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Abstract: We propose an approach for the £ model reduction of descriptor systems based on the minimization
of the £, objective by means of smooth optimization techniques. Direct applications of smooth optimization
techniques are not feasible even for systems of modest order, since the optimization techniques converge at best
at a linear rate requiring too many evaluations of the costly £ -norm objective to be practical. We replace the
original system with a system of smaller order interpolating the original system at points on the imaginary axis,
minimize the £ objective after this replacement, and refine the smaller system based on the minimization. We
also describe how asymptotic stability constraints on the reduced system sought can be incorporated into our
approach. The numerical experiments illustrate that the approach leads to locally optimal solutions to the £
model reduction problem, and its capability to deal with systems of order a few ten thousands.

Keywords: H_, model reduction; descriptor system; quasi-Newton methods; Petrov—Galerkin projection; Her-
mite interpolation
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1 Introduction

Various applications give rise to linear time-invariant (LTI) descriptor systems; see, e.g., [1]-[4], and references
therein. A model order reduction problem for such a system typically concerns the approximation of the system
with a system of smaller and prescribed order. Here we deal with one of them, namely the £, model reduction
problem formally defined below.

We assume that the LTI descriptor system under consideration is available in a state-space representation

Ex'(t) = Ax(t) + Bu(®), y(t) = Cx(t) + Du(t) D

for given matrices E, A € R™", B € R™™", C € RP*", D € RP*™, The transfer function of the descriptor system
in (1) (defined over s € C such that sE — A is invertible) is

H(s) = C(SE—A)'B+D @
with the £ norm
IHIl;_ = Sup o (H(iw)) = sup op(H(iw)),
w€eR WER,w>0

where o, (-) denotes the largest singular value of its matrix argument, and the last equality holds as 4, B, C,
D, E are real matrices. Note that we customarily set [|H||, = Sup,ecr Omax(H(i®)) = oo if H has a pole on the
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imaginary axis, or the norm of its restriction to the imaginary axis is not bounded. Let C* :={z € C | Rez > 0},

and L, denote a space of functions f: R — R satisfying IfNlL, := A /f_‘fo ||f(t)||§ dt < oo for some k € Z*. To be
specific, in our setting, L, consists of either input functions u(t) or output functions y(t) (so k = mor k = p), and
which one L, refers to will be clear from the context. If the system in (1) is asymptotically stable with poles in
the open left half of the complex plane, then the £, norm of H is the same as the H_, norm of H defined as

1HIl3, = SUP Opax(H(S)),
sect

which in turn is equal to the induced norm of the operator ¢: L, — L, associated with (1) in the time domain
mapping u to y as gu = y (for an explicit expression for ¢ see Ref. [3, Theorem 2.29]), that is given by

l@lly, := sup{lle ull,,/Ilull,, | u € Ly, u#0j}.

Hence, under the asymptotic stability assumption on the descriptor system in (1), we have ||H||,_ = [|H|l;_ =
el

The £, model reduction problem considered in this work for a given descriptor system of order n and
for a prescribed positive integer r < n concerns finding a reduced descriptor system of order r that is closest to
the given system of order n with respect to the £, norm. Formally, let S = (A", Ered, gred_ cred, pred) denote a
system of order r with the state-space representation

E*xX(t) = A x@®+B* u®),  y©) = " x(t) + D™ u(t), ®)

described by the matrices E™9, A4 € R™", Bred € R™™m, Cred ¢ RPXT, pred € RPX™ and with the transfer func-
tion
H(s; Sred) — Cred(sEred _Ared)—lBred +Dred. (4)

Furthermore, let S = (4, E, B, C, D) be the given system of order n and with the transfer function H as in (2).
Setting o(; S := 0,4 (H(iw) — H(iw; S™%), the £, model reduction problem involves finding a descriptor
system Sfd of order r that minimizes the objective

|H — H(- ;8™ = sup 6(@;S*) = sup o(w;S™) )
weR

WER,w>0

over all descriptor systems ™ of order r. The objective in (5) is non-convex, and here we aim to determine a local
minimizer of this objective numerically. The quality of the determined local minimizer also matters, however
this issue is largely dependent upon with which reduced system of order r our approach is initialized.

Two important remarks are in order regarding the minimization of the objective in (5). First, in addition to
non-convexity, an additional difficulty is the nonsmooth nature of the problem. The objective in (5) as a function
of ST is typically not differentiable when o(w; S¢) has multiple global maximizers over w > 0. Secondly, under
asymptotic stability assumptions on the original system and the reduced system, the error |[H — H( - ; S%)]| Lo
gives a uniform upper bound on how much the outputs of the original and reduced systems can differ. To be
precise, suppose that the system S of order n, and the reduced system S™¢ of order r are asymptotically stable.
Furthermore, let us denote with ¢ and ¢, the operators in the time domain corresponding to the systems in (1)
and (3), respectively. For every u € L,, we have

Iy =y, < IH=HC 358, _lluly,,

where y, y, are such that y = @ u and y, = ¢, u. This means that if a small error ||[H — H( - ; S™9)|| ¢, canbe
ensured by the minimization of (5), then the output y, = ¢, u of the minimizing reduced system approximates
the original output y = ¢ u well uniformly over every input u of prescribed norm.
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1.1 Literature and contributions

For an asymptotically stable descriptor system with the transfer function H, the H_, model reduction problem —
that is, for a given small order r, finding an asymptotically stable system S of order r such that ||H —
H(- ;Sred)lle is small - has been under consideration for a long time. One of the classical approaches for
the H_, model reduction problem is balanced truncation, which determines a state transformation so that the
observability and controllability Gramians are the same diagonal matrix, and truncates the system matrices
after applying this state transformation [5]-[8]. The reduced system by balanced truncation is typically not a
local minimizer of ||H — H( - ;Srec‘)”Hw over S™9, though it usually is a good quality approximation of H with
respect to the H_, norm [9]. The major difficulty with balanced truncation that limits its applicability to larger
systems is that it requires the solution of two Lyapunov equations involving matrices of size equal to the order
of the system. With iterative approaches for solving Lyapunov equations, such as ADI methods [8], [10], [11],
balanced truncation is tractable for systems with higher order.

A classical alternative is finding a best approximation with respect to the Hankel norm (HNA) [12] rather
than the H_, norm. Approaches to compute a globally optimal solution to HNA in polynomial time are pro-
posed [12]. Generalized HNA approaches are introduced for larger sparse descriptor systems [13]. However, a
globally optimal solution to HNA is again usually not a local minimizer of ||H — H( - ;Sred)||Hm. Furthermore,
finding a globally optimal solution to HNA is even costlier than balanced truncation. Even with the efficient use
of computational linear algebra tools [14], solving HNA for systems with high order is out of reach.

The iterative rational Krylov algorithm (IRKA) [15] was introduced in order to find a reduced
system of prescribed order that is locally optimal with respect to the #, normdefined as [|H]l;, =

\/ i /_fotrace(H (iw)*H(iw)) dw for a system with the transfer function H. Formally, IRKA is an iterative inter-
polatory approach that finds a local minimizer of ||H — H( - ;Sre“)||7le over all systems S of order r. In Ref.
[16], starting from the reduced-order system of order r generated by IRKA, an optimization based approach is
proposed to find a locally optimal solution of ||[H — H( - ;Sred)lle for single-input-single-output (SISO) systems
but, denoting with e the vector of ones, with respect to particular rank-one modifications A, = ceel A B = —¢e,
A, = —¢ee”, A = ¢ of the system matrices A™, B¢, ™4, D*d generated by IRKA over € € R. In the reported
results in Ref. [16], this optimization improves the accuracy of the reduced system returned by IRKA by a fac-
tor of 2—4 with respect to the H_, norm. But again the eventual system is usually not a local minimizer of the
objective |[H — H( - ; S™)||;,_ over systems S of order r.

Here, we propose an approach to compute a local minimizer of ||[H — H( - ; S™9)|| ¢, over all systems Sred
of order r. Nonsmooth optimization techniques, specifically bundle methods [17], [18], and the gradient sam-
pling algorithm [19], [20], have been employed to locally optimize such nonsmooth objectives. Bundle methods
are especially suitable for convex objectives, but, to our knowledge, they could not be applied as effectively to
nonconvex objectives. The gradient sampling algorithm is applicable to nonsmooth and nonconvex objectives.
Indeed, it is shown to converge to a Clarke stationary point under local Lipschitz continuity assumption and
other mild conditions on the objective [20, Section 3]. The difficulty with the gradient sampling algorithm is that
it computes the gradient at sample points around the current iterate, which may be too costly for some objectives,
e.g., for the £ error objective here [21]. Consequently, due to efficiency considerations, our approach to com-
pute alocal minimizer of ||[H — H( - ; S™%)]| ¢, uses smooth optimization techniques, which have been employed
for solving nonsmooth optimization problems [22], [23] in the last 15 years. For instance, quasi-Newton methods,
most often, seem to be capable of locating locally optimal solutions [23], [24], even though some counter exam-
ples are known [23]-[25]. When convergence occurs with a smooth optimization technique to a nonsmooth
locally optimal solution, it usually occurs slowly at best at a linear rate. As a result, as we shall see below,
a direct application of them to minimize ||[H — H( - ; S| ¢, 1s prohibitively expensive even for systems of
medium order, as it requires the computation of the objective, that is the £, norm, too many times. Instead,
we replace H with an approximation H of small order greater than r. Rather than |[H — H( - ; S™%)]| ¢,» We mini-
mize IIFI —H(- ;89| ¢,,» thenupdate H based on the minimizer, and repeat. The approximation Hisbuilt using
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subspace projections, and an update involves the expansion of the projection subspaces. We show that the pro-
posed subspace framework converges quadratically under simplicity assumptions. We also describe how the
asymptotic stability constraints can be imposed on the variable S when minimizing ||[H — H( - ; S9)]| c, In
case the original system in (1) is asymptotically stable. As the system corresponding to H — H( - ; §¢) is asymp-
totically stable when S and S™¢ are asymptotically stable, the incorporation of this constraint into our approach
leads to a local minimization of ||H — H( - ;S“fd)HHm over all asymptotically stable systems S™¢ of order r, i.e.,
locally optimal solution of the H_, model reduction problem.

Smooth optimization techniques have been recently used for model order reduction of asymptotically stable
structured systems [26]. It is also observed over there that a direct minimization of the H _ -norm error objective
via smooth optimization techniques is too costly. However, the proposed approach in Ref. [26] is not based on
subspace projections. Instead, the H_ -norm error objective is replaced by a smooth objective that involves a
prescribed number of largest singular values of the difference between the transfer functions of the original
and reduced system at sample points on the imaginary axis. The minimization of this smoothened objective
is illustrated to yield models more accurate than those by various structure-preserving model order reduction
techniques on some benchmark examples. The reduced system obtained by the method in Ref. [26] is a local
minimizer of the smoothened objective, which is related to but different than the #_, objective. In addition to
nonsmoothness, the nonconvexity of the H_, error objective is a challenge. In Ref. [27], a convex relaxation of
the H, error objective is proposed for H,, model reduction.

On a related note, our recent work [28] concerns the minimization of the H_, norm of a descriptor system
with large order with respect to a modest number of parameters. At the center of that work is a subspace frame-
work to cope with the large order of the system. It may seem plausible to look at the current work from that
perspective. However, we have too many optimization parameters here. Attempting to apply the framework of
[28] to attain quick convergence in the setting here is not feasible, as doing so yields projection subspaces grow-
ing rapidly (i.e., see Algorithm 2 in Ref. [28] to attain superlinear convergence). In the framework here, it suffices
to add a small number of new directions independent of r into the subspaces at every iteration. In particular, if
m = p, then only 4m new directions are added into the subspaces at every iteration. Moreover, we observe quick
convergence, so the subspaces remain small throughout. Also in the context of parametric descriptor systems, in
Refs. [29], [30], an H, error objective is minimized on a discrete set of parameter values to choose interpolation
points for interpolatory model order reduction techniques.

1.2 Outline

We first consider the direct minimization of ||H — H( - ; S™9)|| ¢, Over systems §d of order r by means of smooth
optimization techniques in Section 2. In this section, we indicate the optimization variables, and spell out expres-
sions for the first derivatives of the objective with respect to these variables. As we shall see, direct optimization
is too costly even for systems with moderate order, since smooth optimization techniques converge very slowly
and require the evaluation of the £ objective too many times. Consequently, in Section 3, we replace the
transfer function H with an approximating transfer function H of small order greater than r that Hermite
interpolates H at several points on the imaginary axis. Then we minimize ||ﬁ — H(- ;5™ ¢, (by smooth opti-
mization techniques), and refine H so that Hermite interpolation with H at another point on the imaginary
axis is attained based on the computed minimizer of ||ﬁ — H(- ;8] - We introduce a refinement step on
H so that interpolation properties can also be attained between the full objective ||[H — H( - ; S™%)]| ¢, and the
reduced objective ||FI — H(- ;8] Ly Then the procedure is repeated with the refined H.1In Section 4, we inves-
tigate the interpolation properties between full objective and the reduced objective. Based on these interpolation
properties, we argue in Section 5 that the algorithm converges at a quadratic rate under smoothness and nonde-
generacy assumptions. If the original descriptor system is asymptotically stable, it may be natural to minimize
||FI —H(- ;S| ¢, subject to the asymptotic stability constraints on the reduced system Sred. We discuss in
Section 6 the incorporation of such asymptotic stability constraints on the reduced system into our approach.
Section 7 is devoted to the details that need to be taken into account in a practical implementation of the pro-
posed algorithm such as the initialization of the smooth optimization routines, and termination. A MATLAB
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implementation of the algorithm is publicly available. In Section 8, we report numerical results obtained with
this implementation. The numerical results indicate quick convergence to a locally optimal solution, and the
capability to deal with systems having orders in the range of tens of thousands.

2 Use of first-order and second-order derivative-based methods

First-order methods such as the gradient descent algorithm, and second-order methods such as quasi-Newton
algorithms equipped with proper line-searches have been successfully applied to nonsmooth optimization prob-
lems in recent years [22], [23], [31], [32]. In these circumstances, if a curvature condition is employed in the
line-search, this should take into consideration that the directional derivatives need not converge to zero unlike
the situation for smooth optimization problems, e.g., if Wolfe conditions are imposed in the line-search, weak
Wolfe conditions should be used rather than strong Wolfe conditions [23, Section 4]. Also, for termination small
gradient norms should not be required. Instead, for instance, a failure to take a reasonably long step in the
objective along the descent search direction may indicate convergence to a locally optimal solution [31, Section 3].
The objective to be minimized in (5) for the £_ model reduction problem can be expressed as

F(S™) 1= SUD Oy (H(i) — H(i; S™)) = SUP Gy (E(0; S™) = [|EC- 58|,
>0 >0
- 6
ECs; Sred) — [C _ Cred] SE-A 0 1 B +(D- Dred) ( :
’ T 0 gETed _ pred pred ’

where H( - ; 5™9) is as in (4). Assuming that the reduced system is at most index one and has semi-simple poles,
by the Kronecker canonical form, there exist invertible r X r real matrices W, V such that WE™V is diagonal,
and WA™V is block diagonal with 2 x 2and 1 x 1 blocks along the diagonal. (Here, a 2 X 2 block along the
diagonal of WA™V corresponds to a pair of complex conjugate eigenvalues, and a 1 x 1 block to a real or
an infinite eigenvalue of the pencil L(s) = A™ — sE™) Consequently, the reduced system is equivalent to a
system (with the same transfer function) for which A™¢, E*d are converted into tridiagonal and diagonal forms,
respectively. Hence, under index one and semi-simple pole assumptions, we can perform the minimization over
tridiagonal A™¢ and diagonal E™¢. Recalling the dimensions of A4, Bred, cred, pred red there are precisely 4r —
24+ rm+ pr 4+ pmoptimization variables.

The gradient descent algorithm, as well as quasi-Newton algorithms to minimize 7 require the gradients of
F. To this end, suppose there is a unique @, > 0 satisfying

Omax (Hw,) — H(iw,; S®)) = F(8™) = sup oy, (H(iw) — Hiw; $®)),
>0
ensuring that 7 is differentiable at S™9. Additionally, let u, v denote a consistent pair of unit
left, right singular vectors corresponding to oy, (H(i®,). — H(iw,;S®)), and let us introduce
ﬂ::u*Cred(ia)*Emd—Ared)_l, Uzz(ia)*E“Ed—Ared)_lBredU. Then, by employing the analytical formulas
for the derivatives of singular value functions [33], [34, Section 3.3], the gradients of F are given by

V 4 F(S™®Y) = — diag(Re(u” © D)) — diag_,(Re(u(2: ™ ® D(L:r — 1)) — diag,,(Re(@(L: r — DT © T(2:1)),
Ve F(S®) = —w, diagm@’ ©0)),  VgeF (™) = —Re(u’ vh), 7
Ve F(S™) = —Re(u 77), Ve F(S) = —Re(u 0v7),

where Re(-), Im(-) denote the real part, imaginary part, respectively, of their vector or matrix arguments. Also,
above O denotes the Hadamard product, u is the complex conjugate of u, and the notation diag(w) represents
the square diagonal matrix whose diagonal entries are formed of the entries of the vector w. The notations
diag_,(w) and diag_,(w) are similar to diag(w) but with the difference that the subdiagonal and superdiagonal
entries of the matrix are filled with the entries of w rather than the diagonal entries.
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It is essential that a quasi-Newton method such as BFGS generates approximate Hessians that are positive
definite. This is traditionally imposed by the line-searches. For instance, if BFGS is to be used to minimize 7, then
a line-search ensuring the satisfaction of the weak Wolfe conditions may be adopted so that the approximate
Hessians remain positive definite. On the other hand, for the gradient descent algorithm to minimize F, it is
sufficient to adopt a simpler line-search that guarantees only sufficient reduction in the objective, e.g., an Armijo
backtracking line-search.

One difficulty with using methods such as gradient descent and BFGS to minimize F is that these algo-
rithms converge rather slowly only at a linear rate at best. This may sound surprising especially for BFGS, which
typically converges superlinearly for smooth problems. Slower convergence for BFGS is an artifact of nons-
moothness. As a result of linear convergence rates or worse, the objective F typically needs to be evaluated
many times until reaching a prescribed accuracy. This may be prohibitively expensive, as it is apparent from (6)
that evaluation of 7 involves the computation of the £, norm of £( - ; §), which may be costly assuming the
original system in (1) is large-scale.

To illustrate the slow convergence issues described in the previous paragraph, and the computational diffi-
culties that come with it, we apply the gradient descent algorithm to the iss example from the SLICOT collection.
The system associated with this example has order n = 270, and m = p = 3. We attempt to solve the £_ model
reduction problem for r = 12 starting with the initial reduced-order model generated by balanced truncation.
The errors (F) and the 2-norms of the gradients of the errors (|| VF||,) of the iterates of the gradient descent
algorithm are reported in Table 1. It takes 37 iterations until the errors in two consecutive iterations differ by no
more than 1078 in a relative sense. The initial £ -norm error 4.5 X 10~3 approximately (of the system obtained
from balanced truncation) is reduced to 2.4 X 10~3 approximately after 37 iterations. The eventual reduced
model obtained appears to be a local minimizer of 7 up to prescribed tolerances, as evidenced by the plots in
Figure 1. Note however that according to the last columns in Table 1 the gradients of 7 do not seem to be con-
verging to zero, which indicates that the objective is not differentiable at the local minimizer being approached.
Meanwhile, the objective F is evaluated 624 times, since the line-search at each iteration requires several objec-
tive function evaluations (i.e., to be precise 8—28 evaluations per iteration) until the satisfaction of the sufficient
decrease condition. This results in a total runtime of about 500 s, costly for a system of relatively small order. To
conclude, direct applications of the gradient descent algorithm do not seem viable for systems of even modest
order (e.g., a few thousands). On the same example, BFGS requires 239 evaluations of the objective 7 with a total
runtime of about 240 s, so applying BFGS directly is also costly.

Table 1: This concerns the iss example with r = 12. The objective F® := FA® gk ¢k pk FK) and the 2-norm of VF® := VF (AW,
Bk, ¢ pk EW) for the iterate (A%, B®, ¥, p®), F®) by the gradient descent method at the kth iteration are listed.

k F& ||VT’(")||2
0 0.004470060020 1.000093488
1 0.004346739384 0.833556647
2 0.003609940202 1.000097230
3 0.003175718111 0.769359926
4 0.002975716755 1.000095596
5 0.002946113130 0.999918608
6 0.002697635041 0.844275929
7 0.002656707905 0.999952423
30 0.002415516341 0.803721909
31 0.002415479783 1.000008471
32 0.002415475189 0.803718441
33 0.002415456030 1.000008467
34 0.002415454613 0.803716708
35 0.002415444154 1.000008465
36 0.002415439844 0.803714645
37 0.002415438945 1.000008462
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Figure 1: The locally minimal reduced system generated by the gradient descent method for the iss example and r = 12 is varied, and
the error F is plotted as a function of the variation. In each one of the plots (a)-(h), only the indicated entry of one of the optimal
coefficients Ared, Bred, cred, pred, fred s varied by amounts in [—0.5, 0.5]. Zero variation corresponds to the optimal reduced system.



218 = E.Mengi: Finding locally optimal solutions in £, model reduction DE GRUYTER

3 A subspace framework

The computational difficulty in minimizing the objective F in (6) is due to the large order of the original
system S = (4, E, B, C, D). In this section, we propose to replace this system with a system of smaller order
S = (Aq,Eq,Bq, Cq,Dq) with the state-space representation

EqX;(t) = Ax, (O + Byu(o), YO = Cpxy(6) + Du(®), €)]
and solve the resulting £, model reduction problem, that is minimize

F (8™ = SUD Oy (H,(iw) — H(iw; S®)) = SUP 0y (€, (i3 $™%), 9
w2

>0

where .
Hq(s) = Cq(sEq - Aq) Bq + D,

-1
SE,—A 0 B

. qredy . _ __ red q q q _ pred

E,(8;8*):=[C, —C™ 0 sEred_Afed] lBred]HD D).

The question that we need to address is how do we form a small system Sq = (Aq,Eq,Bq, Cq,D) that is a good
representative of the original system near a local minimizer of the original £ model reduction problem.

Recall how pure Newton’s method operates to minimize a function f:R? — R. It approximates f with a
quadratic model, and finds a local minimizer X of the quadratic model. Then, assuming f is twice differentiable
atX, it refines the quadratic model so that the refined quadratic model Q satisfies f(X) = Q(X), V f(X) = VQ(X)
and V2 f(Y) = V2Q(X). In the context of L, model reduction, we view T’q as the model function for 7, even
though 7, is not quadratic. We minimize 7, locally rather than 7, and refine the small system in (8) with the
hope that the objective error function 7, of the refined system interpolates 7 and its first two derivatives at
the computed minimizer of 7.

To obtain the small system in (8), we employ projection-based model reduction. In particular, let V,, W,
be two subspaces of R" of equal dimension. Denoting with V,, W, matrices whose columns form orthonormal
bases for V,;, W,, the original system is approximated by

T / — —
Wq (Equq(t) - AVqu(t) — Bu(t)) =0, y) = CVqu(t) + Du(t),
giving rise to a system of the form (8) with
— T — T — wT —
E,=W,EV,, A =WAV,, B, =WB, (,=CV, (10)

For the realization of the ideas in the previous paragraph, we need to be equipped with a tool that gives us
the capability to interpolate H(s) and its derivatives at a prescribed point in the complex plane with those of
the transfer function for the small system. This tool is introduced in the next result, which follows from [35,
Theorem 1].

Theorem 1. Let u € C be such that A — uE is invertible. Suppose

N
\Y

EPre[{A - uEy'EV(A - uB)'B] C
j=0

q°

P m[{@& - uB'EYA - uE)'B] €V,
j=0

P Rre[cA - uEyH{E@A - uB)Y]" € W,
j=0
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P m[c@ - ubyHEA - uB Y] € W,
j=0
Then, WithA C defined as in (10), iqu - qu is invertible, we have
() Huw=H (u) and H(_) H,(p);
(i) HP(u) = H(’)(,u) and H(f)(,u) HYGD forj=1,....2 + 1

Our proposed subspace framework at iteration r first finds a minimizer of Fq(sre"), say S‘fled =
(A[fd, B[fd, C{fd, D[led,E[fd ) This is followed by the computation of an w, € R, @, > 0 such that

r(s{;d> = SUP Gy (H(iw) - H(ia);s[;d)) = 6y <H(ia)q) - H(iwr;sffd)).
Computing such an w, requires the large-scale £,-norm computation in (6) but by replacing sred =
(Ared pred cred pred pred) with S;ed = (A[led,B[;d, C;ed,D;ed,Efled) Then subspaces are expanded so that H and
its first three derivatives are interpolated at iw, by those of the transfer function for the small system. A formal
description of the framework is given in Algorithm 1 below. As the subspaces V, and W, are required to be of
equal dimension, the description assumes that the number of inputs and the outputs are equal ie,m = p.Even
if it is omitted here for simplicity, it is straightforward to modify the directions v D Wq +1 in lines 11-12 to be
added to the subspaces V,, W, in order to deal with the systems for which m # p; see, e.g., [36, Lemma 3.1]. The
final refinement step in hne 15 aims at the satisfaction of the interpolation condition P(Sre") Fy (S[fd ), as
well as the interpolation conditions on the derivatives of 7(S"%) and Fy +1(S™9) at S[fd. This step is elaborated on
in the next subsection.

Algorithm 1 (subspace framework for £ model reduction).

Input: System S = (A, E, B, C, D) as in (1), the order r € Z* of the reduced system sought, and an initial estimate
Sted = (A, fred, gred cred, pred) of order r for a minimizer of F as in (6).
Output Estimate S'Ed = (A“*d Eed, ged, ¢ved, pred) for a minimizer of F as in (6).
1: Choose the initial subspaces Vy, W, and orthonormal bases V, W, for them.
2: Form Ay, By, Cy, Eq using (10), and let Sy = (A, Eq, By, Co, D).
% main loop
3:forq=0,1,... do
4: if g>1then
S[fd < a minimizer of F (S red) (for F, defined as in (9)).
end if
o < @ maximizer of a<co; S"fd ) = Crax (H(iw) - H(iw; S{fd ) ) over w > 0.
if g >1then
Return if convergence has occurred with Sf“ «— S{fd.
10: end if
Zﬁ expand the subspaces to interpolate at i,
11: Vypq < | Re[(iw,f —A)'B]  Re|(iw,F — Ay E(iw,E — A8 Im[(iw,E — A)7'B]  Im|(iw,F — A" Eicw,E — A)7'B]].

,

© % N W

122 Wy < | Re[imgf —A*C*]  Re[(iw,f — A *E(iw,E — A Im|[(iw,E — A)*C*]  Im (i, E — A)~*Elico,E — A *C*]].

13 Vopr < orth( [Vq Vq+1] ) and Wy, < orth( [Wq I/quﬂ] )
% update the small system
14:  Form Aq+1, Bq+1, Cq+1’ Equ1 using (10), and let Squ1 = (Aq+1, Eq+1, Bq+1, Cq+1, D).
% refine the small system
15: Refine V.1, Woyq and Sy, if necessary (using Algorithm 2 below in Section 3.1).
16: end for
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3.1 Refinement step

First we make a few observations regarding the relation between F(S{Ied> and Foyq (S[fd) at the gth subspace
iteration in Algorithm 1 right before the refinement step.
At the gth iteration of Algorithm 1 right after line 14, by Theorem 1, we have

H(iwg) = Hyplio),  HPlw,) = HY) (i) a1
for j =1,2,3 under the assumptions that A — iw,E and A,; — iw, E,,, are invertible. Consequently, H(iw,) —

H (ia)q; S{fd> and Hy,,(iw,) — ( @y} S{Zed> are equal, and share the same set of left and right singular vectors.
It immediately follows that setting

0411(@; 8™ 1= 0y (H, (i) — H(iw; S™), 12)

and recalling o(w; S™®) = 6,,,(H(iw) — H(iw; S%)), we have
o (04:5) = 04 (04355, (13)

Indeed, as the singular values and vectors of H (ia)q) -H (ia)q; S;ed> and Hq +1(ia>q) —-H (ia)q; S;ed) are the

same, and the first two derivatives of H(iw) — H <ico; S;ed> and H,,(iw) — H (ia); S;ed> at® = w, are equal due

to (11), we also have
d q+1 . ored
dcof( Sre ) ( q’S‘rIe ) (14)

for j =1,2. Now w, is a global maximizer of o (co; S[Ied> over w implying

o (o) =0, $2(oger) <o

Assuming that the last inequality on the second derivative above holds strictly, (14) implies «, is also a local
maximizer of o, (a); s(rled )
Regarding F(S;ed> and 7y (S;“‘>, the following relation always hold:
P(577) = supo(:577) = o (06:577) = (04 57*) < st (@:577) = Poa(577). - @9

where the third equality is due to the interpolatory property in (13). As argued in the previous paragraph, the
point @, is not only a global maximizer of (a); S{Ied ) but also generically a local maximizer of 6, (a); S{fd ) JIfit

happens that «,, is also a global maximizer of o4 (60; Siee ) beyond being a local maximizer, then the inequality
in equation (15) above becomes an equality, and we have the interpolation property

P(s7) = i)

In the refinement step, if it happens that w, is merely a local maximizer of 6, (co; Sred > but not a global
maximizer, then we find a global maximizer a)(o) of o, +1<a);S;ed) over @ > 0 (equivalently compute the £

norm of Hy () — H < 3 S[Ied )). Observe that finding such a global maximizer has a small computational cost, as

the orders of S, and S;e" are small. Then, by employing Theorem 1, we expand the subspaces V., W, further
©

q bl
which in turn implies interpolatory properties between ¢, (a); S;ed ) and o ( w: S(rled > atw = w;o)_ If w, after this

so that the interpolatory properties are attained between H, (i) after this refinement and H(iw) atw = @

refinement of Sq 41 is still only a local maximizer of oy +1(cu; S;ed ) but not a global maximizer, then we repeat
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this refinement procedure of S,,; up until w, becomes a global maximizer of o, +1<a); S[I“'d) (in practice up to
prescribed tolerances). A formal description of the refinement step is given below in Algorithm 2. For simplicity,
in line 3 of Algorithm 2 it is assumed that w, is the unique global maximizer of o (w; s(rled)_ More generally, all

of the global maximizers of a(a); S[;d) can be returned in line 7 of Algorithm 1 (e.g., by employing the level-set
(0)

methods [37], [38] to compute the £, norm), and whether (o

checked in line 3 of Algorithm 2.

is equal to any of these global maximizers can be

Assuming o-(a); S;ed> is Lipschitz continuous, o, H(w; S;ed) is Lipschitz continuous with a uniform Lips-

chitz constant over the iterations of Algorithm 2, and the maximizer @Y of o +1<w; Sfled) over @ > 0 in line 2

q
of Algorithm 2 at every j is required to be in a prescribed bounded interval, the gap |wa’) — @, can be made

less than any prescribed amount after finitely many iterations of Algorithm 2. At this point, the interpolation
condition (16) is also met up to a multiple of the prescribed amount.

Algorithm 2 (refinement step).

1:for j=0,1,... do
2 a);/) —a maximizer of o, (co; S{f") = Opax (Hq (o) —H (ia); Sped ) ) over > 0.
if wf{) = w, (up to prescribed tolerances) then
Terminate with V., Wo, and S,
end if
% expand the subspaces to interpolate at iwqu )

AN

6 Vo = | Re[(@VE—A)8]  Re[iw)e — Ay el E — A 'B|m[(0iE — 18] | — A EGwiE — 48|
7 W - [ Re [(iwf{)f - A)‘*C*] Re [(iwf{’f — A il E - A)‘*C*] Im [(iwf{’f - A)‘*C*] Im [(iwf/’f — A EliwF A)‘*C*] ] .
8 Vo < orth( [Vq+1 Vq+1] ) and W,y < orth< [Wq+1 VNVqH] )

% update the small system

9: FormAgyq, By, Coias Eqiq using (10),
and let S = (Agy1, Eqy1 Bgirs Cans D).
10: end for

4 Interpolation properties of the subspace framework

Suppose that o, is a global maximizer of 6q+1<w;S;ed> by the termination of the refinement step, in which
case the interpolation condition (16) holds due to (15). It can be shown that, assuming 7 and 7, are twice
differentiable at S{led, indeed all of the first two derivatives of 7 and Fyqa are equal at S{fd as well. To this end,
let x;, X, be any two entries of the matrix variables A, Bed, C'd, D'd, E™® of 7 and 7. Recalling

Eliw; S*) = H(iw) — H(iw; S™),  £,,4(iw; ™) = H,,,(io) — H(iw; S,

and by employing (11), it is apparent that

£ (iS5 = Equa (10043 S77), )
% (10 55) = 220 (1w ). 1)
s ) = e ),

forally,z € {w, x;, X, }. By exploiting

F(S™Y) = SUP 0y (EG@; S™),  Fy5(S™) = SUP 0y (€ (05 S),
@20 @20
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and using implicit differentiation

aj red | _ d (Umax 0&) (. . cred — 9 (O-maX ° ‘9q+1) s .cred) _ an+1 red
ay <Sq ) B ay <1a)q,8q ) - ay (lwq’s‘l ) ~ oy <s‘1 ) (20)
for y € {x;, x,}, where the second equality is due to (18), as well as (17) implying the fact that 8(10) » s;ed) and
& +1<ia)q;8{fd) have the same left and right singular vectors. We remark that, for the first and third equali-
ties in (20), we use the fact w, is a global maximizer of O'(C();S:IEd) = O'max(5<ia); S(r]ed)) and 0'q+1<00§ S‘rled) -
Omax(Eqi1 <iw; S )), respectively.

Moreover, for any y, z € {w, x;, X, }, we have

az(o-maxog) i .cred ) 62(0'maxoé'q+1) i oo . cred
dy oz (i0g:57) = dy oz (iwg:57°)

due to (18) and (19) combined with the fact that £ (ia)q; S{Ied ) Egn (iwq; S{Ied> have the same singular values and
vectors due to (17). Consequently,

0*F (Sred> _ M(ia)q;s{rfd) 4 M<iwq;3;ed)

dyoz \ 1 dyoz dyow
_ az(Umax © ‘S) 3 . cred az(gmax o 5) 3 . cred
8 { 0woz (m)q, 54 >/ ow* <1a)q +Sq )

az(O-malxogqﬂ) ; red az(o—maxogqﬂ) . red
= oyaz (i0r:57¢) + 9yow (iw5:57°)

0*(Ormax © Equa) red) ;9" (Omax © €4 /. red PF 41 ( cred
{0 ) ) P e sy b = T ()

foranyy,z € {x;,x,}.

5 A quadratic convergence result regarding Algorithm 1

In this section, we establish quadratic convergence of the iterates of Algorithm 1 under additional smoothness
assumptions. Here and in the next section, D"™P denotes the set consisting of every descriptor system S™¢ of
order r and index at most one with semi-simple poles, m inputs, p outputs. Throughout this section, we make
use of the vectorization V(57¢) of the system Sd = (474, Ered, gred_ cred | pred) defined as

V(S : = [vec(d™)T vec(E™)T vec(B)! vec(C™)T vec(D™)]", 2)

where vec(M) denotes the vector obtained by stacking up the columns of matrix M. The gradients VF(5™¢) and
VF,41(8™) are vectors formed of the first partial derivatives of 7(S"*!) and 7,,,(5") based on the ordering
of the variables, i.e., the entries of A™d, Ered, pred cred pred in the vectorization in (22). Similarly, VZF(S™%) and
Vqu +1(5™9) denote the Hessians of 7(S™¢) and F, +1(5™9) based on the ordering of the variables according to
(22).

We assume that there are two consecutive iterates S('Ied and S(r:fl of Algorithm 1 that are sufficiently close to
a local minimizer $®¢ of 7(S™%). Moreover, we silently assume throughout that the interpolation properties in
(20) and (21) hold at S{fd. We also keep the assumption stated below that guarantees that 7(S™) is real analytic
at §red.

Assumption 2. The maximum of o (w; ™) over allw > 0 is attained at a unique w,. Furthermore, o (o, ; S*%) =
Omax(€ (i, ; S™%)) is a simple singular value of £ (iw,; S™).
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An assumption regarding the smoothness of 7, +1(5™9) that we rely on is given next. Recalling ||v||, for a

vector v denotes the 2-norm of v, we make use of the distance |[S™e¢ — Sred|| := || (S red) — P(Sred)||, for systems
Sred, §red € prmP.and the ball B(S™Y, 5):={S™d € D~™-P | ||S™d — §™®d|| < §} for a system S € D~™P and
positive real number 6.We remark that part (i) of Assumption 3 guarantees that 7, +1(8™9) is real-analytic in the

ball B(S;ed, 5q>, and so three times differentiable in this ball, which we depend on in part (ii) of Assumption 3.

Assumption 3.
(i) ForeveryS™ e B(S“*d 8, ) with &,:= ||Sre S{f‘* || the following conditions hold:
- the maximum of 5, +1(a) Sredy deﬁned in (12) over all w > 0 is attained at a unique point, say at @;
—  the singular value 6,,1(®; $®) = 6,y (€41 (1@; S°) of £, (i@; S) is simple.
(i) Moreover, all of the third derivatives of 7, +1(Sm‘) can be bounded by quantities independent of ¢ at all

d d
sed e B(S{le , 5q).
We state and prove the main result that relates ||S[fd — S]] and ||S[IT1 — S| below.

Theorem 4. Suppose that two consecutive iterates S[{ed and S{I‘ffl of Algorithm 1 are sufficiently close to a local

minimizer S of F(S™). Moreover; suppose Assumptions 2, 3 hold, and V*F (S'*) is invertible. Then there is a
constant C independent of q such that

IS = Sl < Sy = S

Proof. By continuity o(w; S = 6,,,4(€(iw; S%)) remains simple at all w and §¢ € D™ P such that w is suffi-
ciently close to w, and S is sufficiently close to $®¢, where w, is as in Assumption 2. Thus, by the analytic

implicit function theorem, there is & > 0 such that 7(S™) is real analytic at all S € B(Sred 5) (see, e.g.,
[39, Lemma 16] for the details in the analogous context of the distance instability). By the assumption that
V2F (8) is invertible, and continuity of the second partial derivatives of 7(S™¢) in B(S[fd, F ) the Hessian
V2F(S™) remains invertible in a ball B(S®, ) for some & < 5. Furthermore, without loss of generality, we
assume Sred S'“*d are close enough to S so that Sred SrEd € B(S, ), and the ball B(S{Ied, 5q> in Assumption 3

is contamed in B(S[fd, 8). We let f:=miNgescp(se 5) amm(VzF(Sred)) > 0, and note that V27 (5) is Lipschitz
continuous in B(S, §), say with the Lipschitz constant y.
By an application of Taylor’s theorem with integral remainder, we have

1
0=VF(s) = VF(spt) + /VZF (s e st —spe0) ) (v(s) = w(sp)) e
0

= VP (s + V2P (sp0) (v(s0) = (55 ) + oIS = R ), 23)

where, for the third equality, we have used the Lipschitz continuity of VZF(S™) in B(S'®¢, §). Additionally, by
Taylor’s theorem with second order Lagrange remainder,

0= VFq+1< q+1) VF +1(S{fd) + Vzrqﬂ(s;d)(v(s;idl) (sgfd)) + o(us;idl—s;edllz)
= VF(si) + Vr(se)o(sed) = (55 ) + o(Isgh - SR, (24)

q+1

where the third equality is due to VF, +1<S[fd> = VF(S[Ied) and V2F,,, <S[Ied) = V2F<S[fd), that are conse-
quences of (20) and (21).
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By employing (24) in (23), we deduce

V(S0 ) o(8) = (S ) = oIS = Sl ) + oIS — spe ).

Finally, noting IIV2F<S{fd )(V(S[fd) - V(S;ejil))H > plISed — S;fl |, from the last equality we obtain

Isiet, = Sell < oIS — 512

as desired. O

6 Dealing with asymptotic stability constraints

In many applications, in addition to the objective that the reduced-order system sought ST =
(Ared, Ered pred cred pred) of order r is close to the original system with respect to the £, norm, the sys-
tem ST sought may also be required to be asymptotically stable; see, e.g., [40]-[42]. As we search through
reduced-order systems of index at most one, it follows from the Weierstrass canonical form [43] of (Ared, Ered)
that the asymptotic stability requirement is equivalent to having all of the poles of the system in the open left
half of the complex plane, i.e., to the condition a(A™, E®d) < 0, where a(4™9, E™9) is the spectral abscissa of
the pencil L(s) = A — sE™d defined by

a(A™ E®%) := max{Re(z) |z € C s.t det(4d —zE) = 0}.

In this setting, with F(Sd) defined as in (6), rather than the unconstrained minimization of F(5™9) over all
descriptor systems S € D"™P, it may be desirable to solve the constrained minimization problem

min{F($) : §* € D™ st. a(A™, E*) < f} (25)

for a prescribed negative real number f, where D"™? denotes the set of all descriptor systems of order r and
index at most one with semi-simple poles, m inputs, p outputs.

Extension of the proposed subspace framework, that is Algorithm 1, to deal with the constrained mini-
mization problem in (25) rather than the unconstrained minimization of 7(57) is straightforward. The only
difference in Algorithm 1is in line 5, where S{Ied is no longer a minimizer of Fq(Sred), but instead a minimizer of
the constrained problem

min{7, (s : $° € D™ st a(A™ E™) < B} (26)

for the reduced function Fq(sred) as in (9). The problem in (26) involves only the small systems S, as well as Sred,
and is solvable by means of Newton-method based approaches (e.g., using [31], Procedure 2]). Such a Newton-
method based approach makes use of the gradient of the constraint function C(5%) := a (49, E"%) — 8, in addi-
tion to the gradient of the objective F,(S™"). Let 4 be the rightmost eigenvalue of the pencil L(s) = A — sE™
with u and v denoting a pair of corresponding left and right eigenvectors normalized so that u*E™v = 1, and
assume A is a simple eigenvalue and the unique rightmost eigenvalue of L(s), which ensure the differentiability
of C(S™Y). Then, by differentiating the equation A™%p = AE™dp with respect to the entries of A™¢ and E™ and
multiplying with u* from left, the partial derivatives of C(S™¢) are given by

ac
Ared
ij

ac
Ered
Ji

(8™ = Re(w;v)), (8™%) = —Re(Al;v)),

where Re(z) denotes the real part of a complex scalar z € C, while Alf]e.d is the subdiagonal, superdiagonal or
diagonal entry of the matrix variable A™ at position (i, ), and E;j.d is the diagonal entry of E®¢ at position (j, j).
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We remark that, assuming w, is again a global maximizer of o, +1<co; S{fd> after the refinement step, the
interpolation properties

P(S70) = Foua(S5) VE(SF) = VEua(SE), VPP(SP0) = Vg (S5)

still hold. Moreover, if a logarithmic barrier approach is adopted for the solution of the constrained problems,
then, in essence, constrained problems are turned into unconstrained problems by lifting the constraints to the
objective via the logarithmic barrier functions

LM(Sred) — F(sred) —u log(ﬂ _ G(Ared,Ered)), Lg(sred) — Pq(erd) —u log(ﬂ _ (I(Ared,Ered))

associated with problems (25), (26), respectively, where log(-) denotes the natural logarithm of its parameter, u
is a positive real number and represent the barrier parameter. In this case, the interpolation properties extend
to the logarithmic barrier functions as well. In particular, we have

d) — 7H4
L (s{; ) =1,

(sp2),  vee(spe) = vk (se0),  vene(spe) = verk, (s
for every positive real number .

There are alternatives to our approach above to enforce asymptotic stability on the reduced system. One
possibility is to define the #_, error objective as oo for reduced systems that are not asymptotically stable, and
deal with the unconstrained minimization of the resulting objective. It is then essential to start with a reduced
system that is asymptotically stable, and the sufficient decrease condition in the line-search keeps the iterates
away from reduced systems that are not asymptotically stable. Such an approach is adopted in Ref. [21] in the
design of a controller with a minimal H, objective for the closed-loop system. Another alternative is to ensure
asymptotic stability by requiring that the reduced system has a certain structure, e.g., port-Hamiltonian structure
following the practice in Ref. [26]. Once again this results in the unconstrained minimization of the H_, error
objective but over structured systems depending on additional optimization parameters. We opt to depend on
the constrained optimization formulation in (25) due to the availability of software such as GRANSO [31] to deal
with constraints.

7 Practical issues

Here we spell out a few practical issues regarding Algorithm 1 such as how we form the initial systems S, S{)ed,
when we terminate, the details of bases for projection subspaces, solutions of reduced £ -norm minimization
problems, and £ -norm computations.

7.1 Initialization

The initial subspaces V,, W, (in line 1 of Algorithm 1) are chosen so that H, the transfer function of S, inter-
polates H at the imaginary parts of a prescribed number of dominant poles of H. Formally, suppose H does not
have any pole on the imaginary axis, and, for a prescribed 7, let s;, ..., s, € C be the most dominant £ poles
of H with nonnegative imaginary parts (as the poles of H appear in complex conjugate pairs such that any two
complex conjugate poles have the same dominance metric). We set

14 1

V=D P {re [{(A —ims)B'EY (A -1 Im(sk)E)—lB]@ Im[{(A —im(s)B'EY (4 - i Im(sk)E)‘lB] 3

k=1 j=0

4 1 % L]
W, =P P {Re [C(A — i Im(s)E) " {EA — i Im(sk)E)-l}f] @ m [C(A —iIm(s)B) " {EA —1 Im(sk)E)-l}’] }

k=1 j=0
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where Im(s;) denotes the imaginary part of s, € C. Theorem 1 ensures that

HGIm(sy) = HyG Im(s,)),  HYG Im(s) = HY( Im(s,)
H(-iIm(s) = Hy(-iIm(s)),  HP(=iIm(s)) = HY(~i Im(s,))

forj=1,2,3andk =1,...,7.

Additionally, at every subspace iteration with g > 0, an initial point is needed for the solution of the mini-
mization problem in line 5 of Algorithm 1 regardless of how it is solved, e.g., via gradient descent or BFGS. This
initialization carries significance, as it affects which local minimizer of 7, is to be converged. At a subspace iter-
ation with g > 1, the minimizer is initialized with the optimal reduced system from the previous iteration, that
is with S;e_dl. For iteration q = 1, initial S of order r must be supplied to Algorithm 1. We set S as either
— the model of order r obtained from an application of balanced truncation, or
— the model of order r whose transfer function interpolates H at the imaginary parts of a prescribed number

of dominant poles of H.

For the latter choice, we remark that the number of dominant poles used to form S, is strictly greater than the
number of dominant poles used to form this initial model S(r)ed for the minimizer. For either choice, we make sure
dim YV, = dim W, > r by using sufficiently many dominant poles of H when forming S, = (4,, E,, By, Cy, D).
An issue that requires attention is that S[¢ = (A7, Ef*?, B*?, C1¢, D) must be such that A[* is tridiagonal
and E{fd is diagonal, whereas balanced truncation or the interpolatory approach yields the system (4,E,B,C,D)
of order r such that A and £ do not necessarily have these structures. Let us suppose that the system (ﬁ E\ ﬁ 8 f))
has sem1 simple poles, and E is invertible. Then we can first compute the eigenvalues of the r X r pencil L(s)
=A- sE and form a. block diagonal real matrix T, with 2 X 2 and 1 X 1 blocks along its diagonal that have the
same eigenvalues as I.The2 x 2and 1 x 1blocks of T, on its diagonal correspond to a conjugate pair of complex
eigenvalues and real eigenvalues of f, respectively. Here we remark that T, is an r X r matrix. Hence, we can
compute its eigenvalue decomposition
T,=UAU @7n

for a diagonal matrix A and invertible U at ease. We also have the eigenvalue decomposition
EA=VAV

at hand. Note that the middle factors in eigenvalue decompositions above are the same, as T, has the same
eigenvalues as the pencil L, which in turn has the same eigenvalues as E~A. But then

H(s):=C6E—A)"B+D=CsI —EAE"B+D=CsI - VAVY'E'B+D
= CV)I = N VE"B) + D = CV)(sT - U'T,U) " (vETB) + D
= VU™ — T,)""WUVE~'B) + D.

Hence, we can use

~

A:=T, Ef:=1, B:=UVETB, Cpd:=CvUl, DF:=D

as the matrices of the initial system S{fd.

Remark 1. The invertibility assumption above on £ amounts to initializing the optimization in line 5 of
Algorithm 1 at the first subspace iteration (for g = 1) with a descriptor system S(rfd with all finite poles, a property
stronger than our general assumption that the reduced system sought is at most index one. However, this invert-
ibility assumption initially is not restrictive. In particular, optimization is still over at most index one systems,
and is permitted to yield an index one system S{fd = (A[fd, E(Vfd, B;ed, C{Ied, D;{ed> for q > 1 with singular E;{ed.
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Remark 2. When the pencil L(s) = A — sE has complex eigenvalues, the matrices V and U from the eigenvalue
decompositions above are complex. Yet, T, and U satisfying (27) can be chosen so that the product VU is real,
ensuring in turn that B and C[*® are real matrices.

To see VU™ is real for particular choices of T,, U, suppose a =+ ib consist of a pair of complex conjugate
eigenvalues of I, and suppose they appear as the Zth, (# + Dth entries along the diagonal of A. Moreover, sup-
pose u + ivwith u, v € R" are eigenvectors of T corresponding to a + ib appearing on the Zth, (# + 1)th columns
of V. Then we have

la b]_ 1/v2 1/V2 la+ib 0 ]1/\/2 —i/V2 o8
b a |ivz -i/vz|l 0 a-ivlliva vz |
z -1z

so the real matrix on the left has the eigenvalues a + ib, and we use it on the 2 X 2 diagonal block of T, with
row and column indices 7, # + 1. Using the decomposition in (28), in particular Z~', we can set up U so that
1/V2)(e, + e,,,), i/ V2)(—e, + e,,,) are on the #th, (# + Dth columns of U~!, where e, is the #th column
of the r X r identity matrix. Recalling u + iv are the eigenvectors on the #th, (¢ + 1)th columns of V, the #th,
(¢ + Dth columns of VU™ are real and equal to \/iu, \/Ev, respectively.

7.2 Termination

The termination in line 9 of Algorithm 1is determined based on the values of ||[H(-) — H ( - S[fd> ll_ attwo con-

secutive subspace iterations. The error ||H(-) — H ( 5 S{fd) Il is readily available at the qth subspace iteration

after line 7, as
IHO = H( -5 8% lle,, = Oy (HG0p) — H (103 57 ).

To be precise, we terminate at the gth subspace iteration in line 9 if ¢ > 1 and

1) = B (5 e, = W) = B (5% e,

< tol ||H() — H(-;S‘;‘Ed)llgoo (29)

for a prescribed tolerance tol.
The termination condition for the minimizer to solve the minimization problem in line 5 of Algorithm 1 also
requires some care. Recall that the objective 7, here is nonsmooth, and, as a result, the norms of the gradients
of 7, at the iterates generated by the minimizer do not have to converge to zero. Instead, the minimizer is
terminated if the line-search fails (to return a point that causes sufficient decrease), or the decrease in 7, at two
consecutive iterates is less than € - tol in a relative sense, where we use the same tolerance tol asin (29) and &
is a real number in (0,0.5).
As for the termination condition of the refinement step (i.e., the condition in line 3 of Algorithm 2) employed
in practice, we rely on
)

|a)q — wq| < tol)wq’,

where we again use the same tolerance tol as in (29).

7.3 Orthonormalization of the bases for the subspaces

Keeping the bases for the subspaces V,, W, (i.e., the columns of V,;, W,) orthonormal improves the robustness
of the algorithm against the rounding errors. For instance, then the system matrices 4,, B, C,, E, can be formed
more accurately in the presence of rounding errors.

This orthonormality property of the bases is attained in line 13 of Algorithm 1, as well as line 8 of Algorithm 2.
Inline13 of Algorithm1, V, and W, are already orthonormal bases for V, and W,. The expansion directions v G+
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W 441 to be included in the subspaces to obtain the expanded subspaces V., Wg; have to be orthonormalized
with respect to the existing orthonormal bases V,, W,. This is achieved in practice by executing

Vo =V =Vy(ViVes)s W = W =W (WIW ). (30)
Near convergence the interpolation points i, of Algorithm 1 start not changing by much in consecutive itera-

tions. This results in the new expansion directions Vo W ¢+ thatare nearly contained in the existing subspaces

-+l
V,;» W, In this case, the orthonormalization in (30) of V4, W, with respect to existing V,, W, suffers from
cancellation type rounding errors. Applying the orthonormalization in (30) several times improves the accuracy,
and result in directions V., W, that are better orthonormalized against V,, W,. In practice, we apply (30) a
few times, e.g., 3—4 times, then orthonormalize the resulting Vq 1> Wq +1 via the Gram—Schmidt procedure, and
take V4 = [Vq 1% q +1]’ Wy = [Wq Wq +1] as the matrices whose columns form orthonormal bases for V.,
W41 Inline 8 of Algorithm 2, the columns of V., and W, are similarly orthonormalized. We ultimately use

V441> Wy When forming the system S, in line 14 of Algorithm 1, and in line 9 of Algorithm 2.

7.4 Solution of the reduced £ -norm minimization problem

We use BFGS to minimize the reduced L, objective Fq(sre") in line 5 of Algorithm 1. To be precise, we have
explored two alternatives here; a small variation of a MATLAB implementation of a line-search BFGS due to
Michael L. Overton making use of weak Wolfe conditions, and GRANSO [31]. The former is only meant for
unconstrained problems when we do not impose the asymptotic stability constraints described in Section 7,
whereas the asymptotic stability constraints in Section 6 are also incorporated into this optimization when we
use GRANSO.

7.5 Computation of the £, norm

Algorithm 1 in line 7 requires the computation of the £ norm of a system whose order is the sum of the order
of the original system S and r. If the original system does not have large order, we use the built-in norm com-
mand in MATLAB for these £ -norm computations. Otherwise, if the original system has large order, we use the
subspace framework introduced in Ref. [44] for the large-scale £ -norm computations. Additionally, the mini-
mization of the reduced £, objective in line 5 via BFGS requires small-scale £ -norm computations, which we
carry out using the getPeakGain command in MATLAB. The use of the routines in the ROSTAPACK package [45],
[46], especially the routine normTfMaxPeak, instead of the built-in MATLAB routines norm, getPeakGain may
possibly improve the efficiency.

8 Numerical results

In this section, we report the results of numerical experiments performed with a MATLAB implementation of
Algorithm 1 taking also the practical issues indicated in the previous section into account. Sections 8.1 and 8.2
concern experiments on rather smaller order systems, Section 8.3 concerns experiments on a system of medium
order, while the results of experiments on several large-order systems are reported in Section 8.4. All of the
experiments are conducted in MATLAB 2020b on an iMac with Mac OS 12.1 operating system, Intel® Core™
i5-9600K CPU and 32GB RAM.

The numerical experiments are performed using the variation of the MATLAB implementation of BFGS due
to Michael L. Overton for the solution of the reduced £ -norm minimization problems. Hence, the asymptotic
stability constraints are not imposed. The original systems in all of the experiments in Sections 8.1-8.3 con-
cerning small- to medium-order systems are asymptotically stable, and the computed optimal reduced systems
in these examples also turn out to be asymptotically stable. The tolerance tol for termination (discussed in
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Section 7.2) is set equal to 1072 in Sections 8.1-8.3, and 10~ in Section 8.4. As noted in Section 7.1, a prescribed
number of most dominant poles with nonnegative imaginary parts are used to form S;, and in Section 8.4 to
form S('fd as well. Throughout this section, the shorthand NIPs stands for “nonnegative imaginary parts”.

For comparison or initialization purposes, some of the numerical experiments involve the application
of balanced truncation for which we use the MATLAB toolbox MORLAB-5.0 [47], in particular the routine
ml_ct_dss_bt or ml_ct_ss_bt depending on whether the system at hand is a descriptor system or more specif-
ically a linear time-invariant system. Moreover, the Hankel singular values computed for smaller systems for
comparison purposes are retrieved by calling the built-in routine hankelsv in MATLAB. As the first three sub-
sections concern the model reduction of relatively smaller systems, the built-in routine normis employed in line
7 of Algorithm 1 for £_-norm computations, while the subspace framework in Ref. [44] is employed for this
purpose in Section 8.4 that concerns the model reduction of descriptor systems with large order.

8.1 ISS example

We start with the iss example of order n = 270 that is also considered when optimizing the objective F directly
in Section 2. As before, we seek the nearest reduced descriptor system of order r = 12 with respect to the £
norm. An application of Algorithm 1 with the initial estimate S{fd produced by balanced truncation terminates
when q = 6. The error F(S7¢) = 0.0022516 of the estimate S returned is nearly half of the error 7 (S!) =
0.0044701 of the initial estimate S{)‘*d. The optimal reduced system S:fd is indeed slightly better than the estimate
returned by the direct optimization at which the objective F takes the value 0.0024154. Yet the total runtime is
about 66 s, much shorter than 500 s, roughly the time required by the direct optimization. The local optimality
of §80 = (A%, Bred, ¢, ped, E74) is supported by Figure 2, which indicates an increase in the objective F if
one of the entries of one of A, B9, C'¢4, D9, and E'® is modified. Moreover, the Hankel singular value o,
for this example, a lower bound for the minimal error possible for any system of order r, is 0.0022353 smaller
than 7 (S%¢) = 0.0022516 only by a slim margin, so S must be nearly optimal globally as well.

The largest singular values of the errors o, (H(iw) — H (iw; S{)ed)) and o, (H(iw) — H (iw; S?7)) of the ini-
tial estimate S(rfd and the optimal estimate Sfd are plotted as functions of w in Figure 3. The singular value error
function o, (H(iw) — H (iw; S¢7)) for the optimal S is extremely flat, as indeed o, (H(iw) — H (iw; ST9)) €
[2.02-1073, 2.26 - 10~3] at all . Furthermore, the error o,,,, (H(iw) — H(iew; %)) is maximized at four distinct
points marked by the circles on the right-hand plot. This indicates that the objective F is not differentiable at
the computed optimizer S,

Information about the progress of Algorithm 1 is given in Table 2. We start with the reduced system S, of
order 36 that interpolates the original system S of order 270 at three points on the imaginary axis, namely the
imaginary parts of the most dominant three poles of S with NIPs. At every iteration, if no refinement step is
performed, the order of the reduced system S, increases by 4m = 12. Additionally, each refinement step results

in an increase of 4m = 12 in the order of Sq. We observe in the second column that the error P(S;“) at the

minimizer S{fd of the reduced objective ¥, decays rapidly with respect to g. The total number of objective func-
tion evaluations is 492 (i.e., the sum of the function evaluations in the fifth column), however the £, objective
to be minimized involves the reduced system S, rather than the full system S. For instance, the number of £ -
norm computations performed are 105, 155, 123 at iterations g = 1, 2, 3. Yet, these £ -norm computations involve
the reduced system S, of order 72, 84, 120 for ¢ = 1, 2, 3. Observe that the number of BFGS iterations eventually
decrease at the later iterations, as the computed optimal S{Ied used as the initial estimate when minimizing 7,4
becomes stationary, i.e., as the computed minimizer S{fd of 7, is also close to a minimizer of 7,,,. Refinement
steps are needed only at the initial iteration when g = 0 and when g = 2. No refinement step turns out to be
necessary at the later iterations. This is a generic pattern that we observe in vast majority of examples we have
experimented on.
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Figure 2: The figure is similar to Figure 1 and concerns the iss example with r = 12. Only now the minimization of F is performed using
the subspace framework outlined in Algorithm 1. Specifically, each plot depicts F as a function of the variation of one of the entries of
one of Ared, gred, cred pred fred 7erg variation corresponds to the optimal reduced system by Algorithm 1.
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Figure 3: The plots of oy, (H(iw) — H(iw; ) (left) and o, (H(iw) — H(iew; SE¢)) (right) as functions of w for the iss example with
r =12, where 56“ is the initial estimate, and S’ is the optimal estimate computed by Algorithm 1. In each plot, the circles mark the
points where the largest singular value function attains the largest value.

Table 2: The iterates and information about the progress of Algorithm 1 on the iss example with r = 12. The columns of red order, #
BFGS iter, # fun evals, and # refine list the order of the system S, number of BFGS iterations, number of objective function evaluations
performed by BFGS, and number of refinement steps performed at the gth iteration.

q F(S;e"> Red order # BFGS iter # fun evals # refine
0 0.004470060020 36 — — 2
1 0.003517059977 72 38 105 0
2 0.002259657400 84 45 155 2
3 0.002252138011 120 35 123 0
4 0.002251613679 132 1 48 0
5 0.002251609387 144 2 29 0
6 0.002251607779 156 2 32 —

8.2 CD player model

Our next example is the CD player model which is available in the SLICOT library. The model is a linear-time
invariant system of order n = 120 and with m = 2inputs and p = 2 outputs. The details of the model can be found
in Ref. [48], and the references therein. Our primary purpose here is to compare on this example Algorithm 1
with the approach in Ref. [16] for H_, model reduction based on rank-one modifications of the system matrices.
As the approach in Ref. [16] is for SISO systems, the results are reported over there for this example but with only
the second input and the first output. We follow the same practice here when applying our approach. The initial
estimate S{fd for a minimizer for Algorithm 1 is constructed using balanced truncation. Moreover, the initial
reduced system S, is of order 12, and is constructed so that it interpolates the full system S at the imaginary
parts of its most dominant three poles with NIPs.

The reduced systems S:fd of order r = 2,4, 6, 8,10 are computed using Algorithm 1. Table 3 lists the relative
errors |H — H ( ; S;fd) e, JIH|| o, for the reduced system S:fd computed by various approaches. In particular,
the columns of IHA, MBT, HNA are the reported results in Ref. [16, Table 4] by using the approach introduced
in Ref. [16] initialized with the model returned by, respectively, IRKA, balanced truncation, the best Hankel
norm approximation. Moreover, the columns of BT and Lower Bnd correspond to the relative error of the
reduced model by balanced truncation, and the theoretical lower bound o,,/||H]||,_ for any reduced system
of order r for the relative errox, where o, is the (r + 1)st largest Hankel singular value of the system. As can
be seen in Table 3, our approach produces reduced systems with smaller errors compared to those produced by
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Table 3: This table concerns the “CD player model”. Relative errors ||H — H(- ; Sfd) ||£m/||H||£m are listed for the optimal estimate ST"
computed by various methods for finding reduced systems of order r = 2, 4,6, 8,10, as well as the lower bound o, /IHll.__-

r Alg. 1 IHA MBT HNA BT Lower Bnd
2 3.12x 107" 3.66 x 107" 3.68 x 107" 3.35x%x 107" 3.69x 107" 1.95x 107"
4 1.82x 1072 2.14 %1072 225 %1072 2.00 X 1072 2.25%1072 113 X 1072
6 9.44 x 1073 1.04 X 1072 1.19 X 1072 1.23 1072 1231072 6.79 x 1073
8 418 x 1073 4.85x 1073 6.40 X 1073 5.99 1073 6.41x 1073 3.20 1073
10 7.45 X107 8.99 x107* 1.24 1073 1.08 x 1073 132%1073 5.86 X 107*

other approaches in all cases. The reduced systems produced by Algorithm 1 does not seem far away from global
optimality either, as their errors are slightly greater than the theoretical lower bounds in terms of the Hankel
singular values in the last column.

We give some details of Algorithm 1 applied to find a reduced system of order r = 8 in Figures 4 and 5, as
well as in Table 4. In particular, Figure 4 supports that the reduced system S by Algorithm 1 is locally optimal,
i.e,, small variations in the entries of the system matrices cause increase in the £ error objective. Figure 5
displays the error o,,,(H(iw) — H(iw; Sit®)) of the initial model, and the error o,,,,(H(i®) — H (iew; S¥*)) of
the model by Algorithm 1 as functions of @. Once again the error function for the optimal model S:fd is flat-
ter, even if it is not as pronounced as for the iss example, compared to that for the initial model Sged. The
error function oy, (H(iw) — H(iw; ST¢)) for the optimal model attains its maximum at five different e val-
ues, which implies that the objective F is not smooth at S:fd. As displayed in Table 4, the convergence occurs
again quite rapidly; indeed four iterations are sufficient to reach prescribed accuracy and terminate. At each
iteration, the order of the reduced system increases by 4m = 4. Additionally, the refinement step performed in
the initial iteration causes also an increase of 4m = 4 in the order of the reduced system. Larger number of
BFGS iterations are needed at iterations with ¢ = 1,2, when the objective involves reduced systems of order
20, 24, respectively. The total runtime is about 15 s, and the relative error at termination is F(S;fd) JIH|| . =
IH—H(-; S _/IH|,_ =(287x107")/(6.87x10") =418 x 107>,

8.3 FOM model

We next report numerical results on the FOM example available in the SLICOT library. The FOM example is a
linear time-invariant system of order n = 1, 006, and with m = p = 1. The details are given in Ref. [49, Example
3]. Here, we are mainly interested in investigating the quality of the estimates for optimal reduced systems
produced by Algorithm 1. To this end, we compare the errors of the reduced systems by Algorithm 1 with those
of balanced truncation, as well as the theoretical lower bounds for the errors in terms of Hankel singular values
for varying choices of prescribed order r of the reduced system sought. As in Sections 8.1 and 8.2, we set the initial
estimate S{fd for a minimizer as the system produced by balanced truncation, and the initial reduced system S
is always of order 12 and interpolates the full system S at the imaginary parts of its most dominant three poles
with NIPs.

InFigure 6, the £, error |[H — H(-; Sfd) Il ofthe optimal reduced system S:fd by Algorithm 1and balanced
truncation are plotted as functions of the prescribed order r of the reduced system sought. Included in the figure
is also the plot of the Hankel singular value o, ,, a theoretical lower bound for the £, error ||H — H(-; S™)|| ¢, of
any system S™9 of order r. Especially when r € [2, 6], the errors of the reduced systems by Algorithm 1 are quite
close to the theoretical lower bound. Indeed, the errors of the reduced systems by Algorithm 1 usually differ
by the theoretical lower bound by a factor of two at most. Moreover, in most of cases the errors of the reduced
systems by Algorithm 1 is significantly less than the errors of the reduced systems by balanced truncation.
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Figure 4: The figure is analogous to Figure 1, but concerns the “CD player model” with r = 8. Each plot depicts F as a function of the
variation of one of the entries of one of Aed, gred, cred pred fred 7erg variation corresponds to the optimal reduced system by Algorithm 1.

E. Mengi: Finding locally optimal solutions in £, model reduction == 233

0.6

0.55

0.5

0.45

0.4

0.35

0.3

0.25 n n n n n n n
-0.5 -0.375 -025 -0.125 0 0.125 0.25 0375 05

(b) (4,3), A

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2 n n n n n n n
-0.5 -0.375 -025 -0.125 0 0.125 0.25 0375 05

(d) (1,1), B

0.42 T T T T T T T

0.4

0.38

0.36

0.34

0.32

0.3

3 n n n n n n
-0.5 -0.375 -025 -0.125 0 0125 0.25 0375 05

0.2

(f) (8,1), Bred

0.8

0.7

0.6

0.5

0.4

0.3

0.2
-0.5 -0.375 -025 -0.125 0 0.125 025 0375 05

(h) (1,1), Dred



234 = E.Mengi: Finding locally optimal solutions in £, model reduction DE GRUYTER

0.5

0 200 400 600 800

w

0.3

200 400 600 800
w

Figure 5: The plots illustrate the errors of the initial, optimal models by Algorithm 1 for the “CD player model” with r = 8, and are

analogous to those in Figure 3.

Table 4: The iterates and information about the progress of Algorithm 1 on the “CD player model” for finding a reduced system or order

r = 8. The columns represent quantities as in Table 2.

q F(S;ed) Red order # BFGS iter # fun evals # refine
0 0.439972058849 12 — — 1
1 0.291281639337 20 565 1,479 0
2 0.287107598817 24 134 387 0
3 0.287107598817 28 1 32 —
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Figure 6: Errors of the reduced systems of order r € [2,11]
0.01 produced by Algorithm 1and balanced truncation (BT), as well

8.4 Systems with large order

as the (r 4+ 1)st largest Hankel singular value o, for the FOM
example.

Finally, we report results on systems with large order arising from modeling of power plants due to Rommes
and his colleagues. All of these large-scale examples are available on the website of Rommes.!

Unlike the previous three subsections, we form the initial estimate for the minimizer S(']ed using the dominant
poles of the system. For each system, we first compute the ten most dominant poles of the system with NIPs

1 http://sites.google.com/site/rommes/software.
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using the approach in Ref. [36], in particular its implementation publicly available at https://zenodo.org/record/
5103430. Then S(r)ed of order ris constructed so as to interpolate the full system S at the imaginary parts of its r /(4m)
most dominant poles with NIPs. Similarly, the initial reduced system S is constructed such that it interpolates S
at the imaginary parts of its £ most dominant poles with NIPs, where # = 7 if the system is single-input-single-
output (with m = 1), and # = 3 if the system is multiple-input-multiple-output (with m > 1). The order of the
resulting reduced system S, is 4m¢. In all of the examples, the prescribed order r is such that r < 4m¢, that is
the order of S, is greater than the prescribed order r.

Even Algorithm 1 requires the computation of the £ norm of systems of order n + r a few times (usually
not more than 5-6 times in our experiments) in line 7, where n is the large order of the system. The classi-
cal level-set approaches [37], [38] for £ -norm computation and their implementations in MATLAB are usually
no more applicable, or when they are applicable, they take an excessive amount of time. Instead, we employ
the interpolatory subspace framework in Ref. [44] for these large-scale £ -norm computations, that is for max-
imizing o,.x (H (iw) —H (iw; S{fd ) ) over w at the gth iteration. As the approach in Ref. [44] is locally convergent,

whether the initial interpolation points are sufficiently close to global maximizers of o, <H (iw) —H (ia); S{fd ) )
plays a large role in converging to a global maximizer. We choose the initial interpolation points as the union
of the imaginary parts of the ten most dominant poles with NIPs, and 15 equally-spaced points on the interval
[-0.1, 2M] with M denoting the largest of the imaginary parts of the ten most dominant poles with NIPs.

The absolute and relative errors of the computed reduced systems of order r along with the total runtimes
are reported in Table 5. For systems S20PI_n, S40PI_n, M40PI_n of order n = 1,182 or n = 2,182, we have also
computed reduced systems of order r by balanced truncation. In these examples, the errors of the reduced
systems by Algorithm 1 are smaller than those of the reduced systems by balanced truncation. The imple-
mentation of balanced truncation in MORLAB-5.0 that we rely on is based on dense linear algebra routines
(unlike our approach which benefits from sparsity), so we do not report the runtimes for balanced trunca-
tion. As evident from Table 5, Algorithm 1 is able to deal with systems of order ten thousands in a couple of

Table 5: The absolute errors ||H — H(- ; &%) ll_, (error) and relative errors ||H — H(- ; sed) e /lIHll-_ (rel error) for systems of large
order, where S is the optimal reduced system by either Algorithm 1 or balanced truncation (BT). Total runtimes for Algorithm 1 in
seconds are also listed in the last column.

Example nm=p r Approach Error Rel error Time
S20PI_n 1,182,1 12 Alg. 1 7.67 %107 223 %1077 19.8
S20PI_n 1,182,1 16 Alg.1 7.66 x 107" 222 x 107" 36.2
S20PI_n 1,182,1 12 BT 1.76 x 10° 5.11x 107" —
S20PI_n 1,182,1 16 BT 1.32 x 100 3.84 x 107" —_
S40PI_n 2,182,1 12 Alg.1 9.30 x 107" 278 107" 48.1
S40PI_n 2,182,1 16 Alg.1 6.71x 107" 2.00x 107" 38.1
S40PI_n 2,182,1 32 BT 1.75 % 10° 523 %107 —
M40PI_n 2,182,3 12 Alg.1 1.99 x 10° 522 x 107" 52.2
M40PI_n 2,182,3 24 Alg.1 1.70 x 10° 4.45x 107" 1171
M40PI_n 2,182,3 36 BT 3.07 x 100 8.03x 107" —_
ww_vref_6405 13,251,1 12 Alg.1 5.80 X 1074 2.04x 107" 9.2
ww_vref_6405 13,251,1 16 Alg.1 419x107* 1.48 x 107" 15.1
xingo_afonso 13,250, 1 12 Alg. 1 3.55 x 1072 8.74 1073 14.4
xingo_afonso 13,250, 1 16 Alg. 1 3.56 X 1072 8.77 X 1073 14.0
xingo_afonso 13,250, 1 20 Alg. 1 113 x 1072 2.79x 1073 26.2
bips07_1998 15,066, 4 16 Alg.1 1.24 x 10’ 6.30 X 1072 127.6
bips07_1998 15,066, 4 32 Alg.1 9.67 x 10° 4,91 x 1072 219.8
bips07_3078 21,228, 4 16 Alg.1 1.27 x 10 6.06 X 1072 200.8

bips07_3078 21,228,4 32 Alg.1 1.00 x 10 478 x 1072 2741
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minutes in the worst case. Most of the runtime of Algorithm 1 is usually taken by BFGS for solving reduced L -
norm minimization problems in line 5 involving small systems. In the end, rather than performing quite a few
large-scale £ -norm computations, we end up performing quite a few small-scale £ -norm computations, and
only a few large-scale £ -norm computations. This results in an approach not only computationally feasible
but also more reliable, as small-scale £ -norm computations can be fulfilled accurately, efficiently and reliably
using the level-set methods [37], [38] without worrying about local convergence.

9 Software

AMATLAB implementation of Algorithm 1is publicly available at https://zenodo.org/record/8344591. The numer-
ical results reported in the previous section are obtained with this implementation. Scripts are included to
reproduce the results for the CD player model in Section 8.2, and the xingo_afonso, bips07_1998 examples
in Section 8.4. The results for other benchmark examples can be obtained similarly.

10 Conclusions

We have proposed an approach to find a locally optimal solution of the £ -norm model reduction problem. Our
approach is based on the usage of smooth optimization techniques such as the gradient descent method and
BFGS. A direct application of such smooth optimization techniques for the £ -norm model reduction problem
does not seem suitable even for systems with modest order, as smooth optimization techniques converge very
slowly and require the evaluation of the costly £ -norm objective too many times. Hence, our approach replaces
the original system of modest or large order with a system of small order, and solves the resulting reduced £ -
norm minimization problem by means of the smooth optimization techniques. Then it refines and increases
slightly the order of the reduced system based on the minimizer of this reduced minimization problem. This
refinement is performed with an eye to interpolation between the full and reduced £, objectives. Under smooth-
ness assumptions, admittedly strong in this context, we have given formal arguments for the quick convergence
of the approach. We have also described how asymptotic stability constraints on the small system of prescribed
order sought can be incorporated into the approach. The numerical experiments on a variety of real benchmark
examples indicate that our approach retrieves indeed a locally optimal solution of the £ -norm model reduc-
tion problem in practice. Moreover, on some small benchmark examples, we have obtained reduced systems not
far away for from being optimal globally according to the theoretical lower bounds in terms of Hankel singular
values. Experiments on large benchmark examples illustrate that the approach is usually suitable for systems
of order a few ten thousands.

The quality of the converged locally optimal solution depends on the initial guess for the optimal reduced
system. To generate the initial guess, we have employed two different strategies based on balanced truncation
and dominant poles. The first of these strategies may not be applicable unless the original system is asymptot-
ically stable. On the other hand, there is no asymptotic stability requirement for the second strategy. However,
a strategy generating a good initial guess is certainly worth further research. The proposed approach typically
requires a few large-scale £ -norm computations. Performing these £ -norm computations accurately, espe-
cially without getting stagnated at alocal maximizer that is not optimal globally, is crucial for the reliability of the
proposed approach. We have employed the interpolatory subspace framework in Ref. [44] with the initial inter-
polation points chosen based on the dominant poles for these large-scale £ -norm computations. This approach
usually seems to work well in practice for large-scale £ -norm computations. Still, we hope to explore further
a good initial interpolation selection strategy for [44] so that it converges globally, leading to the correct £
norm with very high probability. Other efficient and accurate candidates for large-scale £ .,-norm computation
are worth studying. In Ref. [16], the original system is replaced by a smaller order system obtained from the
Loewner framework [50] to reduce the burden of large-scale £ -norm computations. We have not attempted
here to incorporate the Loewner framework into our approach. As a future work, our approach can possibly
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benefit from the Loewner framework; for instance, the initial reduced system replacing the full system can
perhaps be obtained using the Loewner framework. Our quick convergence result for the proposed approach
is under strong smoothness assumptions. Investigating the order of convergence of the approach in the likely
nonsmooth setting (i.e., when the £ objective at the converged minimizer is nonsmooth) is a possible direction
for future research. Last but not the least, the convergence of smooth optimization techniques such as BEGS on a
variety of nonsmooth optimization problems is observed empirically, yet these empirical observations could not
be supported by a general convergence theory so far. Analyzing and understanding rigorously the convergence
of BFGS and other smooth optimization techniques when the objective is nonsmooth at the optimizers sought
are important open problems.
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