
J. Numer. Math. 2025; 33(1): 55–86

Todd Dupont, Johnny Guzmán and L. Ridgway Scott*

Obtaining higher-order Galerkin accuracy
when the boundary is polygonally
approximated

https://doi.org/10.1515/jnma-2023-0135

Received November 6, 2023; accepted March 29, 2024; published online October 7, 2024

Abstract: Inspired by themethods developed in J. H. Bramble, T. Dupont, andV. Thomée (“Projectionmethods for

Dirichlet’s problem in approximating polygonal domains with boundary-value corrections,”Math. Comput., vol.

26, no. 120, pp. 869–879, 1972), we introduce a new technique that yields a symmetric formulation and has similar

performance. The new method is based on a Robin-type problem on an approximate polygonal domain. Opti-

mal error estimates in the energy norm are proved for piecewise quadratics and cubics. We provide numerical

experiments that show our theoretical results are sharp.
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1 Introduction

When a Dirichlet problem on a smooth domain is approximated by a polygon, an error occurs that is subop-

timal for piecewise quadratic approximations [1]–[4]. There are several approaches that have been developed

to overcome the sub-optimality. Two common approaches are: (1) methods that use curved elements (see, for

example [5]–[7], to name a few) and (2) methods that use augmented polygonal approximations. Themethod we

develop here falls within the second category. A non-exhaustive list of such methods includes [8]–[19].

To put our contribution in context, we consider a model problem and previous numerical methods for

this problem. Let Ω be a piecewise smooth, bounded, two-dimensional domain that is on only one side of its

boundary. Consider the Poisson equation with Dirichlet boundary conditions:

−Δu = f in Ω, u = g on 𝜕Ω. (1)

We assume that f and g are sufficiently smooth that u can be extended to be inW2,q(Ω̂), where Ω̂ contains

a neighborhood of the closure ofΩ, for some q in the range 1 < q ⩽ ∞. For a Lipschitz domain, this is possible

with q < 4∕3.
Oneway to discretize (1) is to approximate the domainΩ by polygonsΩh, where the edge lengths of 𝜕Ωh are

of order h in size. Then conventional finite elements can be employed on eachΩh, with the Dirichlet boundary
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conditions being approximated by the assumption that uh = ĝ on 𝜕Ωh [20], with ĝ appropriately defined. For

example, let us suppose for the moment that g ≡ 0 and we take ĝ ≡ 0 as well. In particular, we assume thatΩh

is triangulated with a nondegenerate mesh h of maximum triangle size h, and the boundary vertices ofΩh are

in 𝜕Ω. We define W̊k
h
:=H1

0
(Ωh ) ∩Wk

h
, where

Wk
h
= {𝑣 ∈ C(Ωh ): 𝑣|T ∈ k ∀T ∈ h} (2)

and k is the set of polynomials of total degree ⩽k. Then the standard finite element approximation finds uh ∈
W̊k

h
satisfying

ah(uh, 𝑣) = ( f , 𝑣)L2(Ωh )
∀𝑣 ∈ W̊k

h
, (3)

where ah(u, 𝑣) := ∫Ωh
∇u ⋅∇𝑣 dx. Here we assume that f is extended smoothly outside ofΩ.

This approach for k = 1 (piecewise linear approximation) leads to the error estimate

‖u− uh‖H1(Ωh )
⩽ Ch‖u‖

H2(Ω̂)
.

However, when this approach is applied with piecewise quadratic polynomials (k = 2), the best possible error

estimate [20] is ‖u− uh‖H1(Ωh )
⩽ Ch3∕2, (4)

which is less than optimal order by a factor of
√
h. The reason of course is that we have made only a piece-

wise linear approximation of 𝜕Ω. Table 1 summarizes some computational experiments for the test problem
in Section 3. We see a significant improvement for quadratics over linears, but there is almost no improvement

with cubics. Moreover, wewill see that a significant improvement using quadratics can be obtained using simple

approaches that modify the variational form.

The first method using a polygonal approximate domain to obtain higher order schemes was based on

modifying the method of Nitsche [5] and appeared in 1972 [8]. There are two main ingredients in the scheme in

ref. [8]:

– Nitsche’s penalization to both enforce the boundary condition and stabilize the method;

– Taylor’s expansions to give approximate boundary conditions onΩh.

The idea is to think of u as the solution of a PDE on the approximate domain, with boundary conditions that

need to be approximated.

Table 1: Errors uh − uI in L
2(Ωh ) and H

1(Ωh ), as a function of the maximummesh size (hmax) for the polygonal approximation (3) for the

test problem in Section 3 using various polynomial degrees k. Key: “M” is input parameter to mshr function circle used to generate the
mesh, “seg” is the number of boundary edges. The approximate solutions were generated using (3). The interpolant uI is defined in (16).

k M L2 err rate H1 err rate seg hmax

1 2 1.84e+00 NA 6.25e+00 NA 10 1.05e+00
1 4 2.93e−01 2.65 1.89e+00 1.73 20 4.94e−01
1 8 9.55e−02 1.62 1.06e+00 0.83 40 2.61e−01
1 16 2.47e−02 1.95 5.45e−01 0.96 80 1.35e−01
2 2 4.18e−01 NA 1.41e+00 NA 10 1.05e+00
2 4 9.44e−02 2.15 4.26e−01 1.73 20 4.94e−01
2 8 2.30e−02 2.04 1.59e−01 1.42 40 2.61e−01
2 16 5.62e−03 2.03 5.45e−02 1.54 80 1.35e−01
3 2 3.17e−01 NA 8.25e−01 NA 10 1.05e+00
3 4 8.81e−02 1.85 2.94e−01 1.49 20 4.94e−01
3 8 2.22e−02 1.99 1.07e−01 1.46 40 2.61e−01
3 16 5.53e−03 2.01 3.82e−02 1.49 80 1.35e−01
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Methods for any polynomial order are developed in ref. [8], and it is proved that the error estimates are

optimal in the energy norm. The bulk of ref. [8] analyzes a non-symmetric extension of Nitsche’s method,

but a symmetrized version is defined [8, eq. (3.12)] for the lowest-order scheme for which the same estimates

hold by trivial modifications, and estimates are described in the case that the distance to the boundary is only

approximated.

Two years later [8], was extended [15] to cover both 2 and 3 dimensions, variable coefficients, and estimates

in H−1 as well as H1 and L2. The paper [15] uses the symmetric form throughout, it allows both linear and non-

linear approximations of the boundary (that is, the approximating domains can be curved), and it also applies

the elliptic theory to nonlinear parabolic equations.

The work of refs. [8], [15] has been extended in many ways [9]–[11], [16], [21]–[24] over the intervening

decades.

Recently, the related shifted-boundary method has been developed [17], [18] and analyzed [25], [26]. It uses

the two main ingredients (i.e., Nitsche’s penalization and Taylor’s expansions) to develop methods for Poisson’s

problem, fluid flow problems and advection–diffusion problems. The method seems to be stable when the

boundary of Ωh is within O(h) of the boundary of Ω. Cheung et al. [12] develop a method using average Tay-
lor expansions, and they prove stability in the case the boundary of Ωh is within O(h3∕2 ) of the boundary of

Ω. Finally, a series of papers [13], [14], [19], develops hybridizable discontinuous Galerkin (HDG) methods using
polygonal approximations. HDG has its own stabilization mechanism which they use. A distinctive feature is

that they approximate both u and ∇u independently. The latter has been named the “transfer path method”

(TPM) [27] and been developed not only for HDG methods, but also for mixed finite element methods [28], [29].

Therefore, it does not require a stabilization parameter.

In this paper, we introduce a new method that uses a first order Taylor expansion which naturally leads to

a Robin-type boundary problem on Ωh. However, we do not use Nitsche’s stabilization, and thus we avoid the

need to choose a penalty parameter. Another parameter-free method is developed in refs. [30]–[32].

The Robin-type method studied here is naturally symmetric, but it can be not positive definite. Despite this,

we are able to prove optimal estimates for piecewise quadratics and cubics. The analysis is quite different from

what is used for methods that are rooted in Nitsche’s method, such as refs. [8], [15] and its descendents. It is not a

simple perturbation of the standard arguments. For this reason, we restrict attention to themodel problem (1) in

order tomake our analysis as transparent as possible.We assume for simplicity that the vertices of the boundary

Ωh belong to boundary ofΩ (i.e., a fittedmesh).We give numerical results that show that our estimates are sharp.

2 The Bramble–Dupont–Thomée approach

We start by reviewing the method [8] of Bramble–Dupont–Thomée (BDT) which achieves high-order accuracy

by modifying Nitsche’s method [5] applied on Ωh. We assume that Ωh ⊂ Ω and we do not necessarily assume

that the boundary vertices ofΩh belong to 𝜕Ω. The bilinear form used in ref. [8] is

Nh(u, 𝑣) = ah(u, 𝑣)− ∫
𝜕Ωh

𝜕u
𝜕n
𝑣 ds−

∫
𝜕Ωh

(
u+ 𝛿 𝜕u

𝜕n

)(
𝜕𝑣
𝜕n

− 𝛾h−1𝑣
)
ds. (5)

Here, n denotes the outward-directed normal to 𝜕Ωh and

𝛿(x) = min{s > 0 : x + sn ∈ 𝜕Ω}.

Contrast the definition of 𝛿 to the closely related function d defined by

d(x) = min{|x − y| : y ∈ 𝜕Ω},
see Figure 1.
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Figure 1: Definitions of (A) 𝛿 and (B) d.

For simplicity the assume that g = 0. Then the BDT method will find uh ∈ Wk
h
such that

Nh(uh, 𝑣) = ∫
Ωh

f𝑣 dx ∀𝑣 ∈ Wk
h
.

If 𝛿 were 0, this would be Nitsche’s method onΩh.

Corrections of arbitrary order, involving terms 𝛿𝓁 𝜕𝓁u

𝜕n𝓁
for 𝓁 > 1 are studied in ref. [8], but for simplicity we

restrict attention to the first-order correction to Nitsche’s method given in (5). The error estimates obtained in

ref. [8] are as follows ||| u− uh |||1 ⩽ Chk‖u‖Hk+1(Ω) + Ch7∕2‖u‖W2
∞(Ω),

where

||| 𝑣 |||1 :=
⎛⎜⎜⎜⎝
ah(𝑣, 𝑣)+ h−1

∫
𝜕Ωh

𝑣2 ds+ h
∫
𝜕Ωh

(
𝜕𝑣
𝜕n

)2

ds

⎞⎟⎟⎟⎠
1∕2

.

Thus using the variational form (5) leads to an approximation that is optimal-order with quadratics and cubics

and is only suboptimal for quartics by a factor of
√
h.

3 An example: the circle

Weconsider a numerical example. Consider the casewhereΩ is a disc of radiusR centered at the origin, inwhich

casewe have d(x) = R− |x|. However, it ismore difficult to evaluate 𝛿(x).We assume that the vertices of 𝜕Ωh lie

on 𝜕Ω. We have x+ 𝛿(x)n ∈ 𝜕Ω for x ∈ 𝜕Ωh, where n denotes the outward normal toΩh. Let t denote the unit

tangent vector toΩh such that n × t points up.We canwrite x = (x ⋅ n)n+ (x ⋅ t) t, and (x ⋅ t)2 = |x|2 − (x ⋅ n)2.
Since |x+ 𝛿(x)n| = R, we have

R2 = (x ⋅ t)2 + (x ⋅ n+ 𝛿(x))2 = |x|2 − (x ⋅ n)2 + (x ⋅ n+ 𝛿(x))2.

Then

𝛿(x) = ±
√
R2 − |x|2 + (x ⋅ n)2 − x ⋅ n.

Note that for x ∈ 𝜕Ωh, |x| ⩽ R and x ⋅ n > 0. Since 𝛿(x) ⩾ 0, we must pick the plus sign, so

𝛿(x) =
√
R2 − |x|2 + (x ⋅ n)2 − x ⋅ n. (6)

Note that this formula does not depend on the placement of the boundary vertices. If xi is a boundary vertex,

then |xi| = R, and 𝛿(xi ) = 0.

It is not hard to see that d − 𝛿 = (h4 ) in this case.
This problem is simple to implement using the FEniCS Project code dolfin [33]. We take R = 1, u(x, y) =

1− (x2 + y2 )3, and f = 36(x2 + y2 )2 in the computational experiments described subsequently. Computational

results for this example are given in Table 2, wherewe see optimal order approximation for k ⩽ 3, improvement

for k = 4 over k = 3 (suboptimal by a factor h−1∕2), and no improvement for quintics. These errors are depicted

in Figure 2.
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Table 2: Errors uh − uI in L
2(Ωh ) and H

1(Ωh ) as a function of mesh size (hmax) for the test problem in Section 3 using the BDT

approximation in Section 2, with 𝛾 = 100, for various polynomial degrees k. Key: M is the value of the meshsize input parameter to the
mshr function circle used to generate the mesh. The number of boundary edges was set to 5M, and hmax is the maximum mesh size.

The interpolant uI is defined in (16).

k M hmax L2 error rate H1 error rate

1 8 0.261 0.0947 1.61 1.06 0.82

1 16 0.135 0.0245 1.95 0.544 0.96

1 32 0.0688 0.00639 1.94 0.277 0.97

1 64 0.0353 0.00158 2.02 0.137 1.02

2 8 0.261 2.81e−03 2.61 0.103 1.57

2 16 0.135 3.70e−04 2.93 0.0277 1.89

2 32 0.0688 4.77e−05 2.96 0.00717 1.95

2 64 0.0353 5.91e−06 3.01 0.00179 2.00

3 8 0.261 1.56e−04 3.92 5.31e−03 2.54

3 16 0.135 9.44e−06 4.05 7.06e−04 2.91

3 32 0.0688 5.81e−07 4.02 9.23e−05 2.94

3 64 0.0353 3.57e−08 4.02 1.15e−05 3.00

4 8 0.261 1.49e−04 3.96 7.41e−04 3.42

4 16 0.135 9.29e−06 4.00 6.63e-05 3.48

4 32 0.0688 5.80e−07 4.00 5.90e−06 3.49

4 64 0.0353 3.63e−08 4.00 5.22e−07 3.50

5 8 0.261 1.47e−04 3.96 7.10e−04 3.41

5 16 0.135 9.27e−06 3.99 6.44e−05 3.46

5 32 0.0688 5.80e−07 4.00 5.77e−06 3.48

5 64 0.0353 3.62e−08 4.00 5.12e−07 3.49

Figure 2: Errors uh − uI in (A) L
2(Ωh ) and (B) H

1(Ωh ) as a function of the maximummesh size for the BDT method with 𝛾 = 100. The

asterisks indicate data for (A) k = 4 and (B) k = 5. The interpolant uI is defined in (16).

4 A newmethod based on a Robin-type approach

One issue with the BDT method is that the resulting linear system is not symmetric, although it is easily sym-

metrized as we discuss in Section 11. Here we develop a technique that leads directly to a symmetric system.

More importantly, this method does not require the parameter(s) from Nitsche’s method. For Nitsche’s method

to succeed, 𝛾 must be chosen appropriately [34]. Naturally, there is a price to pay for having a parameter-free

method. We will have to make some restrictive assumptions about the domain boundary that would not be

required for the success of BDT.
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We first separate 𝜕Ω into its piecewise linear part and its curvilinear part. We will assume that

𝜕Ω = Γ0 ∪ S1 ∪…∪ S𝜘+1, 𝜘 ⩾ 0, (7)

where Γ0 is a finite union of piecewise linear segments and the Si’s are C
2 and nowhere linear. The rectilinear

part Γ0 of the boundary may be empty, as is the cases for our numerical examples. Denote by

yi, i = 1,… ,𝜘, (8)

the intersection points (if any) where Si and Si+1 meet. We make the following assumption on the domain.

Assumption 1. We assume that the curvature is nonzero (and thus of one sign) in the interior of each Si.

In Figure 3, we showa domainwith two Si’s and exactly one point yi, where the two circlesmeet tangentially,

the point (2, 1). The domain may be written as

Ω =
(
[0, 2] × [0, 3]

)
∪ D(2, 2)∖D(2, 0), (9)

whereD(x, y) denotes the unit disc centered at (x, y). The dashed lines indicate this construction via constructive

solid geometry.

It may be that different Si are disconnected and have no end points, as in our example in Section 9.2. So the

set of yi’s could be empty (𝜘 = 0).

For the method in this section we assume that the vertices ofΩh belong to 𝜕Ω, and henceΩh might not be

a subdomain of Ω. Thus, we need to define 𝛿 in this case. We assume that for every x ∈ 𝜕Ωh there is a unique

smallest number 𝛿(x) in absolute value such that

x+ 𝛿(x)n(x) ∈ 𝜕Ω.

For x ∈ Γ0, we have 𝛿(x) = 0 provided that Γ0 ⊂ 𝜕Ωh.

We assume that the approximate domain boundary 𝜕Ωh can be decomposed into three parts, as follows.

Let h be the edges of 𝜕Ωh. Define

Γ± =
⋃

{e ∈ h : ±𝛿|eo > 0}, (10)

where eo denotes the interior of e. Let Γ = Γ+ ∪ Γ−. We make the following assumption on the boundary

approximations.

Assumption 2. We assume that the polygonal part Γ0 of the boundary, defined in (7), is a subset of 𝜕Ωh. We also

assume that all the vertices of 𝜕Ωh belong to 𝜕Ω and that each yi (defined just before Assumption 1) is a vertex

Figure 3: A P-shaped domain (solid lines) with one point yi . The dashed lines indicate the

definition (9) via constructive solid geometry.
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of 𝜕Ωh and that the mesh is fine enough so that yi and y j are not the vertices of a single edge in 𝜕Ωh when i ≠ j.

Finally, we assume that

𝜕Ωh = Γ0 ∪ Γ.

This assumption means that 𝛿 cannot change sign in the interior of an edge.

Note that Γ depends on h, but we omit a subscript to simplify notation.

Ourmethod resembles a Robin-type of boundary condition on Γ. It is similar to the closely related problem:

−Δ𝑤 = f on Ω,

𝑤 = g on Γ0,

𝑤+ 𝛿 𝜕𝑤
𝜕n

= ĝ on Γ.

Here we define

ĝ(x) = g(x+ 𝛿(x)n(x)) (11)

for x ∈ Γ. The key here is that, using that u = g on 𝜕Ω, for x ∈ Γ (x not a vertex of 𝜕Ωh) we have

Eu(x)+ 𝛿(x)𝜕Eu
𝜕n

(x) = ĝ(x)+
𝛿(x)

∫
0

(s− 𝛿(x))𝜕
2Eu

𝜕n2
(x+ sn) ds. (12)

Here Eu denotes an extension of u outside ofΩ to allow for the possibility thatΩh ⊄ Ω. The function  defined

by

(x) = 𝛿(x)−1(Eu(x)− ĝ(x)) = −𝜕Eu
𝜕n

(x)+ 𝛿−1(x)
𝛿(x)

∫
0

(s− 𝛿(x))𝜕
2Eu

𝜕n2
(x+ sn) ds (13)

is piecewise smooth for smooth u and will play a significant role in the study of quadrature error in Section 6.3.

We postpone to Section 13 a discussion of the smoothness of  . But suffice it to say that

(x) = −𝜕Eu
𝜕n

(x)+ 𝛿(x)̂(x) (14)

and ̂ is piecewise smooth.

Now we can define the method. Assume that Ωh is triangulated by a nondegenerate mesh, and we denote

by hΓ the maximum edge length on the boundary and by hΩ the maximum mesh size over the entire domain.

By nondegenerate, we mean the following. For each triangle T in a mesh h, let 𝜌
T
min

be the radius of the largest

circle lying inside T and let 𝜌T
max

be the radius of the smallest circle containing T . Define

𝜌h = inf
T∈h

𝜌T
min

𝜌T
max

. (15)

A nondegenerate mesh family is one for which 𝜌h ⩾ 𝜌 > 0 for each mesh in the family. In the following,

many important constants will depend on 𝜌h , but we will suppress mentioning the dependence to simplify

the discussion.

Let {𝜓 j} be the usual Lagrange nodal basis forWk
h
, and define the interpolant

uI =
∑
j

u(x j )𝜓 j (16)

for any continuous function u on the closure ofΩh.

We start by defining one finite element space we will use:

V̊k
h
=
{
𝑣 ∈ Wk

h
: 𝑣 = 0 on Γ0, 𝑣(x) = 0 for all vertices x of 𝜕Ωh

}
, (17)
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whereWk
h
is defined in (2). Also define

V̊k
h
(g ) =

{
𝑣 ∈ Wk

h
: 𝑣 = gI on Γ0, 𝑣(x) = gI (x) for all vertices x of 𝜕Ωh

}
, (18)

where gI ∈ C(𝜕Ωh ) is a suitable approximation of g and is a piecewise polynomial of degree at most k on 𝜕Ωh.

For example, we can take gI to be the interpolant, defined in (16), of ĝ defined in (11). However, note that the

definition (18) does not require values of gI except on Γ0 and at vertices of 𝜕Ωh where we do know these values.

The bilinear form for the new method is given by

b̃h(u, 𝑣) := ah(u, 𝑣)+ c̃h(u, 𝑣), (19)

where

ah(u, 𝑣) = ∫
Ωh

∇u ⋅∇𝑣 dx, c̃h(u, 𝑣) = ∫
Γ

𝛿−1u𝑣 ds. (20)

The form c̃h(⋅, ⋅) depends on h because Γ depends on h. Then the method solves: Find uh ∈ V̊k
h
(g ) such that, for

all 𝑣 ∈ V̊k
h
,

b̃h(uh, 𝑣) = ∫
Ωh

(E f )𝑣 dx + c̃h(ĝ, 𝑣), (21)

where E f is an extension of f outside ofΩ, not necessarily the same extension used for u. For the moment, we
assume thatwe can compute c̃h(ĝ, 𝑣) exactly, based on the formula (11). But this is not a practicalmethod because

it requires us to work with a space V̊k
h
whose functions are forced to vanish at prescribed points. However, it is

easier to analyze this limited method and from this we learn the key issues for more complicated (and practical)

versions.

Integration by parts gives

b̃h(Eu, 𝑣)− ∫
Ωh

(E f )𝑣 dx =
∫
Ωh∖Ω

(
−ΔEu− E f

)
𝑣 dx +

∫
Γ

𝛿−1(Eu)𝑣− 𝜕Eu
𝜕n

𝑣 ds. (22)

Define the extension error

 = ‖−ΔEu− E f ‖L∞(Ωh∖Ω). (23)

For the two-circle problem in Section 9.2, we have analytical expressions for u and f , and using these for

the extensions, we get−ΔEu− E f = 0, so the term  can typically be ignored. Combining (12), (21), and (22), we

get

|b̃h(Eu− uh, 𝑣)| ⩽ ‖𝑣‖L1(Ωh∖Ω) +
|||||||∫Γ 𝛿

−1
(
Eu+ 𝛿 𝜕Eu

𝜕n
− ĝ

)
𝑣 ds

|||||||. (24)

We can estimate the second term via

|||||||∫Γ 𝛿
−1
(
Eu+ 𝛿 𝜕Eu

𝜕n
− ĝ

)
𝑣 ds

||||||| ⩽ Ch2−2∕q
‖‖‖‖𝜕

2Eu

𝜕n2
‖‖‖‖Lq(ΩΔΩh )

‖𝑣‖L p(Γ),
1

p
+ 1

q
= 1, (25)

whereΩΔΩh = Ω∖Ωh ∪Ωh∖Ω. Here, the normal direction is the normal toΩh. We postpone the proof of (25)

to Section 12. Our method thus appears at first to be a standard variational crime with small error. However, the

stability of the method is not standard.

The role of the form c̃h(⋅, ⋅) appears to be of two parts. Due to the singularity, it forces adoption of the

boundary conditions. But in addition, it forms the required correction in view of (25).
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4.1 Required bounds

The stability of the method rests on some inequalities. The first pair of these express continuity and a type of

coercivity on an appropriate space. Define ̊k
h
to be the span of the basis functions 𝜓 j in (16) for which the

corresponding nodes x j are on Γ but not vertices. Then ̊k
h
is a complementary space:

V̊k
h
= W̊k

h
⊕ ̊k

h
. (26)

The choice of complementary space does not affect the computational method, but we now examine its effect

on the subsequent analysis of the method.

Now assume that ch is a general bilinear form defined on Γ and thatk
h
is a space of functions on Γ. Assume

that there is an inner-product ⟨⋅, ⋅⟩c so that |𝑣|2c = ⟨𝑣, 𝑣⟩c and
|ch(u, 𝑣)| ⩽ C|u|c|𝑣|c (27)

for all u, 𝑣 ∈ k
h
, and

0 < 𝛽 ⩽ inf
u∈k

h

sup
𝑣∈k

h

|ch(u, 𝑣)||u|c|𝑣|c . (28)

Here we are thinking of general forms ch such as c̃h and spaces 
k
h
such as ̊k

h
. We will later apply these ideas to

other, similar, forms and spaces For example, for the form in (20), we choose

⟨u, 𝑣⟩c = ∫
Γ

|𝛿|−1u𝑣 ds.
For the spaces V̊k

h
in (17) and ̊k

h
in (26), we can prove (28) by taking

𝑣 =

⎧⎪⎪⎨⎪⎪⎩

u on Γ+,

−u on Γ−,

0 on Γ0,

(29)

in which case ch(u, 𝑣) = |u|2c = |𝑣|2c. Thus for the form in (20) and the space ̊k
h
defined in (26), we have (27) with

C = 1 and (28) with 𝛽 = 1.

Now define Vk
h
and Vk

h
(g ) by

Vk
h
=
{
𝑣 ∈ Wk

h
: 𝑣 = 0 on Γ0

}
, Vk

h
(g ) =

{
𝑣 ∈ Wk

h
: 𝑣 = gI on Γ0

}
. (30)

Define k
h
to be the span of all basis functions 𝜓 j in (16) for which the corresponding nodes x j are on Γ.

Then k
h
is a complementary space:

Vk
h
= W̊k

h
⊕ k

h
. (31)

However, if we do not require functions inVk
h
to vanish at vertices (see Section 4.4), then a problem can arise

at a vertex where 𝛿 changes sign. If𝜓 ∈ k
h
is the basis function for that vertex, then c̃h(𝜓,𝜓 ) ≈ 0 by symmetry.

In such a case, we modify the form ch(⋅, ⋅) as follows:

ch(u, 𝑣) = ∫
Γ

𝛿−1u𝑣 ds+ C
∑
i

u(yi )𝑣(yi ) = c̃h(u, 𝑣)+ C
∑
i

u(yi )𝑣(yi ), (32)

where yi denotes the boundary points where 𝛿 changes sign and C is a constant to be specified. Adding this

sum does not change the exactness of satisfaction in (24), since u satisfies the boundary conditions exactly at all

vertices of Ωh. On the other hand, such a modification can enhance stability on the approximation space. We

will show that (28) holds with suitable conditions.
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The form ch is more stable but still not quite practical, since it involves boundary integrals with a variable

coefficient. We will later modify it further to use numerical quadrature.

Define the norm ‖𝑣‖a =√ah(𝑣, 𝑣). (33)

where the bilinear form ah is defined in (20). The final inequality required for proving stability is a linking lemma

of the form ‖𝑣‖a ⩽ c1h
𝓁 |𝑣|c for all 𝑣 ∈ k

h
, (34)

for some 𝓁 ⩾ 0. The latter will be proved in Lemma 2 for the form in (20) and the space k
h
defined in (26) with

𝓁 = 1∕2.

4.2 The linking lemma

Due to the singularity of 𝛿−1, c̃h(u, 𝑣) may not be well defined for all u, 𝑣 ∈ V̊k
h
. Therefore, we first show that this

is not the case if we make Assumption 1.

Lemma 1. Under Assumption 1, |c̃h(u, 𝑣)| <∞ ∀u, 𝑣 ∈ V̊k
h
. (35)

Proof. Assumption 1 implies that 𝛿 is non-zero in the interior of each edge. If 𝛿′ ≠ 0 at the end of each edge, then

𝛿−1𝑣 is bounded for all 𝑣 ∈ Vk
h
. The condition 𝛿′ ≠ 0 is obvious for edges whose vertices are in the interior of

each segment Si, since the curvature of Si in the interior would be bounded away from zero, but at a boundary,

the segment could be flat. But examining Figure 4 shows that 𝛿′ ≠ 0 there as well. The tangent to Si at the left

vertex has zero slope, but the chord connecting that vertex and the next has a positive slope, due to the strict

monotonicity of the boundary arc. The difference of slopes is 𝛿′. □

Assumption 1 does not hold for a domain of the form

Ω f = {(x, y) : |x| < 1, f (x) < y < 1} (36)

if f is defined by

f (x) =
⎧⎪⎨⎪⎩
0, x ⩽ 0,

sin(𝜋∕x)e−1∕x, x > 0.
(37)

In particular, if we take boundary mesh points at (0,0) and (1∕n, 0), then the corresponding edge e with these
vertices in the polygonal approximation will be on the x-axis. Thus 𝛿 = f in this interval and ch(𝑣, 𝑣) <∞ only

if 𝑣 vanishes in that interval. Although we must rule out such domains for the new method, the BDT method

would not be deterred by such boundaries.

Figure 4: Bound for 𝛿 for the example in (38).
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On the other hand, if f is monotone, Assumption 1 does hold forΩ f . For f defined by

f (x) =
⎧⎪⎨⎪⎩
0, x ⩽ 0,

e−1∕x, x > 0,
(38)

the slope of 𝛿 in [0, 1∕n] is e−n at the origin. Therefore Assumption 1 holds for reasonable domains.

Lemma 2. Under Assumption 1, there exists a constant c1 > 0 such that

‖𝑣‖a ⩽ c1

√
h |𝑣|c ∀𝑣 ∈ k

h
. (39)

Proof. Let Γ
h
be the collection of edges that are a subset of Γ and let  Γ

h
be triangles T such that T has an edge

in Γ
h
. Then, if 𝑣 ∈ k

h
and using inverse estimates [20] we have

‖𝑣‖2
a
=
∑
T∈ Γ

h

‖∇𝑣‖2
L2(T )

⩽
∑
T∈ Γ

h

C

h2
T

‖𝑣‖2
L2(T )

⩽
∑
e∈Γ

h

C

he
‖𝑣‖2

L2(e)

⩽
∑
e∈Γ

h

C

he

(
max
x∈e
|𝛿(x)|) ‖ |𝛿|−1∕2𝑣‖2

L2(e)
.

(40)

The result is complete after we use that

max
x∈e
|𝛿(x)| ⩽ Ch2

e
(41)

for all e ∈ Γ
h
, which holds since 𝛿 is essentially the error in a piecewise linear approximation of the

boundary. □

4.3 Bounding 𝜹

We will need an upper bound on 𝛿 for certain estimates. Return to the example in (36). In Figure 4, we depict

a way to give a bound on 𝛿. We have 𝛿 ⩽ c, where c is the length of the edge indicated in Figure 4. Using the

similarity of the triangles indicated in Figure 4, we find

a

b
= h

a
⇒ b = a2

h
.

By the Pythagorean theorem,

c =
√
a2 + b2 = a

√
1+ a2∕h2 = f (h)

√
1+ f (h)2∕h2.

Therefore, we have proved the following result.

Lemma 3. SupposeΩ is as in (36) where f (0) = 0 and f is strictly increasing for x ⩾ 0. Then

‖𝛿‖L∞([0,h]) ⩽ C‖ f ‖L∞([0,h]), (42)

where C =
√
1+ f (h)2∕h2 ⩽

√
1+ ‖ f ′‖2

L∞([0,h])
.

Thus if f is exponentially small, so is 𝛿. More generally,

f (i)(0) = 0 ∀ 0 ⩽ i ⩽ k ⇒ ‖𝛿‖L∞([0,h]) ⩽ Chk+1. (43)



66 — T. Dupont et al.: Curved boundary Galerkin approximation

More specifically, let f (x) = xk+1, k > 0. Note that the slope of the line in Figure 4 is a∕h = hk . Then

𝛿(x) =
(
1+ h2k

)−1(
hkx − xk+1

)
, x ∈ [0, h].

Therefore

𝛿′(x) =
(
1+ h2k−2

)−1(
hk − (k + 1)xk

)
, x ∈ [0, h].

Thus the maximum of 𝛿 on [0, h] occurs when x = (k + 1)−1∕kh, and hence

‖𝛿‖L∞([0,h]) = (1+ h2k
)−1

hk+1
(
(k + 1)−1∕k − (k + 1)−(k+1)∕k

)
. (44)

This implies that ch(⋅, ⋅) could be quite large in some cases. On the other hand, the bound (42) implies that
we can modify certain approximations on the boundary when f is unusually small.

4.4 Relaxing the requirements

We consider three types of algorithmic modifications. The algorithm as presented so far requires the exact eval-

uation of boundary integrals with singular integrands. Here we consider the use of quadrature for computing

the form ch(u, 𝑣). This has two benefits: it avoids the requirement for exact evaluation of boundary integrals,

and it also avoids the singularities.

In addition, we allow for the approximation of 𝛿. For example, the function 𝛿 may come from a mesh

generator, and we must make provision for some inaccuracies. As a motivating example, we take

𝛿h = 𝜀 sign(𝛿 )+ 𝛿, (45)

where 𝜖 is either fixed or depends on h, even locally. This example has the added benefit of removing the sin-

gularity. We present computational results for this example, but our analysis applies to much more general

𝛿h.

Finally, we allow the boundary functions in k
h
to be nonzero at vertices. This makes the implementation

much easier. On the other hand, we still assume that the boundary functions ink
h
vanish on the piecewise linear

part Γ0 of the boundary. If we also require boundary functions in k
h
to vanish at all points yi, then we can use

the definition of ch(⋅, ⋅) as before. But if we want to allow them to be nonzero at such points, we need to make

a modification of the boundary form as indicated in (32). More precisely, we assume that the form ch and the

related inner product and norm are now defined by

ch(u, 𝑣) = QΓ
(
𝛿−1
h
u𝑣
)
+
∑
i

𝜇iu(yi )𝑣(yi ),

⟨u, 𝑣⟩c = QΓ
(|𝛿h|−1u𝑣)+∑

i

𝜇iu(yi )𝑣(yi ), |𝑣|c =√⟨𝑣, 𝑣⟩c, (46)

where QΓ is a quadrature rule approximating the integral over Γ, and

𝜇i ⩾ 10QEi

(|𝛿h|−1𝜓 2
i

)
, (47)

where 𝜓i is the Lagrange basis function that is 1 at yi and Ei is the support of 𝜓i.

Note that the analog of (27) holds:

|ch(u, 𝑣)| ⩽ |u|c|𝑣|c ∀u, 𝑣 ∈ k
h
. (48)

For finite-element functions, we can evaluate the ch form in (46) using

u(yi )𝑣(yi ) = QΓ
(
𝜒h
i
u𝑣
)
,

where𝜒h
i
is an approximate identity centered at yi. Thismay simplify implementation on variational-formbased

systems such as dolfin [33]. The calculation of 𝜇i can be done in the same way.
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4.5 Quadrature assumptions

Regarding the quadrature rule, we assume that

QΓ( f ) =
∑
e

Qe( f ),

whereQe is a quadrature rulewith positiveweights approximating the integral over ewithout quadrature points

at the vertices of e. More precisely, we assume that Qe is generated from a single rule for [0,1] with the usual

change of variables:

Q[0,1]( f ) =
q∑
i=1
𝜔i f (𝜉i ), Q[a,b]( f ) = (b− a)

q∑
i=1
𝜔i f (a+ 𝜉i(b− a)).

Without loss of generality, we assume that 0 < 𝜉1 < 𝜉2 <… < 𝜉q < 1 and that 𝜉1 ⩽ 1− 𝜉q. For the approximate
identity, we pick 𝜒h

i
to satisfy

QΓ
(
𝜒h
i
u𝑣
)
= u(yi )𝑣(yi ) ∀u, 𝑣 ∈ k

h
.

In particular, we assume that 𝜒h
i
is supported in Ei, the union of the two edges meeting at yi.

Let us make some assumptions about 𝛿h and Qe. First of all we assume that

𝛿𝛿h ⩾ 0, (49)

that is, we assume that 𝛿h has the same sign in each element as 𝛿. Recall that we assume that the points (8) are

vertices in the mesh. For the example in (45), 𝛿𝛿h = 𝜖|𝛿|+ 𝛿2 ⩾ 0.

Next, we assume that, for all boundary edges e ⊂ Γ,

‖(𝛿 − 𝛿h )|𝛿h|−1∕2‖L∞(e) ⩽ CDh
D
e

(50)

for some D ⩾ 1. As a result,

‖𝛿h‖L∞(e) ⩽ ‖𝛿 − 𝛿h‖L∞(e) + ‖𝛿‖L∞(e) ⩽ CDh
D
e
‖𝛿h‖1∕2L∞(e)

+ CΓh
2
e
,

for all e ⊂ Γ. Thus the arithmetic-geometric mean inequality implies that, for some constant C,

‖𝛿h‖L∞(e) ⩽ Ch2
e

∀e ⊂ Γ. (51)

To get a sense of the restrictiveness of the assumption (50), consider our motivating example (45). In this

case, we have |𝛿h| ⩾ 𝜖, and |𝛿 − 𝛿h| = 𝜖. Therefore (50) holds with C = 1 if 𝜖 ⩽ h2D
e
for all e ⊂ Γ. Secondly, we

assume that |||||||∫e 𝜙 ds− QΓ(𝜙)

||||||| ⩽ Chm‖𝜙‖Wm,1(e), m > 2k, (52)

for all boundary edges e.

4.6 Revised method

We now replace Lemma 1 by the following. Recall the definitions from (30). The revised method is the following:

Find uh ∈ Vk
h
(g ) such that, for all 𝑣 ∈ Vk

h
,

bh(uh, 𝑣) = ∫
Ωh

(E f )𝑣 dx + ch(ĝ, 𝑣). (53)
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We need a replacement for Lemma 2. Recall the definition (31) of k
h
. Note that (52) implies

∫
e

𝑣2 ds = Qe(𝑣
2 ) ∀𝑣 ∈ k

h
. (54)

Lemma 4. Suppose that the quadrature has positive weights and that (52) holds. Then

‖𝑣‖L2(Γ) ⩽ c1h|𝑣|c, ‖𝑣‖a ⩽ c1

√
h|𝑣|c, (55)

for all 𝑣 ∈ k
h
.

Proof. From (54), ∑
e∈Γ

h

‖𝑣‖2
L2(e)

=
∑
e∈Γ

h

Qe(𝑣
2 ) ⩽

∑
e∈Γ

h

(
max
x∈e
|𝛿h(x)|)Qe

(|𝛿h|−1𝑣2)

⩽
(
max

e
max
x∈e
|𝛿h(x)|)QΓ

(|𝛿h|−1𝑣2).
(56)

Recall from (46) that

QΓ
(|𝛿h|−1𝑣2) = |𝑣|2c −∑

i

𝜇i𝑣(yi )
2 ⩽ |𝑣|2

c
, (57)

since the 𝜇i’s are positive. From the proof of Lemma 2, we have

‖𝑣‖2
a
⩽ Ch−1‖𝑣‖2

L2(Γ).

The result follows from (51). □

We will prove (28) for the relaxed algorithm in Section 6.

5 Error analysis

5.1 Stability analysis

Unfortunately, the bilinear form bh is not positive definite. However, we are still able to prove stability of the

method.

Theorem 1. Assume that (27), (28), and (34) hold. Suppose that G is a bounded linear functional on Vk
h
and suppose

that uh ∈ Vk
h
solves

bh(uh, 𝑣) = G(𝑣) ∀𝑣 ∈ Vk
h
.

Then, assuming

c1h
𝓁 ⩽ 1

2

√
𝛽, (58)

we have

‖uh‖a ⩽ 4

3

(
sup
𝑣h∈W̊k

h

|G(𝑣h )|‖𝑣h‖a
)
+ 4c1h

𝓁

3𝛽

(
sup
𝑣h∈k

h

|G(𝑣h )||𝑣h|c
)

and

|uh|c ⩽ 1√
𝛽

(
sup
𝑣h∈W̊k

h

|G(𝑣h )|‖𝑣h‖a
)
+ 2

𝛽

(
sup
𝑣h∈k

h

|G(𝑣h )||𝑣h|c
)
.
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In particular, Theorem 1 proves that the system (53) is invertible.

Proof. We can write uh = 𝑤h + sh, where𝑤h ∈ W̊k
h
and sh ∈ k

h
. Use (28) to define 𝜙h ∈ k

h
satisfying |𝜙h|c =|sh|c and 𝛽|sh|2c ⩽ ch(sh, 𝜙h ). Then

𝛽|sh|2c ⩽ ch(sh, 𝜙h ) = bh(uh, 𝜙h )− ah(uh, 𝜙h ) = G(𝜙h )− ah(uh, 𝜙h ).

Hence, we have

𝛽|sh|2c ⩽
(
sup
𝑣h∈k

h

|G(𝑣h )||𝑣h|c
)
|𝜙h|c + ‖uh‖a‖𝜙h‖a

⩽

(
sup
𝑣h∈k

h

|G(𝑣h )||𝑣h|c
)
|sh|c + (‖𝑤h‖a + c1h

𝓁|sh|c)‖𝜙h‖a
⩽

(
sup
𝑣h∈k

h

|G(𝑣h )||𝑣h|c
)
|sh|c + c1h

𝓁(‖𝑤h‖a + c1h
𝓁|sh|c)|𝜙h|c

=
(
sup
𝑣h∈k

h

|G(𝑣h )||𝑣h|c
)
|sh|c + c1h

𝓁(‖𝑤h‖a + c1h
𝓁|sh|c)|sh|c.

(59)

Here we used (34) twice. In particular, we used

‖uh‖a ⩽ ‖𝑤h‖a + ‖sh‖a ⩽ ‖𝑤h‖a + c1h
𝓁|sh|c.

Assuming h𝓁 c1 ⩽
1

2

√
𝛽 we have

3

4
𝛽|sh|2c ⩽

(
sup
𝑣h∈k

h

|G(𝑣h )||𝑣h|c
)
|sh|c + 1

2

√
𝛽 ‖𝑤h‖a|sh|c.

Hence,

𝛽|sh|c ⩽ 4

3

(
sup
𝑣h∈k

h

|G(𝑣h )||𝑣h|c
)
+ 2

3

√
𝛽 ‖𝑤h‖a. (60)

Next, ‖𝑤h‖2a = ah(𝑤h,𝑤h ) = ah(uh,𝑤h )− ah(sh,𝑤h )

= bh(uh,𝑤h )− ah(sh,𝑤h ) = G(𝑤h )− ah(sh,𝑤h ).

We therefore have

‖𝑤h‖2a ⩽
(

sup
𝑣h∈W̊k

h

|G(𝑣h )|‖𝑣h‖a
)
‖𝑤h‖a + ‖sh‖a‖𝑤h‖a.

Dividing by ‖𝑤h‖a and applying (34) and (60), we obtain
‖𝑤h‖a ⩽

(
sup
𝑣h∈W̊k

h

|G(𝑣h )|‖𝑣h‖a
)
+ ‖sh‖a

⩽

(
sup
𝑣h∈W̊k

h

|G(𝑣h )|‖𝑣h‖a
)
+ c1h

𝓁|sh|c
⩽

(
sup
𝑣h∈W̊k

h

|G(𝑣h )|‖𝑣h‖a
)
+ 4c1h

𝓁

3𝛽

(
sup
𝑣h∈k

h

|G(𝑣h )||𝑣h|c
)
+ 2c1h

𝓁

3
√
𝛽
‖𝑤h‖a.
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Thus for h𝓁 c1 ⩽
1

2

√
𝛽 we have

‖𝑤h‖a ⩽ 3

2

(
sup
𝑣h∈W̊k

h

|G(𝑣h )|‖𝑣h‖a
)
+ 2c1h

𝓁

𝛽

(
sup
𝑣h∈k

h

|G(𝑣h )||𝑣h|c
)

⩽ 3

2

(
sup
𝑣h∈W̊k

h

|G(𝑣h )|‖𝑣h‖a
)
+ 1√

𝛽

(
sup
𝑣h∈k

h

|G(𝑣h )||𝑣h|c
)
.

(61)

From (60) and (61) we get

𝛽|uh|c = 𝛽|sh|c ⩽ 2

(
sup
𝑣h∈k

h

|G(𝑣h )||𝑣h|c
)
+
√
𝛽

(
sup
𝑣h∈W̊k

h

|G(𝑣h )|‖𝑣h‖a
)
.

Finally, (34) and (60) again imply

‖uh‖a ⩽ ‖𝑤h‖a + ‖sh‖a ⩽ ‖𝑤h‖a + c1h
𝓁|sh|c

⩽

(
1+ 2c1h

𝓁

3
√
𝛽

)
‖𝑤h‖a + 4c1h

𝓁

3𝛽

(
sup
𝑣h∈k

h

|G(𝑣h )||𝑣h|c
)

⩽ 4

3

(
sup
𝑣h∈W̊k

h

|G(𝑣h )|‖𝑣h‖a
)
+ 4c1h

𝓁

3𝛽

(
sup
𝑣h∈k

h

|G(𝑣h )||𝑣h|c
)

for c1h
𝓁 ⩽ 1

2

√
𝛽 . □

5.2 Quasi-optimal error estimates

For clarity, we begin with the algorithm based on V̊k
h
in (17) and exact quadrature for the forms in (20). Note that

in this case we have the inf-sup constant 𝛽 = 1.

Theorem 2. Assume Assumptions 1 and 2 hold, and assume that u solves (1) and that
𝜕2Eu

𝜕n2
∈ Lq(ΩΔΩh ) where

1 < q ⩽ ∞. Define

rq = min

{
7

2
− 2

q
, 4− 3

q

}
.

Let uh ∈ V̊k
h
(g ) solve (21). Then we have

‖Eu− uh‖a ⩽ inf
𝑤∈V̊k

h
( g )

((
7

3
+ 4c2

1
h

3𝛽

)‖𝑤− Eu‖a + 4c1

√
h

3𝛽
|𝑤− Eu|c

)
+ C
(
h3 + hrqKq

)
,

where C depends on 𝛽−1,  is defined in (23), and

Kq =
‖‖‖‖𝜕

2Eu

𝜕n2
‖‖‖‖Lq(ΩΔΩh )

, (62)

cf. (25). Similarly,

|Eu− uh|c ⩽ inf
𝑤∈V̊k

h
( g )

((
1+ 1

𝛽

)|Eu−𝑤|c +
(

1√
𝛽
+ 2c1

√
h

𝛽

)
‖Eu−𝑤‖a

)
+ C
(
h5∕2 + hrq−1∕2Kq

)
.

In the ideal case when Eu ∈ W2,∞(Ω̂), the term hrq simplifies to h7∕2.

Proof. Let𝑤 ∈ V̊k
h
(g ) be arbitrary and define eh = 𝑤− uh ∈ V̊k

h
. Then we see that

bh(eh, 𝑣) = G(𝑣) ∀𝑣 ∈ V̊k
h
,
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where G(𝑣) = G1(𝑣)+ G2(𝑣), G1(𝑣) = bh(Eu− uh, 𝑣) and G2(𝑣) = bh(𝑤− Eu, 𝑣). We can apply Theorem 1 to get

bounds for eh = 𝑤− uh for arbitrary 𝑤 in terms of bounds for the form G. Thus we need only estimate the

forms Gi.

Applying (25) to (24), we find

|G1(𝑣)| ⩽ ‖𝑣‖L1(Ωh∖Ω) + Ch2−2∕qKq‖𝑣‖L p(Γ),
1

p
+ 1

q
= 1, (63)

where Kq is defined in (62). Recall that W̊
k
h
= Wk

h
∩ H1

0
(Ωh ). For 𝑣 ∈ W̊k

h
,

‖𝑣‖L1(Ωh∖Ω) ⩽ Ch4‖𝑣‖W1
∞(Ωh∖Ω) ⩽ Ch3‖𝑣‖a,

using a standard inverse estimate. Thus

sup
𝑣∈W̊k

h

|G1(𝑣)|‖𝑣‖a ⩽ Ch3 (64)

since the boundary term in (63) vanishes.

Recall the definition (26) of ̊k
h
. Now consider 𝑣 ∈ ̊k

h
. For p ⩾ 2, inverse estimates give

‖𝑣‖L p(Γ) ⩽ Ch1∕ p−1∕2‖𝑣‖L2(Γ) ⩽ Ch1∕ p+1∕2‖|𝛿|−1∕2𝑣‖L2(Γ).
For p < 2,

‖𝑣‖ p
L p(Γ) = ∫

Γ

|𝛿| p∕2|𝛿|− p∕2|𝑣| p dx

⩽
⎛⎜⎜⎝∫Γ |𝛿|

t′ p∕2 dx
⎞⎟⎟⎠
1∕t′⎛⎜⎜⎝∫Γ |𝛿|

−t p∕2|𝑣|t p dx⎞⎟⎟⎠
1∕t [

1

t
+ 1

t′
= 1
]

=
⎛⎜⎜⎝∫Γ |𝛿|

p∕(2− p) dx

⎞⎟⎟⎠
1− p∕2⎛⎜⎜⎝∫Γ |𝛿|

−1|𝑣|2 dx⎞⎟⎟⎠
1∕t [

1

t
= p

2
,
1

t′
= 1− p

2

]
.

Taking the p-th root, we get

‖𝑣‖L p(Γ) ⩽
⎛⎜⎜⎝∫Γ |𝛿|

p∕(2− p) dx

⎞⎟⎟⎠
(2− p)∕(2 p)

|𝑣|c ⩽ Ch|𝑣|c.
Thus for general p,

‖𝑣‖L p(Γ) ⩽ Chr p |𝑣|c, rp =
⎧⎪⎨⎪⎩
1, p ⩽ 2,

1

p
+ 1

2
, p ⩾ 2.

Applying this to (63) and using (34) and inverse estimates, we get

|G1(𝑣)| ⩽ h2‖𝑣‖L∞(Ωh∖Ω) + h2−2∕q+r pKq|𝑣|c
⩽ h2‖𝑣‖a + h2−2∕q+r pKq|𝑣|c
⩽ c1h

5∕2|𝑣|c + h2−2∕q+r pKq|𝑣|c,
where Kq is defined in (62). Note that

2− 2

q
+ rp =

⎧⎪⎨⎪⎩
3− 2

q
, q ⩾ 2 ( p ⩽ 2)

7

2
− 3

q
, q ⩽ 2 ( p ⩾ 2)

= min

{
3− 2

q
,
7

2
− 3

q

}
= rq −

1

2
.
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Hence,

h1∕2

(
sup
𝑣∈̊k

h

|G1(𝑣)||𝑣|c
)

⩽ C
(
h3 + hrqKq

)
. (65)

Now consider G2. If we let 𝑣 ∈ W̊k
h
then

G2(𝑣) = ah(𝑤− Eu, 𝑣) ⩽ ‖𝑤− Eu‖a‖𝑣‖a.
Hence,

sup
𝑣∈W̊k

h

|G2(𝑣)|‖𝑣‖a ⩽ ‖𝑤− Eu‖a. (66)

For 𝑣 ∈ ̊k
h
, (34) implies

|G2(𝑣)| ⩽ ‖𝑤− Eu‖a‖𝑣‖a + |𝑤− Eu|c|𝑣|c ⩽ (c1√h‖𝑤− Eu‖a + |𝑤− Eu|c)|𝑣|c.
Therefore, we have √

h sup
𝑣∈̊k

h

|G2(𝑣)||𝑣|c ⩽ c1h‖𝑤− Eu‖a +√h|𝑤− Eu|c. (67)

Combining (64) and (66), we get

sup
𝑣∈W̊k

h

|G(𝑣h )|‖𝑣h‖a ⩽ Ch3 + ‖𝑤− Eu‖a. (68)

Combining (65) and (67), we get

√
h sup
𝑣∈̊k

h

|G(𝑣)||𝑣|c ⩽ C
(
h3 + hrq‖u‖

W2,q(Ω̂)

)
+ c1h‖𝑤− Eu‖a +√h|𝑤− Eu|c. (69)

Applying Theorem 1, we find

‖𝑤− uh‖a ⩽ 4

3
‖𝑤− Eu‖a + 4c1

3𝛽

(
c1h‖𝑤− Eu‖a +√h|𝑤− Eu|c)+ C

(
h3 + hrqKq

)
,

√
h|𝑤− uh|c ⩽

(√
h√
𝛽
+ 2c1h

𝛽

)
‖𝑤− Eu‖a + C

(
h3 + hrqKq

)
+
√
h

𝛽
|𝑤− Eu|c,

(70)

where C depends on 𝛽−1. Therefore

‖Eu− uh‖a ⩽ ‖Eu−𝑤‖a + ‖𝑤− uh‖a
⩽
(
7

3
+ 4c2

1
h

3𝛽

)‖𝑤− Eu‖a + 4c1

√
h

3𝛽
|𝑤− Eu|c + C

(
h3 + hrqKq

)
.

(71)

Similarly,

|Eu− uh|c ⩽ |Eu−𝑤|c + |𝑤− uh|c
⩽
(
1+ 1

𝛽

)|Eu−𝑤|c +
(

1√
𝛽
+ 2c1

√
h

𝛽

)
‖Eu−𝑤‖a + C

(
h5∕2 + hrq−1∕2Kq

)
.

(72)

Taking the infimum over𝑤 completes the proof. □
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6 Proof of inf-sup

Now we prove (28) for the relaxed algorithm. The main difficulty comes from changing signs for 𝛿h. On parts of

the boundary where it is of one sign, we can apply the idea behind (29).

Let us number the basis functions 𝜓1, 𝜓2,… , 𝜓N of k
h
associated with boundary nodes xi so that

𝜓1, 𝜓2,… , 𝜓𝜘 are the basis functions for the boundary vertices yi where 𝛿 changes sign. Note that Assumption 2

implies that h is small enough so that these are not neighboring vertices in the mesh, and thus the supports of

𝜓i and 𝜓 j do not overlap. Write

u =
N∑
i=1

ai𝜓i = sh +
𝜘∑
i=1

ai𝜓i.

Define

𝑣 = 𝜙h +
𝜘∑
i=1

ai𝜓i, (73)

where

𝜙h =

⎧⎪⎪⎨⎪⎪⎩

sh on {x ∈ Γ : 𝛿h(x) ⩾ 0},

−sh on {x ∈ Γ : 𝛿h(x) ⩽ 0},

0 on Γ0.

(74)

Note that

ch(sh, 𝜙h ) = |sh|2c.
Expanding, we find

ch(u, 𝑣) = |sh|2c + 𝜘∑
i=1

(
a2
i
ch(𝜓i, 𝜓i )+ aich(sh, 𝜓i )+ aich(𝜓i, 𝜙h )

)
and

|u|2
c
= ⟨u, u⟩c = |sh|2c + 𝜘∑

i=1

(
a2
i
|𝜓i|2c + 2ai⟨sh, 𝜓i⟩c). (75)

Therefore

|u|2
c
= ch(u, 𝑣)+

𝜘∑
i=1

(
a2
i
|𝜓i|2c − a2

i
ch(𝜓i, 𝜓i )+ 2ai⟨sh, 𝜓i⟩c − (aich(sh, 𝜓i )+ aich(𝜓i, 𝜙h )

))
. (76)

Using the definition of 𝜙h, we have

⟨sh, 𝜓i⟩c − ch(𝜙h, 𝜓i ) = QEi

(|𝛿h|−1𝜓ish
)
− QEi

(
𝛿−1
h
𝜓i𝜙h

)
= QEi

(|𝛿h|−1𝜓i(sh − sign(𝛿h )𝜙h )) = 0,
(77)

where we recall that Ei is the union of the two edges adjacent to yi. Therefore

|u|2
c
= ch(u, 𝑣)+

𝜘∑
i=1

(
a2
i
|𝜓i|2c − a2

i
ch(𝜓i, 𝜓i )+ ai⟨sh, 𝜓i⟩c − aich(sh, 𝜓i )

)
. (78)

First of all, |𝜓i|2c − ch(𝜓i, 𝜓i ) = QEi
(
(|𝛿h|−1 − 𝛿−1h )(𝜓i )

2 ) ⩽ 2QEi
(|𝛿h|−1(𝜓i )

2 ).

Define temporarily qi = QEi
(|𝛿h|−1(𝜓i )

2 ). Therefore

a2
i

(|𝜓i|2c − ch(𝜓i, 𝜓i )
)
⩽ 2a2

i
qi.
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Similarly, |⟨sh, 𝜓i⟩c − ch(sh, 𝜓i )| ⩽ 2|QEi
(|𝛿h|−1(sh𝜓i ))|.

Since sh = u− ai𝜓i on Ei, we find

|QEi
(|𝛿h|−1(sh𝜓i ))| = |QEi

(|𝛿h|−1(u𝜓i − ai𝜓
2
i

)| ⩽ |QEi
(|𝛿h|−1(u𝜓i )|+ |ai|qi.

Using the arithmetic–geometric mean (AGM) inequality,

2|QEi
(|𝛿h|−1(u𝜓i )| ⩽ 1

2|ai|QEi

(|𝛿h|−1u2)+ 2|ai|qi.
Therefore |ai| |⟨sh, 𝜓i⟩c − ch(sh, 𝜓i )| ⩽ 1

2
QEi

(|𝛿h|−1u2)+ 3a2
i
qi.

Thus (78) becomes

|u|2
c
⩽ |ch(u, 𝑣)|+ 𝜘∑

i=1

(
1

2
QEi

(|𝛿h|−1u2)+ 5a2
i
qi

)

⩽ |ch(u, 𝑣)|+ 1

2
|u|2

c
+

𝜘∑
i=1

a2
i

(
− 1

2
𝜇i + 5qi

)
.

(79)

Thus (47) implies
1

2
|u|2

c
⩽ |ch(u, 𝑣)| (80)

for 𝑣 defined in (73).

We have thus shown that |u|c ⩽ 2
|ch(u, 𝑣)||u|c ⩽ 2

|ch(u, 𝑣)||𝑣|c |𝑣|c|u|c (81)

for 𝑣 defined in (73).

Recall that Ei is the union of the two edges meeting at yi. We will show in Section 6.1 that

a2
i
|𝜓i|2c = a2

i
|𝜓i|2c,Ei ⩽ Ck|u|2c,Ei (82)

for a constant Ck depending only on the polynomial degree k and the shape regularity of the mesh.

Thus (82) implies that

|𝑣|c ⩽ |𝜙h|c + |||||
𝜘∑
i=1

ai𝜓i

|||||c = |sh|c +
|||||

𝜘∑
i=1

ai𝜓i

|||||c
⩽ |u|c + 2

|||||
𝜘∑
i=1

ai𝜓i

|||||c ⩽
(
1+ 2

√
Ck

)|u|c.
(83)

Therefore |𝑣|c ⩽ C|u|c, (84)

as required, proving the inf-sup condition (28) with 𝛽 = 1∕2C by using (81).

6.1 Proof of (82)

Let us focus on a particular zero crossing i and rename basis functions as𝜙i and renumber indices so that i = 0.

Number the other basis functions supported in e± as 𝜙 j, ± j = 1,… , k − 1, with 𝜙±k being the nearest vertex

basis functions. Let e− and e+ be the two edges on either side of yi, and let E = e− ∪ e+. Suppose that the edges

e± can be parameterized by ±x ∈ [0, h±]. Suppose that

u|e± =
±k∑
j=0

b j𝜙 j.
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To prove (82), we will prove more generally that

±k∑
j=0

b2
i
|𝜙 j|2c,e± ⩽ C|u|2

c,e±
(85)

for a constant C to be made explicit. The estimate (85) shows equivalence of two different norms on a finite

dimensional space. There may be many ways to prove this, but we choose a simplification to facilitate this.

Let us introduce a simplifying assumption about 𝛿. For each triangle T having a boundary edge e ⊂ Γ,
choose coordinates so that e corresponds to {(x, 0) : 0 ⩽ x ⩽ h}.

Assumption 3. We assume that 𝛿 is such that, for all boundary edges e,

|𝛿(x)| ⩾ 𝜁x(h− x) ∀ 0 < x < h, (86)

where 𝜁 > 0 is independent of e and h.

By construction, the domain depicted in Figure 3 satisfies Assumption 3; to prove this, we need only to

evaluate 𝜁 for a circle of radius 1. In our example in Section 3, we examine such a circle, and we can now show

that 𝜁 = 1/2. In particular, for 𝛿 as defined in (6), in appropriate coordinates we have

𝛿((𝜉 + h)∕2) =
√
1− 𝜉2 −

√
1− h2 =

(
h2 − 𝜉2

)
r(𝜉 ), |𝜉| ⩽ h,

where r(𝜉 ) =
(√

1− 𝜉2 +
√
1− h2

)−1
is analytic for |𝜉| < 1 and r(𝜉 ) ⩾ 1/2 for |𝜉| < 1, provided that h ⩽ 1.

Returning to the proof of (82), define

‖𝑣‖Q,e± = max
j

||||𝑣
(
𝜉±
j

)||||. (87)

Then

Qe±

(|𝛿h|−1) =∑
j

𝜔±
j

||||𝛿h
(
𝜉±
j

)||||
−1

⩽

(∑
j

𝜔±
j

)
‖𝛿−1

h
‖Q,e± = h±‖𝛿−1h ‖Q,e± . (88)

If (50) holds, then for all x ∈ e± we have

|𝛿(x)| ⩽ |𝛿h(x)|+ |𝛿(x)− 𝛿h(x)| ⩽ |𝛿h(x)|+ CDh
D
e±
|𝛿h(x)|1∕2 ⩽ |𝛿h(x)|+ CDh

D+1
e±

.

Therefore Assumption 3 implies

|𝛿h(x)| ⩾ |𝛿(x)|− CDh
D+1
e±

⩾ 𝜁x(he± − x)− CDh
D+1
e±

.

Thus ‖𝛿−1
h
‖Q,e± ⩽

(
𝜁𝜉1(1− 𝜉1 )h2± − CDh

D+1
e±

)−1
= h−2±

(
𝜁𝜉1(1− 𝜉1 )− CDh

D−1
e±

)−1
. (89)

If D > 1, then

‖𝛿−1
h
‖Q,e± ⩽

2h−2±
𝜁𝜉1(1− 𝜉1 )

, (90)

provided that

CDh
D−1
± ⩽ 1

2
𝜉1(1− 𝜉1 )𝜁 . (91)

Therefore (88) implies

Qe±

(|𝛿h|−1) ⩽ 2h−1±
𝜁𝜉1(1− 𝜉1 )

(92)

for h± satisfying (91).
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By the equivalence of norms on a finite dimensional vector space, we have

±k∑
j=0

b2
j
‖𝜙 j‖2L2(e± ) ⩽ ck‖u‖2L2(e± ). (93)

This is proved by scaling separately by h± on each interval e± to the unit interval, as follows. Define

𝜙 j|e± (±xh± ) = 𝜙̂ j(x) ∀x ∈ [0, 1].

Then ck is chosen so that

k∑
j=0

b2
i
‖𝜙̂ j‖2L2([0,1]) ⩽ ck

‖‖‖‖‖‖
k∑
j=0

b j𝜙̂ j

‖‖‖‖‖‖
2

L2([0,1])

for all {b j} ∈ ℝk+1. This completes the proof of (93). Note that (54) implies

‖u‖2
L2(e± )

= Qe±
(u2 ) ⩽ ‖𝛿h‖L∞(e± )Qe±

(|𝛿h|−1u2) = ‖𝛿h‖L∞(e± )|u|2c,e± .
Thus (93) and (51) imply

±k∑
j=0

b2
i
‖𝜙 j‖2L2(e± ) ⩽ ck‖𝛿h‖L∞(e± )|u|2c,e± ⩽ Cckh

2
±|u|2c,e± , (94)

where C is the constant in (51). Recalling (54), (90), and the norm defined in (87), we have

|𝜙 j|2c,e± ⩽ ‖𝛿−1
h
‖Q,e±Q(𝜙2

j

)
= ‖𝛿−1

h
‖Q,e±‖𝜙 j‖2L2(e± ) ⩽ 2h−2±

𝜁𝜉1(1− 𝜉1 )
‖𝜙 j‖2L2(e± ). (95)

Combining (94) and (95) yields
±k∑
j=0

b2
i
|𝜙 j|2c,e± ⩽ 2Cck

𝜁𝜉1(1− 𝜉1 )
|u|2

c,e±

proving (85). Thus

a2
i
|𝜓i|2c = b2

0

(|𝜙0|2c,e+ + |𝜙0|2c,e−) ⩽ Ck|u|2c,E,
where E = e− ∪ e+, as claimed, with

Ck =
4Cck

𝜁𝜉1(1− 𝜉1 )
,

provided that the constant D in (50) satisfies D > 1 and that the mesh size is small enough that (58) holds. Thus

we have proved the following theorem.

Theorem 3. Suppose that 𝛿h satisfies (49) and (50), with the constant D > 1, that the mesh size is small enough

that (58) holds, that the mesh is nondegenerate, that the quadrature rule satisfies (52), and that Assumptions 1–3

hold. Then the inf-sup bound (28) holds.

6.2 Estimates for the general algorithm

The main change to the arguments in the proof of Theorem 2 is that (22) and subsequent estimates need to be

augmented. The replacement for (22) reads

bh(Eu, 𝑣)− ∫
Ωh

(E f )𝑣 dx =
∫
Ωh∖Ω

(
−ΔEu− E f

)
𝑣 dx + QΓ(𝛿

−1
h
(Eu)𝑣)−

∫
Γ

𝜕Eu
𝜕n

𝑣 ds. (96)

Note that

QΓ(𝛿
−1
h
(Eu)𝑣)−

∫
Γ

𝜕Eu
𝜕n

𝑣 ds− ch(ĝ, 𝑣) = QΓ(𝛿
−1
h
(Eu− ĝ )𝑣)−

∫
Γ

𝜕Eu
𝜕n

𝑣 ds.
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Thus subtracting (53) from (96) revises (24) to be

|G1(𝑣)| = |bh(Eu− uh, 𝑣)| ⩽ ‖𝑣‖L1(Ωh∖Ω) +
|||||||∫Γ 𝛿

−1(Eu− ĝ )𝑣 ds− QΓ(𝛿
−1
h
(Eu− ĝ )𝑣)

|||||||
+ Ch2−2∕q‖Eu‖

W2,q(Ω̂)
‖𝑣‖L p(Γ),

1

p
+ 1

q
= 1,

(97)

where we have used (25). Therefore

|G1(𝑣)| ⩽ ‖𝑣‖L1(Ωh∖Ω) +h|𝑣|c + Ch2−2∕q‖Eu‖
W2,q(Ω̂)

‖𝑣‖L p(Γ), (98)

where the quadrature error h is defined by

h = sup
𝑣∈k

h

1|𝑣|c
|||||||∫Γ 𝛿

−1(Eu− ĝ )𝑣 ds− QΓ(𝛿
−1
h
(Eu− ĝ )𝑣)

|||||||. (99)

The estimate (64) is unchanged since the boundary terms again vanish. Using (55), estimate (65) becomes

√
h sup
𝑣∈k

h

|G1(𝑣)||𝑣|c ⩽ C
(
h3 + hrq‖u‖

W2,q(Ω̂)

)
+
√
hh. (100)

The estimates for G2 are unchanged. Thus (68) is also unchanged. Combining (100) and (67), we get the following

analog of (69):

√
h sup
𝑣∈k

h

|G(𝑣)||𝑣|c ⩽ C
(
h3 + hrq‖u‖

W2,q(Ω̂)

)
+ c1h‖𝑤− Eu‖a +√h|𝑤− Eu|c +√hh. (101)

Applying Theorem 1, we get

‖Eu− uh‖a ⩽C inf
𝑤∈Vk

h
( g )

(‖𝑤− Eu‖a +√h|𝑤− Eu|c)+ C
(
h3 + hrq‖u‖

W2,q(Ω̂)
+
√
hh

)
. (102)

Similarly,

|Eu− uh|c ⩽C inf
𝑤∈Vk

h
( g )

(|Eu−𝑤|c + ‖Eu−𝑤‖a)+ C
(
h5∕2 + hrq−1∕2‖u‖

W2,q(Ω̂)

)
+h. (103)

6.3 Quadrature error

The quadrature error (99) can be written in terms of the piecewise smooth function  = 𝛿−1(Eu− ĝ ) as

h = sup
𝑣∈k

h

1|𝑣|c
|||||||∫Γ 𝑣 ds− QΓ

(
𝛿𝛿−1

h
𝑣
)|||||||. (104)

To estimate h, consider

|||||||∫Γ 𝑣 ds− QΓ
(
𝛿𝛿−1

h
𝑣
)||||||| ⩽

|||||||∫Γ 𝑣 ds− QΓ(𝑣)

|||||||+
|||QΓ(

(
1− 𝛿𝛿−1

h

)
𝑣)|||. (105)

Introduce the broken Sobolev norms W̃m
p
(Γ) in the usual way for functions that are smooth on each element of

Γ.
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The first term on the right-hand side of (105) can be estimated using (52) and inverse estimates:

|||||||∫Γ 𝑣 ds− QΓ(𝑣)

||||||| ⩽ Chm‖𝑣‖
W̃m

1
Γ ⩽ Chm‖‖

W̃m
∞Γ‖𝑣‖W̃k,1(Γ)

⩽ Chm−k+1∕2‖‖
W̃m,∞(Γ)|𝑣|L2(Γ) ⩽ Chm−k+3∕2‖‖

W̃m,∞(Γ)|𝑣|c.
(106)

For the second term on the right-hand side of (105), we have

|||QΓ(
(
1− 𝛿𝛿−1

h

)
𝑣)||| = |||QΓ((𝛿h − 𝛿 )𝛿

1∕2
h

𝛿−1∕2
h

𝑣)
||| ⩽ CDh

D‖‖L∞(Γ) |𝑣|c. (107)

Combining (106) and (107) yields

h ⩽ ‖𝛿 − 𝛿h‖L∞(Γ)||c + Chm−k+3∕2‖‖
W̃m,∞(Γ). (108)

Combining (102), (103), and (108), we have proved the following theorem.

Theorem 4. Assume that the inverse estimates

‖𝑣‖L p(Γ) ⩽ Ch1∕ p−1∕2‖𝑣‖L2(Γ), ‖𝑣‖Wk
1
(Γ) ⩽ Ch−k+1∕2‖𝑣‖L2(Γ)

hold for p ⩾ 2, k ⩾ 1, and 𝑣 ∈ k
h
. Assume that Assumption 2 and (50) hold. Suppose that the quadrature has

positive weights and that (52) holds, and that u solves (1) and that Eu ∈ W2,∞(Ω̂). Let uh ∈ Vk
h
(g ) solve (53). Then

we have ‖Eu− uh‖a ⩽ inf
𝑤∈Vk

h
( g )

((
7

3
+ c1h

)‖Eu−𝑤‖a +√h|Eu−𝑤|c)
+ C
(
h3 + h7∕2‖Eu‖

W2,∞(Ω̂)

)
+ ChD||c + Chm−k+2‖‖

W̃m,∞(Γ),

|Eu− uh|c ⩽ inf
𝑤∈Vk

h
( g )

(
2|Eu−𝑤|c + (1+ c1

√
h)‖Eu−𝑤‖a)

+ C
(
h5∕2 + h3‖Eu‖

W2,∞(Ω̂)

)
+ ChD||c + Chm−k+2‖‖

W̃m,∞(Γ),

(109)

where  is defined in (23) and  is defined in (13).

If D ⩾ 7∕2, the estimates in (109) are as good as in (63), at least for appropriate quadrature rules. However,
our computations in Section 9 suggest that there may be benefit to taking ‖𝛿 − 𝛿h‖L∞(Γ) even smaller.
7 Approximation results

We have proved stability and quasi-optimal approximation in certain norms, but we need to translate this into

more conventional representations. A key point is that, so far, the form ch(𝑣, 𝑣) could be arbitrarily large.

In Theorems 2 and 4 we can take𝑤 = (Eu)I , but the issue is to estimate

∫
e

𝛿−1(Eu− (Eu)I )
2 ds.

We can write Eu = 𝛿  + ĝ, and so it suffices to estimate
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∫
e

𝛿−1(𝛿  − (𝛿  )I )
2 ds,

∫
e

𝛿−1(ĝ − (ĝ )I )
2 ds.

For the first of these, it is tempting to investigate how interpolation commutes with multiplication by 𝛿. When

𝛿 is very small, we can just take (𝛿  )I to be zero, and we get a small result. For the second, when 𝛿 is small, ĝ is
very close to g, which may provide some benefit. But first we limit our discussion to a simpler situation.

Lemma 5. Let e denote the interval [0, h]. Let 𝛿(x) = x(h− x). Suppose that 𝜙 ∈ H1
0
(e). Then

sup
r∈e

𝜙(r)2

𝛿(r)
dr ⩽ 1

h∫
e

𝜙′(t)2 dt (110)

for all 𝜙 ∈ H1
0
(e).

Proof. We begin with h = 1. For 𝜙 ∈ C∞
c
(0, 1),

𝜙(r)2 =
⎛⎜⎜⎝

r

∫
0

𝜙′(t) dt
⎞⎟⎟⎠
2

=
⎛⎜⎜⎝

1

∫
r

𝜙′(t) dt
⎞⎟⎟⎠
2

.

Therefore

𝜙(r)2 = (1− r)

⎛⎜⎜⎝
r

∫
0

𝜙′(t) dt
⎞⎟⎟⎠
2

+ r

⎛⎜⎜⎝
1

∫
r

𝜙′(t) dt
⎞⎟⎟⎠
2

.

From the Cauchy–Schwarz inequality,

𝜙(r)2 ⩽ r(1− r)

⎛⎜⎜⎝
r

∫
0

𝜙′(t)2 dt
⎞⎟⎟⎠+ r(1− r)

⎛⎜⎜⎝
1

∫
r

𝜙′(t)2 dt
⎞⎟⎟⎠

= r(1− r)

⎛⎜⎜⎝
1

∫
0

𝜙′(t)2 dt
⎞⎟⎟⎠.

(111)

The lemma follows from the density of C∞
c
(0, 1) in H1

0
(0, 1). The result for h ≠ 1 follows by scaling

variables. □

Lemma 6. Assume that Assumption 3 holds. Then

‖ |𝛿|−1∕2(u− uI )‖L2(e) ⩽ Chk‖u‖Hk+1(e),

where the constant C does not depend on e.

Proof. Applying Lemma 5 with 𝜙 = u− uI , we find from (86) that

‖ |𝛿|−1∕2(u− uI )‖L2(e) ⩽ |e|1∕2‖ |𝛿|−1∕2(u− uI )‖L∞(e) ⩽ 1√
𝜁
|u− uI|H1(e)

⩽ Chk|u|Hk+1(e),

(112)

since the restriction of the interpolant to e is the interpolant of the restriction, for Lagrange elements. □
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Theorem 5. Suppose that the assumptions of Theorem 4 hold and that Assumption 3 holds. Let uh ∈ Vk
h
(g ) solve

(53). Then we have

‖Eu− uh‖a ⩽Chk(‖Eu‖Hk+1(Ω) + ‖Eu‖Hk+1(𝜕Ω)

)
+ C
(
h3 + h7∕2‖Eu‖

W2,∞(Ω̂)

)
+ ChD||c + Chm−k+2‖‖

W̃m,∞(Γ),

|Eu− uh|c ⩽Chk(‖Eu‖Hk+1(Ω) + ‖Eu‖Hk+1(𝜕Ω)

)
+ C
(
h5∕2 + h3‖Eu‖

W2,∞(Ω̂)

)
+ ChD||c + Chm−k+2‖‖

W̃m,∞(Γ),

(113)

where  is defined in (23) and  is defined in (13).

If we require only |u|Hk+1(T ) to be bounded, we get a sub-optimal estimate:

|u− uI|H1(e) ⩽ Chk−1∕2|u|Hk+1(T ).

Thus ‖ |𝛿|−1∕2(u− uI )‖L2(e) ⩽ Chk−1∕2‖u‖Hk+1(T )

is the best possible estimate.

8 Implementation

The modification of Wk
h
to obtain the space V̊k

h
of piecewise polynomials vanishing at boundary vertices is

not trivial to implement in automated systems like FEniCS [33]. Thus we took the approach of modifying ch
as described in Section 4.4. The default approach to boundary integrals in dolfin, which it inherits from FIAT,

is to choose a Gauss-type rule with orderm sufficiently large that

∫
e

𝑣2 ds = Qe(𝑣
2 ) ∀𝑣 ∈ k

h
. (114)

We also experimented with 𝛿h given by (45) for various values of 𝜖. The answers do not depend on 𝜖 for 𝜖 small,

as indicated in Table 3. We were even able to have 𝜖 = 0 for (45) using dolfin, as our estimates confirm.

Table 3: Unit disc domain. Errors ‖uh − uI‖L2(Ωh )
, ‖uh − uI‖H1 (Ωh )

, and ‖ |𝛿|−1∕2(uh − uI )‖L2(𝜕Ωh )
as a function of 𝜖 and maximum mesh

size (hmax) for the Robin-like approximation (21) but modified as in Section 4.4, for piecewise quadratic polynomials (k = 2). Key:M is the

value of the meshsize input parameter to the mshr function circle used to generate the mesh; segs is the number of boundary edges.

k M segs hmax 𝝐 L2 err H1 err bdry err

2 64 320 3.5e−02 1.0e−04 1.1e−03 2.1e−03 1.3e−01
2 64 320 3.5e−02 1.0e−05 1.1e−04 1.8e−03 2.5e−02
2 64 320 3.5e−02 1.0e−06 1.2e−05 1.8e−03 3.2e−03
2 64 320 3.5e−02 .e− 6.0e−06 1.8e−03 3.2e−04
2 64 320 3.5e−02 1.0e−08 5.9e−06 1.8e−03 4.3e−05
2 64 320 3.5e−02 1.0e−10 5.9e−06 1.8e−03 3.1e−05
2 128 640 1.8e−02 1.0e−07 1.3e−06 4.4e−04 6.4e−04
2 128 640 1.8e−02 .e− 7.3e−07 4.4e−04 6.5e−05
2 128 640 1.8e−02 1.0e−09 7.2e−07 4.4e−04 7.3e−06
2 128 640 1.8e−02 1.0e−10 7.2e−07 4.4e−04 3.9e−06
2 256 1,280 9.0e−03 .e− 8.9e−08 1.1e−04 1.3e−05
2 256 1,280 9.0e−03 1.0e−10 8.9e−08 1.1e−04 1.3e−06
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9 Computational experiments

Here we consider two examples. In the first,Ωh ⊂ Ω and 𝛿 > 0. In the second,Ω is not convex and 𝛿 is of both

signs.

9.1 Return to the circle

We return now to the computational test problem described in Section 3. By varying 𝜖, wewere able to assess the

impact of an approximate 𝛿 as studied in Section 4.4. We see that there are visible effects. We have highlighted

(in boldface) the smallest value of 𝜖 for which there is an impact in Table 3. Thus it appears that taking ‖𝛿 −
𝛿h‖L∞(Γ) ≈ hk+1 is a good choice.

We see fromTable 4 and Figure 5 that theH1(Ωh ) error is optimal order for k ⩽ 3, consistentwith Theorem4.

In these cases, the L2(Ωh ) error is also optimal order, and the boundary error is higher order for quadratics. For

k ⩾ 4 our numerical experiments seem to predict the error

‖u− uh‖H1(Ωh )
≈ C
(
h7∕2 + hk

)
,

which coincides with Theorem 4.

It appears from Table 4 that the boundary error term

‖ |𝛿|−1∕2(u− uh )‖L2(𝜕Ωh )
≈ Ch3 ∀k ⩾ 2,

which is consistent with Theorem 4.

Comparing Tables 2 and 4, we see that the errors are almost identical for degrees k = 2 and k = 3. The Robin

method is only slightly less accurate for higher degrees. Note that the condition number for the Robin method

can be quite large; we used direct methods to solve the linear systems in both cases.

Table 4: Unit disc domain. Errors ‖uh − uI‖L2(Ωh )
, ‖uh − uI‖H1 (Ωh )

, and ‖ |𝛿−1∕2(uh − uI )‖L2(𝜕Ωh )
as a function of mesh size (hmax) for the

method (53) for various polynomial degrees k. The fudge factor 𝜖 was taken to be 10−13. Results were insignificantly different for smaller

values, including 𝜖 = 0. Key: M is the value of the meshsize input parameter to the mshr function circle used to generate the mesh.
The number of boundary edges was set to 5M, and hmax is the maximum mesh size.

k M hmax L2 error rate H1 error rate bdry err rate

1 16 0.135 0.0264 1.95 0.545 0.96 0.292 1.04

1 32 0.0688 0.00683 1.95 0.277 0.98 0.145 1.01

1 64 0.0353 0.00169 2.01 0.137 1.02 0.0724 1.00

2 16 0.135 3.71e−04 2.88 0.0278 1.90 0.00177 2.71

2 32 0.0688 4.80e−05 2.95 0.00719 1.95 2.52e−04 2.81

2 64 0.0353 5.94e−06 3.02 0.00179 2.00 3.12e−05 3.02

3 16 0.135 8.43e−06 3.94 7.07e−04 2.91 5.22e−04 2.98

3 32 0.0688 5.39e−07 3.97 9.25e−05 2.93 6.52e−05 3.00

3 64 0.0353 3.35e−08 4.00 1.15e−05 3.01 8.13e−06 3.01

4 16 0.135 8.43e−06 3.99 7.07e−05 3.45 5.34e−04 2.97

4 32 0.0688 5.27e−07 4.00 6.38e−06 3.47 6.74e−05 2.99

4 64 0.0353 3.29e−08 4.00 5.69e−07 3.49 8.47e−06 2.99

5 16 0.135 8.43e−06 3.99 6.80e−05 3.45 5.35e−04 2.97

5 32 0.0688 5.27e−07 4.00 6.11e−06 3.48 6.75e−05 2.99

5 64 0.0353 3.30e−08 4.00 5.45e−07 3.49 8.47e−06 2.99
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Figure 5: Errors uh − uI in (A) L
2(Ωh ) and (B) H

1(Ωh ) as a function of the maximummesh size for the method (21). The asterisks indicate

data for (A) k = 4 and (B) k = 5.

9.2 An example with 𝜹 < 0

Now consider the case where Ω is a disc of radius 1 centered at the origin, having a concentric disc of radius

R < 1 removed.

For boundary value problem, we take R = 1∕2 and −Δu = f , with

u(x, y) = (x2 + y2 )− 5(x2 + y2 )2 + 4(x2 + y2 )3, f = −4+ 80(x2 + y2 )− 144(x2 + y2 )2

in the computational experiments described in Table 5. Note that u vanishes on both boundary arcs, and that

the computed errors are consistent with the error estimates in Theorem 4.

10 Boundary layers

It is natural to expect the error with various boundary approximations might be limited to a boundary layer,

with the interior error of a smaller magnitude. Our observations indicate something like this, but the behavior

is more complex. In Figure 6, we see two computations done on the same mesh based on a triangulation of Ωh

with 𝜕Ωh having 80 segments and using piecewise-quadratic approximation. In Figure 6(A), we see the simple

Table 5: Disc with a disc removed. Errors uh − uI measured in L
2(Ωh ) (L2 error), H

1(Ωh ) (H1 error), and L
2(𝜕Ωh ) (bdry error) as a function

of mesh size (hmax) for the method (53) for selected polynomial degrees k. Here 𝜖 = 10−9. Key: M is the value of the meshsize input
parameter to the mshr function circle used to generate the mesh. The number of boundary edges for the outer boundary was set to
4M, and the number of boundary edges for the inner boundary was set to 2M.

k M hmax L2 error H1 error bdry error

2 16 0.132 8.76e−04 6.87e−02 1.39e−04
2 32 0.070 1.20e−04 1.84e−02 9.64e−06
2 64 0.036 1.54e−05 4.68e−03 6.51e−07
3 16 0.132 2.90e−05 2.29e−03 6.59e−05
3 32 0.070 1.89e−06 3.07e−04 4.13e−06
3 64 0.036 1.17e−07 3.93e−05 2.47e−07
4 16 0.132 2.23e−05 3.37e−04 7.24e−05
4 32 0.070 1.39e−06 2.97e−05 4.57e−06
4 64 0.036 8.10e−08 2.61e−06 2.76e−07
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Figure 6: Error with piecewise quadratics on a mesh with 𝜕Ωh having 80 segments. The mesh is drawn in the plane corresponding to

zero error. (A) The method (3), no boundary integral corrections. The error is uniformly positive. (B) The Robin-like method (21). The error

oscillates around zero. Note the factor of ten difference in scales in the error plots.

polygonal approximation (3). In this case, the error is somewhat larger near the boundary, but it does not decay

to zero in the interior. Thus there is a significant pollution effect away from the boundary. On the other hand,

Figure 6(B) shows what happens for the Robin-like method (21). Now we see that the error does decay towards

zero in the interior, with the majority of the error concentrated at the boundary.

11 Higher order and symmetric methods

The Robin-type method presented in the previous section is at most of O(h7∕2 ). High-order methods using the

same technique do not lead to symmetric systems. For simplicity assume that g ≡ 0. Using that

|||||u|𝜕Ωh
+ 𝛿 𝜕u

𝜕n

||||𝜕Ωh

+ 𝛿2

2

𝜕2u
𝜕n2
||||𝜕Ωh

||||| ⩽ C𝛿3‖u‖W3
∞(Ω),

we define

bh(u, 𝑣) = ah(u, 𝑣)+ ∫
𝜕Ωh

𝛿−1u𝑣 ds+
∫
𝜕Ωh

𝛿
2

𝜕2u
𝜕n2

𝑣 ds. (115)

Unfortunately, bh is not symmetric.

One way to have higher-order, symmetric methods is by symmetrizing the approach of Bram-

ble–Dupont–Thomée. Recall that Bramble et al. [8] developed arbitrary order methods, but that the bilinear

forms are not symmetric. The lowest order method was presented in Section 2, where the bilinear Nh is given

by (5). One way to symmetrize Nh and maintain the same convergence rates is by introducing the bilinear form:

Mh(u, 𝑣) = Nh(u, 𝑣)+ ∫
𝜕Ωh

𝜇𝛿h−1
𝜕𝑣
𝜕n

(
u+ 𝛿 𝜕u

𝜕n

)
ds.

This is precisely what is done in ref. [8, eq. (3.12)]. We see that

Mh(u, 𝑣) = ah(u, 𝑣)+ ∫
𝜕Ωh

(
𝜇
𝛿
h
− 1

)(
𝛿
𝜕u
𝜕n
𝜕𝑣
𝜕n

+ 𝜕u
𝜕n
𝑣+ 𝜕𝑣

𝜕n
u

)
ds+ 𝜇

h ∫
𝜕Ωh

u𝑣 ds

is clearly symmetric. It would be very interesting if one can symmetrize even higher order methods.
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12 Proof of (25)

For each edge e in the triangulation on Γ, we can choose coordinates so that the normal direction in (12) is the
y-coordinate:

|𝛿(x)|−1||||Eu(x, 0)+ 𝛿(x)𝜕Eu𝜕n (x, 0)− ĝ(x, 0)
|||| = |𝛿(x)|−1

|||||||
𝛿(x )

∫
0

(s− 𝛿(x))𝜕
2Eu

𝜕n2
(x, s) ds

|||||||
⩽ |𝛿(x)|−1⎛⎜⎜⎝

𝛿(x )

∫
0

|s− 𝛿(x)| p ds⎞⎟⎟⎠
1∕ p⎛⎜⎜⎝

𝛿(x )

∫
0

||||𝜕
2Eu

𝜕n2
(x, s)

||||
q

ds

⎞⎟⎟⎠
1∕q

⩽ Ch2−2∕q
⎛⎜⎜⎝
𝛿(x )

∫
0

||||𝜕
2Eu

𝜕n2
(x, s)

||||
q

ds

⎞⎟⎟⎠
1∕q

.

(116)

Here we have used the simplified notation 𝛿(x, 0) = 𝛿(x). Recall from (41) that 𝛿 = 
(
h2
)
. Therefore

|||||||∫e 𝛿
−1
(
Eu+ 𝛿 𝜕Eu

𝜕n
− ĝ

)
𝑣 dx

||||||| ⩽ Ch2−2∕q
h

∫
0

⎛⎜⎜⎝
𝛿(x )

∫
0

||||𝜕
2Eu

𝜕n2
(x, s)

||||
q

ds

⎞⎟⎟⎠
1∕q

|𝑣(x)| dx

⩽ Ch2−2∕q
⎛⎜⎜⎝

h

∫
0

𝛿(x )

∫
0

||||𝜕
2Eu

𝜕n2
(x, s)

||||
q

ds dx

⎞⎟⎟⎠
1∕q⎛⎜⎜⎝∫e |𝑣(x)|

p dx

⎞⎟⎟⎠
1∕ p

.

(117)

Summing over all edges e and applying Hölder’s inequality one more time completes the proof of (25).

In the case that q = ∞, this simplifies to

|||||||∫e 𝛿
−1
(
Eu+ 𝛿 𝜕Eu

𝜕n
− ĝ

)
𝑣 dx

||||||| ⩽ C
‖‖‖‖𝜕

2Eu

𝜕n2
‖‖‖‖L∞(ΩΔΩh )

∫
e

|𝛿(x)| |𝑣(x)| dx,
and thus we see there is no singularity due to the zeroes of 𝛿.

13 Piecewise smoothness of

Recall the function  defined in (13). For each edge e in the triangulation on Γ, we can choose coordinates so

that the normal direction in (12) is the y-coordinate.

The first term is clearly smooth if Eu is smooth, so we focus on the second. Choosing 𝜎 = s∕𝛿(x) we see from
(14) that

̂(x) = 𝛿−2(x)
𝛿(x)

∫
0

(s− 𝛿(x))𝜕
2Eu

𝜕n2
(x, s) ds

=
1

∫
0

(𝜎 − 1)
𝜕2Eu
𝜕n2

(x, 𝜎𝛿(x)) d𝜎.

(118)

Thus if Eu is smooth, then ̂ is piecewise smooth, and thus  = − 𝜕Eu

𝜕n
+ 𝛿̂ is also piecewise smooth.
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14 Conclusions and perspectives

We have presented and analyzed a parameter-free method to impose boundary conditions for the Poisson

equation with curved boundaries. The analysis involves a theory for general constraints which can be applied

to other methods. For example, it can be applied to Nitsche’s method. In this case, the exponent 𝓁 in the link-

ing lemma is zero. The stability condition in the new analysis requires c1h
𝓁 to be sufficiently small. This can be

understood as explaining why 𝛾 in Nitsche’s method needs to be sufficiently large.

Assumption 3 is used in only two places, in proving (85) and in approximation results in Section 7. It is

possible that this assumption can be relaxed substantially. It would also be of interest to know if the fitted-mesh

requirement, that the vertices of 𝜕Ωh belong to 𝜕Ω, can be relaxed. We have not studied L2 error estimates,

although these are known for the method in ref. [8]. Similarly, we have not considered extensions to 3D, but

this would also of interest. However, we have been able to extend these results to vector-valued functions in the

context of the Stokes equations [35].
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