
J. Numer. Math. 2025; 33(3): 211–239

Emre Mengi*

A subspace framework for ∞ model
reduction

https://doi.org/10.1515/jnma-2023-0115

Received September 15, 2023; accepted October 4, 2024; published online January 15, 2025

Abstract: Wepropose an approach for the∞model reduction of descriptor systems based on theminimization

of the ∞ objective by means of smooth optimization techniques. Direct applications of smooth optimization

techniques are not feasible even for systems of modest order, since the optimization techniques converge at best

at a linear rate requiring too many evaluations of the costly ∞-norm objective to be practical. We replace the

original systemwith a system of smaller order interpolating the original system at points on the imaginary axis,

minimize the∞ objective after this replacement, and refine the smaller system based on theminimization. We

also describe how asymptotic stability constraints on the reduced system sought can be incorporated into our

approach. The numerical experiments illustrate that the approach leads to locally optimal solutions to the ∞
model reduction problem, and its capability to deal with systems of order a few ten thousands.

Keywords: H∞ model reduction; descriptor system; quasi-Newton methods; Petrov–Galerkin projection; Her-

mite interpolation
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1 Introduction

Various applications give rise to linear time-invariant (LTI) descriptor systems; see, e.g., [1]–[4], and references

therein. Amodel order reduction problem for such a system typically concerns the approximation of the system

with a system of smaller and prescribed order. Here we deal with one of them, namely the ∞ model reduction

problem formally defined below.

We assume that the LTI descriptor system under consideration is available in a state-space representation

Ex′(t) = Ax(t)+ Bu(t), y(t) = Cx(t)+ Du(t) (1)

for given matrices E,A ∈ ℝn×n, B ∈ ℝn×m, C ∈ ℝ p×n, D ∈ ℝ p×m. The transfer function of the descriptor system

in (1) (defined over s ∈ ℂ such that sE − A is invertible) is

H(s) = C(sE − A)−1B+ D (2)

with the ∞ norm ‖H‖∞
:= sup

𝜔∈ℝ
𝜎max(H(i𝜔)) = sup

𝜔∈ℝ,𝜔⩾0
𝜎max(H(i𝜔)),

where 𝜎max(⋅) denotes the largest singular value of its matrix argument, and the last equality holds as A, B, C,
D, E are real matrices. Note that we customarily set ‖H‖∞

= sup𝜔∈ℝ 𝜎max(H(i𝜔)) = ∞ if H has a pole on the
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imaginary axis, or the norm of its restriction to the imaginary axis is not bounded. Letℂ+ :={z ∈ ℂ | Re z > 0},
and L2 denote a space of functions f :ℝ→ ℝk satisfying ‖ f ‖L2 :=√

∫ ∞
−∞‖ f (t)‖2

2
dt < ∞ for some k ∈ ℤ+. To be

specific, in our setting, L2 consists of either input functions u(t) or output functions y(t) (so k = m or k = p), and

which one L2 refers to will be clear from the context. If the system in (1) is asymptotically stable with poles in

the open left half of the complex plane, then the ∞ norm of H is the same as the∞ norm of H defined as

‖H‖∞
:= sup

s∈ℂ+
𝜎max(H(s)),

which in turn is equal to the induced norm of the operator 𝜑: L2 → L2 associated with (1) in the time domain

mapping u to y as 𝜑u = y (for an explicit expression for 𝜑 see Ref. [3, Theorem 2.29]), that is given by

‖𝜑‖L2 := sup
{‖𝜑 u‖L2∕‖u‖L2 | u ∈ L2, u ≠ 0

}
.

Hence, under the asymptotic stability assumption on the descriptor system in (1), we have ‖H‖∞
= ‖H‖∞

=‖𝜑‖L2 .
The ∞ model reduction problem considered in this work for a given descriptor system of order n and

for a prescribed positive integer r < n concerns finding a reduced descriptor system of order r that is closest to

the given system of order nwith respect to the ∞ norm. Formally, let Sred = (Ared, Ered,Bred, Cred,Dred) denote a

system of order r with the state-space representation

Ered x′(t) = Ared x(t)+ Bred u(t), y(t) = Cred x(t)+ Dred u(t), (3)

described by the matrices Ered,Ared ∈ ℝr×r, Bred ∈ ℝr×m, Cred ∈ ℝ p×r, Dred ∈ ℝ p×m, and with the transfer func-

tion

H(s; Sred) = Cred(sEred − Ared)−1Bred + Dred. (4)

Furthermore, let S = (A, E,B, C,D) be the given system of order n and with the transfer function H as in (2).

Setting 𝜎(𝜔; Sred) := 𝜎max(H(i𝜔)− H(i𝜔; Sred)), the ∞ model reduction problem involves finding a descriptor

system Sred
⋆

of order r that minimizes the objective

‖H − H( ⋅ ; Sred)‖∞
= sup

𝜔∈ℝ
𝜎(𝜔; Sred) = sup

𝜔∈ℝ,𝜔⩾0
𝜎(𝜔; Sred) (5)

over all descriptor systems Sred of order r. The objective in (5) is non-convex, and herewe aim to determine a local

minimizer of this objective numerically. The quality of the determined local minimizer also matters, however

this issue is largely dependent upon with which reduced system of order r our approach is initialized.

Two important remarks are in order regarding the minimization of the objective in (5). First, in addition to

non-convexity, an additional difficulty is the nonsmooth nature of the problem. The objective in (5) as a function

of Sred is typically not differentiable when 𝜎(𝜔; Sred) has multiple global maximizers over𝜔⩾ 0. Secondly, under

asymptotic stability assumptions on the original system and the reduced system, the error ‖H − H( ⋅ ; Sred)‖∞

gives a uniform upper bound on how much the outputs of the original and reduced systems can differ. To be

precise, suppose that the system S of order n, and the reduced system Sred of order r are asymptotically stable.

Furthermore, let us denote with 𝜑 and 𝜑r the operators in the time domain corresponding to the systems in (1)

and (3), respectively. For every u ∈ L2, we have

‖y− yr‖L2 ⩽ ‖H − H( ⋅ ; Sred)‖∞
‖u‖L2 ,

where y, yr are such that y = 𝜑 u and yr = 𝜑r u. This means that if a small error ‖H − H( ⋅ ; Sred)‖∞
can be

ensured by the minimization of (5), then the output yr = 𝜑r u of the minimizing reduced system approximates

the original output y = 𝜑 u well uniformly over every input u of prescribed norm.
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1.1 Literature and contributions

For an asymptotically stable descriptor systemwith the transfer functionH, theH∞ model reduction problem –

that is, for a given small order r, finding an asymptotically stable system Sred of order r such that ‖H −
H( ⋅ ; Sred)‖∞

is small – has been under consideration for a long time. One of the classical approaches for

the ∞ model reduction problem is balanced truncation, which determines a state transformation so that the

observability and controllability Gramians are the same diagonal matrix, and truncates the system matrices

after applying this state transformation [5]–[8]. The reduced system by balanced truncation is typically not a

local minimizer of ‖H − H( ⋅ ; Sred)‖∞
over Sred, though it usually is a good quality approximation of H with

respect to the∞ norm [9]. The major difficulty with balanced truncation that limits its applicability to larger

systems is that it requires the solution of two Lyapunov equations involving matrices of size equal to the order

of the system. With iterative approaches for solving Lyapunov equations, such as ADI methods [8], [10], [11],

balanced truncation is tractable for systems with higher order.

A classical alternative is finding a best approximation with respect to the Hankel norm (HNA) [12] rather

than the ∞ norm. Approaches to compute a globally optimal solution to HNA in polynomial time are pro-

posed [12]. Generalized HNA approaches are introduced for larger sparse descriptor systems [13]. However, a

globally optimal solution to HNA is again usually not a local minimizer of ‖H − H( ⋅ ; Sred)‖∞
. Furthermore,

finding a globally optimal solution to HNA is even costlier than balanced truncation. Even with the efficient use

of computational linear algebra tools [14], solving HNA for systems with high order is out of reach.

The iterative rational Krylov algorithm (IRKA) [15] was introduced in order to find a reduced

system of prescribed order that is locally optimal with respect to the 2 norm defined as ‖H‖2
=√

1

2𝜋
∫ ∞
−∞trace(H(i𝜔)

∗H(i𝜔)) d𝜔 for a system with the transfer function H. Formally, IRKA is an iterative inter-

polatory approach that finds a local minimizer of ‖H − H( ⋅ ; Sred)‖2
over all systems Sred of order r. In Ref.

[16], starting from the reduced-order system of order r generated by IRKA, an optimization based approach is

proposed to find a locally optimal solution of ‖H − H( ⋅ ; Sred)‖∞
for single-input-single-output (SISO) systems

but, denotingwith e the vector of ones, with respect to particular rank-onemodificationsΔA = 𝜀eeT ,ΔB = −𝜀e,
ΔC = −𝜀eT , ΔD = 𝜀 of the system matrices Ared, Bred, Cred, Dred generated by IRKA over 𝜀 ∈ ℝ. In the reported
results in Ref. [16], this optimization improves the accuracy of the reduced system returned by IRKA by a fac-

tor of 2–4 with respect to the ∞ norm. But again the eventual system is usually not a local minimizer of the

objective ‖H − H( ⋅ ; Sred)‖∞
over systems Sred of order r.

Here, we propose an approach to compute a local minimizer of ‖H − H( ⋅ ; Sred)‖∞
over all systems Sred

of order r. Nonsmooth optimization techniques, specifically bundle methods [17], [18], and the gradient sam-

pling algorithm [19], [20], have been employed to locally optimize such nonsmooth objectives. Bundle methods

are especially suitable for convex objectives, but, to our knowledge, they could not be applied as effectively to

nonconvex objectives. The gradient sampling algorithm is applicable to nonsmooth and nonconvex objectives.

Indeed, it is shown to converge to a Clarke stationary point under local Lipschitz continuity assumption and

other mild conditions on the objective [20, Section 3]. The difficulty with the gradient sampling algorithm is that

it computes the gradient at sample points around the current iterate,whichmaybe too costly for someobjectives,

e.g., for the ∞ error objective here [21]. Consequently, due to efficiency considerations, our approach to com-

pute a local minimizer of ‖H − H( ⋅ ; Sred)‖∞
uses smooth optimization techniques, which have been employed

for solving nonsmooth optimization problems [22], [23] in the last 15 years. For instance, quasi-Newtonmethods,

most often, seem to be capable of locating locally optimal solutions [23], [24], even though some counter exam-

ples are known [23]–[25]. When convergence occurs with a smooth optimization technique to a nonsmooth

locally optimal solution, it usually occurs slowly at best at a linear rate. As a result, as we shall see below,

a direct application of them to minimize ‖H − H( ⋅ ; Sred)‖∞
is prohibitively expensive even for systems of

medium order, as it requires the computation of the objective, that is the ∞ norm, too many times. Instead,

we replaceH with an approximation H̃ of small order greater than r. Rather than ‖H − H( ⋅ ; Sred)‖∞
, we mini-

mize ‖H̃ − H( ⋅ ; Sred)‖∞
, then update H̃ based on theminimizer, and repeat. The approximation H̃ is built using
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subspace projections, and an update involves the expansion of the projection subspaces. We show that the pro-

posed subspace framework converges quadratically under simplicity assumptions. We also describe how the

asymptotic stability constraints can be imposed on the variable Sred when minimizing ‖H − H( ⋅ ; Sred)‖∞
in

case the original system in (1) is asymptotically stable. As the system corresponding to H − H( ⋅ ; Sred) is asymp-
totically stable when S and Sred are asymptotically stable, the incorporation of this constraint into our approach

leads to a local minimization of ‖H − H( ⋅ ; Sred)‖∞
over all asymptotically stable systems Sred of order r, i.e.,

locally optimal solution of the∞ model reduction problem.

Smooth optimization techniques have been recently used formodel order reduction of asymptotically stable

structured systems [26]. It is also observed over there that a direct minimization of the∞-norm error objective

via smooth optimization techniques is too costly. However, the proposed approach in Ref. [26] is not based on

subspace projections. Instead, the ∞-norm error objective is replaced by a smooth objective that involves a

prescribed number of largest singular values of the difference between the transfer functions of the original

and reduced system at sample points on the imaginary axis. The minimization of this smoothened objective

is illustrated to yield models more accurate than those by various structure-preserving model order reduction

techniques on some benchmark examples. The reduced system obtained by the method in Ref. [26] is a local

minimizer of the smoothened objective, which is related to but different than the ∞ objective. In addition to

nonsmoothness, the nonconvexity of the ∞ error objective is a challenge. In Ref. [27], a convex relaxation of

the∞ error objective is proposed for∞ model reduction.

On a related note, our recent work [28] concerns the minimization of the∞ norm of a descriptor system

with large order with respect to a modest number of parameters. At the center of that work is a subspace frame-

work to cope with the large order of the system. It may seem plausible to look at the current work from that

perspective. However, we have too many optimization parameters here. Attempting to apply the framework of

[28] to attain quick convergence in the setting here is not feasible, as doing so yields projection subspaces grow-

ing rapidly (i.e., see Algorithm 2 in Ref. [28] to attain superlinear convergence). In the framework here, it suffices

to add a small number of new directions independent of r into the subspaces at every iteration. In particular, if

m = p, then only 4m new directions are added into the subspaces at every iteration. Moreover, we observe quick

convergence, so the subspaces remain small throughout. Also in the context of parametric descriptor systems, in

Refs. [29], [30], an∞ error objective is minimized on a discrete set of parameter values to choose interpolation

points for interpolatory model order reduction techniques.

1.2 Outline

Wefirst consider the direct minimization of ‖H − H( ⋅ ; Sred)‖∞
over systems Sred of order r bymeans of smooth

optimization techniques in Section 2. In this section, we indicate the optimization variables, and spell out expres-

sions for the first derivatives of the objective with respect to these variables. As we shall see, direct optimization

is too costly even for systems with moderate order, since smooth optimization techniques converge very slowly

and require the evaluation of the ∞ objective too many times. Consequently, in Section 3, we replace the

transfer function H with an approximating transfer function H̃ of small order greater than r that Hermite

interpolates H at several points on the imaginary axis. Then we minimize ‖H̃ − H( ⋅ ; Sred)‖∞
(by smooth opti-

mization techniques), and refine H̃ so that Hermite interpolation with H at another point on the imaginary

axis is attained based on the computed minimizer of ‖H̃ − H( ⋅ ; Sred)‖∞
. We introduce a refinement step on

H̃ so that interpolation properties can also be attained between the full objective ‖H − H( ⋅ ; Sred)‖∞
and the

reduced objective ‖H̃ − H( ⋅ ; Sred)‖∞
. Then the procedure is repeatedwith the refined H̃. In Section 4, we inves-

tigate the interpolation properties between full objective and the reduced objective. Based on these interpolation

properties, we argue in Section 5 that the algorithm converges at a quadratic rate under smoothness and nonde-

generacy assumptions. If the original descriptor system is asymptotically stable, it may be natural to minimize‖H̃ − H( ⋅ ; Sred)‖∞
subject to the asymptotic stability constraints on the reduced system Sred. We discuss in

Section 6 the incorporation of such asymptotic stability constraints on the reduced system into our approach.

Section 7 is devoted to the details that need to be taken into account in a practical implementation of the pro-

posed algorithm such as the initialization of the smooth optimization routines, and termination. A MATLAB
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implementation of the algorithm is publicly available. In Section 8, we report numerical results obtained with

this implementation. The numerical results indicate quick convergence to a locally optimal solution, and the

capability to deal with systems having orders in the range of tens of thousands.

2 Use of first-order and second-order derivative-based methods

First-order methods such as the gradient descent algorithm, and second-order methods such as quasi-Newton

algorithms equippedwith proper line-searches have been successfully applied to nonsmooth optimization prob-

lems in recent years [22], [23], [31], [32]. In these circumstances, if a curvature condition is employed in the

line-search, this should take into consideration that the directional derivatives need not converge to zero unlike

the situation for smooth optimization problems, e.g., if Wolfe conditions are imposed in the line-search, weak

Wolfe conditions should be used rather than strong Wolfe conditions [23, Section 4]. Also, for termination small

gradient norms should not be required. Instead, for instance, a failure to take a reasonably long step in the

objective along the descent searchdirectionmay indicate convergence to a locally optimal solution [31, Section 3].

The objective to be minimized in (5) for the ∞ model reduction problem can be expressed as

 (Sred) := sup
𝜔⩾0

𝜎max
(
H(i𝜔)− H(i𝜔; Sred)

)
= sup

𝜔⩾0
𝜎max

(
(i𝜔; Sred)

)
= ‖( ⋅ ; Sred)‖∞

,

(s; Sred) := [C − Cred]

[
sE − A 0

0 sEred − Ared

]−1[
B

Bred

]
+ (D− Dred),

(6)

where H( ⋅ ; Sred) is as in (4). Assuming that the reduced system is at most index one and has semi-simple poles,

by the Kronecker canonical form, there exist invertible r × r real matricesW , V such thatWEredV is diagonal,

andWAredV is block diagonal with 2 × 2 and 1 × 1 blocks along the diagonal. (Here, a 2 × 2 block along the

diagonal of WAredV corresponds to a pair of complex conjugate eigenvalues, and a 1 × 1 block to a real or

an infinite eigenvalue of the pencil L(s) = Ared − sEred.) Consequently, the reduced system is equivalent to a

system (with the same transfer function) for which Ared, Ered are converted into tridiagonal and diagonal forms,

respectively. Hence, under index one and semi-simple pole assumptions, we can perform theminimization over

tridiagonal Ared and diagonal Ered. Recalling the dimensions of Ared,Bred, Cred,Dred, Ered, there are precisely 4r−
2+ rm+ pr+ pm optimization variables.

The gradient descent algorithm, as well as quasi-Newton algorithms to minimize  require the gradients of

 . To this end, suppose there is a unique 𝜔∗ ⩾ 0 satisfying

𝜎max
(
H(i𝜔∗)− H

(
i𝜔∗; Sred

))
=  (Sred) = sup

𝜔⩾0
𝜎max

(
H(i𝜔)− H(i𝜔; Sred)

)
,

ensuring that  is differentiable at Sred. Additionally, let u, 𝑣 denote a consistent pair of unit

left, right singular vectors corresponding to 𝜎max
(
H(i𝜔∗).− H

(
i𝜔∗; Sred

))
, and let us introduce

ũ := u∗Cred
(
i𝜔∗E

red − Ared
)−1

, 𝑣 :=
(
i𝜔∗E

red − Ared
)−1

Bred𝑣. Then, by employing the analytical formulas

for the derivatives of singular value functions [33], [34, Section 3.3], the gradients of  are given by

∇Ared (S
red) = − diag(Re( ũ T ⊙ 𝑣 ))− diag−1(Re( ũ (2: r)

T ⊙ 𝑣 (1: r− 1)))− diag+1(Re(ũ (1: r− 1)T ⊙ 𝑣 (2: r))),

∇Ered (S
red) = −𝜔∗ diag(Im(ũ T ⊙ 𝑣 )), ∇Bred (S

red) = −Re( ũ T 𝑣T ),

∇Cred (S
red) = −Re(u 𝑣 T ), ∇Dred (S

red) = −Re(u 𝑣T ),

(7)

where Re(⋅), Im(⋅) denote the real part, imaginary part, respectively, of their vector or matrix arguments. Also,
above ⊙ denotes the Hadamard product, u is the complex conjugate of u, and the notation diag(𝑤) represents

the square diagonal matrix whose diagonal entries are formed of the entries of the vector 𝑤. The notations

diag−1(𝑤) and diag+1(𝑤) are similar to diag(𝑤) but with the difference that the subdiagonal and superdiagonal

entries of the matrix are filled with the entries of𝑤 rather than the diagonal entries.
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It is essential that a quasi-Newton method such as BFGS generates approximate Hessians that are positive

definite. This is traditionally imposed by the line-searches. For instance, if BFGS is to be used tominimize , then
a line-search ensuring the satisfaction of the weak Wolfe conditions may be adopted so that the approximate

Hessians remain positive definite. On the other hand, for the gradient descent algorithm to minimize  , it is
sufficient to adopt a simpler line-search that guarantees only sufficient reduction in the objective, e.g., an Armijo

backtracking line-search.

One difficulty with using methods such as gradient descent and BFGS to minimize  is that these algo-

rithms converge rather slowly only at a linear rate at best. This may sound surprising especially for BFGS, which

typically converges superlinearly for smooth problems. Slower convergence for BFGS is an artifact of nons-

moothness. As a result of linear convergence rates or worse, the objective  typically needs to be evaluated

many times until reaching a prescribed accuracy. This may be prohibitively expensive, as it is apparent from (6)

that evaluation of  involves the computation of the ∞ norm of ( ⋅ ; Sred), which may be costly assuming the
original system in (1) is large-scale.

To illustrate the slow convergence issues described in the previous paragraph, and the computational diffi-

culties that comewith it, we apply the gradient descent algorithm to the iss example from the SLICOT collection.

The system associated with this example has order n = 270, andm = p = 3. We attempt to solve the ∞ model

reduction problem for r = 12 starting with the initial reduced-order model generated by balanced truncation.

The errors ( ) and the 2-norms of the gradients of the errors (‖∇‖2) of the iterates of the gradient descent
algorithm are reported in Table 1. It takes 37 iterations until the errors in two consecutive iterations differ by no

more than 10−6 in a relative sense. The initial∞-norm error 4.5 × 10−3 approximately (of the system obtained

from balanced truncation) is reduced to 2.4 × 10−3 approximately after 37 iterations. The eventual reduced

model obtained appears to be a local minimizer of  up to prescribed tolerances, as evidenced by the plots in

Figure 1. Note however that according to the last columns in Table 1 the gradients of  do not seem to be con-

verging to zero, which indicates that the objective is not differentiable at the local minimizer being approached.

Meanwhile, the objective  is evaluated 624 times, since the line-search at each iteration requires several objec-

tive function evaluations (i.e., to be precise 8–28 evaluations per iteration) until the satisfaction of the sufficient

decrease condition. This results in a total runtime of about 500 s, costly for a system of relatively small order. To

conclude, direct applications of the gradient descent algorithm do not seem viable for systems of even modest

order (e.g., a few thousands). On the same example, BFGS requires 239 evaluations of the objective with a total

runtime of about 240 s, so applying BFGS directly is also costly.

Table 1: This concerns the iss example with r = 12. The objective  (k) :=  (A(k), B(k), C(k),D(k), E(k)), and the 2-norm of ∇ (k) :=∇ (A(k),
B(k), C(k),D(k), E(k)) for the iterate (A(k), B(k) , C(k), D(k) , E(k)) by the gradient descent method at the kth iteration are listed.

k  (k) ‖𝛁 (k)‖2

0 0.004470060020 1.000093488

1 0.004346739384 0.833556647

2 0.003609940202 1.000097230

3 0.003175718111 0.769359926

4 0.002975716755 1.000095596

5 0.002946113130 0.999918608

6 0.002697635041 0.844275929

7 0.002656707905 0.999952423

30 0.002415516341 0.803721909

31 0.002415479783 1.000008471

32 0.002415475189 0.803718441

33 0.002415456030 1.000008467

34 0.002415454613 0.803716708

35 0.002415444154 1.000008465

36 0.002415439844 0.803714645

37 0.002415438945 1.000008462
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Figure 1: The locally minimal reduced system generated by the gradient descent method for the iss example and r = 12 is varied, and

the error  is plotted as a function of the variation. In each one of the plots (a)–(h), only the indicated entry of one of the optimal

coefficients Ared, Bred, Cred,Dred, Ered is varied by amounts in [−0.5, 0.5]. Zero variation corresponds to the optimal reduced system.
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3 A subspace framework

The computational difficulty in minimizing the objective  in (6) is due to the large order of the original

system S = (A, E,B, C,D). In this section, we propose to replace this system with a system of smaller order

Sq = (Aq, Eq,Bq, Cq,Dq) with the state-space representation

Eqx
′
q
(t) = Aqxq(t)+ Bqu(t), y(t) = Cqxq(t)+ Du(t), (8)

and solve the resulting ∞ model reduction problem, that is minimize

q(S
red) := sup

𝜔⩾0
𝜎max

(
Hq(i𝜔)− H(i𝜔; Sred)

)
= sup

𝜔⩾0
𝜎max

(
q(i𝜔; Sred)

)
, (9)

where
Hq(s) := Cq(sEq − Aq)

−1Bq + D,

q(s; Sred) :=
[
Cq − Cred

][sEq − Aq 0

0 sEred − Ared

]−1[
Bq

Bred

]
+ (D− Dred).

The question that we need to address is how do we form a small system Sq = (Aq, Eq,Bq, Cq,D) that is a good

representative of the original system near a local minimizer of the original ∞ model reduction problem.

Recall how pure Newton’s method operates to minimize a function f :ℝ𝓁 → ℝ. It approximates f with a

quadratic model, and finds a local minimizer x̃ of the quadratic model. Then, assuming f is twice differentiable

at x̃, it refines the quadratic model so that the refined quadratic model satisfies f ( x̃ ) = ( x̃ ),∇ f ( x̃ ) = ∇( x̃ )
and ∇2 f ( x̃ ) = ∇2(̃x ). In the context of ∞ model reduction, we view q as the model function for  , even
though q is not quadratic. We minimize q locally rather than  , and refine the small system in (8) with the

hope that the objective error function q+1 of the refined system interpolates  and its first two derivatives at

the computed minimizer of q.

To obtain the small system in (8), we employ projection-based model reduction. In particular, let q, q

be two subspaces of ℝn of equal dimension. Denoting with Vq,Wq matrices whose columns form orthonormal

bases for q,q, the original system is approximated by

WT
q
(EVqx

′
q
(t) − AVqxq(t)− Bu(t)) = 0, y(t) = CVqxq(t)+ Du(t),

giving rise to a system of the form (8) with

Eq = WT
q
EVq, Aq = WT

q
AVq, Bq = WT

q
B, Cq = CVq. (10)

For the realization of the ideas in the previous paragraph, we need to be equipped with a tool that gives us

the capability to interpolate H(s) and its derivatives at a prescribed point in the complex plane with those of

the transfer function for the small system. This tool is introduced in the next result, which follows from [35,

Theorem 1].

Theorem 1. Let 𝜇 ∈ ℂ be such that A− 𝜇E is invertible. Suppose

𝜅⨁
j=0

Re
[
{(A− 𝜇E)−1E} j(A− 𝜇E)−1B

]
⊆ q,

𝜅⨁
j=0

Im
[
{(A− 𝜇E)−1E} j(A− 𝜇E)−1B

]
⊆ q,

𝜅⨁
j=0

Re
[
C(A− 𝜇E)−1{E(A− 𝜇E)−1} j

]∗
⊆ q,
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𝜅⨁
j=0

Im
[
C(A− 𝜇E)−1{E(A− 𝜇E)−1} j

]∗
⊆ q.

Then, with Aq, Eq,Bq, Cq defined as in (10), if Aq − 𝜇Eq is invertible, we have

(i) H(𝜇) = Hq(𝜇) and H(𝜇) = Hq(𝜇);

(ii) H( j)(𝜇) = H
( j)
q (𝜇) and H( j)(𝜇) = H

( j)
q (𝜇) for j = 1,… , 2𝜅 + 1.

Our proposed subspace framework at iteration r first finds a minimizer of q(S
red), say Sred

q
=(

Ared
q
,Bred

q
, Cred

q
,Dred

q
, Ered

q

)
. This is followed by the computation of an 𝜔q ∈ ℝ, 𝜔q ⩾ 0 such that


(
Sred
q

)
= sup

𝜔⩾0
𝜎max

(
H(i𝜔)− H

(
i𝜔; Sred

q

))
= 𝜎max

(
H(i𝜔q)− H

(
i𝜔r; Sredq

))
.

Computing such an 𝜔q requires the large-scale ∞-norm computation in (6) but by replacing Sred =
(Ared,Bred, Cred,Dred, Ered) with Sred

q
=

(
Ared
q
,Bred

q
, Cred

q
,Dred

q
, Ered

q

)
. Then subspaces are expanded so that H and

its first three derivatives are interpolated at i𝜔q by those of the transfer function for the small system. A formal

description of the framework is given in Algorithm 1 below. As the subspaces q andq are required to be of

equal dimension, the description assumes that the number of inputs and the outputs are equal, i.e.,m = p. Even

if it is omitted here for simplicity, it is straightforward to modify the directions Ṽ q+1, W̃ q+1 in lines 11–12 to be

added to the subspaces q,q in order to deal with the systems for whichm ≠ p; see, e.g., [36, Lemma 3.1]. The

final refinement step in line 15 aims at the satisfaction of the interpolation condition 
(
Sred
q

)
= q+1

(
Sred
q

)
, as

well as the interpolation conditions on the derivatives of  (Sred) and q+1(S
red) at Sred

q
. This step is elaborated on

in the next subsection.

Algorithm 1 (subspace framework for ∞ model reduction).

Input: System S = (A, E, B, C, D) as in (1), the order r ∈ ℤ+ of the reduced system sought, and an initial estimate

Sred
0

=
(
Ared
0
, Ered

0
, Bred

0
, Cred

0
,Dred

0

)
of order r for a minimizer of  as in (6).

Output: Estimate Sred
⋆

=
(
Ared
⋆
, Ered

⋆
, Bred

⋆
, Cred

⋆
,Dred

⋆

)
for a minimizer of  as in (6).

1: Choose the initial subspaces 0,0 and orthonormal bases V0,W0 for them.

2: Form A0, B0, C0, E0 using (10), and let S0 = (A0, E0, B0, C0, D).

%main loop

3: for q= 0, 1, . . . do

4: if q ⩾ 1 then

5: Sred
q

← a minimizer of q(S
red) (for q defined as in (9)).

6: end if

7: 𝜔q← a maximizer of 𝜎
(
𝜔; Sred

q

)
= 𝜎max

(
H(i𝜔)− H

(
i𝜔; Sred

q

))
over 𝜔 ⩾ 0.

8: if q ⩾ 1 then

9: Return if convergence has occurred with Sred
⋆

← Sred
q
.

10: end if

% expand the subspaces to interpolate at i𝝎q

11: Ṽq+1 ←
[
Re

[
(i𝜔qE − A)−1B

]
Re

[
(i𝜔qE − A)−1E(i𝜔qE − A)−1B

]
Im

[
(i𝜔qE − A)−1B

]
Im

[
(i𝜔qE − A)−1E(i𝜔qE − A)−1B

]]
.

12: W̃q+1 ←
[
Re

[
(i𝜔qE − A)−∗C∗

]
Re

[
(i𝜔qE − A)−∗E(i𝜔qE − A)−∗C∗

]
Im

[
(i𝜔qE − A)−∗C∗

]
Im

[
(i𝜔qE − A)−∗E(i𝜔qE − A)−∗C∗

]]
.

13: Vq+1 ← orth
([
Vq Ṽq+1

])
and Wq+1 ← orth

([
Wq W̃q+1

])
.

% update the small system

14: Form Aq+1, Bq+1, Cq+1, Eq+1 using (10), and let Sq+1 = (Aq+1, Eq+1, Bq+1, Cq+1, D).

% refine the small system

15: Refine Vq+1,Wq+1 and Sq+1 if necessary (using Algorithm 2 below in Section 3.1).

16: end for
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3.1 Refinement step

First we make a few observations regarding the relation between 
(
Sred
q

)
and q+1

(
Sred
q

)
at the qth subspace

iteration in Algorithm 1 right before the refinement step.

At the qth iteration of Algorithm 1 right after line 14, by Theorem 1, we have

H(i𝜔q) = Hq+1(i𝜔q), H( j)(i𝜔q) = H
( j)

q+1(i𝜔q) (11)

for j = 1, 2, 3 under the assumptions that A− i𝜔qE and Aq+1 − i𝜔qEq+1 are invertible. Consequently, H(i𝜔q)−
H
(
i𝜔q; Sredq

)
and Hq+1(i𝜔q)− H

(
i𝜔q; Sredq

)
are equal, and share the same set of left and right singular vectors.

It immediately follows that setting

𝜎q+1(𝜔; Sred) := 𝜎max(Hq+1(i𝜔)− H(i𝜔; Sred)), (12)

and recalling 𝜎(𝜔; Sred) = 𝜎max(H(i𝜔)− H(i𝜔; Sred)), we have

𝜎

(
𝜔q; Sredq

)
= 𝜎q+1

(
𝜔q; Sredq

)
. (13)

Indeed, as the singular values and vectors of H(i𝜔q)− H
(
i𝜔q; Sredq

)
and Hq+1(i𝜔q)− H

(
i𝜔q; Sredq

)
are the

same, and the first two derivatives of H(i𝜔)− H
(
i𝜔; Sred

q

)
and Hq+1(i𝜔)− H

(
i𝜔; Sred

q

)
at𝜔 = 𝜔q are equal due

to (11), we also have

d j
𝜎

d𝜔 j

(
𝜔q; Sredq

)
=

d j
𝜎q+1
d𝜔 j

(
𝜔q; Sredq

)
(14)

for j = 1, 2. Now 𝜔q is a global maximizer of 𝜎
(
𝜔; Sred

q

)
over 𝜔 implying

d𝜎

d𝜔

(
𝜔q; Sredq

)
= 0,

d2𝜎

d𝜔2

(
𝜔q; Sredq

)
⩽ 0.

Assuming that the last inequality on the second derivative above holds strictly, (14) implies 𝜔q is also a local

maximizer of 𝜎q+1

(
𝜔; Sred

q

)
.

Regarding 
(
Sred
q

)
and q+1

(
Sred
q

)
, the following relation always hold:


(
Sred
q

)
= sup

𝜔⩾0
𝜎

(
𝜔; Sred

q

)
= 𝜎

(
𝜔q; Sredq

)
= 𝜎q+1

(
𝜔q; Sredq

)
⩽ sup

𝜔⩾0
𝜎q+1

(
𝜔; Sred

q

)
= q+1

(
Sred
q

)
, (15)

where the third equality is due to the interpolatory property in (13). As argued in the previous paragraph, the

point𝜔q is not only a globalmaximizer of𝜎
(
𝜔; Sred

q

)
, but also generically a localmaximizer of𝜎q+1

(
𝜔; Sred

q

)
. If it

happens that𝜔q is also a global maximizer of 𝜎q+1

(
𝜔; Sred

q

)
beyond being a local maximizer, then the inequality

in equation (15) above becomes an equality, and we have the interpolation property


(
Sred
q

)
= q+1

(
Sred
q

)
. (16)

In the refinement step, if it happens that 𝜔q is merely a local maximizer of 𝜎q+1

(
𝜔; Sred

q

)
, but not a global

maximizer, then we find a global maximizer 𝜔(0)
q of 𝜎q+1

(
𝜔; Sred

q

)
over 𝜔 ⩾ 0 (equivalently compute the ∞

norm ofHq+1(⋅)− H
(
⋅ ; Sred

q

)
). Observe that finding such a global maximizer has a small computational cost, as

the orders of Sq+1 and S
red
q

are small. Then, by employing Theorem 1, we expand the subspacesq+1,q+1 further

so that the interpolatory properties are attained between Hq+1(i𝜔) after this refinement and H(i𝜔) at 𝜔 = 𝜔
(0)
q ,

which in turn implies interpolatory properties between𝜎q+1

(
𝜔; Sred

q

)
and𝜎

(
𝜔; Sred

q

)
at𝜔 = 𝜔

(0)
q . If𝜔q after this

refinement of Sq+1 is still only a local maximizer of 𝜎q+1

(
𝜔; Sred

q

)
, but not a global maximizer, then we repeat
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this refinement procedure of Sq+1 up until 𝜔q becomes a global maximizer of 𝜎q+1

(
𝜔; Sred

q

)
(in practice up to

prescribed tolerances). A formal description of the refinement step is given below in Algorithm 2. For simplicity,

in line 3 of Algorithm 2 it is assumed that 𝜔q is the unique global maximizer of 𝜎
(
𝜔; Sred

q

)
. More generally, all

of the global maximizers of 𝜎
(
𝜔; Sred

q

)
can be returned in line 7 of Algorithm 1 (e.g., by employing the level-set

methods [37], [38] to compute the ∞ norm), and whether𝜔
( j)
q is equal to any of these global maximizers can be

checked in line 3 of Algorithm 2.

Assuming 𝜎
(
𝜔; Sred

q

)
is Lipschitz continuous, 𝜎q+1

(
𝜔; Sred

q

)
is Lipschitz continuous with a uniform Lips-

chitz constant over the iterations of Algorithm 2, and the maximizer 𝜔
( j)
q of 𝜎q+1

(
𝜔; Sred

q

)
over 𝜔 ⩾ 0 in line 2

of Algorithm 2 at every j is required to be in a prescribed bounded interval, the gap |𝜔( j)
q −𝜔q| can be made

less than any prescribed amount after finitely many iterations of Algorithm 2. At this point, the interpolation

condition (16) is also met up to a multiple of the prescribed amount.

Algorithm 2 (refinement step).

1: for j = 0, 1, . . . do

2: 𝜔
( j)
q ← a maximizer of 𝜎q+1

(
𝜔; Sred

q

)
= 𝜎max

(
Hq+1(i𝜔)− H

(
i𝜔; Sred

q

))
over 𝜔 ⩾ 0.

3: if 𝜔
( j)
q = 𝜔q (up to prescribed tolerances) then

4: Terminate with Vq+1,Wq+1 and Sq+1.

5: end if

% expand the subspaces to interpolate at i𝜔
( j)
q

6: Ṽq+1 ←
[
Re

[
(i𝜔

( j)
q E − A)−1B

]
Re

[
(i𝜔

( j)
q E − A)−1E(i𝜔( j)

q E − A)−1B
]
Im

[
(i𝜔

( j)
q E − A)−1B

]
Im

[
(i𝜔

( j)
q E − A)−1E(i𝜔( j)

q E − A)−1B
]]
.

7: W̃q+1 ←
[
Re

[
(i𝜔

( j)
q E − A)−∗C∗

]
Re

[
(i𝜔

( j)
q E − A)−∗E(i𝜔( j)

q E − A)−∗C∗
]
Im

[
(i𝜔

( j)
q E − A)−∗C∗

]
Im

[
(i𝜔

( j)
q E − A)−∗E(i𝜔( j)

q E − A)−∗C∗
]]
.

8: Vq+1 ← orth
([
Vq+1 Ṽq+1

])
and Wq+1 ← orth

([
Wq+1 W̃q+1

])
.

% update the small system

9: Form Aq+1, Bq+1, Cq+1, Eq+1 using (10),

and let Sq+1 = (Aq+1, Eq+1, Bq+1, Cq+1, D).

10: end for

4 Interpolation properties of the subspace framework

Suppose that 𝜔q is a global maximizer of 𝜎q+1

(
𝜔; Sred

q

)
by the termination of the refinement step, in which

case the interpolation condition (16) holds due to (15). It can be shown that, assuming  and q+1 are twice

differentiable at Sred
q
, indeed all of the first two derivatives of  and q+1 are equal at S

red
q

as well. To this end,

let x1, x2 be any two entries of the matrix variables A
red,Bred, Cred,Dred, Ered of  and q+1. Recalling

(i𝜔; Sred) = H(i𝜔)− H(i𝜔; Sred), q+1(i𝜔; Sred) = Hq+1(i𝜔)− H(i𝜔; Sred),

and by employing (11), it is apparent that


(
i𝜔q; Sredq

)
= q+1

(
i𝜔q; Sredq

)
, (17)

𝜕
𝜕y

(
i𝜔q; Sredq

)
=

𝜕q+1
𝜕y

(
i𝜔q; Sredq

)
, (18)

𝜕2
𝜕y 𝜕z

(
i𝜔q; Sredq

)
=

𝜕2q+1
𝜕y 𝜕z

(
i𝜔q; Sredq

)
, (19)

for all y, z ∈ {𝜔, x1, x2}. By exploiting

 (Sred) = sup
𝜔⩾0

𝜎max((i𝜔; Sred)), q+1(S
red) = sup

𝜔⩾0
𝜎max(q+1(i𝜔; Sred)),
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and using implicit differentiation

𝜕
𝜕y

(
Sred
q

)
= 𝜕 (𝜎max ⚬ )

𝜕y

(
i𝜔q; Sredq

)
=

𝜕 (𝜎max ⚬ q+1)
𝜕y

(
i𝜔q; Sredq

)
=

𝜕q+1
𝜕y

(
Sred
q

)
(20)

for y ∈ {x1, x2}, where the second equality is due to (18), as well as (17) implying the fact that 
(
i𝜔q; Sredq

)
and

q+1
(
i𝜔q; Sredq

)
have the same left and right singular vectors. We remark that, for the first and third equali-

ties in (20), we use the fact 𝜔q is a global maximizer of 𝜎
(
𝜔; Sred

q

)
= 𝜎max(

(
i𝜔; Sred

q

)
) and 𝜎q+1

(
𝜔; Sred

q

)
=

𝜎max(q+1
(
i𝜔; Sred

q

)
), respectively.

Moreover, for any y, z ∈ {𝜔, x1, x2}, we have

𝜕2(𝜎max ⚬ )
𝜕y 𝜕z

(
i𝜔q; Sredq

)
=

𝜕2(𝜎max ⚬ q+1)
𝜕y 𝜕z

(
i𝜔q; Sredq

)
due to (18) and (19) combined with the fact that 

(
i𝜔q; Sredq

)
, q+1

(
i𝜔q; Sredq

)
have the same singular values and

vectors due to (17). Consequently,

𝜕2
𝜕y𝜕z

(
Sred
q

)
= 𝜕2(𝜎max ⚬ )

𝜕y𝜕z

(
i𝜔q; Sredq

)
+ 𝜕2(𝜎max ⚬ )

𝜕y𝜕𝜔

(
i𝜔q; Sredq

)
×
{
−𝜕2(𝜎max ⚬ )

𝜕𝜔𝜕z

(
i𝜔q; Sredq

)
∕𝜕

2(𝜎max ⚬ )
𝜕𝜔2

(
i𝜔q; Sredq

)}

=
𝜕2(𝜎max ⚬ q+1)

𝜕y𝜕z

(
i𝜔r; Sredq

)
+

𝜕2(𝜎max ⚬ q+1)
𝜕y𝜕𝜔

(
i𝜔q; Sredq

)
×
{
−
𝜕2(𝜎max ⚬ q+1)

𝜕𝜔𝜕z

(
i𝜔q; Sredq

)
∕
𝜕2(𝜎max ⚬ q+1)

𝜕𝜔2

(
i𝜔q; Sredq

)}
=

𝜕2q+1
𝜕y𝜕z

(
Sred
q

)
(21)

for any y, z ∈ {x1, x2}.

5 A quadratic convergence result regarding Algorithm 1

In this section, we establish quadratic convergence of the iterates of Algorithm 1 under additional smoothness

assumptions. Here and in the next section, r,m, p denotes the set consisting of every descriptor system Sred of

order r and index at most one with semi-simple poles, m inputs, p outputs. Throughout this section, we make

use of the vectorization (Sred) of the system Sred = (Ared, Ered,Bred, Cred,Dred) defined as

(Sred) :=
[
vec(Ared)T vec(Ered)T vec(Bred)T vec(Cred)T vec(Dred)T

]T
, (22)

where vec(M) denotes the vector obtained by stacking up the columns of matrixM. The gradients∇ (Sred) and
∇q+1(S

red) are vectors formed of the first partial derivatives of  (Sred) and q+1(S
red) based on the ordering

of the variables, i.e., the entries of Ared, Ered,Bred, Cred,Dred, in the vectorization in (22). Similarly, ∇2 (Sred) and
∇2q+1(S

red) denote the Hessians of  (Sred) and q+1(S
red) based on the ordering of the variables according to

(22).

We assume that there are two consecutive iterates Sred
q

and Sred
q+1 of Algorithm 1 that are sufficiently close to

a local minimizer Sred∗ of  (Sred). Moreover, we silently assume throughout that the interpolation properties in
(20) and (21) hold at Sred

q
. We also keep the assumption stated below that guarantees that  (Sred) is real analytic

at Sred∗ .

Assumption 2. Themaximumof𝜎
(
𝜔; Sred∗

)
over all𝜔⩾ 0 is attained at a unique𝜔∗. Furthermore,𝜎

(
𝜔∗; Sred∗

)
=

𝜎max(
(
i𝜔∗; Sred∗

)
) is a simple singular value of 

(
i𝜔∗; Sred∗

)
.
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An assumption regarding the smoothness of q+1(S
red) that we rely on is given next. Recalling ‖𝑣‖2 for a

vector 𝑣 denotes the 2-norm of 𝑣, we make use of the distance ‖S̃ red − Ŝred‖ := ‖(̃ red)− (̂ red)‖2 for systems
S̃ red, Ŝred ∈ r,m, p, and the ball B(̂Sred, 𝛿) :={S̃ red ∈ r,m, p | ‖S̃ red − Ŝred‖ < 𝛿} for a system Ŝred ∈ r,m, p and

positive real number 𝛿.We remark that part (i) of Assumption 3 guarantees that q+1(S
red) is real-analytic in the

ball B
(
Sred
q
, 𝛿q

)
, and so three times differentiable in this ball, which we depend on in part (ii) of Assumption 3.

Assumption 3.

(i) For every Sred ∈ B
(
Sred
q
, 𝛿q

)
with 𝛿q := ‖Sred

q+1 − Sred
q

‖ the following conditions hold:
– the maximum of 𝜎q+1(𝜔; Sred) defined in (12) over all 𝜔 ⩾ 0 is attained at a unique point, say at 𝜔̃;

– the singular value 𝜎q+1(𝜔̃; Sred) = 𝜎max(q+1(i𝜔̃; Sred)) of q+1(i𝜔̃; Sred) is simple.
(ii) Moreover, all of the third derivatives of q+1(S

red) can be bounded by quantities independent of q at all

Sred ∈ B
(
Sred
q
, 𝛿q

)
.

We state and prove the main result that relates ‖Sred
q

− Sred∗ ‖ and ‖Sred
q+1 − Sred∗ ‖ below.

Theorem 4. Suppose that two consecutive iterates Sred
q

and Sred
q+1 of Algorithm 1 are sufficiently close to a local

minimizer Sred∗ of  (Sred). Moreover, suppose Assumptions 2, 3 hold, and ∇2
(
Sred∗

)
is invertible. Then there is a

constant C independent of q such that

‖Sred
q+1 − Sred∗ ‖ ⩽ C ‖Sred

q
− Sred∗ ‖2.

Proof. By continuity 𝜎(𝜔; Sred) = 𝜎max((i𝜔; Sred)) remains simple at all𝜔 and Sred ∈ r,m, p such that𝜔 is suffi-

ciently close to 𝜔∗ and S
red is sufficiently close to Sred∗ , where 𝜔∗ is as in Assumption 2. Thus, by the analytic

implicit function theorem, there is 𝛿 > 0 such that  (Sred) is real analytic at all Sred ∈ B
(
Sred∗ , 𝛿

)
(see, e.g.,

[39, Lemma 16] for the details in the analogous context of the distance instability). By the assumption that

∇2
(
Sred∗

)
is invertible, and continuity of the second partial derivatives of  (Sred) in B

(
Sred∗ , 𝛿

)
, the Hessian

∇2 (Sred) remains invertible in a ball B
(
Sred∗ , 𝛿

)
for some 𝛿 < 𝛿. Furthermore, without loss of generality, we

assume Sred
q
, Sred

q+1 are close enough to S
red
∗ so that Sred

q
, Sred

q+1 ∈ B
(
Sred∗ , 𝛿

)
, and the ball B

(
Sred
q
, 𝛿q

)
in Assumption 3

is contained in B
(
Sred∗ , 𝛿

)
. We let 𝛽 :=minSred∈B(Sred∗ ,𝛿) 𝜎min(∇2 (Sred)) > 0, and note that ∇2 (Sred) is Lipschitz

continuous in B
(
Sred∗ , 𝛿

)
, say with the Lipschitz constant 𝛾 .

By an application of Taylor’s theorem with integral remainder, we have

0 = ∇
(
Sred∗

)
= ∇

(
Sred
q

)
+

1

∫
0

∇2
(
Sred
q

+ t
(
Sred∗ − Sred

q

)) (

(
Sred∗

)
− 

(
Sred
q

))
dt

= ∇
(
Sred
q

)
+∇2

(
Sred
q

)(

(
Sred∗

)
− 

(
Sred
q

))
+ 

(‖Sred∗ − Sred
q

‖2), (23)

where, for the third equality, we have used the Lipschitz continuity of ∇2 (Sred) in B
(
Sred∗ , 𝛿

)
. Additionally, by

Taylor’s theorem with second order Lagrange remainder,

0 = ∇q+1

(
Sred
q+1

)
= ∇q+1

(
Sred
q

)
+ ∇2q+1

(
Sred
q

)
(

(
Sred
q+1

)
− 

(
Sred
q

)
) + 

(‖Sred
q+1 − Sred

q
‖2)

= ∇
(
Sred
q

)
+ ∇2

(
Sred
q

)
(

(
Sred
q+1

)
− 

(
Sred
q

)
) + 

(‖Sred
q+1 − Sred

q
‖2), (24)

where the third equality is due to ∇q+1

(
Sred
q

)
= ∇

(
Sred
q

)
and ∇2q+1

(
Sred
q

)
= ∇2

(
Sred
q

)
, that are conse-

quences of (20) and (21).
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By employing (24) in (23), we deduce

∇2
(
Sred
q

)
(

(
Sred∗

)
− 

(
Sred
q+1

)
) = 

(‖Sred
q+1 − Sred

q
‖2)+ 

(‖Sred∗ − Sred
q

‖2).
Finally, noting ‖∇2

(
Sred
q

)
(

(
Sred∗

)
− 

(
Sred
q+1

)
)‖ ⩾ 𝛽‖Sred∗ − Sred

q+1‖, from the last equality we obtain

‖Sred
q+1 − Sred∗ ‖ ⩽ 

(‖Sred
q

− Sred∗ ‖2)
as desired. □

6 Dealing with asymptotic stability constraints

In many applications, in addition to the objective that the reduced-order system sought Sred =
(Ared, Ered,Bred, Cred,Dred) of order r is close to the original system with respect to the ∞ norm, the sys-

tem Sred sought may also be required to be asymptotically stable; see, e.g., [40]–[42]. As we search through

reduced-order systems of index at most one, it follows from the Weierstrass canonical form [43] of (Ared, Ered)

that the asymptotic stability requirement is equivalent to having all of the poles of the system in the open left

half of the complex plane, i.e., to the condition 𝛼(Ared, Ered) < 0, where 𝛼(Ared, Ered) is the spectral abscissa of

the pencil L(s) = Ared − sEred defined by

𝛼(Ared, Ered) := max{Re(z) | z ∈ ℂ s.t. det(A− zE) = 0}.

In this setting, with  (Sred) defined as in (6), rather than the unconstrained minimization of  (Sred) over all
descriptor systems Sred ∈ r,m, p, it may be desirable to solve the constrained minimization problem

min
{
 (Sred) : Sred ∈ r,m, p s.t. 𝛼(Ared, Ered) ⩽ 𝛽

}
(25)

for a prescribed negative real number 𝛽 , where r,m, p denotes the set of all descriptor systems of order r and

index at most one with semi-simple poles,m inputs, p outputs.

Extension of the proposed subspace framework, that is Algorithm 1, to deal with the constrained mini-

mization problem in (25) rather than the unconstrained minimization of  (Sred) is straightforward. The only
difference in Algorithm 1 is in line 5, where Sred

q
is no longer a minimizer of q(S

red), but instead a minimizer of

the constrained problem

min
{
q(S

red) : Sred ∈ r,m, p s.t. 𝛼(Ared, Ered) ⩽ 𝛽
}

(26)

for the reduced function q(S
red) as in (9). The problem in (26) involves only the small systems Sq as well as S

red,

and is solvable by means of Newton-method based approaches (e.g., using [31], Procedure 2]). Such a Newton-

method based approach makes use of the gradient of the constraint function (Sred) :=𝛼(Ared, Ered)− 𝛽 , in addi-

tion to the gradient of the objective q(S
red). Let 𝜆 be the rightmost eigenvalue of the pencil L(s) = Ared − sEred

with u and 𝑣 denoting a pair of corresponding left and right eigenvectors normalized so that u∗Ered𝑣 = 1, and

assume 𝜆 is a simple eigenvalue and the unique rightmost eigenvalue of L(s), which ensure the differentiability

of (Sred). Then, by differentiating the equation Ared𝑣 = 𝜆Ered𝑣 with respect to the entries of Ared and Ered and

multiplying with u∗ from left, the partial derivatives of (Sred) are given by

𝜕
Ared
i j

(Sred) = Re(ui𝑣 j),
𝜕
Ered
j j

(Sred) = −Re(𝜆uj𝑣 j),

where Re(z) denotes the real part of a complex scalar z ∈ ℂ, while Ared
i j

is the subdiagonal, superdiagonal or

diagonal entry of the matrix variable Ared at position (i, j), and Ered
j j

is the diagonal entry of Ered at position (j, j).
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We remark that, assuming 𝜔q is again a global maximizer of 𝜎q+1

(
𝜔; Sred

q

)
after the refinement step, the

interpolation properties


(
Sred
q

)
= q+1

(
Sred
q

)
, ∇

(
Sred
q

)
= ∇q+1

(
Sred
q

)
, ∇2

(
Sred
q

)
= ∇2q+1

(
Sred
q

)
still hold. Moreover, if a logarithmic barrier approach is adopted for the solution of the constrained problems,

then, in essence, constrained problems are turned into unconstrained problems by lifting the constraints to the

objective via the logarithmic barrier functions

L𝜇(Sred) =  (Sred) − 𝜇 log(𝛽 − 𝛼(Ared, Ered)), L
𝜇

q (S
red) = q(S

red) − 𝜇 log(𝛽 − 𝛼(Ared, Ered))

associated with problems (25), (26), respectively, where log(⋅) denotes the natural logarithm of its parameter, 𝜇

is a positive real number and represent the barrier parameter. In this case, the interpolation properties extend

to the logarithmic barrier functions as well. In particular, we have

L𝜇
(
Sred
q

)
= L

𝜇

q+1

(
Sred
q

)
, ∇L𝜇

(
Sred
q

)
= ∇L𝜇

q+1

(
Sred
q

)
, ∇2L𝜇

(
Sred
q

)
= ∇2L

𝜇

q+1

(
Sred
q

)
for every positive real number 𝜇.

There are alternatives to our approach above to enforce asymptotic stability on the reduced system. One

possibility is to define the∞ error objective as∞ for reduced systems that are not asymptotically stable, and

deal with the unconstrained minimization of the resulting objective. It is then essential to start with a reduced

system that is asymptotically stable, and the sufficient decrease condition in the line-search keeps the iterates

away from reduced systems that are not asymptotically stable. Such an approach is adopted in Ref. [21] in the

design of a controller with a minimal∞ objective for the closed-loop system. Another alternative is to ensure

asymptotic stability by requiring that the reduced systemhas a certain structure, e.g., port-Hamiltonian structure

following the practice in Ref. [26]. Once again this results in the unconstrained minimization of the ∞ error

objective but over structured systems depending on additional optimization parameters. We opt to depend on

the constrained optimization formulation in (25) due to the availability of software such as GRANSO [31] to deal

with constraints.

7 Practical issues

Here we spell out a few practical issues regarding Algorithm 1 such as how we form the initial systems S0, S
red
0
,

when we terminate, the details of bases for projection subspaces, solutions of reduced ∞-norm minimization

problems, and ∞-norm computations.

7.1 Initialization

The initial subspaces 0,0 (in line 1 of Algorithm 1) are chosen so that H0, the transfer function of S0, inter-

polates H at the imaginary parts of a prescribed number of dominant poles of H. Formally, suppose H does not

have any pole on the imaginary axis, and, for a prescribed 𝓁, let s1,… , s𝓁 ∈ ℂ be the most dominant 𝓁 poles

of H with nonnegative imaginary parts (as the poles of H appear in complex conjugate pairs such that any two

complex conjugate poles have the same dominance metric). We set

0 =
𝓁⨁
k=1

1⨁
j=0

{
Re

[{
(A− i Im(sk)E)

−1E
} j
(A− i Im(sk)E)

−1B
]⨁

Im
[{
(A− i Im(sk)E)

−1E
} j
(A− i Im(sk)E)

−1B
]}

,

0 =
𝓁⨁
k=1

1⨁
j=0

{
Re

[
C(A− i Im(sk)E)

−1{E(A− i Im(sk)E)
−1} j

]∗⨁
Im

[
C(A− i Im(sk)E)

−1{E(A− i Im(sk)E)
−1} j

]∗}
,
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where Im(sk) denotes the imaginary part of sk ∈ ℂ. Theorem 1 ensures that

H(i Im(sk)) = H0(i Im(sk)), H( j)(i Im(sk)) = H
( j)

0
(i Im(sk))

H(−i Im(sk)) = H0(−i Im(sk)), H( j)(−i Im(sk)) = H
( j)

0
(−i Im(sk))

for j = 1, 2, 3 and k = 1, . . . ,𝓁.
Additionally, at every subspace iteration with q > 0, an initial point is needed for the solution of the mini-

mization problem in line 5 of Algorithm 1 regardless of how it is solved, e.g., via gradient descent or BFGS. This

initialization carries significance, as it affects which local minimizer of q is to be converged. At a subspace iter-

ation with q > 1, the minimizer is initialized with the optimal reduced system from the previous iteration, that

is with Sred
q−1. For iteration q = 1, initial Sred

0
of order rmust be supplied to Algorithm 1. We set Sred

0
as either

– the model of order r obtained from an application of balanced truncation, or

– the model of order rwhose transfer function interpolates H at the imaginary parts of a prescribed number

of dominant poles of H.

For the latter choice, we remark that the number of dominant poles used to form S0 is strictly greater than the

number of dominant poles used to form this initial model Sred
0

for theminimizer. For either choice, wemake sure

dim 0 = dim 0 > r by using sufficiently many dominant poles of H when forming S0 = (A0, E0,B0, C0,D).

An issue that requires attention is that Sred
0

=
(
Ared
0
, Ered

0
,Bred

0
, Cred

0
,Dred

0

)
must be such thatAred

0
is tridiagonal

and Ered
0

is diagonal, whereas balanced truncation or the interpolatory approach yields the system (Â, Ê, B̂, Ĉ, D̂)

of order r such that Â and Ê do not necessarily have these structures. Let us suppose that the system (Â, Ê, B̂, Ĉ, D̂)

has semi-simple poles, and Ê is invertible. Then we can first compute the eigenvalues of the r × r pencil L̂(s)

= Â− sÊ, and form a block diagonal real matrix T2 with 2 × 2 and 1 × 1 blocks along its diagonal that have the

same eigenvalues as L̂. The 2 × 2 and 1 × 1 blocks of T2 on its diagonal correspond to a conjugate pair of complex

eigenvalues and real eigenvalues of L̂, respectively. Here we remark that T2 is an r × r matrix. Hence, we can

compute its eigenvalue decomposition

T2 = UΛU−1 (27)

for a diagonal matrixΛ and invertible U at ease. We also have the eigenvalue decomposition

Ê−1Â = VΛV−1

at hand. Note that the middle factors in eigenvalue decompositions above are the same, as T2 has the same

eigenvalues as the pencil L̂, which in turn has the same eigenvalues as Ê−1Â. But then

Ĥ(s) := Ĉ(sÊ − Â)−1B̂+ D̂ = Ĉ(sI − Ê−1Â)−1Ê−1B̂+ D̂ = Ĉ(sI − VΛV−1)−1Ê−1B̂+ D̂

= (ĈV)(sI −Λ)−1(V−1Ê−1B̂)+ D̂ = (ĈV)
(
sI − U−1T2U

)−1
(V−1Ê−1B̂)+ D̂

= (ĈVU−1)(sI − T2)
−1(UV−1Ê−1B̂)+ D̂.

Hence, we can use

Ared
0

:= T2, Ered
0

:= I, Bred
0

:=UV−1Ê−1B̂, Cred
0

:= ĈVU−1, Dred
0

:= D̂

as the matrices of the initial system Sred
0
.

Remark 1. The invertibility assumption above on Ê amounts to initializing the optimization in line 5 of

Algorithm 1 at the first subspace iteration (for q = 1) with a descriptor system Sred
0

with all finite poles, a property

stronger than our general assumption that the reduced system sought is at most index one. However, this invert-

ibility assumption initially is not restrictive. In particular, optimization is still over at most index one systems,

and is permitted to yield an index one system Sred
q

=
(
Ared
q
, Ered

q
,Bred

q
, Cred

q
,Dred

q

)
for q ⩾ 1 with singular Ered

q
.
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Remark 2. When the pencil L̂(s) = Â− sÊ has complex eigenvalues, the matrices V and U from the eigenvalue

decompositions above are complex. Yet, T2 and U satisfying (27) can be chosen so that the product VU−1 is real,

ensuring in turn that Bred
0

and Cred
0

are real matrices.

To see VU−1 is real for particular choices of T2, U , suppose a± ib consist of a pair of complex conjugate

eigenvalues of L̂, and suppose they appear as the 𝓁th, (𝓁 + 1)th entries along the diagonal of Λ. Moreover, sup-
pose u± i𝑣with u, 𝑣 ∈ ℝr are eigenvectors of L̂ corresponding to a± ib appearing on the 𝓁th, (𝓁 + 1)th columns

of V . Then we have [
a b

−b a

]
=

⎡⎢⎢⎣
1∕
√
2 1∕

√
2

i∕
√
2 −i∕

√
2

⎤⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

Z

[
a+ ib 0

0 a− ib

]⎡⎢⎢⎣
1∕
√
2 −i∕

√
2

1∕
√
2 i∕

√
2

⎤⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

Z−1=Z∗

, (28)

so the real matrix on the left has the eigenvalues a± ib, and we use it on the 2 × 2 diagonal block of T2 with

row and column indices 𝓁,𝓁 + 1. Using the decomposition in (28), in particular Z−1, we can set up U so that

(1∕
√
2)(e𝓁 + e𝓁+1), (i∕

√
2)(−e𝓁 + e𝓁+1) are on the 𝓁th, (𝓁 + 1)th columns of U−1, where e𝓁 is the 𝓁th column

of the r × r identity matrix. Recalling u± i𝑣 are the eigenvectors on the 𝓁th, (𝓁 + 1)th columns of V , the 𝓁th,
(𝓁 + 1)th columns of VU−1 are real and equal to

√
2u,

√
2𝑣, respectively.

7.2 Termination

The termination in line 9 of Algorithm 1 is determined based on the values of ‖H(⋅)− H
(
⋅ ; Sred

q

)‖∞
at two con-

secutive subspace iterations. The error ‖H(⋅)− H
(
⋅ ; Sred

q

)‖∞
is readily available at the qth subspace iteration

after line 7, as ‖H(⋅)− H
(
⋅ ; Sred

q

)‖∞
= 𝜎max

(
H(i𝜔q)− H

(
i𝜔q; Sredq

))
.

To be precise, we terminate at the qth subspace iteration in line 9 if q ≥ 1 and

||||‖H(⋅)− H
(
⋅; Sred

q

)‖∞
− ‖H(⋅)− H

(
⋅; Sred

q−1

)‖∞

|||| ⩽ tol ‖H(⋅)− H
(
⋅; Sred

q

)‖∞
(29)

for a prescribed tolerance tol.
The termination condition for theminimizer to solve theminimization problem in line 5 of Algorithm 1 also

requires some care. Recall that the objective q here is nonsmooth, and, as a result, the norms of the gradients

of q at the iterates generated by the minimizer do not have to converge to zero. Instead, the minimizer is

terminated if the line-search fails (to return a point that causes sufficient decrease), or the decrease in q at two

consecutive iterates is less than 𝜀 ⋅ tol in a relative sense, where we use the same tolerance tol as in (29) and 𝜀
is a real number in (0,0.5).

As for the termination condition of the refinement step (i.e., the condition in line 3 of Algorithm 2) employed

in practice, we rely on |||𝜔( j)
q −𝜔q

||| ⩽ tol|||𝜔q
|||,

where we again use the same tolerance tol as in (29).

7.3 Orthonormalization of the bases for the subspaces

Keeping the bases for the subspaces q,q (i.e., the columns of Vq,Wq) orthonormal improves the robustness

of the algorithm against the rounding errors. For instance, then the systemmatrices Aq,Bq, Cq, Eq can be formed

more accurately in the presence of rounding errors.

This orthonormality property of the bases is attained in line 13 of Algorithm 1, aswell as line 8 of Algorithm 2.

In line 13 of Algorithm 1,Vq andWq are already orthonormal bases forq andq. The expansiondirections Ṽ q+1,
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W̃ q+1 to be included in the subspaces to obtain the expanded subspaces q+1,q+1 have to be orthonormalized

with respect to the existing orthonormal bases Vq,Wq. This is achieved in practice by executing

Ṽ q+1 ← Ṽ q+1 − Vq

(
VT
q
Ṽ q+1

)
, W̃ q+1 ← W̃ q+1 −Wq

(
WT

q
W̃ q+1

)
. (30)

Near convergence the interpolation points i𝜔q of Algorithm 1 start not changing by much in consecutive itera-

tions. This results in the newexpansion directions Ṽ q+1, W̃ q+1 that are nearly contained in the existing subspaces

q, q. In this case, the orthonormalization in (30) of Ṽq+1, W̃q+1 with respect to existing Vq,Wq suffers from

cancellation type rounding errors. Applying the orthonormalization in (30) several times improves the accuracy,

and result in directions Ṽq+1, W̃ q+1 that are better orthonormalized against Vq,Wq. In practice, we apply (30) a

few times, e.g., 3–4 times, then orthonormalize the resulting Ṽ q+1, W̃ q+1 via the Gram–Schmidt procedure, and

take Vq+1 =
[
Vq Ṽ q+1

]
, Wq+1 =

[
Wq W̃q+1

]
as the matrices whose columns form orthonormal bases for q+1,

q+1. In line 8 of Algorithm 2, the columns of Vq+1 andWq+1 are similarly orthonormalized. We ultimately use

Vq+1,Wq+1 when forming the system Sq+1 in line 14 of Algorithm 1, and in line 9 of Algorithm 2.

7.4 Solution of the reduced∞-normminimization problem

We use BFGS to minimize the reduced ∞ objective q(S
red) in line 5 of Algorithm 1. To be precise, we have

explored two alternatives here; a small variation of a MATLAB implementation of a line-search BFGS due to

Michael L. Overton making use of weak Wolfe conditions, and GRANSO [31]. The former is only meant for

unconstrained problems when we do not impose the asymptotic stability constraints described in Section 7,

whereas the asymptotic stability constraints in Section 6 are also incorporated into this optimization when we

use GRANSO.

7.5 Computation of the∞ norm

Algorithm 1 in line 7 requires the computation of the ∞ norm of a system whose order is the sum of the order

of the original system S and r. If the original system does not have large order, we use the built-in norm com-
mand inMATLAB for these∞-norm computations. Otherwise, if the original system has large order, we use the

subspace framework introduced in Ref. [44] for the large-scale ∞-norm computations. Additionally, the mini-

mization of the reduced ∞ objective in line 5 via BFGS requires small-scale ∞-norm computations, which we

carry out using the getPeakGain command inMATLAB. The use of the routines in the ROSTAPACK package [45],
[46], especially the routine normTfMaxPeak, instead of the built-in MATLAB routines norm, getPeakGain may
possibly improve the efficiency.

8 Numerical results

In this section, we report the results of numerical experiments performed with a MATLAB implementation of

Algorithm 1 taking also the practical issues indicated in the previous section into account. Sections 8.1 and 8.2

concern experiments on rather smaller order systems, Section 8.3 concerns experiments on a system ofmedium

order, while the results of experiments on several large-order systems are reported in Section 8.4. All of the

experiments are conducted in MATLAB 2020b on an iMac with Mac OS 12.1 operating system, Intel® Core™
i5-9600K CPU and 32GB RAM.

The numerical experiments are performed using the variation of the MATLAB implementation of BFGS due

to Michael L. Overton for the solution of the reduced ∞-norm minimization problems. Hence, the asymptotic

stability constraints are not imposed. The original systems in all of the experiments in Sections 8.1–8.3 con-

cerning small- to medium-order systems are asymptotically stable, and the computed optimal reduced systems

in these examples also turn out to be asymptotically stable. The tolerance tol for termination (discussed in
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Section 7.2) is set equal to 10−8 in Sections 8.1–8.3, and 10−6 in Section 8.4. As noted in Section 7.1, a prescribed

number of most dominant poles with nonnegative imaginary parts are used to form S0, and in Section 8.4 to

form Sred
0

as well. Throughout this section, the shorthand NIPs stands for “nonnegative imaginary parts”.

For comparison or initialization purposes, some of the numerical experiments involve the application

of balanced truncation for which we use the MATLAB toolbox MORLAB-5.0 [47], in particular the routine

ml_ct_dss_bt or ml_ct_ss_bt depending on whether the system at hand is a descriptor system or more specif-

ically a linear time-invariant system. Moreover, the Hankel singular values computed for smaller systems for

comparison purposes are retrieved by calling the built-in routine hankelsv in MATLAB. As the first three sub-
sections concern the model reduction of relatively smaller systems, the built-in routine norm is employed in line
7 of Algorithm 1 for ∞-norm computations, while the subspace framework in Ref. [44] is employed for this

purpose in Section 8.4 that concerns the model reduction of descriptor systems with large order.

8.1 ISS example

We start with the iss example of order n = 270 that is also considered when optimizing the objective  directly

in Section 2. As before, we seek the nearest reduced descriptor system of order r = 12 with respect to the ∞
norm. An application of Algorithm 1 with the initial estimate Sred

0
produced by balanced truncation terminates

when q = 6. The error 
(
Sred
⋆

)
= 0.0022516 of the estimate Sred

⋆
returned is nearly half of the error 

(
Sred
0

)
=

0.0044701 of the initial estimate Sred
0
. The optimal reduced system Sred

⋆
is indeed slightly better than the estimate

returned by the direct optimization at which the objective  takes the value 0.0024154. Yet the total runtime is

about 66 s, much shorter than 500 s, roughly the time required by the direct optimization. The local optimality

of Sred
⋆

=
(
Ared
⋆
,Bred

⋆
, Cred

⋆
,Dred

⋆
, Ered

⋆

)
is supported by Figure 2, which indicates an increase in the objective  if

one of the entries of one of Ared
⋆
, Bred

⋆
, Cred

⋆
, Dred

⋆
, and Ered

⋆
is modified. Moreover, the Hankel singular value 𝜎r+1

for this example, a lower bound for the minimal error possible for any system of order r, is 0.0022353 smaller

than 
(
Sred
⋆

)
= 0.0022516 only by a slim margin, so Sred

⋆
must be nearly optimal globally as well.

The largest singular values of the errors 𝜎max(H(i𝜔)− H
(
i𝜔; Sred

0

)
) and 𝜎max(H(i𝜔)− H

(
i𝜔; Sred

⋆

)
) of the ini-

tial estimate Sred
0

and the optimal estimate Sred
⋆

are plotted as functions of𝜔 in Figure 3. The singular value error

function 𝜎max(H(i𝜔)− H
(
i𝜔; Sred

⋆

)
) for the optimal Sred

⋆
is extremely flat, as indeed 𝜎max(H(i𝜔)− H

(
i𝜔; Sred

⋆

)
) ∈

[2.02 ⋅ 10−3, 2.26 ⋅ 10−3] at all 𝜔. Furthermore, the error 𝜎max(H(i𝜔)− H
(
i𝜔; Sred

⋆

)
) is maximized at four distinct

points marked by the circles on the right-hand plot. This indicates that the objective  is not differentiable at

the computed optimizer Sred
⋆
.

Information about the progress of Algorithm 1 is given in Table 2. We start with the reduced system S0 of

order 36 that interpolates the original system S of order 270 at three points on the imaginary axis, namely the

imaginary parts of the most dominant three poles of S with NIPs. At every iteration, if no refinement step is

performed, the order of the reduced system Sq increases by 4m = 12. Additionally, each refinement step results

in an increase of 4m = 12 in the order of Sq. We observe in the second column that the error 
(
Sred
q

)
at the

minimizer Sred
q

of the reduced objective q decays rapidly with respect to q. The total number of objective func-

tion evaluations is 492 (i.e., the sum of the function evaluations in the fifth column), however the ∞ objective

to be minimized involves the reduced system Sq rather than the full system S. For instance, the number of ∞-

norm computations performed are 105, 155, 123 at iterations q = 1, 2, 3. Yet, these∞-norm computations involve

the reduced system Sq of order 72, 84, 120 for q = 1, 2, 3. Observe that the number of BFGS iterations eventually

decrease at the later iterations, as the computed optimal Sred
q

used as the initial estimate when minimizing q+1
becomes stationary, i.e., as the computed minimizer Sred

q
of q is also close to a minimizer of q+1. Refinement

steps are needed only at the initial iteration when q = 0 and when q = 2. No refinement step turns out to be

necessary at the later iterations. This is a generic pattern that we observe in vast majority of examples we have

experimented on.



230 — E. Mengi: Finding locally optimal solutions in ∞ model reduction

Figure 2: The figure is similar to Figure 1 and concerns the iss example with r = 12. Only now the minimization of  is performed using

the subspace framework outlined in Algorithm 1. Specifically, each plot depicts  as a function of the variation of one of the entries of

one of Ared, Bred, Cred, Dred, Ered. Zero variation corresponds to the optimal reduced system by Algorithm 1.
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Figure 3: The plots of 𝜎max(H(i𝜔)− H
(
i𝜔; Sred

0

)
) (left) and 𝜎max(H(i𝜔)− H

(
i𝜔; Sred

⋆

)
) (right) as functions of𝜔 for the iss example with

r = 12, where Sred
0

is the initial estimate, and Sred
⋆

is the optimal estimate computed by Algorithm 1. In each plot, the circles mark the

points where the largest singular value function attains the largest value.

Table 2: The iterates and information about the progress of Algorithm 1 on the iss example with r = 12. The columns of red order, #

BFGS iter, # fun evals, and # refine list the order of the system Sq, number of BFGS iterations, number of objective function evaluations

performed by BFGS, and number of refinement steps performed at the qth iteration.

q 
(
Sred
q

)
Red order # BFGS iter # fun evals # refine

0 0.004470060020 36 — — 2

1 0.003517059977 72 38 105 0

2 0.002259657400 84 45 155 2

3 0.002252138011 120 35 123 0

4 0.002251613679 132 11 48 0

5 0.002251609387 144 2 29 0

6 0.002251607779 156 2 32 —

8.2 CD player model

Our next example is the CD player model which is available in the SLICOT library. The model is a linear-time

invariant systemof ordern = 120 andwithm = 2 inputs and p = 2 outputs. The details of themodel canbe found

in Ref. [48], and the references therein. Our primary purpose here is to compare on this example Algorithm 1

with the approach in Ref. [16] for∞ model reduction based on rank-one modifications of the systemmatrices.

As the approach in Ref. [16] is for SISO systems, the results are reported over there for this example but with only

the second input and the first output. We follow the same practice here when applying our approach. The initial

estimate Sred
0

for a minimizer for Algorithm 1 is constructed using balanced truncation. Moreover, the initial

reduced system S0 is of order 12, and is constructed so that it interpolates the full system S at the imaginary

parts of its most dominant three poles with NIPs.

The reduced systems Sred
⋆

of order r = 2, 4, 6, 8, 10 are computed using Algorithm 1. Table 3 lists the relative

errors ‖H − H
(
⋅ ; Sred

⋆

)‖∞
∕‖H‖∞

for the reduced system Sred
⋆

computed by various approaches. In particular,

the columns of IHA, MBT, HNA are the reported results in Ref. [16, Table 4] by using the approach introduced

in Ref. [16] initialized with the model returned by, respectively, IRKA, balanced truncation, the best Hankel

norm approximation. Moreover, the columns of BT and Lower Bnd correspond to the relative error of the

reduced model by balanced truncation, and the theoretical lower bound 𝜎r+1∕‖H‖∞
for any reduced system

of order r for the relative error, where 𝜎r+1 is the (r+ 1)st largest Hankel singular value of the system. As can

be seen in Table 3, our approach produces reduced systems with smaller errors compared to those produced by
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Table 3: This table concerns the “CD player model”. Relative errors ‖H − H
(
⋅ ; Sred

⋆

)‖∞
∕‖H‖∞

are listed for the optimal estimate Sred
⋆

computed by various methods for finding reduced systems of order r = 2, 4, 6, 8, 10, as well as the lower bound 𝜎r+1∕‖H‖∞
.

r Alg. 1 IHA MBT HNA BT Lower Bnd

2 3.12 × 10−1 3.66 × 10−1 3.68 × 10−1 3.35 × 10−1 3.69 × 10−1 1.95 × 10−1

4 1.82 × 10−2 2.14 × 10−2 2.25 × 10−2 2.00 × 10−2 2.25 × 10−2 1.13 × 10−2

6 9.44 × 10−3 1.04 × 10−2 1.19 × 10−2 1.23 × 10−2 1.23 × 10−2 6.79 × 10−3

8 4.18 × 10−3 4.85 × 10−3 6.40 × 10−3 5.99 × 10−3 6.41 × 10−3 3.20 × 10−3

10 7.45 × 10−4 8.99 × 10−4 1.24 × 10−3 1.08 × 10−3 1.32 × 10−3 5.86 × 10−4

other approaches in all cases. The reduced systems produced by Algorithm 1 does not seem far away from global

optimality either, as their errors are slightly greater than the theoretical lower bounds in terms of the Hankel

singular values in the last column.

We give some details of Algorithm 1 applied to find a reduced system of order r = 8 in Figures 4 and 5, as

well as in Table 4. In particular, Figure 4 supports that the reduced system Sred
⋆

by Algorithm 1 is locally optimal,

i.e., small variations in the entries of the system matrices cause increase in the ∞ error objective. Figure 5

displays the error 𝜎max(H(i𝜔)− H
(
i𝜔; Sred

0

)
) of the initial model, and the error 𝜎max(H(i𝜔)− H

(
i𝜔; Sred

⋆

)
) of

the model by Algorithm 1 as functions of 𝜔. Once again the error function for the optimal model Sred
⋆

is flat-

ter, even if it is not as pronounced as for the iss example, compared to that for the initial model Sred
0
. The

error function 𝜎max(H(i𝜔)− H
(
i𝜔; Sred

⋆

)
) for the optimal model attains its maximum at five different 𝜔 val-

ues, which implies that the objective  is not smooth at Sred
⋆
. As displayed in Table 4, the convergence occurs

again quite rapidly; indeed four iterations are sufficient to reach prescribed accuracy and terminate. At each

iteration, the order of the reduced system increases by 4m = 4. Additionally, the refinement step performed in

the initial iteration causes also an increase of 4m = 4 in the order of the reduced system. Larger number of

BFGS iterations are needed at iterations with q = 1, 2, when the objective involves reduced systems of order

20, 24, respectively. The total runtime is about 15 s, and the relative error at termination is 
(
Sred
⋆

)
∕‖H‖∞

=‖H − H
(
⋅ ; Sred

⋆

)‖∞
∕‖H‖∞

= (2.87 × 10−1)∕(6.87 × 101) = 4.18 × 10−3.

8.3 FOMmodel

We next report numerical results on the FOM example available in the SLICOT library. The FOM example is a

linear time-invariant system of order n = 1, 006, and withm = p = 1. The details are given in Ref. [49, Example

3]. Here, we are mainly interested in investigating the quality of the estimates for optimal reduced systems

produced by Algorithm 1. To this end, we compare the errors of the reduced systems by Algorithm 1 with those

of balanced truncation, as well as the theoretical lower bounds for the errors in terms of Hankel singular values

for varying choices of prescribed order r of the reduced system sought. As in Sections 8.1 and 8.2, we set the initial

estimate Sred
0

for a minimizer as the system produced by balanced truncation, and the initial reduced system S0
is always of order 12 and interpolates the full system S at the imaginary parts of its most dominant three poles

with NIPs.

In Figure 6, the∞ error ‖H − H
(
⋅; Sred

⋆

)‖∞
of the optimal reduced system Sred

⋆
byAlgorithm 1 andbalanced

truncation are plotted as functions of the prescribed order r of the reduced system sought. Included in the figure

is also the plot of theHankel singular value𝜎r+1, a theoretical lower bound for the∞ error ‖H − H(⋅; Sred)‖∞
of

any system Sred of order r. Especially when r ∈ [2, 6], the errors of the reduced systems by Algorithm 1 are quite

close to the theoretical lower bound. Indeed, the errors of the reduced systems by Algorithm 1 usually differ

by the theoretical lower bound by a factor of two at most. Moreover, in most of cases the errors of the reduced

systems by Algorithm 1 is significantly less than the errors of the reduced systems by balanced truncation.
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Figure 4: The figure is analogous to Figure 1, but concerns the “CD player model” with r = 8. Each plot depicts  as a function of the

variation of one of the entries of one of Ared, Bred, Cred, Dred, Ered. Zero variation corresponds to the optimal reduced system by Algorithm 1.
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Figure 5: The plots illustrate the errors of the initial, optimal models by Algorithm 1 for the “CD player model” with r = 8, and are

analogous to those in Figure 3.

Table 4: The iterates and information about the progress of Algorithm 1 on the “CD player model” for finding a reduced system or order

r = 8. The columns represent quantities as in Table 2.

q 
(
Sred
q

)
Red order # BFGS iter # fun evals # refine

0 0.439972058849 12 — — 1

1 0.291281639337 20 565 1,479 0

2 0.287107598817 24 134 387 0

3 0.287107598817 28 1 32 —

Figure 6: Errors of the reduced systems of order r ∈ [2, 11]

produced by Algorithm 1 and balanced truncation (BT), aswell

as the (r+ 1)st largest Hankel singular value 𝜎r+1 for the FOM

example.

8.4 Systems with large order

Finally, we report results on systems with large order arising from modeling of power plants due to Rommes

and his colleagues. All of these large-scale examples are available on the website of Rommes.1

Unlike the previous three subsections,we form the initial estimate for theminimizer Sred
0

using the dominant

poles of the system. For each system, we first compute the ten most dominant poles of the system with NIPs

1 http://sites.google.com/site/rommes/software.

http://sites.google.com/site/rommes/software
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using the approach in Ref. [36], in particular its implementation publicly available at https://zenodo.org/record/

5103430. Then Sred
0

of order r is constructed so as to interpolate the full system S at the imaginary parts of its r∕(4m)
most dominant poles with NIPs. Similarly, the initial reduced system S0 is constructed such that it interpolates S

at the imaginary parts of its 𝓁 most dominant poles with NIPs, where 𝓁 = 7 if the system is single-input-single-

output (with m = 1), and 𝓁 = 3 if the system is multiple-input-multiple-output (with m > 1). The order of the

resulting reduced system S0 is 4m𝓁. In all of the examples, the prescribed order r is such that r < 4m𝓁, that is
the order of S0 is greater than the prescribed order r.

Even Algorithm 1 requires the computation of the ∞ norm of systems of order n+ r a few times (usually

not more than 5–6 times in our experiments) in line 7, where n is the large order of the system. The classi-

cal level-set approaches [37], [38] for ∞-norm computation and their implementations in MATLAB are usually

no more applicable, or when they are applicable, they take an excessive amount of time. Instead, we employ

the interpolatory subspace framework in Ref. [44] for these large-scale ∞-norm computations, that is for max-

imizing𝜎max

(
H(i𝜔)− H

(
i𝜔; Sred

q

))
over𝜔 at the qth iteration. As the approach in Ref. [44] is locally convergent,

whether the initial interpolationpoints are sufficiently close to globalmaximizers of𝜎max

(
H(i𝜔)− H

(
i𝜔; Sred

q

))
plays a large role in converging to a global maximizer. We choose the initial interpolation points as the union

of the imaginary parts of the ten most dominant poles with NIPs, and 15 equally-spaced points on the interval

[−0.1, 2] with denoting the largest of the imaginary parts of the ten most dominant poles with NIPs.

The absolute and relative errors of the computed reduced systems of order r along with the total runtimes

are reported in Table 5. For systems S20PI_n, S40PI_n, M40PI_n of order n = 1, 182 or n = 2, 182, we have also

computed reduced systems of order r by balanced truncation. In these examples, the errors of the reduced

systems by Algorithm 1 are smaller than those of the reduced systems by balanced truncation. The imple-

mentation of balanced truncation in MORLAB-5.0 that we rely on is based on dense linear algebra routines

(unlike our approach which benefits from sparsity), so we do not report the runtimes for balanced trunca-

tion. As evident from Table 5, Algorithm 1 is able to deal with systems of order ten thousands in a couple of

Table 5: The absolute errors ‖H − H
(
⋅ ; Sred

⋆

)‖∞
(error) and relative errors ‖H − H

(
⋅ ; Sred

⋆

)‖∞
∕‖H‖∞

(rel error) for systems of large

order, where Sred
⋆

is the optimal reduced system by either Algorithm 1 or balanced truncation (BT). Total runtimes for Algorithm 1 in

seconds are also listed in the last column.

Example n,m= p r Approach Error Rel error Time

S20PI_n 1,182, 1 12 Alg. 1 7.67 × 10−1 2.23 × 10−1 19.8

S20PI_n 1,182, 1 16 Alg. 1 7.66 × 10−1 2.22 × 10−1 36.2

S20PI_n 1,182, 1 12 BT 1.76 × 100 5.11 × 10−1 —

S20PI_n 1,182, 1 16 BT 1.32 × 100 3.84 × 10−1 —

S40PI_n 2,182, 1 12 Alg. 1 9.30 × 10−1 2.78 × 10−1 48.1

S40PI_n 2,182, 1 16 Alg. 1 6.71 × 10−1 2.00 × 10−1 38.1

S40PI_n 2,182, 1 32 BT 1.75 × 100 5.23 × 10−1 —

M40PI_n 2,182, 3 12 Alg. 1 1.99 × 100 5.22 × 10−1 52.2

M40PI_n 2,182, 3 24 Alg. 1 1.70 × 100 4.45 × 10−1 117.1

M40PI_n 2,182, 3 36 BT 3.07 × 100 8.03 × 10−1 —

ww_vref_6405 13,251, 1 12 Alg. 1 5.80 × 10−4 2.04 × 10−1 9.2

ww_vref_6405 13,251, 1 16 Alg. 1 4.19 × 10−4 1.48 × 10−1 15.1

xingo_afonso 13,250, 1 12 Alg. 1 3.55 × 10−2 8.74 × 10−3 14.4

xingo_afonso 13,250, 1 16 Alg. 1 3.56 × 10−2 8.77 × 10−3 14.0

xingo_afonso 13,250, 1 20 Alg. 1 1.13 × 10−2 2.79 × 10−3 26.2

bips07_1998 15,066, 4 16 Alg. 1 1.24 × 101 6.30 × 10−2 127.6

bips07_1998 15,066, 4 32 Alg. 1 9.67 × 100 4.91 × 10−2 219.8

bips07_3078 21,228, 4 16 Alg. 1 1.27 × 101 6.06 × 10−2 200.8

bips07_3078 21,228, 4 32 Alg. 1 1.00 × 101 4.78 × 10−2 274.1

https://zenodo.org/record/5103430
https://zenodo.org/record/5103430
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minutes in the worst case. Most of the runtime of Algorithm 1 is usually taken by BFGS for solving reduced ∞-

norm minimization problems in line 5 involving small systems. In the end, rather than performing quite a few

large-scale∞-norm computations, we end up performing quite a few small-scale∞-norm computations, and

only a few large-scale ∞-norm computations. This results in an approach not only computationally feasible

but also more reliable, as small-scale ∞-norm computations can be fulfilled accurately, efficiently and reliably

using the level-set methods [37], [38] without worrying about local convergence.

9 Software

AMATLAB implementation of Algorithm 1 is publicly available at https://zenodo.org/record/8344591. The numer-

ical results reported in the previous section are obtained with this implementation. Scripts are included to

reproduce the results for the CD player model in Section 8.2, and the xingo_afonso, bips07_1998 examples
in Section 8.4. The results for other benchmark examples can be obtained similarly.

10 Conclusions

We have proposed an approach to find a locally optimal solution of the∞-norm model reduction problem. Our

approach is based on the usage of smooth optimization techniques such as the gradient descent method and

BFGS. A direct application of such smooth optimization techniques for the ∞-norm model reduction problem

does not seem suitable even for systems with modest order, as smooth optimization techniques converge very

slowly and require the evaluation of the costly∞-norm objective toomany times. Hence, our approach replaces

the original system of modest or large order with a system of small order, and solves the resulting reduced ∞-

norm minimization problem by means of the smooth optimization techniques. Then it refines and increases

slightly the order of the reduced system based on the minimizer of this reduced minimization problem. This

refinement is performedwith an eye to interpolationbetween the full and reduced∞ objectives. Under smooth-

ness assumptions, admittedly strong in this context, we have given formal arguments for the quick convergence

of the approach. We have also described how asymptotic stability constraints on the small system of prescribed

order sought can be incorporated into the approach. The numerical experiments on a variety of real benchmark

examples indicate that our approach retrieves indeed a locally optimal solution of the ∞-norm model reduc-

tion problem in practice. Moreover, on some small benchmark examples, we have obtained reduced systems not

far away for from being optimal globally according to the theoretical lower bounds in terms of Hankel singular

values. Experiments on large benchmark examples illustrate that the approach is usually suitable for systems

of order a few ten thousands.

The quality of the converged locally optimal solution depends on the initial guess for the optimal reduced

system. To generate the initial guess, we have employed two different strategies based on balanced truncation

and dominant poles. The first of these strategies may not be applicable unless the original system is asymptot-

ically stable. On the other hand, there is no asymptotic stability requirement for the second strategy. However,

a strategy generating a good initial guess is certainly worth further research. The proposed approach typically

requires a few large-scale ∞-norm computations. Performing these ∞-norm computations accurately, espe-

ciallywithout getting stagnated at a localmaximizer that is not optimal globally, is crucial for the reliability of the

proposed approach. We have employed the interpolatory subspace framework in Ref. [44] with the initial inter-

polation points chosen based on the dominant poles for these large-scale∞-norm computations. This approach

usually seems to work well in practice for large-scale ∞-norm computations. Still, we hope to explore further

a good initial interpolation selection strategy for [44] so that it converges globally, leading to the correct ∞
norm with very high probability. Other efficient and accurate candidates for large-scale ∞-norm computation

are worth studying. In Ref. [16], the original system is replaced by a smaller order system obtained from the

Loewner framework [50] to reduce the burden of large-scale ∞-norm computations. We have not attempted

here to incorporate the Loewner framework into our approach. As a future work, our approach can possibly

https://zenodo.org/record/8344591
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benefit from the Loewner framework; for instance, the initial reduced system replacing the full system can

perhaps be obtained using the Loewner framework. Our quick convergence result for the proposed approach

is under strong smoothness assumptions. Investigating the order of convergence of the approach in the likely

nonsmooth setting (i.e., when the∞ objective at the convergedminimizer is nonsmooth) is a possible direction

for future research. Last but not the least, the convergence of smooth optimization techniques such as BFGS on a

variety of nonsmooth optimization problems is observed empirically, yet these empirical observations could not

be supported by a general convergence theory so far. Analyzing and understanding rigorously the convergence

of BFGS and other smooth optimization techniques when the objective is nonsmooth at the optimizers sought

are important open problems.
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