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Abstract: In this paper, a stabilized space-time finite element scheme on anisotropic quadrilateral meshes for

general linear parabolic problems is considered. The scheme is devised on the basis of a unified space-time

variational formulation, and uses continuous piece-wise polynomial spaces. The stabilization is achieved by

incorporating Streamline-Upwind Petrov–Galerkin (SUPG) techniques. Defining appropriately the stability coef-

ficients, we initially show anisotropic interpolation estimates and then a priori error estimates by following a

classical finite element methodology. A series of numerical examples illustrates the theoretical findings.
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1 Introduction

Many transport physical problems are often described by using general second order parabolic equations of the

form ut + Lu = f , where Lu := − div(𝜀∇xu)+ 𝜷 ⋅∇xu+ ru is the second order differential operator, and∇xu is

the spatial gradient of u, 𝜷 is a constant vector representing the convection velocity and the parameters 𝜀 > 0, r

⩾ 0 represent the diffusion and reaction coefficients, respectively, [1]. The numerical solution of these problems

has been a subject of investigation bymany authors in the past decades (cf. [2]). StandardGalerkin Finite Element

Methods (FEMs) with continuous spaces may appear numerical instabilities, which are produced due to the

advection character of the problem, (advection dominant case). Very often Streamline-Upwind (SU) stabilization

terms are added to treat the problem numerically and to ensure the stability of the FE discretization, see, e.g.,

[3], [4], and in refs. [2], [5], [6] for an overview and computational results for SU methods. The full discretization

of the problem is completed by applying a time-stepping scheme, e.g., Runge–Kutta, which results to sequential

approximations of the solution in time (see, e.g., [7]–[9]). These approaches typically impose a restriction on the

time step relative to the spatial mesh size, which can lead to additional difficulties when highly refined meshes

are required.

In contrast to these methods, the last proposed space-time finite element methods (STFEMs) discretize time

evolution problems by applying a unified and simultaneous finite element discretization in space and in time

directions, [10]. Themain idea is to see the time variable t as another spatial variable, let’s say, xdx+1, if x1,… , xdx ,

are the spatial variables, and the time derivative ut as a convection in the direction xdx+1. In view of this, an asso-

ciated global space-time variational formulation is derived and the time-dependent problem is considered as a

stationary problem into a domain (i.e., the space-time cylinder) with one higher dimension. This idea is not
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new and has been used by many authors for developing different STFE discretizations for time evolution prob-

lems. Specifically, in the past few years the proposed STFEMs are mainly based on a corresponding space time

variational formulation, see, e.g., [11]–[14], and [15], [16] for alternative stabilization approaches, also [17] for

nonlinear problems. In refs. [18], [19], space-time methods the Isogeometric Analysis framework are discussed

and see the survey paper [20] for applications to engineering problems. The proposed STFEMs offer some fur-

ther advantages compared to the traditional discretization methods, as for example, the direct use of existing

FEM solvers developed for stationary problems, the generalization of adaptivity techniques which have been

studied for stationary problems, the use of coarse/fine unstructured space-time meshes in order to compute

highly accurate and efficient solutions without having time step limitations, and lastly are more flexible to be

implemented in parallel environments and to perform computations in such architectures.We refer to refs. [21],

[22] for a discussion on different parallelization approaches for STFEMs. However, many of these techniques do

not directly carry over when solving problems in four-dimensional (4D) space-time domains. The construction

of unstructured meshes in 4D space-time domains seems to be a challenging task, [23].

In this paper, inspired by the ideas presented in ref. [24], where SU stabilized finite element methods for

steady advection–diffusion problems are analysed, we devise a stable STFEM for solving the general parabolic

problem mentioned above. The method is considered on anisotropic quadrilateral meshes, which are aligned

to the coordinate axes. The aim is to derive error estimates in the related energy norm uniformly with respect

to the diffusion parameter 𝜀, by taking into account the anisotropic mesh sizes of the triangulation of the space-

time cylinder. Animated by the interpolation results given in ref. [25], anisotropic interpolation error estimates

are derived here, where the associated interpolation constants depend on the directional stretching proper-

ties of the mesh. The additional SU stability terms appearing in the final space-time scheme are weighted by

a numerical parameter, see (3.18), which is accordingly formed by the anisotropic character of the mesh. This

parameter is determined through the stability of the resulting bilinear form and includes the local, i.e., per ele-

ment, spatial mesh sizes. The numerical results confirm the theoretical findings. It is known that the solution of

the aforementioned general parabolic problem can exhibit interior boundary layers. In practical applications,

the resolution of this layer is of main interest and can be typically treated by applying an anisotropic meshing

technique, [26], [27]. This work is the first step to devise STFEMs in this direction. Extensions of the proposed

work to more general fluid flow problems with boundary layers are under preparation.

The outline of the paper can be stated as follows. In Section 2, some preliminaries together with the nota-

tion of the related Sobolev spaces are given. In Section 3, the general parabolic problem is given, and the weak

space-time formulation is described. In the last part of Section 3 the ST-FE discretization in presented and the dis-

cretization error analysis is developed. Finally, in Section 4we showa series of numerical examples for verifying

the theoretical results. The paper closes with the conclusions.

2 Preliminaries

2.1 Notations

Let  be a bounded Lipschitz domain in ℝd, d = 2,… , 4, with boundary Γ = 𝜕. For any multi-index 𝜶 =
(𝛼1,… , 𝛼d) of non-negative integers 𝛼1,… , 𝛼d, we use the following notations, (i) |a| = ∑d

i=1ai, (ii) set x
a =

x
a1
1
x
a2
2
… x

ad
d
for x ∈ ℝd, (iii) moreover introduce the differential operator D𝜶 := 𝜕a

x
= 𝜕

𝛼1
x1
… 𝜕

𝛼d
xd
, with 𝜕x j (⋅) =

𝜕(⋅)∕𝜕x j, j = 1,… , d. Let 1 ⩽ p ⩽ ∞ be fixed and 𝓁 be a non-negative integer. As usual, Lp() denotes the
Lebesgue spaces for which ∫|𝜑(x)| p dx < ∞, endowed with the norm ‖𝜑‖L p() =

(∫|𝜑(x)| p dx)1∕ p, and
W𝓁, p() is the Sobolev space, which consists of the functions 𝜑:→ ℝ such that their weak derivatives D𝜶𝜑

with |𝜶| ⩽ 𝓁 exist and belong to Lp(). If 𝜑 ∈ W𝓁, p(), then its norm is defined by

‖𝜑‖W𝓁, p() =
( ∑

0⩽|𝜶|⩽𝓁‖Da𝜑‖ p
L p()

)1∕ p

, ‖𝜑‖W𝓁,∞() = max
0⩽|𝜶|⩽𝓁‖Da𝜑‖∞
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for 1 ⩽ p < ∞ and p = ∞, respectively. We further define the spaces

W
𝓁, p
0

() :={𝜑 ∈ W𝓁, p() such that 𝜑|𝜕 = 0
}
, (2.1a)

W
𝓁, p
Σ∗ () :={𝜑 ∈ W𝓁, p() such that 𝜑|Σ∗⊂𝜕 = 0

}
. (2.1b)

Remark 2.1. If p = 2 we usually use the notation H𝓁() :=W𝓁,2(), 𝓁 = 0, 1, 2,…

Let the fixed integer 𝓁 ⩾ 1 and let the set A of all multi-indices having the form A :={a: a = (… ,miei,…)}
where 0 ⩽ mi ⩽ 𝓁, i = 1,… , d, and ei is the unit vector in the i-th direction. For 𝜑 ∈ W𝓁, p() denote

∑
a∈A
‖Da𝜑‖L p() =

d∑
i=1
‖𝜕mi

xi
𝜑‖L p(). (2.2)

We refer the reader to ref. [28] for more details about Sobolev spaces.

2.1.1 Differential operators on the space-time domain

Next, we define certain differential operators which are related to the time and the spatial variables. Let

J = (0, T] be the time interval with some final time T > 0 and letΩ be a bounded domain inℝdx , dx = 1, 2 or 3.

For later use, we consider the space-time cylinderQ ⊂ ℝd with d = dx + 1, defined byQ = J × Ω, and its bound-
ary parts Σ = 𝜕Ω × J, ΣT = Ω × {T}, and Σ0 = Ω × {0} such that 𝜕Q = Σ ∪ Σ0 ∪ ΣT . Accordingly to the

definition of 𝜕𝜶
x
, we now define the operator 𝜕

𝜶dx

x and also define the spatial gradient∇x𝜑 = (𝜕x1𝜑,… , 𝜕xdx
𝜑),

and the whole gradient∇𝜑 := (𝜕t𝜑,∇x𝜑).

2.2 Known inequalities and identities

The following inequalities are going to be used in several places in the text. Hölder’s and Young’s inequalities

read: For any 𝛿, 0 < 𝛿 < ∞, and 1 ⩽ p, q ⩽ ∞ such that 1

p
+ 1

q
= 1, for f ∈ Lp() and g ∈ Lq(), there holds

|||||||∫ f g dx

||||||| ⩽ ‖ f ‖L p()‖g‖Lq() ⩽ 𝛿

p
‖ f ‖ p

L p() +
𝛿−q∕ p

q
‖g‖q

Lq(). (2.3a)

Poincaré–Friedrichs inequality, see [28], [29]: Let ⊂ ℝd be a parallelepiped (cuboid) and let the face Σ∗ ⊂ 𝜕
vertical to the xj, 1 ⩽ j ⩽ d, coordinate plane. Then for any f ∈ W

1, p

Σ∗ (), it holds

∫

| f | p dx ⩽ C()∫


|𝜕xi f | p dx, 1 ⩽ i ⩽ d. (2.3b)

Let the vector 𝜷 = (𝛽1,… , 𝛽d), the function f ∈ W 1, p() and the outward normal vector n to 𝜕. In several

places we will use the identities:

∇ ⋅ (𝜷 f ) = 𝜷 ⋅∇ f + (∇ ⋅ 𝜷 ) f , (2.4a)

2∫

𝜷 ⋅∇ f f dx = −∫


∇ ⋅ 𝜷 f 2 dx + 2∫


𝜷 ⋅ n f 2 ds. (2.4b)
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3 The continuous problem

Let Ω be a bounded cuboid domain in ℝdx , with dx = 1, 2, 3, with smooth boundary Γ = 𝜕Ω. We define the

space-time cylinder Q̄T :=Ω̄ × [0, T], where T is the final time, and boundary 𝜕QT = Σ ∪ Σ̄0 ∪ Σ̄T , where

Σ :=Γ × (0, T) is the lateral boundary, Σ0 :=Ω × {0} and ΣT :=Ω × {T}. Consider the differential operator
L in the form

Lu := − div(𝜀∇xu)+ 𝜷 ⋅∇xu+ ru, (3.1)

where ∇xu is the spatial gradient of u, and 𝜀 > 0 is the constant diffusion coefficient. The constant vector

𝜷 := (𝛽x, 𝛽 y, 𝛽z) takes values inℝdx and the reaction parameter r takes values inℝ+. We consider the following

initial-boundary value problem: Find u(x, t): Q̄T → ℝ such that

ut + Lu = f in QT , (3.2a)

u = uΣ = 0 on Σ, (3.2b)

u(x, 0) = u0(x) on Ω, (3.2c)

where f , u0 are given functions. For simplicity, we only consider homogeneous Dirichlet boundary conditions

onΣ. However, the analysis presented in this work can easily be generalized to other constellations of boundary
conditions, cf., [10].

In literature, usually the main point of the concept for defining a weak formulation of (3.2) is to consider

that ut lives in the dual space (or in some sub-space) of the space where u lives, [1]. Anyway, as we mentioned

before, in recent years appropriate space-time weak formulations for parabolic problems similar to (3.2) have

been presented, where the regularity of the solution is considered uniformly in all the space time cylinder, i.e.,

u ∈ W2,p(QT ), see, e.g., [10] and the reference therein.

3.1 Weak space-time form

Assume that u0 ∈ H1
0
(Ω) and f ∈ L2(QT ). Multiplying (3.2a) by a smooth function 𝑣(x, t) vanishing on Σ ∪ ΣT ,

and after applying Green’s theorem and an integration by parts with respect to both t and x, and the usage of

the boundary conditions, we can obtain

∫
QT

{−u𝑣t + 𝜀∇xu ⋅∇x𝑣+ 𝜷 ⋅∇xu 𝑣+ ru 𝑣} dx dt = ∫
QT

f𝑣 dx dt + ∫
Ω

u0(x)𝑣(x, 0) dx. (3.3)

Introducing the appropriate regularity properties for the data, global regularity properties can be shown for the

generalized solution u of (3.3) in QT , i.e., ut ∈ L2(0, T; L2(Ω)), [1], and furthermore, it can be inferred by using
embeddings that u ∈ W 1,p(QT ), cf., [30], [31]. Applying a formal integration by parts with respect to time variable

we can arrive at the space-time weak formulation: Find u ∈ H1
Σ(QT ) with u(0, x) = u0(x), such that

∫
QT

{ut𝑣+ 𝜀∇xu ⋅∇x𝑣+ 𝜷 ⋅∇xu 𝑣+ ru 𝑣} dx dt = ∫
QT

f𝑣 dx dt, 𝑣 ∈ H1
Σ(QT ). (3.4)

Assumption 3.1. For the solution u of (3.4), assume that u ∈ V , with V = H1
Σ(QT ) ∩ H𝓁(QT ), 𝓁 ⩾ 2.

Remark 3.1. The space-time variational formulation (3.4) has a unique solution, see, e.g., analysis in refs. [30],

[31], and also [12] for considerations in Gelfand triple spaces. In these works, beside existence and uniqueness

results, one can also find useful a priori estimates and regularity results.
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In view of (3.4), we define

B(u, 𝑣) :=∫
QT

{ut𝑣+ 𝜀∇xu ⋅∇x𝑣+ 𝜷 ⋅∇xu 𝑣+ ru 𝑣} dx dt, (3.5a)

𝓁 f (𝑣) :=∫
QT

f𝑣 dx dt (3.5b)

for 𝑣 ∈ H1
Σ(QT ). Working in a formalistic way, and setting u = 𝑣 in (3.4), and then using (2.4b) and the fact that

∇x ⋅ 𝜷 = 0, we can deduce that

B(u, u) = ∫
ΣT

1

2
u2(s) ds+ 2∫

Σ

𝜷 ⋅ n u2 ds+ ∫
QT

𝜀|∇xu|2 + ru2 dx dt

≲ ∫
QT

| fu| dx dt + ∫
Ω

u2
0
(x) dx (2.31)(2.3b)

≲c(𝛿 )∫
QT

| f |2 dx dt + 𝛿∫
QT

|∇xu| p dx dt. (3.6)

Recalling (3.2b), and choosing sufficiently small, i.e., 𝛿 = 𝜀∕4 in (3.6), we can have the a priory bound

∫
ΣT

u2(s) ds+ 𝜘(𝜀)∫
QT

|∇xu|2 dx dt ≲ c(𝛿 )‖ f ‖2
L2(QT )

+ ‖u0‖2L2(Ω)
. (3.7)

Working in the same spirit for the case 𝛽 = 0, make test with 𝑣 := ut(x, t) in (3.4), and note that
d

dt
∫
QT
|∇xu|2 =∫

QT
∇xu ⋅∇xut, then

∫
QT

|ut|2 dx dt + 𝜀∫
ΣT

|∇xu|2 dx + r ∫
QT

uut dx dt

≲ c2(𝛿 )∫
QT

| f |2 dx dt + 𝛿∫
QT

|ut|2 dx dt + ∫
Ω

𝜀|∇xu0|2 dx (3.8)

provided that∇xu ∈ C([0, T], L2(Ω)). Choosing 𝛿 appropriate small, we obtain

c3(𝛿 )∫
QT

|ut|2 dx dt + 𝜀∫
ΣT

r

2
u2 + |∇xu|2 dx ≲ c2(𝛿 )∫

QT

| f |2 dx dt + ∫
Ω

r

2
u2
0
+ 𝜀|∇xu0|2 dx. (3.9)

Remark 3.2. The estimate in (3.8) does not provide any bound for the ut term. On the other hand the estimate in

(3.9) gives a bound for ut in L
2(QT ). This aligns with the idea of employing streamline stabilization techniques, as

described below, to develop a stable space-time discretization scheme for (3.4). Other ideas for producing stable

space-time discretizations have been developed by means of Petrov–Galerkin techniques after an appropriate

selection of trial and test space, see, e.g., [12], [13], [32].

3.2 The space-time finite element approximation

3.2.1 Basic concepts

We start by introducing the discrete setting. Let h :={El}l=1,…,N be a conforming mesh partition, of the space-

time cylinder QT into closed rectangular mesh elements, such that

Q̄T =
⋃
l

El, Eo,l1 ∩ Eo,l2 = ∅, 1 ⩽ l1 ≠ l2 ⩽ N, (3.10)

where Eo,l is the interior of the mesh element. Denote hE := (h1,E,… , hi,E,… , hd,E) to be the vector with the

i-th directional mesh widths of the element E ∈ h. For the analysis below some further mesh width quanti-

ties must be introduced. Define h = (h1,… , hi,… , hd) := (maxE{h1,E},… , maxE{hi,E},… , maxE{hd,E}) and
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hmin = (hmin,1,… , hmin,i,… , hmin,d) := (minE{h1,E},… , minE{hi,E},… , minE{hd,E}). The diameter of every

El ∈ h is denoted byhEl andwe seth :=maxElhEl ,ht := h1, hx :=maxi⩾2{hi}, hE, min :=mini⩾2{hi,E}. In the sequel
we write E ∈ h instead of El ∈ h. Note that the mesh h forms a Cartesian grid in QT and every mesh element

E ∈ h is affine equivalent to reference element Ê := [0, 1]d though the transformation

TE: Ê→ E, TE(x̂) :=x(x̂) = Ex̂+ bE, (3.11)

with bE ∈ ℝd and E ∈ ℝd×d to be a diagonal matrix of the form E,ii = hi,E, i = 1,… , d.

Assumption 3.2. The partition h is quasi-uniform, in the sense that there are positive constants 𝜎M , 𝜎m inde-

pendent of h such that 𝜎M ⩾ hi∕hmin,i ⩾ 𝜎m for all i = 1,… , d.

Remark 3.3. The quasi-uniformity properties Assumption 3.2 of h allows the use of anisotropic mesh widths
between the different axial directions, and furthermore to replace hE by h in the analysis below.

Remark 3.4. Consider a function f ∈ W 1,2(E) and the function f̂ = f (TE(x̂)). It can be concluded by

(3.11) that ∇
x̂
f̂ = E∇x

f . By applying the change of variables (3.11), it can be shown that ∫
Ê
|𝜕x̂i f̂ | p dx̂ =|E|−1|hp

i,E
∫
E
|𝜕xi f | p dx, i = 1,… , d, where p > 1, and |E| is the determinant of E .

On h we define the finite dimensional space
Vk
h
=
{
𝜑h ∈ C0(Q̄):𝜑h|E ∈ ℚk(E) ∀ E ∈ h, 𝜑h = 0 on Σ ∪ Σ0

}
. (3.12)

Hereℚk(E) is the space of polynomials on E composed by tensor products of uni-variate Lagrange polynomials

of degree at most k with respect to each variable, i.e.,ℚk(E) = ⊗d
i=1ℙ

k(xi ), where ℙk(xi ), i = 1,… , d is the uni-

variate Lagrange polynomials. In the analysis below, we consider the case of k = 1.

Proposition 3.1. Consider a polynomial function 𝜑h ∈ ℚk(E), E ∈ h such that 𝜑̂h = 𝜑h(TE(x̂)) ∈ ℚk(Ê). There

is a constant cinv independent of hE such that

d∑
i=1
‖𝜕xi𝜑h‖L2(E ) ⩽ cinv

d∑
i=1

h−1
i,E
‖𝜑h‖L2(E ). (3.13)

Proof. Since all the norms of 𝜑h ∈ ℚk(Ê) are equivalent, there is a c > 0 such that

‖𝜕xi𝜑̂h‖L2(Ê ) ⩽ c‖𝜑̂h‖L2(Ê ). (3.14)

Utilizing the form of the transformation (3.11) and applying the chain rule 𝜕xi𝜑h = 𝜕x̂i𝜑̂h
𝜕x̂i
𝜕xi
, we can obtain

∫
E

(𝜕xi𝜑h )
2 dx = h−2

i,E
|E|−1∫

Ê

(𝜕x̂i𝜑̂h )
2 dx̂

(3.14) ⩽ ch−2
iE
|E|−1∫

Ê

(𝜑̂h )
2 dx̂ ⩽ ch−2

i,E∫
E

(𝜑h )
2 dx,

(3.15)

from where we can deduce (3.13) by summing over i = 1,… , d. □

Corollary 3.1. By inequality (3.13) we can infer

d∑
i=1
‖Dxi

𝜑h‖2L2(E ) ⩽ cinv

d∑
i=1

h−2
E,min
‖𝜑h‖2L2(E ). (3.16)



I. Toulopoulos: SUPG-STFEMs for general parabolic problems — 319

3.2.2 The unified space-time FE scheme

Assumption 3.3. For simplicity in the discretization error analysis we suppose that u0,h = u0 := 0. For problems

with u0 ≠ 0 we refer to refs. [10], [19].

Based on (3.4) and using (3.5) we consider the following discretization of problem (3.4): Find uh ∈ Vk
h
such

that uh = u0,h on Σ0 and

B(uh, 𝑣h ) = 𝓁 f (𝑣h ) ∀ 𝑣h ∈ Vk
h
. (3.17)

In order to obtain stable solutions the scheme (3.17) is modified by adding an upwind stabilization term,

and the final discrete problem is written: Find uh ∈ Vk
h
such that uh = u0,h on Σ0 and

Bs(uh, 𝑣h ) :=B(uh, 𝑣h )+ S(uh, 𝑣h )

+ Rs(uh, 𝑣h ) = 𝓁 f

(
𝑣h + 𝜏𝜆𝜷QT

⋅∇𝑣h
)

∀ 𝑣h ∈ Vk
h
, (3.18a)

where the vector 𝜷QT
:= (1,𝜷 ) ∈ ℝd, and the streamline-upwind (SU) term S is

S(uh, 𝑣h ) :=
∑
E∈h∫E

𝜏𝜆
(
𝜷QT

⋅∇uh 𝜷QT
⋅∇𝑣h

)
dx dt. (3.18b)

Here 𝜏𝜆 :=𝜗h𝜆
E,min

, with 𝜗 > 0, 𝜆 > 1 fixed parameters, which will be specified below. The residual term has the

form

Rs(uh, 𝑣h ) :=
∑
E∈h∫E

− 𝜏𝜆
(
𝜀Δuh − ruh

)
𝜷QT

⋅∇𝑣h dx dt (3.18c)

and the linear form

𝓁 f

(
𝑣h + 𝜏𝜆𝜷QT

⋅∇𝑣h
)
:=
∑
E∈h∫E

f (𝑣h + 𝜏𝜆𝜷QT
⋅∇𝑣h ) dx dt. (3.19)

Remark 3.5. Note that, in case of working with linear spaces, i.e., Vk=1
h

, the residual terms take the form

Rs(uh, 𝑣h ) =
∑

E∈h∫E𝜏𝜆r uh 𝜷QT
⋅∇𝑣h dx dt.

Remark 3.6 (consistency). Under the Assumption 3.1, the following localized variational form

Bs(u, 𝑣h ) :=B(u, 𝑣h )+ S(u, 𝑣h )

+ Rs(u, 𝑣h ) = 𝓁 f

(
𝑣h + 𝜏𝜆𝜷QT

⋅∇𝑣h
)

∀ 𝑣h ∈ Vk
h

(3.20)

holds for the weak solution u.

In view of (3.20) and (3.18a), we have the following equation.

Corollary 3.2. Let u be the solution of problem (3.4) and uh the solution of problem (3.18a). Then the following

error equation holds for 𝑣h ∈ Vk
h
,

Bs(u− uh, 𝑣h ) = 0. (3.21)

Below the coercivity and boundedness properties of Bs(⋅, ⋅) are discussed.

Lemma 3.1. Let 𝑣h ∈ Vk
h
and the Assumption 3.3. Then

Bs(𝑣h, 𝑣h ) ⩾
1

2
‖𝑣h‖2L2(ΣT )

+
∑
E∈h

{
𝜀

2
‖∇x𝑣h‖2L2(E ) + r

2
‖𝑣h‖2L2(E ) + 𝜏𝜆

2
‖𝜷QT

⋅∇𝑣h‖2L2(E )
}
.

(3.22)
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Proof. For Ei,∈ h, letnEi = (nt,Ei ,nx,Ei ) be the unit normal vector on 𝜕Ei. Letne,ij = (nt,ij,nx,ij) be the unit normal

vector on the common faces eij = 𝜕Ei ∩ 𝜕Ej for Ei, Ej ∈ h. Using (2.4b) and the identity 2𝑣(𝜷QT
⋅∇𝑣) = 𝜷QT

⋅
∇𝑣2 = ∇ ⋅ (𝜷QT

𝑣2 ), it follows immediately that

∑
Ei∈h∫Ei

𝑣h(𝜷QT
⋅∇𝑣h ) dx dt =

1

2

∑
Ei∈h∫Ei

∇ ⋅ (𝜷QT
𝑣h ) dx dt =

1

2

∑
Ei∈h∫𝜕Ei

nEi
⋅ 𝜷QT

𝑣2
h
dS

= 1

2

∑
ei j

∫
ei j

𝜷QT
⋅ ne,i j
(
𝑣2
h
|Ei − 𝑣2

h
|E j

)
dS = 1

2∫
ΣT

𝑣2
h
dS. (3.23)

Recalling the terms of Bs(⋅, ⋅) in (3.18) and following the same steps as in (3.6) and using (3.23), we can derive
the bound

Bs(𝑣h, 𝑣h ) =
∑
E∈h∫E

[(
𝜷QT

⋅∇𝑣h
)
𝑣h + 𝜀∇x𝑣h ⋅∇x𝑣h + r𝑣2

h

]
dx dt

+
∑
E∈h∫E

𝜏𝜆
[
−𝜀Δ𝑣h + 𝜷QT

⋅∇𝑣h + r𝑣h
]
𝜷QT

⋅∇𝑣h dx dt

⩾ 1

2
‖𝑣h‖2L2(ΣT )

+
∑
E∈h

{
r‖𝑣h‖2L2(E ) + 𝜀‖∇x𝑣h‖2L2(E ) + 𝜏𝜆‖𝜷QT

⋅∇𝑣h‖2L2(E )} (3.24)

+
∑
E∈h∫E

𝜏𝜆
[
−𝜀Δ𝑣h + r𝑣h

]
𝜷QT

⋅∇𝑣h dx dt.

Now, for the last sum in (3.24), we apply (2.3a) and obtain|||||||
∑
E∈h∫E

𝜏𝜆
[
−𝜀Δ𝑣h + r𝑣h

]
𝜷QT

⋅∇𝑣h dx dt
|||||||

⩽
∑
E∈h

⎧⎪⎨⎪⎩
|||||||∫E − 𝜏𝜆∕2𝜀Δ𝑣h 𝜏𝜆∕2𝜷QT

⋅∇𝑣h dx dt
|||||||+
|||||||∫E 𝜏

𝜆∕2r𝑣h 𝜏
𝜆∕2𝜷QT

⋅∇𝑣h dx dt
|||||||
⎫⎪⎬⎪⎭

⩽
∑
E∈h

{
𝜏𝜆𝜀2‖Δ𝑣h‖2L2(E ) + 𝜏𝜆 r2‖𝑣h‖2L2(E ) + 𝜏𝜆

2
‖𝜷QT

⋅∇𝑣h‖2L2(E )
}
.

(3.25)

Here, wemake use of the discrete-inverse inequality, ‖Δ𝑣h‖2L2(E ) ⩽ c2
inv

h2
E,min

‖∇x𝑣h‖2L2(E ), see (3.13) and (3.16), and the
identity ab ⩽ a2 + 1

4
b2 to find

|||||||
∑
E∈h∫E

𝜏𝜆
[
−𝜀Δ𝑣h + r𝑣h

]
𝜷QT

⋅∇𝑣h dx dt
|||||||

⩽
∑
E∈h

{
𝜀2 𝜏𝜆

(
cinv
hE,min

)2‖∇x𝑣h‖2L2(E ) + 𝜏𝜆 r2‖𝑣h‖2L2(E ) + 𝜏𝜆

2
‖𝜷QT

⋅∇𝑣h‖2L2(E )
}
.

(3.26)
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Now, introducing the result (3.26) into (3.24), and using that 0 < 𝜀 ⩽ 1, we find

Bs(𝑣h, 𝑣h ) ⩾
1

2
‖𝑣h‖2L2(ΣT )

+
∑
E∈h

{
r‖𝑣h‖2L2(E ) + 𝜀‖∇x𝑣h‖2L2(E ) + 𝜏𝜆‖(𝜷QT

⋅∇𝑣h )‖2L2(E )}

−
∑
E∈h

{
𝜀2 𝜏𝜆

(
cinv
hE,min

)2‖∇𝑣h‖2L2(E ) + 𝜏𝜆 r2‖𝑣h‖2L2(E ) + 𝜏𝜆

2
‖𝜷QT

⋅∇𝑣h‖2L2(E )
}

= 1

2
‖𝑣h‖2L2(ΣT )

+
∑
E∈h

{(
𝜀− 𝜀2 𝜏𝜆

(
cinv
hE,min

)2)‖∇x𝑣h‖2L2(E ) + (r − 𝜏𝜆 r2 )‖𝑣h‖2L2(E )
+
(
𝜏𝜆 − 𝜏𝜆

2

)‖𝜷QT
⋅∇𝑣h‖2L2(E )

}
.

(3.27)

Making the appropriate choice for the parameter 𝜗 = 1

2
min
(

1

2c2
inv

,
1

2r

)
, and setting 𝜆 = 2, we can infer the

bound (3.22). □

In view of (3.22), we introduce the mesh-dependent norms

‖𝑣‖2
s
= 1

2
‖𝑣‖2

L2(ΣT )
+
∑
E∈h

{
𝜀

2
‖∇x𝑣‖2L2(E ) + r

2
‖𝑣‖2

L2(E )
+ 𝜏𝜆

2
‖𝜷QT

⋅∇𝑣‖2
L2(E )

}
, (3.28a)

‖𝑣‖2
h,s
:= ‖𝑣‖2

s
+
∑
E∈h

𝜏−𝜆‖𝑣‖2
L2(E )

+
∑
E∈h

{
𝜏𝜆𝜀2‖Δ𝑣‖2

L2(E )

}
. (3.28b)

By (3.22) we can immediately write the estimate

Bs(𝑣h, 𝑣h ) ⩾ ‖𝑣h‖2s ∀𝑣h ∈ Vk
h
. (3.29)

Setting in (3.29) 𝑣h = zh − uh ∈ Vk
h
and recalling the error equation (3.21), we get

‖zh − uh‖2s ⩽Bs(zh − uh, zh − uh )+ Bs(uh − u, zh − uh ) = Bs(zh − u, zh − uh ). (3.30)

Lemma 3.2. Let u the weak solution of (3.5) under Assumption 3.1 and u0 = 0. Let uh ∈ Vk
h
be the finite element

solution in (3.17). The approximation error estimate

‖u− uh‖s ⩽ C0,approx‖u− zh‖h,s (3.31)

holds for all zh ∈ Vk
h
, where the constant C0,approx is independent of h.

Proof. Let a zh ∈ Vk
h
. Recalling the terms appearing in (3.18), we have

Bs(u− zh, uh − zh ) :=B(u− zh, uh − zh )+ S(u− zh, uh − zh )

+ Rs(u− zh, uh − zh )
(3.32)

with

B(u− zh, uh − zh ) :=∫
QT

{𝜕t(u− zh )(uh − zh )+ 𝜀∇x(u− zh ) ⋅∇x(uh − zh ) (3.33)

+𝜷 ⋅∇x(u− zh ) (uh − zh )+ r(u− zh ) (uh − zh )} dx dt,

S(u− zh, uh − zh ) :=
∑
E∈h∫E

𝜏𝜆
(
𝜷QT

⋅∇(u− zh ) 𝜷QT
⋅∇(uh − zh )

)
dx dt, (3.34)
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Rs(u− zh, uh − zh ) :=
∑
E∈h∫E

− 𝜏𝜆
(
𝜀Δ(u− zh )𝜷QT

⋅∇(uh − zh )
)
dx dt. (3.35)

Using appropriately (2.3a), we derive the following bounds for the terms in (3.33):

∫
QT

𝜀∇x(u− zh ) ⋅∇x(uh − zh ) dx dt ⩽
√
𝜀‖∇x(u− zh )‖L2(QT )

‖uh − zh‖s, (3.36)

∫
QT

(
(ut − zh,t )+ 𝜷 ⋅∇x(u− zh )

)
(uh − zh ) dx dt = ∫

QT

(
𝜷QT

⋅∇(u− zh )
)
(uh − zh ) dx dt

(2.4)= − ∫
QT

(
𝜷QT

⋅∇(uh − zh )
)
(u− zh ) dx dt + ∫

𝜕QT

𝜷QT
⋅ n(u− zh )(uh − zh ) ds

⩽
(
𝜏𝜆‖𝜷QT

⋅∇(uh − zh )‖2L2(QT )

)1∕2(
𝜏−𝜆‖u− zh‖2L2(QT )

)1∕2
(using BCs)

+ ‖uh − zh‖L2(ΣT )
‖u− zh‖L2(ΣT )

⩽
(
2
(
𝜏−𝜆‖u− zh‖2L2(QT )

)1∕2
+ 2‖u− zh‖L2(ΣT )

)‖uh − zh‖s,

(3.37)

and also

∫
QT

(
r

2

)1∕2
(uh − zh )(2r)

1∕2(u− zh ) dx dt ⩽
(
r

2
‖uh − zh‖2L2(QT )

)1∕2(
2r‖u− zh‖2L2(QT )

)1∕2
⩽ Cr‖u− zh‖L2(QT )

‖uh − zh‖s.
(3.38)

Treating together the terms in (3.34) and (3.35), we get

∑
E∈h∫E

𝜏𝜆∕2
(
−𝜀Δ(u− zh )+ 𝜷QT

⋅∇(u− zh )+ r(u− zh )
)
𝜏𝜆∕2𝜷QT

⋅∇(uh − zh ) dx dt
|||

⩽
∑
E∈h

{
𝜏𝜆∕2
(
𝜀‖Δu−Δzh‖L2(E ) + ‖𝜷QT

⋅∇(u− zh )‖L2(E ) + r‖u− zh‖L2(E ))
× 𝜏𝜆∕2‖𝜷QT

⋅∇(uh − zh )‖L2(E )}
≲
∑
E∈h

{
𝜏𝜆
(
𝜀2‖Δu−Δzh‖2L2(E ) + ‖𝜷QT

⋅∇(u− zh )‖2L2(E ) + r2‖u− zh‖2L2(E ))}1∕2‖uh − zh‖s.
(3.39)

Collecting the previous bounds, and using (3.32) we can obtain

Bs(u− zh, uh − zh ) ⩽ ‖u− zh‖h,s‖uh − zh‖s. (3.40)

Combining (3.40) and (3.30) and adding ‖u− zh‖s on both sides of the inequality we can deduce
‖uh − zh‖s + ‖u− zh‖s ≲ 2‖u− zh‖h,s. (3.41)

The result (3.31) can be derived by applying triangle inequality. □

Note that the error estimate (3.31) includes bounds for the term ‖𝜕tu− 𝜕tuh‖L2 , compare with Remarks 3.1
and 3.2.
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3.2.3 Quasi-interpolation

Let V = W𝓁,p(QT ),𝓁 ⩾ 2, p > 1. We introduce the quasi-interpolant, [29], [33],

Πh:V → Vk
h
, Πh f =

dim
Vk
h∑

i=1
𝜆i( f )𝜑i,h, (3.42)

where 𝜆i are the linear dual functionals and 𝜑i,h the local shape functions of Vk
h
. The multivariate quasi-

interpolant given in (3.42) can be constructed by the corresponding uni-variate quasi-interpolants 𝜋1,… , 𝜋d,

i.e.,Πh f = (𝜋1 ⊗𝜋2 · · ·⊗𝜋d)( f ), and each dual functional 𝜆i( f ) can be similarly defined by the corresponding

uni-variate dual functionals, see, e.g., [29], [33]–[35]. For convenience one can consider a dual basis satisfying

𝜆i(𝜑 j,h) = 𝛿ij, i, j = 1,… , dimVk
h
, [33]. By this property it can be immediately inferred that Πh(𝜑h) = 𝜑h for all

𝜑h ∈ Vk
h
.

Remark 3.7. A discussion for the dual functionals 𝜆i( f ) when f belongs to tensor spaces is given in refs. [34],

[35]. In ref. [25] an analysis is given for the case of low regularity functions f and anisotropic meshes.

The following stability bounds can be shown, [29], [33], [35].

Proposition 3.2. Let f be a smooth function. The bounds

‖Πh f ‖L p(QT )
⩽ C0‖ f ‖L p(QT )

, (3.43a)

‖Πh f ‖W1, p(QT )
⩽ C1‖ f ‖W1, p(QT )

(3.43b)

hold, where C0, C1 are positive constants.

Suppose ⊂ ℝd is a cuboid domain and h = (h1,… , hd ) is a vector containing the sizes hi in each dimen-

sion xi, i = 1,… , d. Define the set of multi-indices A = {mei, i = 1,… , d, m ∈ ℕ}, where ei are the orthonor-
mal basis vectors, and denote with A0 = {m0 = (m1,… ,md):mi < m} the set of multi-indices which corre-

sponds to the tensor product polynomials of degree less than m. Note that A0 can also be charactirized as

A0 = {m0:D
a
x
m0 = 0 ∀ a ∈ A}. For a smooth function f , we define the tensor Taylor polynomial of degree

less thanm evaluated at y:

Tm
y
f (x) =

∑
m0∈A0

1

m0!
Dm0 f (y)(x− y)m0 (3.44a)

and the averaged Taylor expansion over the ball B ⊂ :
TA
y,𝜑

f (x) = ∫
B

Tm
y
f (x)𝜑(y) dy, (3.44b)

where 𝜑 ∈ C∞
0
(B) is a cut-off function with ∫

B
𝜑(y) dy = 1, see [29, Chapt. 4].

In the analysis below we focus mainly on the case m = 2. Let the multi-indices a ∈ A and 𝜷 = (𝛽1,… , 𝛽d)

such that |𝜷| ⩽ 1.

Proposition 3.3. Let f be a smooth function. The remainder RA f := f − TA
y,𝜑

f has the form

RA f (x) =
∑
a∈A∫

k
a
(x, y)Da f (y) dy, (3.45a)
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where

k
a
(x, y) = C

a,m(x− y)ak(x, y) (3.45b)

with

k(x, y) ⩽ C|x− y|−d, |D𝛃
x
k
a
(x, y)| ⩽ C|x− y||a|−|𝜷|−d. (3.45c)

Proof. The bounds can be shown by combining the results given in refs. [29], [35], [36]. □

We have the commutativity result.

Proposition 3.4. Let f be a smooth function then

D𝜷TA
y,𝜑

f = T
A−𝜷
y,𝜑 D𝜷 f . (3.46)

Proof. Note that for 𝜷 > m0 holds that D
𝜷
x
x
m0 = 0 and thus

D
𝜷
x
TA
y,𝜑

f (x) =
∑

m0∈A0
∫
B

𝜑(y)D
m0

y
f (y)

(x− y)(m0−𝜷 )

(m0 − 𝜷 )! dy

=
∑

𝜸∈(A0−𝜷 )
∫
B

𝜑(y)D
𝜷+𝜸
y

f (y)
(x− y)𝜸

𝜸! dy

=
∑

𝜸∈(A0−𝜷 )
∫
B

𝜑(y)D
𝜸
y

(
D
𝜷
y
f (y)
)
(x− y)𝜸

𝜸! dy

= T
A−𝜷
y,𝜑 (D𝜷 f )(x).

(3.47)

□

Let the multi-indices a ∈ A and 𝜷 = (𝛽1,… , 𝛽d) such that |𝜷| ⩽ 1. Following similar ideas as in refs. [25],

[29], [35], we show the estimates.

Theorem 3.1. Let f ∈ W𝓁, p() with 𝓁 = m. Then there exist a tensor Taylor polynomial TA f := TA
y,𝜑

f such that

‖ f − TA f ‖L p() ⩽ C0
∑
a∈A

h
a‖Da f ‖L p(), (3.48a)

‖D𝜷 ( f − TA f )‖L p() ⩽ C1
∑

a∈A,𝜸=(a−𝜷 )
h
𝜸

‖D𝜸 (D𝜷 f )‖L p(), (3.48b)

where C0 > 0, C1 > 0 are independent of the mesh sizes hi, i = 1,… , d.

Proof. Assume initially that  ⊂ ℝd is a (reference) cuboid domain with diam() ∼ 1, e.g.,  := ̂ = [−1, 1]d.
By Proposition 3.3 we can deduce|||||||∫̂ k

a
(x, z)Da f (z) dz

||||||| ⩽ C‖Da f ‖L p(̂) ∀a ∈ A, (3.49)

which implies that ‖ f − TA f ‖L p(̂) ⩽ C0
∑
a∈A
‖Da f ‖L p(̂). (3.50)

Further, combining the last bounds with Proposition 3.4, we can get

‖D𝜷 ( f − TA f )‖L p(̂) = ‖RA−𝜷D𝜷 f (x)‖L p(̂) ⩽ C
∑

a∈A,𝜸=(a−𝜷 )
‖D𝜸 (D𝜷 f (x))‖L p(̂). (3.51)
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Utilizing now the tensor character of the mesh, we can apply the change of variables x = x̂+ b, see (3.11),

and to transform ̂ to. Then we can show that, see Remark 3.4,

‖D𝜷 ( f − TA f )‖ p
L p(̂)

= ||−1h p𝜷

 ‖D𝜷 ( f − TA f )‖ p
L p()

,

‖Da f ‖ p
L p(̂)

= ||−1h pa

 ‖Da f ‖L p().
(3.52)

Inserting the results (3.52) into the estimates (3.50), (3.51), we can deduce the required estimates (3.48). □

Having (3.48) we can show bounds on howwell the quasi-interpolantΠh f approximates the function f . We

follow standard ideas from the finite element methodology. Recall that a ∈ A and 𝜷 = (𝛽1,… , 𝛽d) with |𝜷| ⩽ 1.

Lemma 3.3. Let a function f ∈ W𝓁,2(QT ),𝓁 = m, and Assumption 3.2 for the mesh h. Then for the quasi-

interpolant (3.42) the interpolation estimates

‖ f −Πh f ‖2L2(E ) ⩽ cintp,0
∑
a∈A

h
a

E
‖Da f ‖L2(E ), E ∈ h, (3.53a)

‖D𝜷 ( f −Πh f )‖L2(E ) ⩽ cintp,1
∑

a∈A,𝜸=(a−𝜷 )
h
𝜸

E
‖D𝜸 (D𝜷 f )‖L2(E ), E ∈ h, (3.53b)

hold, where the positive constants cintp,0, cintp,1 are independent of hE.

Proof. By the results of Theorem 3.1 there exists a tensor polynomial p f ∈ ℙm0 , m0 ∈ A0 such that

‖ f − p f ‖L2(E ) ≲∑
a∈A

h
a

E
‖Da f ‖L2(E ), E ∈ h. (3.54)

Using thatΠh(𝑣h ) = 𝑣h ∀ 𝑣h ∈ Vk
h
and the stability properties (3.48a), (3.43a) we get

‖ f −Πh f ‖L2(E ) ⩽ ‖ f − p f ‖L2(E ) + ‖Πh( f − p f )‖L2(E )
⩽ C‖ f − p f ‖L2(E ) ⩽∑

a∈A
h
a

E
‖Da f ‖L2(E ) ⩽∑

a∈A
h
a‖Da f ‖L2(E ). (3.55)

Following the same steps as above and using the interpolation estimate (3.48b) we can prove (3.53b). □

Remark 3.8. Note that the anisotropic character of the mesh appears in the interpolation estimates given in

(3.53). Similar estimates have been shown in ref. [25] for low regularity functions on anisotropic triangular

meshes.

Lemma 3.4. Consider a mesh h, with uniform directional mesh widths, i.e., h1 ∼ h2 ∼ · · · ∼ hd and an element

E ∈ h with diam(E) := hE. Let a function f ∈ W𝓁,p(Ω), 1 ⩽ 𝓁, 1 < p, and the local intepolation operator Πh ∈
ℚk=l−1. Then the interpolation estimate

| f −Πh f |Wm, p(E ) ≲ h𝓁−m
E
| f |W𝓁, p(E ) (3.56)

holds for 0 ⩽ m ⩽ 𝓁.

Proof. See, cf. [29]. □

For isotropic meshes it is known (cf. [29]), that there is a constant Ctrc > 0, such that

‖𝑣‖2
L p(𝜕E )

⩽ Ctrch
−1(‖𝑣‖L2(E ) + h‖∇𝑣‖L2(E ))2, E ∈ h. (3.57)
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Proposition 3.5. Let a face e ⊂ 𝜕E of a mesh element E ∈ h such that |E| = |e|h⊥,e, where h⊥,e is the measure of
the edge perpendicular to e. Let a function f ∈ H1(QT ). Then there is a positive constant Ctrc such that

‖ f ‖2
L2(e)

⩽ Ctrch
−1
⊥,e

(‖ f ‖2
L2(E )

+
d∑
i=1

h2
i,E
‖𝜕xi f ‖2L2(E )

)
. (3.58)

Proof. Let f̂ := f ⚬ TE ∈ H1(Ê). For the face ê ⊂ 𝜕Ê the trace ineguality has the form (cf. [29]),

‖f̂ ‖2
L2( ê)

≲ ‖f̂ ‖2
L2(Ê )

+ ‖∇f̂ ‖2
L2(Ê )

. (3.59)

Recalling (3.11) and Remark 3.4, we can transform (3.59) onto E to deduce

‖ f ‖2
L2(e)
|e|−1 ≲ |E|−1(‖ f ‖2

L2(E )
+ ‖E∇ f ‖2

L2(E )

)
. (3.60)

Owing to the form of E we have ‖E∇ f ‖2
L2(E )

≲
∑d

i=1h
2
i,E
‖𝜕xi f ‖2L2(E ). Using that h⊥,e|e| = |E| we can obtain

(3.58). □

Remark 3.9. For e ⊂ ΣT inequality (3.58) is valid for h⊥,e ∼ ht.

Corollary 3.3. Let the assumptions of Lemma 3.3 and assume f ∈ H2(QT ). Then the following interpolation esti-

mate

‖ f −Πh f ‖2L2(ΣT )
≲

∑
E∈h,𝜕E⊂ΣT

h
−e1
E

(∑
a

h
2a
E
+

d∑
i=1

(
h
3ei
E

+ hi

d∑
j≠i

h2
j

))‖ f ‖2
H2(E )

(3.61)

holds for all multiindices a ∈ A and ei to be the i-th unit normal vector.

Proof. According to (3.58) and Remark 3.9,

‖ f −Πh f ‖2L2(ΣT )
=
∑

e∈ ,e⊂ΣT

∫
e

| f −Πh f |2 ds
⩽ c

∑
E∈h,𝜕E⊂ΣT

h−1
t

(‖ f −Πh f ‖2L2(E ) + d∑
i=1

h2
i
‖𝜕xi ( f −Πh f )‖2L2(E )

)

⩽ c
∑

E∈h,𝜕E⊂ΣT

h−1
t

(∑
a

h
2a
E
‖Da f ‖2

L2(E )
+

d∑
i=1

h2
i

∑
𝛾=a−ei

h
𝜸

E
‖D𝛾 (𝜕xi f )‖2L2(E )

)

⩽ c
∑

E∈h,𝜕E⊂ΣT

h
−e1
E

(∑
a

h
2a
E
+

d∑
i=1

∑
𝛾=a−ei

h
2ei
E
h
𝛾

E

)‖ f ‖2
H2(E )

⩽ c
∑

E∈h,𝜕E⊂ΣT

h
−e1
E

(∑
a

h
2a
E
+

d∑
i=1

∑
a

h
a+ei
E

)‖ f ‖2
H2(E )

.

(3.62)

Expanding the last sum in (3.62), we get

‖ f −Πh f ‖2L2(ΣT )
⩽ c

∑
E∈h,𝜕E⊂ΣT

h
−e1
E

(∑
a

h
2a
E
+

d∑
i=1

(
h
3ei
E

+ hi

d∑
j≠i

h2
j

)‖ f ‖2
H2(E )

as reguired. □
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Lemma 3.5. Let f ∈ V satisfying the assumptions of Lemma 3.3, and let the associated interpolantΠh f , see (3.53).

Then there exist a constant independent of f and hE such that the following quasi-interpolation estimate

‖ f −Πh f ‖2h,s ≲ ∑
E∈h

{(∑
a∈A

h
2a−e1
E

+
d∑
i=1

∑
a∈A

h
a+ei−e1
E

)
+
∑
a∈A

𝜏−𝜆h2a
E

(3.63)

+
d∑
j=2

∑
a∈A

{
𝜏𝜆𝜀2h

2(a−2e j )

E
+ 𝜀

2
h
2(a−e j )

E

}
+

d∑
i=1

∑
a∈A

𝜏𝜆

2
h
2(a−ei )
E

}‖ f ‖2
H2(E )

holds true.

Proof. Recall that

‖ f −Πh f ‖2h,s = 1

2
‖ f −Πh f ‖2L2(ΣT )

+
∑
E∈h

𝜏−𝜆‖ f −Πh f ‖2L2(E ) +∑
E∈h

{
𝜏𝜆𝜀2‖Δ f −ΔΠh f ‖2L2(E )}

+
∑
E∈h

{
𝜀

2
‖∇x( f −Πh f )‖2L2(E ) + r

2
‖ f −Πh f ‖2L2(E ) + 𝜏𝜆

2
‖𝜷QT

⋅∇( f −Πh f )‖2L2(E )
}
.

(3.64)

Under the regularity assumptions for f and utilizing (3.53) and (3.61), we can infer the following estimates

‖ f −Πh f ‖2L2(ΣT )
≲

∑
E∈h,𝜕E⊂ΣT

(∑
a∈A

h
2a−e1
E

+
d∑
i=1

∑
a∈A

h
a+ei−e1
E

)‖ f ‖2
H2(E )

and also ∑
E∈h

𝜏−𝜆‖ f −Πh f ‖2L2(E ) ≲ ∑
E∈h

∑
a∈A

𝜏−𝜆h2a
E
‖ f ‖2

H2(E )
,

∑
E∈h

{
𝜏𝜆𝜀2‖Δ( f −Πh ) f ‖2L2(E )} ≲

∑
E∈h

d∑
j=2

∑
a∈A

𝜏𝜆𝜀2h
2(a−2e j )

E
‖ f ‖2

H2(E )
,

∑
E∈h

{
𝜀

2
‖∇x( f −Πh f )‖2L2(E )} ≲

∑
E∈h

d∑
j=2

∑
a∈A

𝜀

2
h
2(a−e j )

E
‖ f ‖2

H2(E )
,

∑
E∈h

{
𝜏𝜆

2
‖𝜷QT

⋅∇( f −Πh f )‖2L2(E )
}

≲
∑
E∈h

d∑
j=1

∑
a∈A

𝜏𝜆

2
h
2(a−e j )

E
‖ f ‖2

H2(E )
.

Inserting the previous estimates in (3.64) we derive (3.63). □

Example 1 (isotropic-uniform mesh). Assume QT = [0, L] × [0, L] ⊂ ℝd=2, and assume a h with uniform uni-

directional grid sizes, that means ht ∼ hx ∼ h. Consider a function f ∈ H2(QT ) and the set of multi-indices A =
{a = (a1, a2): a = 2ei, i = 1, 2}. Then by (3.63) we can conclude thatΠh satisfies on isotropicmeshes the following

estimate ‖ f −Πh f ‖2h,s ≲ {h2 + 𝜏−𝜆h4 + 𝜏𝜆𝜀2 + 𝜀

2
h2 + 𝜏𝜆

2
h2
}∑

E∈h
‖ f ‖2

H2(E )
. (3.65)

Example 2 (independent directional mesh sizes for QT ⊂ ℝd=3). Assume that QT = [0, L]3 ⊂ ℝd=3, and for the

uni-directional grid sizes assume hE :=h = (ht := h1, h2 := hx, h3 := hy). Consider a function f ∈ H2(QT ) and

the set of multi-indices A = {a = (a1, a2, a3): a = 2ei, i = 1, 2, 3}. Then by the estimate given in (3.63) we can

have
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‖ f −Πh f ‖2h,s ≲∑
a∈A

{(
h
2a1−1
1

h
2a2
2
h
2a3
3

+ h
a1
1
h
a2
2
h
a3
3
+ h

a1−1
1

h
a2+1
2

h
a3
3
+ h

a1−1
1

h
a2
2
h
a3+1
3

)
(3.66)

+ 𝜏−𝜆h
2a1
1
h
2a2
2
h
2a3
3

+ 𝜏𝜆𝜀2
(
h
2a1
1
h
2a2−4
2

h
2a3
3

+ h
2a1
1
h
2a2
2
h
2a3−4
3

)
+ 𝜀

2

(
h
2a1
1
h
2a2−2
2

h
2a3
3

+ h
2a1
1
h
2a2
2
h
2a3−2
3

)
+ 𝜏𝜆

2

(
h
2a1−2
1

h
2a2
2
h
2a3
3

+ h
2a1
1
h
2a2−2
2

h
2a3
3

+ h
2a1
1
h
2a2
2
h
2a3−2
3

)}∑
E∈h
‖ f ‖2

H2(E )

≲
{
h3
1
+ h−1

1

(
h4
2
+ h4

3

)
+ h2

1
+ h2

2
+ h2

3
+ h1h2 + h−1

1
h3
2
+ h−1

1
h2h

2
3
+ h1h3 + h−1

1
h2
2
h3 + h−1

1
h3
3

+ 𝜏−𝜆
(
h4
1
+ h4

2
+ h4

3

)
+ 𝜏𝜆𝜀2

(
2+ h4

1
h−4
2

+ h−4
2
h4
3
+ h4

1
h−4
3

+ h4
2
h−4
3

)
+ 𝜀

2

(
h4
1
h−2
2

+ h2
2
+ h−2

2
h4
3
+ h4

1
h−2
3

+ h4
2
h−2
3

+ h2
3

)
+ 𝜏𝜆

2

(
h2
1
+ h−2

1
h4
2
+ h−2

1
h4
3
+ h4

1
h−2
2

+ h2
2
+ h−2

2
h4
3
+ h4

1
h−2
3

+ h4
2
h−2
3

+ h2
3

)}∑
E∈h
‖ f ‖2

H2(E )
.

Theorem 3.2. Let the solutions u and uh satisfy the assumptions in Lemma 3.2 and let theΠh satisfy the assump-

tions in Lemma 3.3. Then the following error convergence result holds

‖u− uh‖2h ≲ ∑
E∈h

{(∑
a∈A

h
2a−e1
E

+
d∑
i=1

∑
a∈A

h
a+ei−e1
E

)
+
∑
a∈A

𝜏−𝜆h2a
E

(3.67)

+
d∑
j=2

∑
a∈A

{
𝜏𝜆𝜀2h

2(a−2e j )

E
+ 𝜀

2
h
2(a−e j )

E

}
+

d∑
i=1

∑
a∈A

𝜏𝜆

2
h
2(a−ei )
E

}‖u‖2
H2(E )

.

Proof. We combine Lemmas 3.2 and 3.5 and the assertion follows. □

Corollary 3.4. Let h be a uniform mesh partition, i.e., h1 ∼ · · · ∼ hdx+1 ∼ h. Let further that u ∈ H𝓁(QT ) with

𝓁 ⩾ 2 and uh ∈ Vk
h
, k = 1. Under the assumptions of Theorem 3.2 holds

‖u− uh‖h ≲ c h𝓁−1‖u‖H𝓁 (QT )
(3.68)

with c > 0 depending on the problem data.

Proof. The convergence rate (3.68) follows immediately by applying the mesh uniformity properties in (3.63)

and in (3.67). □

4 Numerical examples

In order to validate the estimates derived in the previous sections, a series of numerical tests are presented below

choosing different values for the parameters of the problem. For the two-dimensional problems we set 𝜏𝜆 =
𝜗h𝜆

x
with 𝜗 = 0.5, 𝜆 = 2, and the mesh sizes hx, ht are chosen independently depending on the purpose of the

numerical computation. For the three dimensional problems we set 𝜏𝜆 = 𝜗h2
E,min

. First, we start by considering

the problem on a space time cylinderQT ⊂ ℝ2 with a smooth solution and thenwith a less regular solution. Note

that in this case 𝜷 := (1, 𝛽x). Thereafter, we present computations considering the problem on QT ⊂ ℝ3. For all
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the test cases, we mainly use ℚk with k = 1, local polynomial spaces, and in a few examples we provide results

using k = 2 local polynomial spaces, see (3.12).

The examples have been solved on a series of mesh refinement levels, s = 0, 1, 2,…with hs, hs+1,…, where

the asymptotic convergence behavior of the error ‖u− uh‖h is investigated. For the first problem the behav-

ior of the error ‖u− uh‖t,h := (‖u− uh‖2L2 + 𝜏𝜆‖𝜕tu− 𝜕tuh‖2L2 )1∕2 is also studied. Note that a separation of the

magnitudes of the two errors is not completely supported by the discretization analysis. We just provide this

numerical test which investigates if ‖u− uh‖t,h and ‖u− us‖s follow the same asymptotic behavior. Also, we

mention that the “expected values” of the rates, which are written in the tables, are the values resulting from

the discretization error analysis. In the numerical computations the initial condition u0 and the boundary data

uΣ are determined by the L
2-projection of the exact solution u onto polynomial space.

The linear system produced by the method (3.18a) is (in general) not symmetric and a direct LU method

has been used to solve it. One can also apply GMRES iterative solvers for its solution. However, several efficient

methodshavebeenpresented in the literature for speedingup the solutionprocess of the system.We refer to refs.

[19], [21], [22], [37] for discussions on developing algebraic multigrid methods and on different parallelization

approaches for STFEMs.

The 2-d numerical examples have been performed using an in-house code which has been implemented on

a Intel(R) Core(TM) i7-8700 CPU with Gentoo Linux optimized system.

The conclusion from the results presented below is that the proposed space-time FE scheme is stable,

behaves well and the numerical convergence rates are in agreement with the theoretically predicted rates.

4.1 Two-dimensional space-time cylinders

4.1.1 Smooth solution, uniformmeshes

In the first numerical example the domain is Q̄T = [0, 1] × [0, 1] and the exact solution is u(t, x) =
sin(2𝜋t) sin(2𝜋x). The problem has been solved for the problem parameters {𝜀, 𝛽x, r} = {0.1, 1, 1}. In Table 1,

the results of the asymptotic convergence rates are displayed. The exact solution is smooth and optimal conver-

gence rates are expected. We observe that the rates rt and rx have similar behavior and are a little higher than

the expected rates in the first coarse meshes. As the meshes are progressively refined, both rt and rx tend to the

expected values. In the last columns we can see the rates rx,k=2, which correspond to ℚk=2 polynomial spaces.

Moving to the finer meshes the rates have the expected values.

Table 1: Example 1: smooth test case. The convergence rates rx and rt and rx,k=2.

u smooth, with {𝜺, 𝜷x , r}= {0.1, 1, 1}

Errors ‖u− uh‖s ‖u− uh‖t,h ‖u− uh‖s
ℚk -space k = 1 k = 1 k = 2

Expected rates 1 1 2

h0 = 0.2 Computed rates

hs = h0
2s

rx rt rx,k=2
s= 1 3.20 2.84 4.2

s= 2 1.40 1.23 2.4

s= 3 1.40 1.08 2.14

s= 4 1.14 1.08 2.15

s= 5 1.17 1.02 2.01

s= 6 1.05 1.01 2.00

s= 7 1.00 1.04 2.02
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4.1.2 Point singularity test case

We consider the problem on Q̄T = [0, 1] × [0, 1] with exact solution u(x, t) = ((x − 0.2)2 + (t − 0.2)2 )𝛾∕2 with 𝛾 ∈
{1.001, 0.51}. The singular point of the solution is located at the interior of the domain Q̄T . The problem has been

solved for two sets of values for the parameters, i.e., {𝜀, 𝛽x, r} = {0.1, 1, 1} and {𝜀, 𝛽x, r} = {0.1, 10−10, 0.5}. In
every case the associated solution u belongs to H𝓁=𝛾+1(QT ) and the computational tests have been performed

usingℚk=1 andℚk=2 local polynomial spaces on uniformmesh partitions h. In view of the interpolation results

(3.56) and (3.63), see also Corollary 3.4, and the regularity of the solution u, the convergence rates expected to get

values close to 𝛾 = 𝓁 − 1. We compute the rates on a sequence of meshes and present the results in Table 2. Note

that the cases, where we use 𝛾 + 1 < 2 andℚk=2 spaces, are not covered by the discretization analysis presented

in the previous section. The associated results are added in Table 2 for comparison purposes only and for amore

comprehensive computational study of the problem. The “expected values” were formed by a simple formalistic

interpretation of the interpolation estimates.

Looking at the table, we observe that for the tests with 𝛾 = 1.001, 𝛽x = 0.5, see first columns, the rates rx
and rx,k=2 have similar behavior and are close to the expected values, even for the first refinement steps. For

the second test where we set 𝛽 = 10−10, the values of rx,k=2 are little higher during the first meshes but tend to

get the expected values during the last meshes. In the last test we set 𝛾 = 0.6, see last column, the rx rates are

higher than the expected values on the first meshes. Moving to the last refinement steps the rates tend to get the

expected values.

4.1.3 Anisotropic meshes

In this test, we investigate the behavior of the on anisotropicmeshes. To illustrate this consider a problemwhere

its solution has anisotropic behavior, i.e., its variations are quite different in each different axial direction. We

solve the problem using anisotropic meshes, where the directional size of the mesh elements is small in the

directionwhere the solutionhas strong variations, and the size of the elements is relatively larger in the direction

where the solution has less variations. The domain is chosen to be Q̄T = [0, 1] × [0, 1] and the parameters take

the values {𝜀, 𝛽x, r} = {0.1, 1, 1}. The exact solution is u(x, t) = sin(𝜋x) sin(4𝜋t) and varies ’four times more’ in

the direction of the time axis. The problem is solved in a series of successive refined mesh levels s = 1, 2,…,

where for each refinement mesh level we set hs,x = 𝜆hs,t, here the parameter 𝜆 ∈ {1, 2, 4} forms the anisotropic

Table 2: Example 2: point singularity case. Convergence rates rx and rx,k=2.

u∈W𝓵,2(QT ) with 𝓵 = 𝜸 + 1

Errors ‖u− uh‖s ‖u− uh‖s ‖u− uh‖s ‖u− uh‖s ‖u− uh‖s
ℚk -space k = 1 k = 2 k = 1 k = 2 k = 1

Parameters 𝜸 = 1.001 𝜸 = 1.001 𝜸 = 0.6

{𝜺, 𝜷x , r}= {0.1, 0.5, 1} {𝜺, 𝜷x , r}= {0.1, 10−10, 0.5} {𝜺, 𝜷x , r}= {0.1, 0.5, 0.5}

Expected rates 1 1 1 1 0.5

h0 = 0.2 Computed rates

hs = h0
2s

rx rx,k=2 rx rx,k=2 rx
s= 1 0.5 0.98 0.5 1.5 0.44

s= 2 0.95 1.04 0.92 1.82 0.63

s= 3 0.90 0.98 0.90 1.45 0.57

s= 4 0.89 0.94 0.89 1.34 0.55

s= 5 0.89 0.91 0.89 0.87 0.54

s= 6 0.91 0.90 0.90 1.25 0.52

s= 7 0.92 0.89 0.92 1.24 0.51
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character of the mesh. For each mesh level s, three different computations have been performed, where each of

which corresponds to a different value of the parameter 𝜆. We note that, for a better comparison of the results,

the three refinement procedures start from a different initial mesh.

Our goal is to investigate the asymptotic behavior of the rates rx , how they are affected by the anisotropic

variational properties of u and the anisotropic character of the mesh. Also we investigate the computing

resources needed to reduce the error to the same levels as those which result when isotropic meshes are used.

Table 3 shows the results of the numerical convergence rates. For each 𝜆-case, we can observe that the values

of rx rates are a little higher during the first meshes than the theoretically predicted values. However, moving

to the last refinement steps, the rates reduce and get the expected values derived by the error analysis, see also

Example 2.

The left part of Figure 1 shows the reduction of the error of the numerical solution relative to the number

of elements for each anisotropic mesh. Starting with a mesh with hx = ht, we move to next refinement steps,

s = 2, 3,…, such that the directional mesh sizes have the fixed relation hs,x = 𝜆hs,t, 𝜆 = 1, 2, 4. During the first

meshes, the values of the corresponding errors are very close for the samenumber of elements. However, looking

Table 3: Example 3: anisotropic meshes. The convergence rates rx for all 𝜆.

u(x, t) smooth, {𝜺, 𝜷x , r}= {0.1, 1, 1}

Errors ‖u− uh‖s ‖u− uh‖s ‖u− uh‖s
Parameter 𝝀= 1 𝝀= 2 𝝀= 4

Expected rates 1 1 1

Ref. step s Computed rates

rx rx rx

s= 1 0.5 2.01 1.8

s= 2 2.3 1.87 1.62

s= 3 1.7 1.61 1.85

s= 4 1.31 1.27 1.33

s= 5 1.11 1.09 1.11

s= 6 1.03 1.02 1.03

s= 7 1.01 1.00 1.2

s= 8 1.02 1.00 1.00

s= 9 1.01 1.02 1.02

s= 10 1.00 1.00 1.01

Figure 1: Example 3: anisotropic meshes, (a) the graph on the left shows the reduction of the error against the number of elements for

each anisotropic mesh. (b) The discretization error against the CPU time for each 𝜆 test case.
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the values in the next refinement levels, we observe that the 𝜆 = 4, 𝜆 = 2meshes require a significantly reduced

number of elements compared to the𝜆 = 1 case, in order to reduce the error to the same level, (see themicro box

in the graph). Thus, to reduce the error to a desired level, a uniform refinement with hs,x ≈ hs,t (isotropic) is not

necessary. This also illustrates the usefulness of the anisotropicmeshes when solving such problems. This can be

seen more clearly in the right graph in Figure 1, where the error reduction against CPU time is shown. Note that

in every case, the corresponding CPU time considers the whole performance-solution of the numerical example

and not only the solution of the linear system. As expected the performance of the test with 𝜆 = 4 requires the

least computing resources, when we refer to the same mesh refinement step, i.e., the same hs,t. It is observed

that the error, which corresponds to the numerical solution of 𝜆 = 4 case, decreases at the same level and at

the same rate with what corresponds to the isotropic case, i.e., the 𝜆 = 1 case. Figure 1 somehow indicates that

an appropriate use of anisotropic meshes can lead to high resolution numerical solutions at low computational

cost.

4.2 Examples on three-dimensional space-time cylinders

4.2.1 Smooth solution, isotropic meshes

The purpose of this example is to investigate the convergence behavior of the discretization error ‖u−
uh‖s for the case of having a three-dimensional space-time cylinder. We consider the problem on Q̄T =
[0, 1]3 with exact solution u(x, y, t) = cos(2𝜋x) cos(2𝜋y) cos(2𝜋t). We solve the problem using k = 1 and k = 2

polynomial spaces for two groups of parameter values, the first is {𝜀, 𝛽x, 𝛽 y, r} = {0.1, 1, 1, 1} and the sec-

ond {𝜀, 𝛽x, 𝛽 y, r} = {0.1, 0, 0, 1}. We compare the numerical results with the theoretical findings given in

Theorem 3.2, see also (3.66). The numerical results are reported in Table 4. For each k = 1-case, we observe

that the convergence rates rx are close to the expected rate value equal to one. The rates rx,k=2 are shown

in third and the fifth column for the two parameter test cases. The rates are a little lower in the first

meshes but moving to the last meshes they have the expected value (with respect to the regularity of the

solution) and follow the theoretical convergence rates, compare to the “Smooth solution, uniform meshes”

above.

Table 4: Example 4: smooth solution for QT ⊂ ℝ3. Convergence rates rx and rx,k=2.

u smooth, QT ⊂ ℝ3

Errors ‖u− uh‖s ‖u− uh‖s ‖u− uh‖s ‖u− uh‖s
Parameters {𝜺, 𝜷x , 𝜷 y , r}= {0.1, 1, 1, 1} {𝜺, 𝜷x , 𝜷 y , r}= {0.1, 0, 0, 1}

Expected rates 1 2 1 2

ℚk Computed rates

k =  k =  k =  k = 

hs = 1

2s
rx rx,k=2 rx rx,k=2

s= 1 0.554 1.825 0.490 1.873

s= 2 1.055 1.985 1.026 1.952

s= 3 1.08 1.984 1.049 1.967

s= 4 1.058 1.987 1.037 1.976

s= 5 1.041 1.989 1.027 1.983

s= 6 1.030 1.992 1.020 1.987

s= 7 1.023 1.993 1.016 1.990
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4.2.2 An example using anisotropic meshes

As it has been illustrated by the examples above that an appropriate construction and use of anisotropic meshes

can help on relaxing the high time requirements for the computation of the solution. Also, we have seen the use

of the anisotropic meshes preserves the convergence properties of the numerical solution. Similar points are

going to be investigated in this numerical example. The problem is considered inQT = [0, 1]3 with exact solution

u(t, x, y) = sin(2𝜋t)e−(x−0.5)
2∕0.01y and the parameters are {𝜖, 𝛽x, 𝛽 y, r} = {0.1, 1, 1, 1}. The solution has different

variational behavior in each direction and this supports the use of anisotropic meshes. The problem is solved

using k = 1-local spaces applying an anisotropic mesh refinement strategy, which is specified by the relations

ht = 𝜘hy,𝜘 ∈ {1, 1∕2} and hx = 𝜆hy, 𝜆 ∈ {1, 1∕4}. The first startingmesh contains equal directionalmesh sizes,
i.e., hy = hx = ht, and for the next refinement levels themesh sizes hx and ht in x and t directions respectively are

determined by the values of 𝜘 and 𝜆. The associated convergence rates rx of the error are shown in Table 5. The

first column includes the rates which are computed by applying global uniform refinement (isotropic case). The

next two columns include the rates for the anisotropic meshes. It can be seen that the rates are very close to the

(theoretical) predicted values for all cases. Figure 2(a) illustrates the error variation with respect to the number

Table 5: Example 5: anisotropic meshes QT ⊂ ℝ3. Convergence rates.

u = sin(2𝝅t)e−(x−0.5)
2∕0.01 y, {𝝐, 𝜷x , 𝜷 y , r}= {0.1, 1, 1, 1}

Errors ‖u− uh‖s
Parameters 𝝀= 1, 𝝒 = 1 𝝀= 1/4, 𝝒 = 1 𝝀= 1/4, 𝝒 = 1/2

Expected rates 1 1 1

Ref. step s Computed rates

rx rx rx

s= 1 0.927 0.917 0.943

s= 2 0.958 0.957 0.973

s= 3 0.968 0.967 0.983

s= 4 0.975 0.982 0.988

s= 5 0.979 0.986 0.991

s= 6 0.982 0.988 0.993

s= 7 0.984 0.990 0.994

s= 8 0.986 0.991 0.995

s= 9 0.988 0.992 0.996

Figure 2: Example 5: anisotropic meshes for QT ⊂ ℝ3. (a) Left: the variation of the error with respect the number of elements for each

mesh, (b) right: the discretization error against the CPU time for each mesh test case.
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of mesh elements for the three different meshes. It can be seen that the errors corresponding to the anisotropic

meshes have lower values compared to the errors computed using the isotropic meshes (with the same number

of elements). Hence, it appears that the anisotropicmesh computationsmanagemore appropriately the number

of elements, in the sense that more elements are stacked in the direction where the solution has themost abrupt

variation. On the right graph in Figure 2(b) the CPU times are plotted against the error reduction.We observe that

the anisotropic meshes bring significant improvements in the time performance of the method. The anisotropic

meshes require less computational resources than the isotropic meshes to keep the error at the same low level.

5 Conclusions

In this work space-time FE methods have been developed and analyzed with continuous spaces on anisotropic

quadrilateral meshes for solving general linear parabolic problems. The scheme was stabilized following usual

upwind streamline methodology. Discretization error estimates were shown in a suitable norm. The proposed

method was applied to problems having regular and less regular solutions on isotropic and anisotropic meshes.

The numerical convergence rates were in agreement with the theoretical rates.

The proposed scheme can be extended to the case of using discontinuous Galerkin discretizations in time.

This can help on solving the problem in a sequential manner, i.e., one space-time slice at a time, [38]. This

approach can be further combined with time-Domain Decomposition (DD) iterative solvers materialized in a

parallel environment. A incorporation of anisotropic refinement strategies to the proposed method can lead to

en efficient method for solving problems with solutions with anisotropic behavior, e.g., boundary layers in fluid

problems, re-entrant edges, etc. The development of this type of numerical methods is the subject of a work in

progress.
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