-quU+ru v}dxdt:/fvdxdt, v € Hy(Qp). (34
Qr Qr

Assumption 3.1. For the solution u of (3.4), assume that u € V, with V = H%(QT) NH(Qp), £ = 2.

Remark 3.1. The space-time variational formulation (3.4) has a unique solution, see, e.g., analysis in refs. [30],
[31], and also [12] for considerations in Gelfand triple spaces. In these works, beside existence and uniqueness
results, one can also find useful a priori estimates and regularity results.
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In view of (3.4), we define

B(u, v):=/{utv+eVXu- V,o+B-V,uv+ruv}dxde, (3.5a)
Qr

ff(v)::/fvdxdt (3.5b)
Qr

forv e H;(QT). Working in a formalistic way, and setting u = v in (3.4), and then using (2.4b) and the fact that
V, - B =0, we can deduce that

B(u,u)=/%uz(s)ds+2/ﬂ‘nu2d3+/5|qu|2+ru2dxdt
b

. “ (3.6)
< /|fu| dxdt + /ug(x) dx (2'31)(2'3h)50(5)/|f|2 dx dt + 5/|qu|1’ dx dt.
Qr Q Qr Qr
Recalling (3.2b), and choosing sufficiently small, i.e., 6 = £/4 in (3.6), we can have the a priory bound
/ 12(s) ds + x(e) / IVl dxde S CONf g, + 1ol g 3.7)

Zr Qr

Working in the same spirit for the case f = 0, make test with v:=u,(x, t) in (3.4), and note that % fQT|VXu|2 =

Jo,Vxu- Vi, then
/|u¢|2 dth+£/|VXu|2dx+r/uu[ dx dt
Qr X

o (38)
502(5)/|f|2dxdt+6/|ut|2dxdt+/£|VXu0|2dx
Qr Qr Q
provided that V,u € C([0, T], LA(Q2)). Choosing & appropriate small, we obtain
63(6)/|ut|2 dxdt+£/§u2+ IV, ul?dx < 02(6)/|f|2dxdt+/gu§+elvxuo|2dx. 3.9)
Qr Zr Qr Q

Remark 3.2. The estimate in (3.8) does not provide any bound for the u, term. On the other hand the estimate in
(3.9) gives a bound for u, in L*(Q;). This aligns with the idea of employing streamline stabilization techniques, as
described below, to develop a stable space-time discretization scheme for (3.4). Other ideas for producing stable
space-time discretizations have been developed by means of Petrov-Galerkin techniques after an appropriate
selection of trial and test space, see, e.g., [12], [13], [32].

3.2 The space-time finite element approximation

3.2.1 Basic concepts

We start by introducing the discrete setting. Let 7}, := {E'},_; _y be a conforming mesh partition, of the space-
time cylinder Q into closed rectangular mesh elements, such that

or=JE, EhnEt=0, 1<L#L<N, (3.10)
1
where E°! is the interior of the mesh element. Denote hy:=(h, g, ..., h;, ..., hyz) to be the vector with the

i-th directional mesh widths of the element E € 7,,. For the analysis below some further mesh width quanti-
ties must be introduced. Define h = (hy, ..., h;, ..., hy) :=(maxg{hg},..., maxg{h;p},..., maxg{h;}) and
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B = (Mings -+ > Rginis -+ > Aing) = @ing {hy g}, ..., ming{h;g}, ..., ming{h;p}). The diameter of every
E' € T, isdenoted by hy and we set h:=maxpihp, h, :=hy, hy :=max o {h;}, hg i :=ming, {h; ; }. In the sequel
we write E € 7}, instead of E! € 7;,. Note that the mesh 7;, forms a Cartesian grid in Q; and every mesh element
E € T, is affine equivalent to reference element E:=10,1]¢ though the transformation

TpE—E, Tp(R):=x(X) = B;X+b;, (3.11)

with b; € R? and B; € R™ to be a diagonal matrix of the form B ; = h;z, i=1,...,d.

Assumption 3.2. The partition 7}, is quasi-uniform, in the sense that there are positive constants o, o,, inde-
pendent of h such that 6y, > h; /Ry, ; > oy foralli=1,...,d

Remark 3.3. The quasi-uniformity properties Assumption 3.2 of 7; allows the use of anisotropic mesh widths
between the different axial directions, and furthermore to replace h; by h in the analysis below.

Remark 3.4. Consider a function f & WE) and the function f= f(T, #(X)). It can be concluded by
(3.11) that V,f = B;V,f. By applying the change of variables (3.11), it can be shown that [;|d; f [PdX =

|BE|‘1|th Elaxl_fll’ dx,i=1,...,d, where p > 1, and | B;| is the determinant of /3.

On 7;, we define the finite dimensional space
VE={0y €CUQ): 4l €Q"E) VEET,, @, =0 on TUZ}. (3.12)

Here QX(E) is the space of polynomials on E composed by tensor products of uni-variate Lagrange polynomials
of degree at most k with respect to each variable, i.e., QX(E) = ®;1=1[Fbk(xi), where PX (x;), i=1,...,dis the uni-
variate Lagrange polynomials. In the analysis below, we consider the case of k = 1.

Proposition 3.1. Consider a polynomial function @, € QX(E), E € T;, such that ¢, = @,(Tx(X)) € QX(E). There
is a constant c;,, independent of hy such that

d d
D10 @allizey < €y Y il @nl iz, (3.13)
i=1 i=1

Proof. Since all the norms of ¢, € QX(E) are equivalent, there is a ¢ > 0 such that

”axi(ﬁh”y(ﬁ) < C”(ﬁh”LZ(E)- (3.14)

Utilizing the form of the transformation (3.11) and applying the chain rule o, @, = J; @y 3—’;, we can obtain

[@o? ax =tz @00
E E

(3.15)
(3.14) < Ch%ZIBEI—l/((i)h)Z d)’\( < Ch:EZ/((Dh)Z dX,
£ E
from where we can deduce (3.13) by summing overi=1,...,d. O
Corollary 3.1. By inequality (3.13) we can infer
d d
D ID ol gy < Cino D M i 1011 (3.16)

i=1 i=1
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3.2.2 The unified space-time FE scheme

Assumption 3.3. For simplicity in the discretization error analysis we suppose that u, , = u, := 0. For problems
with u, # 0 we refer to refs. [10], [19].

Based on (3.4) and using (3.5) we consider the following discretization of problem (3.4): Find u,, € Vl’f such
that u, = uy, on Xy and
B(uh, Uh) = ff(Uh) V Uh (S V}If (317)

In order to obtain stable solutions the scheme (3.17) is modified by adding an upwind stabilization term,
and the final discrete problem is written: Find u;, € V,’l‘ such that u, = u,j, on %, and

By(uy, vy) :=B(uy, vy) + S(uy, vy)
+Rs(uh, Uh) = ”ﬂf(Uh + T/lﬂQT . th) V Uh (S Vk, (3183)
where the vector B, :=(1, p) € R4, and the streamline-upwind (SU) term S is
Suy, vy) = Z/T}"(ﬁQT -Vuy, By, - Vuy) dxdt. (3.18b)
EeT, )

Here 74 := &hé min’ with d > 0, A > 1fixed parameters, which will be specified below. The residual term has the
form

R (uy, vp):= 2/ — 74 (eAuy, —ruy) By, - Voy dxdt (3.18¢)
EeT, 7y
and the linear form
Ce(op+ 1By, - Vuy) = Z/f(vh + 7By, - Vo) dxdt. (3.19)
EeT,’p

Remark 3.5. Note that, in case of working with linear spaces, i.e., V}’le’ the residual terms take the form
Ry(uy, vy) = Ypey [r7'T Wy By, - Vo dxdt.

Remark 3.6 (consistency). Under the Assumption 3.1, the following localized variational form

By(u, vy) :=B(u, vy) + S(u, vy)
(3:20)
+Rs(u, Uh) = prf(Uh + TiﬁQT . VUh) Y Uh (S V}If

holds for the weak solution u.

In view of (3.20) and (3.18a), we have the following equation.

Corollary 3.2. Let u be the solution of problem (3.4) and u,, the solution of problem (3.18a). Then the following
error equation holds for v, € V}If’
Bs(u - uh, Uh) = 0 (321)

Below the coercivity and boundedness properties of B,(-, -) are discussed.

Lemma 3.1. Letv, € V,’f and the Assumption 3.3. Then

2

1
By(vy, vp) 2 lonllps,

(3.22)

A

£ 2 r 2 T 2

+E§T { SV )+ 10kl )+ 5 1B, - Vol }
€Ty
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Proof. ForE;, € Ty, letny = (n, g, n, ;) be the unit normal vector on JE;. Letn, ; = (n, 3, 1, ) be the unit normal
vector on the common faces e; = JE; N JL; for E;, E; € T,. Using (2.4b) and the identity 2v(f, - Vv) = B, -
V2 =V - (B, v, it follows 1mmed1ate1y that

/V (B, Uh)dxdt_—Z/nEi~ﬂQTuidS

E€T),

/Uh(ﬂo Vvh)dxdt—f
E€T,

EET,,

Z/ﬁor eij Uh|E Uh|E )dS_ */Uhds (3.23)
€ij €

T

Recalling the terms of B(:, -) in (3.18) and following the same steps as in (3.6) and using (3.23), we can derive
the bound

Bs(Uh’ Uh) = Z/[(ﬁQT ) VUh)Uh + £VXUh : VXUh + rU%l] dx dt

2=

+ Z/T’l I:_fAUh + ﬁQT . VUh +I”Uh]ﬁQT . VUthdt

Een,,

A 2
> Jlonls,, + Z { PHonl. gy + €NV, 00l ) + 7410, - Voull, | (3.24)

/ [—eAvy +T0y] By, - Vo dxdt.
EGTh

Now, for the last sum in (3.24), we apply (2.3a) and obtain

Z /1" [—eAvy + vy By, - Vo dxdt

Eer’,

<Y / — T2 Av, 2B, - Vo dxd] + / 2o, 2B, -V, dxdt (3.25)

EeT, E E

A
Ag2 T 2
<) {r XA, gy + T4 PRI g, + =5 1Bg, - Vvhan(E)}.

E€T,

Here, we make use of the discrete-inverse inequality, || Avy,||? || V. v,ll%,,.., see (3.13) and (3.16), and the

LZ(E) LX(EY

identity ab < a® + sz to find

D /r’1 [—eAvy + vy By, - Vo dxdt
Eer’,
(3.26)

A
2 A T 2
< Y et < . ) V30l gy + 74 PRy + 55 1B, - Voulagy, o
E,min

E€T,
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Now, introducing the result (3.26) into (3.24), and using that 0 < € < 1, we find

B0 o) > JlI0nls, ) + Z{ruvhnmﬂnv onlltsy + 71 Bo, - Vol |

A
T
—Z{ ( ) IVORIE, gy + 74 PPllonl, ) + zuﬁo,%hn;m}

EET, hE min

2
G !
||vh||L2(Z + Z{(e—s T <h> )IIV Ol + =74 P01
EET, E,min

(-7 1Bo, - Vurll;
2 Or Wiz (-

Making the appropriate choice for the parameter 9 = - mm(

(3.27)

2 i ) and setting 4 = 2, we can infer the

bound (3.22). O

In view of (3.22), we introduce the mesh-dependent norms

A
T
ol = 2ol + Z{ VA0, + 100 ) + zuﬂQT-aniz(E)}, (3.282)
Il = 1lol? + Y w4l g, + Y { el AviE, |- (3.28)
E€T, EET,

By (3.22) we can immediately write the estimate
By(vp, vp) = llopll®> Vo, € VY (3.29)
Setting in (3.29) vy, =z, — u;, € V}’l‘ and recalling the error equation (3.21), we get
Iz, — uhllg <By(z, — up, z, — wy) + By(u, — U,z —up) =  By(zy, — U,z — uy). (3.30)

Lemma 3.2. Let u the weak solution of (3.5) under Assumption 3.1 and u, = 0. Let u;, € V,’l‘ be the finite element
solution in (3.17). The approximation error estimate

”u - uh”s < CO,approx”u - Zh”h,s (331)
holds for all z;, € V}’f, where the constant Cy ,,,rox iS independent of h.
Proof. Letaz, € V}’f . Recalling the terms appearing in (3.18), we have

By(u—zp, up, — z,) :=B(u — zy, uy, — z3,) + S(U — zy,, up, — z;,)
(3.32)
+ Ry(u —zp, up, — zp)
with
Bu—zy,u, —z,):= /{0l(u -z, —zp) + eV, (u—1zp) - V,(uy — z) (3.33)
Qr
+B -V, (u—2z) (uy, —z) + r(u — zz) (u, — z;) } dxdt,

NUESRTESEDD /M(ﬁQT V(U= 2zy) By, -V, — z,)) dxdt, (3.34)
EET,
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Ry — 2y, Uy — 23):= ) / — ' (eAu—2z))By, - V(u, — z,)) dxdt.

Een

Using appropriately (2.3a), we derive the following bounds for the terms in (3.33):

/EVX(u —2,) - V,(uy, — z;) dx dt < Ve[|V, (u— Z)l oo, I1tn — 2l
Qr

/((ut =23 )+ BV (u—2zp))(uy —z,) dxdt = /(,BQT - V(u—zp))(uy — z;) dxdt
OT QT

24)
= — /(ﬂQT -V, — zp)) (U —z) dxdt + /ﬁOT -n(u — z,)(uy, — z) ds

Qr 9Qr
1/2 1/2

<(7H1Bg, - Vi =2l ) (v lu=24ll%,)) " (using BCS)

+ llup = Zpllas,) 1= Zpllzs,)

1/2
) 2
< <2<T lu— Zh”ﬁ(o,)) +2||u— Zh”LZ(zT)) [y, — 2yl

and also

r\/2 r 1/2 1/2
/<§> (uy = 2)@) 2w = 2) X de < (I = 21l g ) ) (2= 2l )
Qr

< CGllu— Zh||L2(QT) lup, = 2zl

Treating together the terms in (3.34) and (3.35), we get

D [ (e Aw - z) + By, - V(u—2) + r(u— )T B, - iy — 23) dxdt|

et

< Z {e** (el Au— Azl 2y + 1Bo, - VU= z))llpze) + Tllu = 2yl 2r))
EeT,

XTA/ZHﬂQT -V — 22y

1/2
Al 2 2 2 2 2
S XA (HAu= Azl + 1B, - V=2l + 7 ||u—zh||Lz(E))} llup = zalls-
EET,

Collecting the previous bounds, and using (3.32) we can obtain
By(u — zy, up — z) < |lu— zpllpslluy — zplls-
Combining (3.40) and (3.30) and adding [[u — z, || on both sides of the inequality we can deduce
Nt = zlls + 1 = zplls S 2l = 2y llps-

The result (3.31) can be derived by applying triangle inequality.

(3.35)

(3.36)

(3.37)

(3.38)

(3.39)

(3.40)

(341

O

Note that the error estimate (3.31) includes bounds for the term ||d,u — 0,1 ||;2, compare with Remarks 3.1

and 3.2.
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3.2.3 Quasi-interpolation

LetV=WwW* P(Qp), ¢ = 2, p > 1. We introduce the quasi-interpolant, [29], [33],
dim,x

h
i=1

where /; are the linear dual functionals and ¢;, the local shape functions of V,’l‘. The multivariate quasi-
interpolant given in (3.42) can be constructed by the corresponding uni-variate quasi-interpolants r, ..., 7y,
ie, I f =, @ my, - - - @ m,y)(f), and each dual functional A;(f) can be similarly defined by the corresponding
uni-variate dual functionals, see, e.g., [29], [33]-[35]. For convenience one can consider a dual basis satisfying
Alpjp) =65 1,j=1,... ,dimv)zf, [33]. By this property it can be immediately inferred that IT,(¢;) = ¢, for all
oy € VY.

Remark 3.7. A discussion for the dual functionals 4;(f) when f belongs to tensor spaces is given in refs. [34],
[35]. In ref. [25] an analysis is given for the case of low regularity functions f and anisotropic meshes.

The following stability bounds can be shown, [29], [33], [35].

Proposition 3.2. Let f be a smooth function. The bounds

I, flleco,) < Coll fllLeco,)s (3.43a)

L fllwrecg,y < Gill fllwroco, (3.43b)

hold, where C,, C, are positive constants.

Suppose D C R¢ is a cuboid domain and h,, = (hy, ... , h,) is a vector containing the sizes h; in each dimen-
sion x;,i =1, ...,d. Define the set of multi-indices A = {me;, i =1,...,d, m € N}, where e; are the orthonor-
mal basis vectors, and denote with A° = {m, = (my, ..., my):m; < m} the set of multi-indices which corre-
sponds to the tensor product polynomials of degree less than m. Note that A° can also be charactirized as
A’ = {m,:D*x™ =0 Vae&A). For a smooth function f, we define the tensor Taylor polynomial of degree
less than m evaluated at y:

TR = Y, D™ ) - )™ (3.442)
myeA° 0

and the averaged Taylor expansion over the ball B C D:

Ty, f(x) = / T3 f(X)e(y) dy, (3.44b)
B

where ¢ € C°(B) is a cut-off function with /B @(y) dy = 1, see [29, Chapt. 4].
In the analysis below we focus mainly on the case m = 2. Let the multi-indicesa € A and 8 = (§;, ..., )
such that |B] < 1.

Proposition 3.3. Let f be a smooth function. The remainder RA f := f — T;,"(p f has the form

#fw =Y [ & yriody, (3.452)
D

acA
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where
ka(X,¥) = Cy (X — Y)?k(X,y)
with

kx,y) < Clx—yI™%  |DPk,(x,y)| < Clx —y|laI-1AI=2,

Proof. The bounds can be shown by combining the results given in refs. [29], [35], [36].
We have the commutativity result.

Proposition 3.4. Let f be a smooth function then

A _ TA-p
Dﬂwa_ T, PDPf.

Proof. Note that for f > m,, holds that D,’fx‘"‘0 = 0 and thus

(x —y)mo—h

B — m,
i f = Y l ooy fi) S

myeA®

= X / (p(y)Dgﬂf(y)i(X;!y)y dy

YEA'-B) B

> / o(y)D} (Dé’f(y))(x;i!y)y dy

Y€ -p) B

=T3P (0P f)x).

=T

DE GRUYTER

(3.45b)

(3.45¢)

O

(3.46)

(3.47)

O

Let the multi-indices a € A and 8 = (f;, ..., f,) such that |B| < 1. Following similar ideas as in refs. [25],

[29], [35], we show the estimates.

Theorem 3.1. Let f € W*-P(D) with £ = m. Then there exist a tensor Taylor polynomial T f := T;,{(p f such that

If = T* flloemy < Co D BSID FllLocmys
acA

IDP(f = T*Pllpsy <G Y, WLIUD' DA Plloy,
acA,y=(a—p)

where C, > 0, C; > 0 are independent of the mesh sizes h;, i =1, ...,d.

(3.48a)

(3.48b)

Proof. Assume initially that D C R¢ is a (reference) cuboid domain with diam(D) ~ 1, e.g., D:= D =[-1,1]4

By Proposition 3.3 we can deduce
/ka(x, 2)D? f(z) dz| < CID*fl;»p) Va E A,
D

which implies that
1f = T4 Fllpopy < Co DD Fll gy

acA

Further, combining the last bounds with Proposition 3.4, we can get

IDACf = T4 Pl oy = IRPDP f )l opy <€ D) IDYDP F)Ipopy.
aeA,y=(a—-p)

(3.49)

(3.50)

(3.51)
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Utilizing now the tensor character of the mesh, we can apply the change of variables x = B,%X + b, see (3.11),
and to transform D to D. Then we can show that, see Remark 3.4,

IDPCf = TADL, ) = 1Bl "REPIDACS = T4 )1,
(3.52)
— a
D211, 5, = 1Bol BB D Flly oy

Inserting the results (3.52) into the estimates (3.50), (3.51), we can deduce the required estimates (3.48). [

Having (3.48) we can show bounds on how well the quasi-interpolant I1, f approximates the function f. We
follow standard ideas from the finite element methodology. Recall thata € Aand f = (#;, ..., f) with |B] < L

Lemma 3.3. Let a function f € W'(Q;),# = m, and Assumption 3.2 for the mesh T,. Then for the quasi-
interpolant (3.42) the interpolation estimates

If =T f 1) < Cinpro QD OEID* fllzeys E €T (3.532)
acA
IDPCf =T Plley < G D, MEIDTDP Py, EE T (3.53)
acA,y=(a—p)

hold, where the positive constants c; Cintp,1 @re independent of hy.

ntp,0°

Proof. By the results of Theorem 3.1 there exists a tensor polynomial p, € P™, m, € A, such that

If = pellizg S ZhZIID"fIILZ(E), EeT, (3.54)

acA

Using that IT,(v,) = v, Vv, € V}’l‘ and the stability properties (3.48a), (3.43a) we get

If = fllzey < I = Prllizy + I = PNl
<CISf = Prllizey < D MEID Fllzey < Y B ID* fllzqey-

acA acA

(3.55)

Following the same steps as above and using the interpolation estimate (3.48b) we can prove (3.53b). [

Remark 3.8. Note that the anisotropic character of the mesh appears in the interpolation estimates given in
(3.53). Similar estimates have been shown in ref. [25] for low regularity functions on anisotropic triangular
meshes.

Lemma 3.4. Consider a mesh T, with uniform directional mesh widths, i.e, hy ~ h, ~ - - - ~ h; and an element
E € T;, with diam(E) := hy. Let a function f € W*P(Q), 1< ¢, 1 < p, and the local intepolation operator I, €
Q=-1, Then the interpolation estimate

Lf = I flwmoey S R flwence) (3.56)
holdsfor0 < m<¢.
Proof. See, cf. [29]. O

For isotropic meshes it is known (cf. [29]), that there is a constant C,.. > 0, such that

trc

— 2
101205y < Cach ™ (10l 2z + AVl 2zy)"s  E € Ty (357)
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Proposition 3.5. Let a face e C OE of a mesh element E € Ty, such that |E| = |e|h, ,, where h, , is the measure of
the edge perpendicular to e. Let a function f € H'(Qy). Then there is a positive constant C,,. such that

1£112,p) < Curch (IIfIILz(E)+ZhEII0 f||L2(E,> (3.58)

Proof. Let f := fo T, € H'(E). For the face & C dF the trace ineguality has the form (cf. [29]),

1y S I gy + VAU (359)

Recalling (3.11) and Remark 3.4, we can transform (3.59) onto E to deduce
112 el S T (11 + 1BV I ) (3.60)

Owing to the form of B, we have ||BEVf||L2(E) Zl - lE||d f||LZ(E) Using that h, ,|e| = |[E| we can obtain
(3.58). O

Remark 3.9. For e C X inequality (3.58) is valid for h, , ~ h,.

Corollary 3.3. Let the assumptions of Lemma 3.3 and assume f € H*(Qy). Then the following interpolation esti-

mate J J
If =M, S 2 h;‘*l(Zh? + ) (h?;f +hy, h§)>|| e 3.61)
a i=1

EET;,0ECZ, J#

holds for all multiindices a € A and e; to be the i-th unit normal vector.
Proof. According to (3.58) and Remark 3.9,

I =M fl,= 3 [1r-Mfeds

ee& eCZT

<c ht

EET,, aECZT (

If - than(E)+2h2|a (f - th)an(E))

1
<c he
EeTh 0EC,

thﬂ D f12 gy + th Y, Wi, f)um)) (362)

i=1 y=a—e

e (THee Y Y hzelhy>||fIIHz(E,

( T
Ee?; 0ECZT i=1 y=a—e
( T

2+ 2 e )nfnm

i=1 a

//\

<c h,©
EeTh OECS;
Expanding the last sum in (3.62), we get
d d
— 3e.
If =T fly < D) th(Zh? +) (h;' +h Y hﬁ)ufui,m
" Fer,9Ecy, a i=1 i

as reguired. O
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Lemma 3.5. Let f € V satisfying the assumptions of Lemma 3.3, and let the associated interpolant I1, f, see (3.53).
Then there exist a constant independent of f and hy such that the following quasi-interpolation estimate

d
TS {( TS Zh;+e"_el>+ 3 e 63

E€eT, agA i=1 a€A aeA
d 2(a—2 ) 2( ) <
A1 2y.2(a—2e; £, 2a—e; 2(a—e;)
+Z§A{Tfh5 }+ZZ h; }IIfIIHz(E)
j=2a =1 a

holds true.
Proof. Recall that

If =T fllf = 3 Yir - Wy + 207 I = TSI, + Z{T%ZMM AthuLz(E)}
EE€T, EET,

(3.64)
+2{ IV, = TPy + T =TIy + 5 B, - 9 th)an(E)}

EeT,

Under the regularity assumptions for f and utilizing (3.53) and (3.61), we can infer the following estimates

If =T fl, S 2 (th“ e1+22h”‘* el)nanz(E)

EET,,0ECZ; i=1 a€A
and also
D = fy S 2 27 I 1
EeT, EeT,acA
2(a—2e)
PR INVER VA ZZZ e N F I,
E€eT, EeT, j=2 acA
£ 2a=e)
{5V =TIy, | S ZZZ Vi
EET, EeT; j= ZaeA
2a—e))
IR IRTRNETIN B0 359 1 el
EeTy EETy j= 1aeA
Inserting the previous estimates in (3.64) we derive (3.63). O

Example 1 (isotropic-uniform mesh). Assume Q = [0,L] X [0,L] C R%=2 and assume a T, with uniform uni-
directional grid sizes, that means h, ~ h, ~ h. Consider a function f € H*(Q;) and the set of multi-indices A =
{a = (a;,a,):a = 2¢;,i =1,2}. Then by (3.63) we can conclude that I'l;, satisfies on isotropic meshes the following
estimate

_ € '1
If = TLfIE, S {hz e S T } I (3.65)

EeT,

Example 2 (independent directional mesh sizes for Q; C R4=%). Assume that Q; = [0,L]* C R%3, and for the
uni-directional grid sizes assume hp:=h = (h;:=hy, h,:=h,, hy:=h,). Consider a function f € H*(Qy) and
the set of multi-indices A = {a = (a;, a,, a;): a = 2¢;,i = 1,2,3}. Then by the estimate given in (3.63) we can
have
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If - th”hs < Z{( Rl ZaZhZa3 + halhaZha3 + ha1—1ha2+1ha3 + hal—lhaZha3+1) (3.66)

+ TN + rﬂez(hfal R T S + W R h2“3_4>

& 2a, 1.2a,—2 1 2a 2a, 1.2a, 3. 2a;—2
+E(h11h22 R 4 R R )

T}L 2a,—242a, 3 2. 2a, 3.2a,—24 2a. 20y 3,20, 3 203—
+7(h1 RORS + YRS + RS R ) Z”f“m(m
S AR + Y (RG + h3) + BY + h2 + RS + hyhy + h'RS + h'hyhs + hyhg + ' Rohs + byt
+ 774 (h) + by + h3) + 74 (2+ hyhy* + By hG + iyt + Wkt
2(h"h + hS + hy?h; + hihg? + hyhy” + )
7t 2 21,4 27,4 4 2 —273.4 4 4 2
+ %5 (B + hy*hy + hyPhy + hihy® + B+ iy *hy + hihs® + BSh™ + BS) }Zufum)

E€T,

Theorem 3.2. Let the solutions u and u, satisfy the assumptions in Lemma 3.2 and let the I1,, satisfy the assump-
tions in Lemma 3.3. Then the following error convergence result holds

lu—uslly S {(th*‘ o4 Z p) an el) PR (3.67)

EET, i=1 a€A acA

d
1.2 2(a—2ej) 3 2(a e;) 2(a e;)

j=2 a€A i=1 acA

Proof. We combine Lemmas 3.2 and 3.5 and the assertion follows. O

Corollary 3.4. Let 7, be a uniform mesh partition, ie, hy ~ - - - ~ hy .4 ~ h. Let further that u € H’(Qp) with
¢ >2andu, € V;l‘, k = 1. Under the assumptions of Theorem 3.2 holds

lu=wylly S ¢ W liullgeg,y (3.68)

with ¢ > 0 depending on the problem data.

Proof. The convergence rate (3.68) follows immediately by applying the mesh uniformity properties in (3.63)
and in (3.67). O

4 Numerical examples

In order to validate the estimates derived in the previous sections, a series of numerical tests are presented below
choosing different values for the parameters of the problem. For the two-dimensional problems we set 74 =
19h;} with 9 = 0.5, A = 2, and the mesh sizes h,, h, are chosen independently depending on the purpose of the
numerical computation. For the three dimensional problems we set 74 = 19h§ min- FiI'St, e start by considering
the problem on a space time cylinder Q; C R? with a smooth solution and then with a less regular solution. Note

that in this case §:=(1, §,). Thereafter, we present computations considering the problem on Q, C R3. For all
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the test cases, we mainly use Q* with k = 1, local polynomial spaces, and in a few examples we provide results
using k = 2 local polynomial spaces, see (3.12).

The examples have been solved on a series of mesh refinement levels, s = 0,1, 2, ... with kg, A4, ..., where
the asymptotic convergence behavior of the error ||[u — u,||, is investigated. For the first problem the behav-
ior of the error |[u — upl;,:=(llu - uhlliZ + t4||ou — 6tuh||iz)1/2 is also studied. Note that a separation of the
magnitudes of the two errors is not completely supported by the discretization analysis. We just provide this
numerical test which investigates if ||u — ||, , and ||u — u||; follow the same asymptotic behavior. Also, we
mention that the “expected values” of the rates, which are written in the tables, are the values resulting from
the discretization error analysis. In the numerical computations the initial condition u, and the boundary data
us are determined by the L2-projection of the exact solution u onto polynomial space.

The linear system produced by the method (3.18a) is (in general) not symmetric and a direct LU method
has been used to solve it. One can also apply GMRES iterative solvers for its solution. However, several efficient
methods have been presented in the literature for speeding up the solution process of the system. We refer to refs.
[19], [21], [22], [37] for discussions on developing algebraic multigrid methods and on different parallelization
approaches for STFEMs.

The 2-d numerical examples have been performed using an in-house code which has been implemented on
a Intel(R) Core(TM) i7-8700 CPU with Gentoo Linux optimized system.

The conclusion from the results presented below is that the proposed space-time FE scheme is stable,
behaves well and the numerical convergence rates are in agreement with the theoretically predicted rates.

4.1 Two-dimensional space-time cylinders

4.1.1 Smooth solution, uniform meshes

In the first numerical example the domain is @T =[0,1] X [0,1] and the exact solution is u(t,x) =
sin(2zt) sin(2zx). The problem has been solved for the problem parameters {e, f,,r} = {0.1,1,1}. In Table 1,
the results of the asymptotic convergence rates are displayed. The exact solution is smooth and optimal conver-
gence rates are expected. We observe that the rates r, and r, have similar behavior and are a little higher than
the expected rates in the first coarse meshes. As the meshes are progressively refined, both r, and r, tend to the
expected values. In the last columns we can see the rates r, ,_,, which correspond to Q*=2 polynomial spaces.
Moving to the finer meshes the rates have the expected values.

Table 1: Example 1: smooth test case. The convergence rates r, and r, and r, ;.

u smooth, with {¢, g,, r} ={0.1,1, 1}

Errors llu— upl; llu—upllen llu— upl;
@*-space k=1 k=1 k=2
Expected rates 1 1 2
hy=0.2 Computed rates
h

hy =3 I It Mxk=2
s=1 3.20 2.84 4.2
s=2 1.40 1.23 2.4
s=3 1.40 1.08 2.14
s=4 114 1.08 2.15
s=5 117 1.02 2.01
s=6 1.05 1.01 2.00
s=7 1.00 1.04 2.02
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4.1.2 Point singularity test case

We consider the problem on Q; = [0, 1] X [0, 1] with exact solution u(x, t) = ((x — 0.2)* + (t — 0.2)*)"/> with y €
{1.001, 0.51}. The singular point of the solution is located at the interior of the domain Q. The problem has been
solved for two sets of values for the parameters, i.e., {€, f,,r} = {0.1,1,1} and {¢, 8,7} = {0.1,107°,0.5}. In
every case the associated solution u belongs to H”="*!(Q,) and the computational tests have been performed
using Q="' and @*=2 local polynomial spaces on uniform mesh partitions 7;. In view of the interpolation results
(3.56) and (3.63), see also Corollary 3.4, and the regularity of the solution u, the convergence rates expected to get
values close to y = £ — 1. We compute the rates on a sequence of meshes and present the results in Table 2. Note
that the cases, where we use y + 1 < 2 and Q=2 spaces, are not covered by the discretization analysis presented
in the previous section. The associated results are added in Table 2 for comparison purposes only and for a more
comprehensive computational study of the problem. The “expected values” were formed by a simple formalistic
interpretation of the interpolation estimates.

Looking at the table, we observe that for the tests with y = 1.001, §, = 0.5, see first columns, the rates r,
and r, ,_, have similar behavior and are close to the expected values, even for the first refinement steps. For
the second test where we set # = 107, the values of , ,_, are little higher during the first meshes but tend to
get the expected values during the last meshes. In the last test we set y = 0.6, see last column, the r, rates are
higher than the expected values on the first meshes. Moving to the last refinement steps the rates tend to get the
expected values.

4.1.3 Anisotropic meshes

In this test, we investigate the behavior of the on anisotropic meshes. To illustrate this consider a problem where
its solution has anisotropic behavior, i.e., its variations are quite different in each different axial direction. We
solve the problem using anisotropic meshes, where the directional size of the mesh elements is small in the
direction where the solution has strong variations, and the size of the elements is relatively larger in the direction
where the solution has less variations. The domain is chosen to be OT = [0,1] X [0,1] and the parameters take
the values {e, f,,r} = {0.1,1,1}. The exact solution is u(x, t) = sin(xx) sin(4xt) and varies *four times more’ in
the direction of the time axis. The problem is solved in a series of successive refined mesh levels s =1,2, ...,
where for each refinement mesh level we set hsx = Ahg,, here the parameter A € {1,2,4} forms the anisotropic

Table 2: Example 2: point singularity case. Convergence rates r, and r, .

uEW2(Q)with? =y +1

Errors llu = uplls llu = uplls llu—uplls llu— uplls llu— uplls
@*-space k= k=2 k=1 k=2 k=1
Parameters y =1.001 Y =1.001 y=0.6

{¢, B, r}=1{0.1,0.5,1} {&, By, r} ={0.1,1071°, 0.5} {¢, B, r} ={0.1, 0.5, 0.5}
Expected rates 1 1 1 1 0.5
hy=02 Computed rates
hs = % Iy rx,k=2 ry rx,k=2 Iy
s=1 0.5 0.98 0.5 1.5 0.44
§s=2 0.95 1.04 0.92 1.82 0.63
s=3 0.90 0.98 0.90 1.45 0.57
s=4 0.89 0.94 0.89 1.34 0.55
s=5 0.89 0.91 0.89 0.87 0.54
$s=6 0.91 0.90 0.90 1.25 0.52
s=7 0.92 0.89 0.92 1.24 0.51
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character of the mesh. For each mesh level s, three different computations have been performed, where each of
which corresponds to a different value of the parameter A. We note that, for a better comparison of the results,
the three refinement procedures start from a different initial mesh.

Our goal is to investigate the asymptotic behavior of the rates r,, how they are affected by the anisotropic
variational properties of u and the anisotropic character of the mesh. Also we investigate the computing
resources needed to reduce the error to the same levels as those which result when isotropic meshes are used.
Table 3 shows the results of the numerical convergence rates. For each A-case, we can observe that the values
of r, rates are a little higher during the first meshes than the theoretically predicted values. However, moving
to the last refinement steps, the rates reduce and get the expected values derived by the error analysis, see also
Example 2.

The left part of Figure 1 shows the reduction of the error of the numerical solution relative to the number
of elements for each anisotropic mesh. Starting with a mesh with h, = h,, we move to next refinement steps,
s =2,3, ..., such that the directional mesh sizes have the fixed relation hs’x = Ahgy, A =1,2,4. During the first
meshes, the values of the corresponding errors are very close for the same number of elements. However, looking

Table 3: Example 3: anisotropic meshes. The convergence rates r, for all A.

u(x, t) smooth, {¢, B,, r} = {0.1,1, 1}

Errors llu = uplls llu — uplls llu — uplls
Parameter A=1 A=2 A=4
Expected rates 1 1 1
Ref. step s Computed rates

Iy

s=1 0.5 2.01 1.8
s=2 23 1.87 1.62
s=3 17 1.61 1.85
s=4 1.31 1.27 133
s=5 1 1.09 1.1
s=6 1.03 1.02 1.03
s=7 1.01 1.00 1.2
s=8 1.02 1.00 1.00
s=9 1.01 1.02 1.02
s=10 1.00 1.00 1.01
= o
10°F W —=— hz=h, TN
N\ ——4-- h=2h 10 N —=— h,=h,
- —4-- hz2h

X t

Number elements

(a)

Figure 1: Example 3: anisotropic meshes, (a) the graph on the left shows the reduction of the error against the number of elements for
each anisotropic mesh. (b) The discretization error against the CPU time for each A test case.
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the values in the next refinement levels, we observe that the A = 4, 1 = 2 meshes require a significantly reduced
number of elements compared to the 4 = 1case, in order to reduce the error to the same level, (see the micro box
in the graph). Thus, to reduce the error to a desired level, a uniform refinement with h , & h;, (isotropic) is not
necessary. This also illustrates the usefulness of the anisotropic meshes when solving such problems. This can be
seen more clearly in the right graph in Figure 1, where the error reduction against CPU time is shown. Note that
in every case, the corresponding CPU time considers the whole performance-solution of the numerical example
and not only the solution of the linear system. As expected the performance of the test with A = 4 requires the
least computing resources, when we refer to the same mesh refinement step, i.e., the same hs,t. It is observed
that the error, which corresponds to the numerical solution of A = 4 case, decreases at the same level and at
the same rate with what corresponds to the isotropic case, i.e., the A = 1 case. Figure 1 somehow indicates that
an appropriate use of anisotropic meshes can lead to high resolution numerical solutions at low computational
cost.

4.2 Examples on three-dimensional space-time cylinders

4.2.1 Smooth solution, isotropic meshes

The purpose of this example is to investigate the convergence behavior of the discretization error |ju —
u,ls for the case of having a three-dimensional space-time cylinder. We consider the problem on Qr =
[0,1]® with exact solution u(x, y, t) = cos(2zx) cos(2ry) cos(2zt). We solve the problem using k =1 and k = 2
polynomial spaces for two groups of parameter values, the first is {e, f,, ﬂy, r} ={0.1,1,1,1} and the sec-
ond {e, p,, ﬂy,r} = {0.1,0,0,1}. We compare the numerical results with the theoretical findings given in
Theorem 3.2, see also (3.66). The numerical results are reported in Table 4. For each k = 1-case, we observe
that the convergence rates r, are close to the expected rate value equal to one. The rates r, ,_, are shown
in third and the fifth column for the two parameter test cases. The rates are a little lower in the first
meshes but moving to the last meshes they have the expected value (with respect to the regularity of the
solution) and follow the theoretical convergence rates, compare to the “Smooth solution, uniform meshes”
above.

Table 4: Example 4: smooth solution for Q; C R3. Convergence rates r, and r, ;.

usmooth, Q; C R®

Errors llu— uplls llor — uplls llu— uplls llor — uplls
Parameters {&, By, ﬁy, ry=401,1,1,1} {&, By, ﬁy, r}=4{0.1,0,0,1}
Expected rates 1 2 1 2
Q* Computed rates

k=1 k=2 k=1 k=2
hy = % I My k=2 Iy Iy k=2
s=1 0.554 1.825 0.490 1.873
s=2 1.055 1.985 1.026 1.952
s=3 1.08 1.984 1.049 1.967
s=4 1.058 1.987 1.037 1.976
s=5 1.041 1.989 1.027 1.983
s=6 1.030 1.992 1.020 1.987
s=7 1.023 1.993 1.016 1.990
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4.2.2 An example using anisotropic meshes

Asithasbeen illustrated by the examples above that an appropriate construction and use of anisotropic meshes
can help on relaxing the high time requirements for the computation of the solution. Also, we have seen the use
of the anisotropic meshes preserves the convergence properties of the numerical solution. Similar points are
going to be investigated in this numerical example. The problem is considered in Q; = [0, 11> with exact solution
u(t, x, y) = sin(2zt)e~(x-057/001y and the parameters are {¢, f3,, py.r} = {0.1,1,1,1}. The solution has different
variational behavior in each direction and this supports the use of anisotropic meshes. The problem is solved
using k = 1-local spaces applying an anisotropic mesh refinement strategy, which is specified by the relations
h, = xhy,x € {1,1/2} and h, = Ah,, A € {1,1/4}. The first starting mesh contains equal directional mesh sizes,
ie,h, = h, = h;, and for the next refinement levels the mesh sizes h, and h; in x and t directions respectively are
determined by the values of » and A. The associated convergence rates r, of the error are shown in Table 5. The
first column includes the rates which are computed by applying global uniform refinement (isotropic case). The
next two columns include the rates for the anisotropic meshes. It can be seen that the rates are very close to the
(theoretical) predicted values for all cases. Figure 2(a) illustrates the error variation with respect to the number

Table 5: Example 5: anisotropic meshes Q; C R3. Convergence rates.

u = sin(2wt)e~*08/00y (e B B, r={0.1,1,1,1}

Errors llu—upls

Parameters A=1x=1 A=14,x=1 A=1/4,%x=1/2
Expected rates 1 1 1
Ref. step s Computed rates

Iy

s=1 0.927 0.917 0.943
s=2 0.958 0.957 0.973
s=3 0.968 0.967 0.983
s=4 0.975 0.982 0.988
s=5 0.979 0.986 0.991
s=6 0.982 0.988 0.993
s=7 0.984 0.990 0.994
s=8 0.986 0.991 0.995
s=9 0.988 0.992 0.996

0.25
0.2
.0.15
o
Yo
0.05
1 1
904 10° 10°
Number elements
(a)

Figure 2: Example 5: anisotropic meshes for Q; C R3. (a) Left: the variation of the error with respect the number of elements for each
mesh, (b) right: the discretization error against the CPU time for each mesh test case.
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of mesh elements for the three different meshes. It can be seen that the errors corresponding to the anisotropic
meshes have lower values compared to the errors computed using the isotropic meshes (with the same number
of elements). Hence, it appears that the anisotropic mesh computations manage more appropriately the number
of elements, in the sense that more elements are stacked in the direction where the solution has the most abrupt
variation. On the right graph in Figure 2(b) the CPU times are plotted against the error reduction. We observe that
the anisotropic meshes bring significant improvements in the time performance of the method. The anisotropic
meshes require less computational resources than the isotropic meshes to keep the error at the same low level.

5 Conclusions

In this work space-time FE methods have been developed and analyzed with continuous spaces on anisotropic
quadrilateral meshes for solving general linear parabolic problems. The scheme was stabilized following usual
upwind streamline methodology. Discretization error estimates were shown in a suitable norm. The proposed
method was applied to problems having regular and less regular solutions on isotropic and anisotropic meshes.
The numerical convergence rates were in agreement with the theoretical rates.

The proposed scheme can be extended to the case of using discontinuous Galerkin discretizations in time.
This can help on solving the problem in a sequential manner, i.e., one space-time slice at a time, [38]. This
approach can be further combined with time-Domain Decomposition (DD) iterative solvers materialized in a
parallel environment. A incorporation of anisotropic refinement strategies to the proposed method can lead to
en efficient method for solving problems with solutions with anisotropic behavior, e.g., boundary layers in fluid
problems, re-entrant edges, etc. The development of this type of numerical methods is the subject of a work in
progress.
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