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Abstract: The paper presents a goal-oriented error control based on the dual weighted residual method (DWR)
for the finite cell method (FCM), which is characterized by an enclosing domain covering the domain of the
problem. The error identity derived by the DWR method allows for a combined treatment of the discretization
and quadrature error introduced by the FCM. We present an adaptive strategy with the aim to balance these
two error contributions. Its performance is demonstrated for several two-dimensional examples.
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1 Introduction

The finite cell method (FCM) is a well-established variant of the general fictitious domain approach [17, 18, 36]
and was developed by Parvizian, Diister, and Rank [15, 27]. It has been applied to a vast number of both lin-
ear and nonlinear problems, including linear elasticity in 2D and 3D [15], shell problems [32], biomechanical
problems [41, 42], wave propagation [21], elastoplasticity [1], and topology optimization in structural mechan-
ics [28].

The basic idea of the FCM is to replace the possibly complicated domain of the problem by an enclosing
domain of a geometrically simple shape, e.g., a (paraxial) quadrilateral in 2D or (paraxial) hexahedron in 3D.
As the enclosing domain can be trivially subdivided into (paraxial) quadrilateral or hexahedral cells, mesh
generation is simplified substantially. The finite element space is constructed on these cells, from which the
name of the method is derived. To recover the geometry of the original problem, the integrals in the variational
formulation of the problem are approximated by quadratures defined on the covering mesh of finite cells. To
this end, an approximation of the original domain of sufficient quality has to be available, which is typically
provided by a separate quadrature mesh. However, this approximation introduces a quadrature error which is
assumed to be lower than the discretization error. A first mathematically rigorous investigation of the FCM for
exact integration and certain boundary conditions as well as numerical experiments for inexact integration
are provided in [12].

While it has become standard for modern finite-element techniques to include a posteriori error control
and adaptivity, error estimators have neither been derived nor applied to the FCM to this day. In this work, we
focus on the dual-weighted residual error (DWR) estimation method, which has become one of the most pop-
ular a posteriori techniques for standard finite elements in the last two decades. It is based on the preliminary
work by Eriksson et al. [16] and was developed by Becker and Rannacher [5]. The DWR method allows for goal-
oriented error estimation and, thus, supports more general, user-defined, possibly nonlinear expressions to
be estimated, such as norms, point values, averages, or lift and drag coefficients, see [2] for an overview. The
method relies on representing the error in terms of the solution of a dual problem, which is typical as du-
ality arguments are the basis of many techniques in so-called goal-oriented error control [26, 29]. The DWR
method has been applied to many practical problems including fluid mechanics, chemically reactive flows,
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and fluid—structure interaction (see, e.g., [3, 8, 19, 34, 39, 40]), as well as simplified Signorini and (frictional)
contact problems (see [7, 31, 37]).

A posteriori error estimates are well-developed with respect to exact discrete solutions, i.e., solutions de-
termined with no computational error incurred by, e.g., iterative methods or inexact integration. However,
there are only a few publications dealing with a posteriori error estimates for inexact discrete solutions deter-
mined by an iterative process, such as the multigrid method [4] or Newton’s method in the context of nonlinear
problems [33]. A common idea of these approaches is to apply a stopping criterion that is based on balancing
the discretization error with the iteration error.

In this article, we discuss the derivation and application of the DWR method in the FCM context in order
to estimate both the discretization error and the quadrature error with respect to a goal functional, along with
an adaptive strategy with the aim to balance these two contributions by either refining the finite-cell mesh or
its associated quadrature mesh. The balancing is to be understood in the sense that, instead of striving for
a very small quadrature error as it is usually the case for standard finite elements, the quadrature mesh is
refined so that the quadrature error is only small enough to provide a useful discrete solution. We utilize the
localization strategy for the DWR method by Braack and Ern [9] which does not require jumps over element
facets and, thus, is well-suited for the FCM.

The outline of the paper is as follows. In Section 2, we give an overview of the FCM. Section 3 discusses the
DWR method for goal-oriented a posteriori error estimation and provides the error identity containing terms
representing the discretization and the quadrature error. An adaptive strategy realizing both discretization
and quadrature mesh refinements is discussed in Section 4. In Section 5, numerical experiments for several
2D examples with different characteristics are presented. Finally, conclusions are drawn in Section 6.

2 Abstract framework for the finite cell method

In this section, we present a general nonlinear setting for the finite-cell method (FCM). For this purpose, let
Q ¢ R9 be a bounded domain and Q 2 Q be a paraxial d-dimensional interval (i.e., a rectangle for d = 2 or a
cuboid for d = 3), and let I'p < 9Q be the Dirichlet boundary part.

Given a Hilbert space V of functions defined on Q with its dual space V* and an operator A : V — V*,
we aim to find a solution u € V such that

A(u)(p)=0 VopeV (2.1)

where we assume that (2.1) is uniquely solvable. Furthermore, we assume there exists a space V of functions
defined on O extending V, i.e., VI o 2 V. Also, we assume there exists an operator A : V — V* such that

AW)(p) =Avo) (o) Vv, @ eV

where wg denotes the extension by zero onto Q of a function w defined on Q.

In the discrete setting, a triangulation T, of Q into intervals and a finite-element space V, < V on Ty,
can be constructed easily due to the simple form of Q. In the framework used in the following, we assume
Virla € V, i.e., the space of restrictions is conforming. The discrete problem is to find a solution uy € Vj such
that

Aup)(pn) =0 Yoy € Vy. .2)

It is assumed that the contributions 'Z (un)(on) — A(unlo)(@nl g)| are sufficiently small so that the model error
can be neglected. To illustrate the spaces and operators, we consider a 2D example based on the Poisson
model problem

Au)(@) = jQVu-Wp— L)f(p _0 Vpev
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where Q := (0, 1)2 N B1(0) is the quarter disk, f € L,(Q), the space V := H}D(Q) ={v e HY(Q); vIr, = 0}, and
V* = H}D(Q)* for the Dirichlet part I'p := [0, 1] x {0} < dQ. As the operator 4, we may choose

X(v)(q})::J Vv-V(p+eJ‘A Vv-V<p—Jfg0 W, @ eV
o) o\Q Q

where Q := (0,1)2, £ = 0 (e.g., e = 10712) is a positive parameter large enough to secure coercivity, and
Vi={v: veLyQ), vl € V, vl € H'(Q\ Q)}.

For the discrete setting, we introduce a triangulation T, of Q consisting of four square elements and define
Vi, to be the H(Q)-conforming finite-element space of degree 1 on T}, respecting the Dirichlet boundary
condition on I'p, implying Vi|o < V and Vj, < V. Since, here, the boundary of 2 matches a union of facets,
Dirichlet boundary conditions can be applied in a strong manner. However, in general, the Dirichlet boundary
is non-matching with ﬁ, i.e., it does not equal the union of some facets in T. In this case, Dirichlet boundary
conditions may be applied weakly by, e.g., Nitsche’s method [25, 43]. The contributions

[Awn)(@n) - Avilo)(@nlo)| = € 2.3)

,L Vvp - Vop
o\0

result in a model error of O(+/€) in the energy norm (see [12, p. 1047]).

While the operator A is defined on Q, the domains of the involved integrals may depend on Q. Therefore,
for the computation of A in the discrete setting, numerical integration has to be performed. In the context of
the FCM, this usually involves an approximation of Q by geometrically simple objects. These approximations
result in approximate operators A and perturbed discrete problems

A (u?)(pn) =0 Von € Vi 2.4)
yielding perturbed discrete solutions uﬁf) € Vp. A geometrically simple replacement for Q used in practice
is the spacetree with its specializations to two and three dimensions commonly referred to as quadtree and
octree, respectively [13]. Here, to each element T € Ty, a set of intervals Qr is assigned via a number a(T) € Nq
indicating the number of recursive refinements of T towards the boundary 0Q. The set Qr is generated by the
following recursive procedure:

1. Seti:=0,QY :={(T}.
2. Ifi=a(T), then Qr := Q(Ti), exit. Otherwise, replace each interval in Q(Ti) that is intersected nontrivially
by 00 by 29 sub-intervals, yielding Q\i"". Increase i by 1 and go to step 2.

Finally, as an approximation Q) of the domain of integration Q, one may use the union of all intervals in
any Qr having non-trivial intersection with Q. The union of the remaining intervals is then an approximation
to 0\ Q. Similarly, an approximation to Q can be obtained. For the approximation of the integrals involved in
the operators A, the usual quadrature rules used in the finite-element context are applied on each interval.

The result of the procedure is visualized in Fig. 1 for a finite-cell mesh for the quarter disk, where the unit
square is subdivided into four equally sized elements, along with the assigned number of recursive refine-
ments.

The presented procedure for establishing the space-tree only makes use of a point-in-domain test, which
is typically applied to sample points of each interval (e.g., the four vertices of a rectangle). Thus, the condi-
tion whether an interval intersects 0Q nontrivially is checked only approximately. Due to its simplicity, the
space-tree can be easily applied to complicated geometries, e.g., generated in the context of constructive solid
geometry. An obvious disadvantage is the fact that it offers only a piecewise constant approximation to 0.Q.
Therefore, a high number of recursive refinements may be required to approximate the domain sufficiently
well. For domains with smooth boundaries, higher-order approximations of the boundary may be used. In
the context of the FCM, several improvements over the space-tree have been developed (see, e.g., [11, 20, 22—
24]). However, implementing these improvements is usually rather involved. Whenever the boundary is of a
particular simple shape (such as a circle), one may apply the following improvements: Firstly, the quadtree
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Fig. 2: Visualization of the described improvements applicable in the case of the quarter disk

refinement on a given cell can be performed so that the intersection points of the boundary with the cell co-
incide with vertices of the quadtree, whenever possible (see Fig. 2a). Secondly, one may derive a piecewise
linear approximation of the boundary by subdividing the elements by horizontal or vertical line segments,
computing intersection points of the boundary with the segments, and replacing the boundary by line seg-
ments, so that a subdivision into triangles and quadrilaterals is produced (see Fig. 2b).

In the following, we do not confine our treatment to the space-tree, but permit a general quadrature
scheme which generates an approximation Q) that allows for refinements, i. e., given an initial approxima-
tion Q© := QO for Q, a sequence of domains Q™, n > 1, may be generated fulfilling Q@D \ Q c Q™ \ Q,
so that each approximation is an improvement of the previous one. The operators with integrals defined
on these approximate domains are indicated with superscript (n), such as A", Also, we make the natural
assumption that the refinement of the quadrature occurs on the level of the finite cells, i.e., there is a func-
tion a, : T, — Ny indicating the number of refinements of the quadrature scheme used to approximate TN Q
in Q™. An improvement QU1 can be generated by assigning a,.1(T) := an(T) + 1 for each T € Ty. Alterna-
tively, one may only improve a subset 8 ¢ T, by

a1 (T) :=an(T)+1, T €8, aniilns := dnlT\s-

In particular, note that the theoretical considerations presented in Sect. 3 are valid for any domain approxi-
mation scheme that generates approximate operators, each of which is an improvement of the previous one.
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3 The dual weighted residual method

In this section, we tailor the dual weighted residual (DWR) method for a (possibly nonlinear) problem and
a (possibly nonlinear) goal functional to the FCM setting. To this end, we consider the spaces and opera-
tors introduced in Section 2 and, in addition, assume A to be three times Gateaux-differentiable. Moreover,
letJ : V — R be a three times Gateaux-differentiable goal functional. For the kth order Gateaux deriva-
tive of a function g : X — Y for Banach spaces X, Y in a point x € X, we adopt the usual identification
g1, ..., Pi) = g X)@1)--- (Pr), indicating that g (x) is k-linear.

For the unique solution u € V of the problem in (2.1), we may formulate the following trivial optimization
problem which connects the problem with the goal functional:

u = arg mig](¢) subjectto A(u)(p)=0 Vo € V.
(IS

Introducing the Lagrangian £ : V x V — R with L(v, w) := J(v) - A(v)(w), we seek a Lagrangian multiplier
z € V such that (u, z) is a stationary point of £, yielding

£, 2)(, ) = (' w)(@) ~ A' W)@, 2), AW ) =0 Ve, € V.

Thus, in addition to seeking a solution u in (2.1), we seek a function z that solves the dual problem

Al (p,2) =T w)(p) VYee. (3.1)

In the FCM setting, the nonconformity Vy ¢ V and the approximation of operators and functionals have
to be taken into account in the computation of the discrete solutions. Let Q™ be an approximation for Q that
allows for refinement. Similar to the case of A and A®™ described in Section 2, we assume that approximations
Jm ' for J, J' exist, where all integrals on Q occurring in the definition are replaced by a quadrature rule
on QM. Instead of the discrete dual problem, its perturbation

A0 () (@n 2" ) = 710 ) (@nla) Yo € Vi G.2)

is solved. We are interested in a representation of the exact error
eltex = J(u) —J(uﬁ,")lg)- 3.3)

In the next section, we derive an error representation for errex. It includes non-computable terms, which
we assume to be negligibly small, and higher-order approximations to continuous solutions. The question
of how to compute these approximations is addressed in Section 3.2. Also, localization techniques for the
discretization and the quadrature error are discussed in Section 3.3.

3.1 Error representation

The error errey from equation (3.3) ought to be computable except for minor perturbations: We assume that
there exists a sufficiently precise approximation J*K) of J for a fixed k € N, such that the resulting perturba-
tion error is negligibly small. Moreover, the representation should allow for a separation of two error sources,
i.e., the discretization and the quadrature. We derive such a representation by adapting the proof stated for
the standard FEM case in [33, Prop. 3.1], where a representation of the error with respect to any perturba-
tion v, € Vj of the discrete solution is provided. In the FCM setting, we show that the error is composed
of the sum of a discretization-related error term, a quadrature-related error term, and some terms which are
assumed to be negligibly small (e.g., of higher order). The representation requires computable replacements
ut, z* for the unknown solutions u, z, as well as improvements G"*% of the approximations G\ for each
G ¢ {A,A’ JAAL LT } with the property that |G("+ by - G(-)| is negligibly small. Recall that we assume
that a quadrature scheme allowing for these improvements is available. For instance, when the space-tree is
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used, the approximations with index n + k may be obtained from approximations with index n by refining
the space-tree k times.

Before stating the representation, we briefly explain the occurring terms. The residuals p, p* are defined
as

p() = AT () )0)
P ()= 1B (uPlo ) clo) - AR ((w”) (- (247), )-

Here, we abbreviate by v, the extension of v|q by zero onto Q. The residuals p, p* occur in the definitions of

the terms eg”k) (u*la, z%la), ens,p(ut|o, z*|q) related to the discretization error. These terms are defined for

20w~ () )+ (v (), )

1
ens,p(v, w) := 5(p(Zo - Wwo) + p*(Uuo - vo)).

eg”k)(v, w) :

(3.4)

We assume the approximations u* and z* to be such that the residuals in the errors uo — u and z - z§ are
of higher order compared to those in uo — (u§”), and zo - (zj),.
Abbreviating the errors e := u — u;") o and e* =z — z;")l 0, wWe obtain the quadrature-related error term

e(Q'”k) and additional contributions eys, g, ens,, and eys, ¢ :

e 1= AR () (240)

enso = A" 0((u4),)((2"),) - 4(ui"1a) (2"1a)

ens,j = (] —1<”*"))(u§l”)|g) (3.5)

e (0T 1) - (8 1) 201) A7), ) (47),)
~ (A1) (e - ﬁ(mk)((u;n))o)((e*)o))) .

These additional terms are assumed to be negligibly small for k sufficiently large due to the fact that they

consist of evaluations of differences G — G™*%), To see that e(Q'”k) can be regarded as a quadrature error term,

assume that exact integration is available, i.e., A™*% = 4. Then, we may abbreviate uy, := u;"), zp = z;l"),

and
(n+k) -
eqgi=e, = —A(up)(zn) = 0.

Therefore, the term eg”k) vanishes if all operators are exact. If only approximations to the operators are avail-

able or a perturbed solution is inserted, the term e(Qr”k) will be nonzero in general and, thus, may be regarded

as a perturbation error. This error may be caused by, e.g., numerical quadrature or by an iterative method as
in [33].

Finally, the term e, describes the error incurred by the FCM approximation in Q \ Q, which is assumed to
be negligibly small for € sufficiently small. It is defined as

e = Z(mk)(u;’"))(z;")) - ﬁ("+k)((u;l"))O)((z;"))o). (3.6)
Typically, the value of e, is O(¢), see also (2.3).

Proposition 3.1. Let u resp. z be the solution of the primal resp. dual problem in (2.1) resp. (3.1) with approx-
imations u*, z* € V*, where V 2 V* 2 Vj,. Then, for the perturbed discrete solutions u;") resp. ZL”) of (2.4)
resp. (3.2), it holds that

k k
J(u) —]("Jrk)(u;,n)lo) = )™ (utg, 2') + e(QrH '+ ens,q + ens, + ens,c 57)

3
+ens,p(Utlo, z%0) + ec + fRi, )
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where the higher-order remainder TRS ) is given by

91;13) = Ll (]”'(u;")lg + te)(e, e,e)— A" (uplo + te)(e, e, e, z;")lg + te*)
_BA”(u;")IQ + te)(e, e, e*)) t(t-1)dt.
Proof. Let £ : R — R be defined as
e(t) = L7, v:(0) = £((uf 10, Zlo ) + t(e, e7))
where y, (t) := u;")lg +te, yL(t) := z;l")lg + te*. Note that y/ () = e, yL(t) = e*. The derivative of £ is
£'(6) = L' (yu(®), y2(6)(e, ) - (1, DT,
Applying the definition of £, we get
£'(6) =T (yu(®)(e) = A (Yu(®))(e, Yz(D)) = A(yu(D)(e").
Applying differentiation twice more yields
e"(6) =1" (yu(t)(e, e, €) = A" (yu(D)(e, e, e, y2(t)) = 3A" (Yu(D))(e, e, €"). (3.8)
The error using the exact functional J can be written in the following form:
T - J(u10) = £, 2) + AW @) - £(uf 10, 24" o) —A(u(’“m)( 2lo)
= £, 2) - £(uf1o, 2" 10) - A(u}la) (2410
= (1) - £0) - A(uy"10)(2"la)
- Jol 't dt —A(u;")m)(z}l"’lg).
It follows that

k
J(u) —](””‘)(u;”)m) = L "(6) dt + e("+ )4 eq +ens,+ens.

We use the error representation of the trapezoidal rule to obtain

! ! 1 ! ! 1 ! n
jo e dt=2(£'0)+€' 1)+ L " (bt - 1) dt.

Since £'"'(t) has been determined in (3.8), it remains to inspect the terms £'(0) and €'(1). We use that y,(0) =
1|0, ¥2(0) = 2" |0, and yu(1) = u, y2(1) = z, so that

e'(1) =J' () (e) - A'(w)(e, 2) - Au)(e”) =
since (u, z) is a stationary point of £. We see that
') =J'(u"la)(e) - A'(uf10) (e, 24" la) - A0 ) (")
=p~(eo) +p((€"),) + 2ens,c-

Thus, £'(0) = Zeg”k)(u, z) + 2eys, o - The definition IR;?) =1 f()l ¢"(Ht(t - 1) dt and the calculation

e w.2) = 5 (p(20 - (247),) +0" (w0 - (), )
= 300 - (1)) +p* (1o - (@ )o)) + 5 (p((2)o - (7)) +£7 (@ - (), )
= ens,p(tlo, z*10) + e P wtlg, 2710)

imply the proposed error identity. O
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We assume that several error terms in (3.4), (3.5), and (3.6) are negligibly small. In Section 5, we will see
that the adaptive algorithm presented in the next section can be configured in such a way that these terms
are indeed negligibly small, which justifies our assumption. Ignoring these terms, we arrive at the following
approximate error representation.

Corollary 3.1. Omitting all error terms which can be ensured to be negligibly small, we have the approximate
error representation

erfex ~ comp™™® := J(u) —]("”‘)(u;")m) ~ eg”k)(u*IQ,z*IQ) + eg”k) =: pmh, (3.9

The effectivity index (or overestimation index) is defined as

n(n+k)

eff™th .= (3.10)

Comp(n+k) '

3.2 Approximation of the solutions of the continuous problems

The unknown quantities u and z are approximated by computable functions u* and z*. To this end, several
methods have been proposed in the literature. The first method computes approximations by solving the dis-
crete problems in a finite-element space of higher polynomial degree, e.g., by doubling each local polynomial
degree [6]. However, this is too expensive except for simple test problems. Usually, patched meshes are em-
ployed, i.e., for an element of T3, with its parent element P in the mesh refinement history, all 24 children of P
are elements of T3. This implies that whenever an element is refined, all its siblings are refined as well. In this
case, the patches of the mesh can be joined to form a finite-element space V34, of double mesh width and
double polynomial degree. The computation of u™, z* is then approximately as expensive as the computation
of uﬁl"), zﬁl").

Another method requiring patched meshes uses local higher-order interpolation to compute more accu-
rate approximations by, again, viewing each patch as a single element of a coarser mesh and doubling the
polynomial degree [2]. This eliminates the need of computing additional discrete solutions. Under certain reg-
ularity assumptions, it can be shown that the error incurred is of higher order (see [2, Section 5.2]). However,
one has to take care that the resulting functions are elements of V by ensuring continuity of the interpolation
on the boundary of the patches, which is difficult when hanging nodes are present [30].

3.3 Localization

To perform the finite-cell mesh adaptation, the discretization error eg”k) has to be localized to nonnegative

elementwise contributions ng'}k). To this end, several methods are available, for all of which good effectivity
indices have been demonstrated for many practical problems (see, e.g., the references in the introduction).
A first method applies elementwise partial integration leading to an inner residual and a boundary residual
involving integrals over the boundary of each element. An obvious disadvantage of this method is the possibly
costly computation of strong residuals and jump terms. Also, the strong adjoint residual formulation may not
even be available [35]. In the context of the FCM, another disadvantage consists in the necessity of determining
intersections between the boundary of the domain and the element boundaries, as these intersections are not
required for the application of the FCM. Also, these intersections have to be determined with great precision
in order not to introduce additional errors. A second method, which uses the variational formulation directly,
has been proposed by Richter and Wick [35]. Here, a partition of unity for the nodes of the finite-element mesh
is inserted into the error representation.

A third method known as the algebraic filtering approach has been described by Braack and Ern [9] which
is also based on the variational formulation. The method relies on patched meshes and the associated canon-
ical finite-element spaces V;p,, and V4,5, formed by treating each patch as an element of degree p and 2p,
respectively. In order to reconstruct higher-order solutions, interpolation and filtering operators are defined,
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which we briefly describe in the case of meshes without hanging nodes similar to [35]: As the spaces Vj,p,
and V;p,5p have the same numbers of unknowns in the same Lagrange points, one can define an interpo-
lation operator i* : Vi, — Vapp by assigning to vy, € Vy )y the element i*vy, of Vyp, 5, uniquely deter-
mined by the values of vj in those Lagrange points. The filtering operator is defined by m,p := id — iy, for a
finite-element interpolation operator i, : V — Vap p. The name of the method stems from the observation
that vy is a strictly local algebraic process acting on the coefficient vector v e RN of v;, ¢ Vh,p, since
TTonVh = Vh — l2pVh = Zjvl Vi(@n,j — 2nen;) = : 3j (manV)jpn,; for the basis ((ph,,) of Vpp (see [35, eq. (40)]).

(n+k)

Finally, the localization of e to nodal contributions is as follows:

(n+k) _

™M=
N| -

e = 3 5 (=AM ((f?) (6 = i) ngdomanay) + 1 (w1 (0 - )@ (mantd o)
j=1
_ ZI(nJrk)((u;ln))O)((l-* _ id)((ph,]')o(HZhu)j’ (Z;In)>0)> = i ﬁD,i (3.11)
j=1
n+k)

|r1("+k)| are then used for the marking step in the adaptive proce-
(n+k)

The node-wise error contributions 11

dure, e.g., by refining all elements touchlng node j or by explicitly assigning an elementwise indicator 17
based on the node-wise contributions and performing the usual elementwise refinement.
To measure the quality of the localization, we define the indicator index

(n+k)
. (n+k) o ZTE(‘T;, rlD T
1ndD = W (312)

similar to [35, eq. (26)] which takes into account the overestimation of the discretization error caused by taking

the absolute value of possibly negative local values 7, ”+k).

The quadrature error estimator value eg”k) is used to check if the quadrature mesh resolves the compu-

tational domain Q sufficiently well in order to obtain a meaningful discrete solution. For its localization, we
split it canonically into element-wise contributions

(n+k) _ (n+k)
eg™ = Y Mgr
TeTy

and utilize the same localization techniques as for the discretization error.

4 Refinement strategy

As identity (3.7) allows for a separation of the error into a term representing the discretization error eg”k) and

a term representing the quadrature error eg”k)
using these terms.

In the case of finite elements with exact quadrature, each step in the Solve-Estimate—Mark—Refine
(SEMR) loop for adaptivity is well-examined at least for linear problems [10, 14]. However, for the finite-cell
method, there are no strategies available for choosing the accuracy of the quadrature mesh. In practice, when
e.g. the space-tree is used, a fixed number of recursive refinements throughout the computation is chosen.
However, the chosen depth might be too high and a coarser integration mesh might be sufficient.

A possible heuristic strategy for a quadrature scheme allowing for refinements is the following: Consid-
ering the function a : 7, — Ny from Section 2 assigning to each finite cell the number of refinements in the
quadrature scheme, we set a = d initially for some small d € Ny. This produces an initial quadrature mesh
that is still coarse. During each iteration of the SEMR loop, it is checked whether the overall precision of the
quadrature is sufficient for the current finite-cell computation. If this is not the case, then « is increased by
1 on elements with high quadrature error contribution and the computation is repeated. The involved check
whether the overall precision of the quadrature is sufficient aims at balancing the two error contributions, the

, we may perform finite-cell and quadrature mesh adaptation
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discretization and the quadrature error, in particular, the quadrature mesh is refined if the quadrature error
exceeds a certain multiple of the discretization error. Recall that, in the standard FEM setting, convergence of
the discretization error to zero as h — 0 is typically shown under the assumption that the quadrature error
incurred by the standard quadrature rules is of the same order of magnitude as the discretization error. How-
ever, in the FCM setting, more complicated quadrature rules allowing for adaptive refinement (such as the
space-tree) have to be utilized, for which theoretical justifications are still lacking. Numerical results suggest
that the estimated quadrature error has to be below the discretization error in order to obtain meaningful dis-
crete solutions and convergence. Therefore, we cannot expect an optimal balancing in the usual sense that
the error contributions are approximately equal: The contributions are balanced such that the quadrature
error is only as small as necessary to deliver reliable discrete solutions, compared to the usual approaches of
over-integration up to a very high accuracy or even machine precision. Thus, we expect the ratio of quadrature

error to discretization error not to be close to 1, but to be moderately small (e.g., 0.01).

An issue that requires attention is the fact that, whenever an element T of the finite-cell mesh is refined
and a(T) = 0, the quadrature mesh is refined in T as well, so that the quadrature error might decrease when
only a decrease in the discretization error is intended. Hence, if a(T) > 0, it is reasonable to set a(T’ ) =
a(T) — 1 for any child T’ of T in order not to introduce an additional improvement of the quadrature mesh
where only an improvement in the finite-cell mesh is indicated. Furthermore, it is useful to introduce a lower
bound ! € Ny on a, e.g., « > [ := 0, when derefinements are not supported.

The adaptive strategy is summarized in the following steps. We emphasize that the error terms from (3.9)
as well as the finite-cell mesh and the number of quadrature mesh refinements @ now depend on the iteration
index i of the SEMR loop. Also, to indicate the dependence of the approximate terms on a when the space-tree
is used, we replace the generic number n indicating a sequence of approximations to the exact operators and
functionals by the number of quadrature mesh refinements per element, given by the function a. Hence, we
write a + k instead of n + k indicating that the quadrature mesh defined by a is refined k times globally.

1. Seti := 0. Initialize the finite-cell mesh T;. Choose an initial depth d € Ny and set the number of re-
finements of the quadrature scheme a;(T) := d for each T € T;. Set [ to be the minimum possible depth.
Choose 0 < p < 1, e.g., p := 0.01. Choose a stopping criterion, e.g., stop if the maximum number of
degrees of freedom is reached or if a prescribed error tolerance is met.

2. Construct the quadrature mesh for 7; associated to a;.

3. Solve: Compute solutions u;"f;), Z;“l) of the perturbed discrete problems from (2.4), (3.2). Compute approx-
imations u;, z; to u, z.

4, Estimate: Choose k € IN and construct a quadrature mesh on TJ; associated to a; + k to compute estimators

eg",”i*k), eg’f’fk) and indicators ’15;';, i.‘), ng’fi{ i.‘) for each T € T;. If the stopping criterion is fulfilled, stop. If

|egfii+k)| zp |egx"'i+k) |, localize the quadrature error contributions, mark the elements T with highest error
contributions using a marking strategy (see step 5), set a;(T) := a;(T) + 1 for such elements, and go to
step 2.

5. Mark: Choose an appropriate marking strategy, such as fixed-fraction marking or maximum marking [5],
and mark elements with respect to the local discretization error ngl}f‘i) for finite-cell mesh refinement.

6. Refine: Refine each marked element in J; to obtain T;,1. For the quadrature mesh, let a;;1 : T3+1 — Np
and set @ji1]7,n7,,, := @; except for children T’ of any marked element T, where ;.1 (T') := a;(T) - 1
unless a;(T) -1 < 1.

7. Increase i by 1 and go to step 2.

5 Numerical results

In this section, we study the properties of the a posteriori error estimator and the adaptive algorithm by means
of three examples which are characterized by some nonlinearities. In the first example, the primal and the
dual solutions are known and smooth. Then we consider an example with a known but non-smooth solu-
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Fig. 3: Single contributions to the error identity for increasing number of additional quadrature refinements.

tion. In the third example, the setting is more complex with respect to the geometry as well as the problem
formulation. In this section, we omit indices such as (n + k) to improve the readability.

5.1 Quarter disk

The first domain is the quarter disk Q := B1(0) n (0, 1)? with Dirichlet boundary part I'p := ([0, 1] x {0}) U
({0} x [0, 1]) and Neumann boundary part I'y := 0Q\I'p. We face the difficulty that the circular domain cannot
be represented exactly by quadrilateral finite elements. Thus, we embed  into the rectangle Q := (0, 1)2. We
solve the non-linear diffusion-reaction equation -Au + u3 = f, u| rp, = 0, 0nulr, = gn. Its weak form reads

a(u)(v) = J Vu-Vv+udv = Fv) = J fv+ J gv
Q 0 I'y
with Gateaux derivative
a' W, w) = J Vv - Vw + 3ulvw.
Q

The functions f and gy are chosen such that the solution u(x, y) := sin (7rx) sin (sry) is obtained. The quantity
of interest J is selected according to the analytic dual solution

16 8
z(r, ) == (-r* + 2r)(—§<p2 + E(p)

given in polar coordinates.

First, we investigate the dependence of the a posteriori error estimator on the number of additional
quadrature refinements denoted by k. We fix £ = 10710 and the number of mesh elements in T to 262 144
and use a constant quadrature refinement of a(T) := n for each T € 7. In Fig. 3, the different contributions to
the error identity (3.7) are plotted. We use a quadrature with a piecewise quadratic boundary approximation
to evaluate the integrals almost exactly, if needed. We consider the piecewise constant and piecewise linear
boundary approximation in the numerical quadrature described in Section 2 and set n := 4 for the piecewise
constant and n := 1 for the piecewise linear scheme. For both quadrature techniques, we generally obtain the
same results. The terms comp, ep, eq, and eys,p are approximately constant as expected, if k is sufficiently
large. For a piecewise constant boundary approximation, we need k > 4 and in the linear case k > 1. The
terms eps,q, ens,j, and eys, ., which we want to assume as negligibly small, are decreasing with increasing
k. We denote the mesh width of the quadrature mesh by hg and note that an incrementation of k by 1 results
in halving hgq. For the piecewise constant boundary approximation the terms eys,q, ens,j, and eys, ;. are of
order O(hq) and for the piecewise linear one we find O(hé).
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Second, we examine the quadrature level n. To this end, we choose € = 1071° and the number of mesh el-
ements in T again as 262 144. Furthermore, we set k = 4 for the piecewise constant boundary approximation
and k = 2 for the linear one. The results are presented in Fig. 4. The terms comp and ep are approximately
constant from the beginning in the case of linear boundary approximation. The term eys,p becomes constant
for n > 4 as expected. Also, all other terms are of order O(hé). In the case of a piecewise constant boundary
approximation in the quadrature, we find that the terms comp and ep become approximately constant for
n > 10, while we do not see this for eys p here. The reason is that the values of eys,p are polluted by the
quadrature error even for n = 12. All other terms are of order O(hg).

Third, we consider varying mesh sizes. The results are depicted in Fig. 5 where £ = 10719 and a piecewise
linear boundary approximation is used. We observe the optimal convergence in comp of order ©(h?). The
boundary approximation is accurate enough such that no further refinements of the quadrature are needed.
We see higher order convergence for eys,;, while the terms eq, eys,j, and eys,q are of order O(h?) but are
essentially smaller than the error in J. The term in which we are mainly interested here is eys p measuring
the error with respect to u* and z*. This term is also of order O(h?) and is considerably smaller.

Fourth, we take a look at the dependence of the a posteriori error estimator on the regularization param-
eter . We fix the number of mesh elements in T to 262 144 and approximate the boundary in the quadrature
by piecewise linear functions with n = k = 2. The results are illustrated in Fig. 6. We observe that for e < 10™*
the error is approximately constant as well as all other terms except for e, eys,p and e,. The numerical error
estimator becomes constant for £ < 107°, which illustrates its stronger dependence on &. This is also ob-
served for eys,p, which is constant for € < 1077, The term e, is of order O(¢) as expected. For large €, we find
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Tab. 1: Quarter disk: Adaptive iteration, number of degrees of freedom, range of quadrature levels, number of quadrature
points and associated computational error, estimated discretization and quadrature error, and effectivity and indicator indices
for a piecewise constant boundary approximation.

r DOF a QP |comp| lep| leq| eff indp
1 81 0 398 6.98-103 3.16-1073 1.00-1072 1.89 1.03
4 81 0-3 818 1.97-103 2.70-103 1.74-1073 0.48 1.02
5 253 1-3 1562 5.83-10™% 5.00-107° 1.51.1073 2.67 1.05
7 253 1-5 3170 6.58-107% 7.28-107% 3.73-107* 0.54 1.02
8 821 1-4 5198 1.41-10™ 1.87-107° 4.00-107% 2.70 1.04
10 821 2-6 10886 1.93-10™% 2.23-10™* 9.52.10° 0.66 1.04
11 2833 1-5 19334 2.52-10° 1.67-10> 9.48-107> 3.10 1.07
13 2833 3-7 41678 5.17-107> 6.15-107° 2.47-107> 0.71 1.05
14 3241 2-7 41982 3.94-107> 5.04-10"> 2.37-10"> 0.68 1.03
15 11993 1-6 76248 1.06-10° 1.84-10"¢ 2.48-10"> 2.16 1.05
17 11993 3-8 151968 7.14-107% 1.12-1075 8.72-10¢ 0.35 1.04
18 46189 2-7 281830 5.71-10% 1.24-10"¢ 9.00-10°® 1.79 1.05
21 46189 5-10 890566 2.22-10% 3.29.10% 1.82-10° 0.66 1.04
22 48205 5-10 904 478 2.18-10% 2.99-10% 1.71-10¢ 0.59 1.02

23 185533 4-9 1422858 7.87-1077 1.55-10"% 1.64-10"¢ 2.07 1.05
25 185533 6-11 3116970  4.40-1077 7.50-1077 5.32-1077 0.50 1.04
26 190989 5-11 3100030 4.37-1077 6.90-1077 5.22-1077 0.38 1.03
27 728291 4-10 5155976 2.98-1077 4.78-10% 5.05-1077 1.85 1.06
29 728291 6-12 11001704 9.24-10"% 1.83-1077 1.51-1077 0.34 1.06
30 744899 5-12 10984642 9.22-10"% 1.66-1077 1.48-1077 0.19 1.02

Tab. 2: Quarter disk: Adaptive iteration, range of quadrature levels, number of quadrature points and associated computational
error, estimated discretization and quadrature error, and effectivity and indicator indices for a piecewise constant boundary
approximation for a fixed uniformly refined mesh with 16 641 degrees of freedom.

r a QP |comp| lep| leq| eff indp
1 0 68078 7.57-107% 4.45.107* 7.04-107* 1.5192 1.32
2 0-1 70382 3.70-107% 2.12-107% 3.51-107% 1.5223 1.20
3 0-2 70442 1.77-107%  9.64-107° 1.75-107* 1.5332 1.12
4 0-3 74834 8.60-10"° 4.20-10"> 9.21-107> 1.5592 1.08
5 0-4 83678 4.22-10"> 1.58-10° 5.22-10"> 1.6133 1.06
6 1-5 101474 1.66-10"> 1.84-10"° 2.89-10° 1.8545 1.04
7 2-6 135458 2.68-10"% 5.59-107° 1.64-107° 4.0138 1.02
8 3-7 204794 5.95-10°® 1.03-107> 8.55-107° 0.2850 1.02
9 4-8 342746 1.05-107° 1.32-107° 4.48-10° 0.8349 1.02
10 5-9 618938 1.29-107% 1.43-.10° 2.32-10® 0.9297 1.02
11 6-10 1167098 1.40-107> 1.48-107> 1.26-10"% 0.9621 1.02
12 7-11 2259194 1.46-10"> 1.50-10"°> 7.03-1077 0.9782 1.02
13 8-12 4447226 1.50-107> 1.52-107> 3.73-1077 0.9880 1.02
14 9-13 8823290 1.52-107° 1.53-10"° 1.86-1077 0.9933 1.02
15 10-14 17556986 1.53-10"> 1.53-10"°> 9.32-10% 0.9957 1.02
16 11-15 35024378 1.54-10"% 1.54-10"° 4.66-10"% 0.9969 1.02

the same behaviour also for the error and error estimator. Consequently, choosing € = 10719 is a sufficiently
small value to ensure that the error due to the regularization is negligibly small.

Finally, we test the adaptive algorithm in this example, where we set the minimum quadrature refine-
ment [ = 1 and start with a = 0 everywhere. We work with k = 4 for the piecewise constant boundary
approximation and with k = 2 for the piecewise linear one. We expect uniform mesh refinements in the orig-
inal domain because of the smoothness of the primal and dual solutions. Outside of the original domain,
additional refinements should not occur. This expected structure of the adaptive meshes is produced by the
adaptive algorithm, cf. Fig. 7. We find the optimal convergence order for adaptive and uniform refinement as
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Tab. 3: Quarter disk: Adaptive iteration, number of degrees of freedom, range of quadrature levels, number of quadrature
points and associated computational error, estimated discretization and quadrature error, and effectivity and indicator indices
for a piecewise linear boundary approximation.

r DOF a QP |comp]| lep| leq| eff indp
1 81 0 401 5.08-103 4.65-1073 1.09-1073 1.13 1.03
2 253 0-1 1323 1.84-103 1.45.1073 7.03-107% 1.17 1.01
3 821 1 3641 3.44-107% 3.12-107% 4.21-10"> 1.03 1.03
4 2833 1 12109 9.48-10"> 8.54-10> 1.43-10"> 1.05 1.06
5 3229 1 14177 7.55-107°> 7.06-107° 8.66-10% 1.05 1.02
6 11917 1 49667 2.00-10° 1.85-107> 2.89-107% 1.07 1.04
7 12389 1 52261 1.82-107° 1.73-107° 1.76-10° 1.05 1.01
8 46997 1 192451  4.73-10°%  4.48-10° 5.49-1077 1.06 1.04
9 48533 1 200271 4.39-10°%  4.22-10°¢ 3.17-107 1.03 1.02
10 184549 1 748611 1.12-10°% 1.08-10°¢ 8.07-10% 1.04 1.05
11 189957 1 774619 1.06-10"% 1.04-10"° 4.06-10% 1.01 1.02
12 729845 1 2943023 2.72-1077 2.67-107 1.19-10°% 1.03 1.06
13 747537 1 3024991 2.63-1077 2.60-107 7.48-10° 1.02 1.02
]
HHH
.
e
(a) Mesh in the 22"d adaptive iteration (b) Mesh in the 8" adaptive iteration with
with piecewise constant boundary ap- piecewise linear boundary approxima-
proximation. tion.

Fig. 7: Adaptive meshes for the quarter disk example with p = 1.
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with piecewise constant boundary ap- with piecewise linear boundary approxi-
proximation. mation.

Fig. 10: Adaptive meshes for the L-domain example.

depicted in Fig. 8 , where N denotes the total number of degrees of freedom. The detailed results of the adap-
tive algorithms for piecewise constant and linear boundary approximations are listed for p = 1 in Table 1 and
3 respectively. For the piecewise linear boundary approximation, we find effectivity indices, which are very
close to 1. It should be remarked, that no additional quadrature refinements are carried out. The behaviour in
the case of the piecewise constant boundary approximation is completely different. Here, we need additional
refinements of the quadrature mesh on each refinement level. The reason is the reduced convergence order
of the quadrature rule. Furthermore, the numerical error is significantly higher than in the case of the piece-
wise linear boundary approximation and pollutes the a posteriori error estimate leading to effectivity indices
which are oscillating and which are not close to one. The higher-order reconstruction used to evaluate the
error identity numerically relies on asymptotic properties of the finite element solution in the nodes, cf. [2,
Section 5.2.ii]. However, the relatively large numerical error disturbs these properties. In Table 2, we list the
effectivity indices for a fixed mesh under quadrature refinement. We observe that the estimated numerical
error should be a factor about 10 smaller than the estimated discretization error to obtain good effectivity
indices. However, although the effectivity indices are not good, the adaptive algorithm performs optimally
as shown in Fig. 8. All in all, we save a large amount of computational work in the numerical quadrature
compared to choices like p = 0.1 or p = 0.01. However, there is a loss of accuracy in the error estimate.

For the piecewise constant boundary approximation, we plot the distribution of the quadrature level in
Fig. 9. The quadrature level is low at the ends of the fictitious boundary and high in the interior. Also, it can
be seen that the quadrature level is higher on elements with a larger diameter. This is due to the fact that a
certain quadrature level is required to ensure coercivity and the refinement of the finite-cell mesh induces a
refinement of the quadrature.

5.2 Circular domain with reentrant corner

In a second series of experiments, we consider the circular domain with reentrant corner Q := B1(0)\ ([0, 1] x
[-1, 0]). The Dirichlet boundary part is I'p := ([0, 1] x {0}) U ({0} x [-1, 0]) and the Neumann boundary part
is I'y := 0Q\ I'p. For the discretization via the finite-cell method, we embed Q into the L-shaped domain Q:=
(-1, 1)2\ ([0, 1] x [-1, O]). The initial finite-cell mesh T, consists of 3 - 16 square elements of degree 1. Again,
we consider the diffusion-reaction equation —Au + u® = f, ulr, = 0, dnulr, = gn. The functions f and gy
are chosen such that u(r, @) = r?/3 sin (%(p) is the solution given in polar coordinates. Except for the circular
arc on the Neumann boundary, this problem closely resembles the classical L-shaped domain problem. In
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Fig. 11: Convergence results for the L-domain example. Fig. 12: L-domain: Distribution of the quadrature

level in the 13t iteration of adaptive algorithm for
the piecewise linear boundary approximation.

Tab. 4: L-domain: Adaptive iteration, number of degrees of freedom, range of quadrature levels, number of quadrature points
and associated computational error, estimated discretization and quadrature error, and effectivity and indicator indices for a
piecewise constant boundary approximation.

r DOF a QP |comp] lep| leq| eff indp
1 225 0 1194 7.15-107° 2.40-107% 1.33.107% -1.50 6.74
11 225 6-10 161550 1.25-10> 1.57-10"°> 1.54-1077 1.25 2.43
12 427  6-10 162242 1.44-10% 2.68-10% 2.32-107  0.14 24.67
19 427 13-17 18777410 1.23-10°% 1.95-1077 1.45-10°  0.16 32.46
20 697 13-17 18483434 1.39-10°°% 1.05-10® 1.70-10°  0.75 25.05

21 1473 12-17 18019328 9.20-1077 7.60-1077 9.48-10°1° 0.83 5.33
22 4313 11-17 18300420 3.06-1077 2.21-1077 3.69-107° 0.73 4.38
23 4313 12-18 32161284 3.04-1077 2.21-1077 1.75-107° 0.73 4.39
24 6343 12-18 31603560 1.70-1077 1.52-107 1.50-10°  0.91 4.34
25 21547 11-17 29032928 5.52-10% 4.41-10% 1.33.10°  0.82 3.34
26 21547 12-18 52183520 5.46-10"% 4.43-10"% 6.48-10710 0.82 3.34
27 21547 13-19 99172832 5.43-10"% 4.46-10"% 3.22.1071° 0.83 3.34
28 25697 13-18 94223878 3.26-10% 2.91.10"% 2.99.10°1° 0.90 4.02

particular, it features a corner singularity in (0, 0) leading to a reduced regularity. Consequently, we cannot
expect that the finite cell method based on uniform refinement yields optimal algebraic convergence rates.

We aim to control the error of |Vu/|? at the point p = (cos (%n), sin (%n)) € 00, which we approximate by
J(v) = fﬁ Is|Vv|?, where Is with S = Bo.o1(p) N Q is a smoothed indicator function given on S by

w(lx-pl), xe€S,

Is(x) = _
o, x e Q\S
where w(r) = =10°-73 +3-10%-r2 =3.102 - r + 1.0. Since the exact solution u is known, the functional J can
be evaluated up to machine precision on S. Here, we compute J(u) =~ 0.0017523852871125355.

The adaptive meshes generated in the adaptive algorithm with p = 0.01 are depicted in Fig. 10. We find
strong refinements close to the point p and in the reentrant corner as well as between these two regions, which
is expected. The convergence is examined in Fig. 11. After some quadrature refinements in the beginning, we
find optimal convergence of order O(N~1) for the adaptive approach. Using uniform refinements, the conver-
gence order is reduced as expected. The results for piecewise constant and linear boundary approximations
in the quadrature are almost identical. However, the computation with the piecewise constant boundary ap-
proximation stops earlier due to the huge number of quadrature points. The two approaches deliver similar
results which are given in detail in the Tables 4 and 5. However, we need approximately 690 times more
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Tab. 5: L-domain: Adaptive iteration, number of degrees of freedom, range of quadrature levels, number of quadrature points
and associated computational error, estimated discretization and quadrature error, and effectivity and indicator indices for a
piecewise linear boundary approximation.

r DOF a QP |comp| lep| leq| eff indp
1 225 0 1203 3.12-107° 3.08-107° 1.15-107> -0.62 1.60
5 225 0-4 4683 3.21-1077  1.61-10"> 3.53-10°% 50.33  2.41
6 427 0-4 5477 1.43-10%  2.42-10% 5.53.10°% -0.02 41.57
8 427 2-6 14629 1.48-10°% 2.19-107 7.16-1071° 0.15 37.26
9 697 2-6 15571  1.42-10°%  1.04-107%  9.47-10°  0.72 24.04
10 1473 2-6 18201 9.20-1077  7.36-1077 6.91-107%  0.80 5.33
11 4313 1-6 29307 2.78-1077  1.95-1077  2.48-10%  0.61 4.48
13 4313 3-8 56475 3.02-1077  2.20-107  9.35.10°10  0.72 4.41
14 6343 2-7 63287 1.68-1077 1.52-1077 5.25-1071% 0.90 4.34
15 21547 1-7 121289 5.37-10°%  4.40-10°8 3.26-1071% 0.81 3.34
16 25669 1-7 136843 3.25-10°%  2.88-10% 1.19.-1071% 0.89 3.98
17 93849 1-6 410403 1.04-108  7.87-107° 6.97-1071° 0.82 4.02
19 93849 3-8 496371 9.70-107°  8.46-10° 5.27-10°''  0.88 4.02
20 105963 2-8 544173 6.67-10°  6.08-107° 5.11-10°1t  0.92 4.38
21 389419 1-7 1667969 2.01-10° 1.68-10° 5.93-107'  0.86 4.84
23 389419 3-9 2014449 1.95-10° 1.64-10° 5.03-107'2  0.84 4.84
24 416891 2-8 2115655 1.51-10° 1.50-107° 5.08-107'2 1.00  4.63
25 495939 1-8 2431635 1.12-107° 1.14-107° 5.19.-10712  1.02 5.41
26 1596013 1-7 6814267 3.64-107° 4.56-1071° 5.14.10712 1.26 5.26
27 1596013 2-8 7204059 3.62-1071° 3.81-10°1° 2,82.10°12 1.06 5.26
28 1736841 1-8 7762007 3.14-107° 3.39.10°1° 2,79.10°12  1.09 6.60

quadrature points when we use the piecewise constant boundary approximation to achieve the same accu-
racy as with the linear approach. This is also substantiated by the significantly higher quadrature levels for
the piecewise constant boundary approximation. In Fig. 12, the distribution of the quadrature level is shown
for the piecewise linear boundary approximation. We find a high level near to S if the cells are comparatively
coarse. Furthermore, in the upper left corner, we find high quadrature levels. The effectivity indices lie in an
acceptable range between 0.8 and 1.3 for higher N even though the problem is of low regularity, cf. Tables 4
and 5.

5.3 B-domain

In this section, we consider a domain, which we call B-domain. It is illustrated together with the initial mesh
in Fig. 13a, where the used notation is also defined. The domain has two holes and a strong singularity in the
point (0, 0), which islocated on the fictitious boundary and not in a node of the mesh. The underlying problem
formulation is model plasticity with linear isotropic hardening, we refer to [38] for a complete description. It
is given by the PDE

Vu, [Vu| < go
—div(C(Vu)) = f, C(Vu) = 1-¢ (5.1)
{Vu+ vl Vu, else.

Here, 09 > O denotes the yield stress and O < { « 1 the hardening parameter. We choose gy = 1 and
¢ = 0.01. We assume homogeneous Neumann boundary conditions on the boundary of the holes and on
two small parts of the outer boundary, I'v = I't U I'y, and homogeneous Dirichlet boundary conditions on
the outer boundary, I'y = I'gp U I'r. Since the homogeneous Dirichlet boundary conditions on I'r cannot be
realized in the usual finite element way in the finite cell method, we approximate them by a penalty approach
with a large penalty parameter y > 0. The initial y is set to 102 as well as £ = 10710, The right hand side f is




118 —— P. Di Stolfo, A. Rademacher, and A. Schréder, Dual weighted residual estimation DE GRUYTER

Quadrature level
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(a) Sketch of the B-domain and the initial (b) Mesh in the 14t adaptive (c) Distribution of the quadrature level in
mesh. iteration with about 20 000 DOF. the 8t iteration

Fig. 13: Sketch of the B-domain example, adaptive mesh, and distribution of the quadrature level in the 8t iteration of adaptive
algorithm.
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Fig. 14: Convergence results for the B-domain example. Fig. 15: Percentage of the computing time in each adaptive
iteration.

given by a constant function with f = 2. The weak form of equation (5.1) reads

a(w)(v) = (C(Vu), Vv) +Yy J;_ wv=FW)=(v) YveV.

F

It should be remarked that a need not be three times directional differentiable. Nevertheless, our approach
works as shown in the following results. We are interested in the quantity of interest J given by

J(v) = L wpv? + L WFV, S =(-0.3,-0.1) x (-0.1, 0.1)
J

where wp(x, y) = 108 - (x + 0.3)%(x + 0.1)%(y + 0.1)?(y - 0.1)? and wr(e, r) = *(¢ — 0.5m)2.

We have seen in the last example that the results for a piecewise linear and a piecewise constant bound-
ary approximation are almost the same except for the number of quadrature points needed. To shorten the
presentation we focus here on the linear boundary approximation with p = 0.01 and k = 2. In Fig. 13b, the
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Tab. 6: B-domain: Adaptive iteration, number of degrees of freedom, number of quadrature points, range of quadrature lev-
els, estimated discretization and quadrature error, as well as effectivity and indicator indices for a piecewise linear boundary
approximation.

r DOF a QP |comp| lep| leq| eff indp
1 153 0 1028 1.99-10°% 4.91-10% 3.96-107 2.26 1.14
2 153 0-1 1364 2.19-10°% 4.98-10%  2.42-107 2.16 1.15
3 153 0-2 2028 2.39-10% 5.10-10% 6.11-10% 2.11 1.15
4 153 0-3 3324 2.43-10°°% 5.13.-10% 1.58-10°% 2.10 1.15
5 313 0-3 3952  2.10-10°% 1.09-10% 1.82-10°% 0.51 2.09
6 313 0-4 6504 2.12-10° 1.11-10°®  4.62-10° 0.52 2.09
7 821 0-4 8750 2.02-10°°  6.87-1077  4.42-10° 0.34 1.49
8 1791 0-4 12686 1.05-10® 3.93-1077 1.87-10° 0.37 1.43
9 3105 1-3 18142  4.73-1077  1.55-1077  3.97-107° 0.32 1.49
10 3105 1-4 23950 4.76-1077  1.58-1077 1.00-10™° 0.33 1.49
11 6175 1-4 36200 2.45-1077  9.03-10% 9.68-1071% 0.36 1.43
12 6175 1-5 47624  2.46-1077  9.09-10% 2.82.107° 0.37 1.43
13 10569 1-5 64954 1.01-1077  4.46-10%  3.03-107'% 0.44 1.53
14 20473 1-4 104258 4.35-10°8  2.31-10°8 3.33-10710 0.52 1.45
15 20473 1-5 127698 4.38-10°8  2.34.10°8 8.36-107'' 0.53 1.45
16 36087 1-5 189172 1.90-10°% 1.20-10°% 9.03-1071! 0.63 1.54
17 54089 1-5 260416 1.00-10%  7.55.10% 8.78-107'' 0.75 1.51
18 54089 2-6 313200 1.01-10°%  7.59.10% 2.20-107'' 0.75 1.51
19 92367 1-5 462994 5.05-107°  4.15-107° 2.12-107'! 0.82 1.51
20 173843 1-5 783662 2.37-107% 1.89-107° 2.23-107! 0.78 1.71
21 173843 2-6 883054 2.39-10° 1.90-107° 5.65-10712 0.79 1.70
22 347209 1-5 1568260 1.15-10° 9.77-107° 577.10°12 0.84 1.59
23 565929 1-5 2432740 6.34-1071° 549.1071° 562.10712 0.86 1.71
24 565929 2-6 2615156 6.39.1071° 5.52.10°1° 1.54.107'2 0.86 1.71
25 1230765 1-6 5249306 2.96-1071" 2.49.107% 1.51.10"12 0.84 1.72
26 2046323 1-5 8504968 1.76-10°1° 1.39.10°1% 1.,52.10712 0.78 1.81
27 2046323 2-6 8891944 1.77-1071° 1.40-1071° 4.10-10713 0.79 1.81
28 2661737 1-6 11318682 1.37-1071% 1.10-1071° 4.15-107'3 0.80 1.72

mesh in the 14 jteration of the adaptive algorithm is depicted. We find strong refinements around the sin-
gularity in (0, 0) as well as around S and I'; and around the edges of the holes, which are expected. Since
the exact solution of this example is unknown, we cannot compute J(u) exactly. Hence, we approximate J(u)
using extrapolation techniques based on the results of the adaptive algorithm and obtain

J() = 4.3067544444371864 - 1074,

This numerically computed reference value is used in the calculation of the error and the effectivity index.
We compare the convergence properties of the uniform and the adaptive approach in Fig. 14. The adaptive
approach outperforms the uniform approach by far. The results are detailed in Table 6. For finer meshes the
effectivity indices are in the range of 0.8. This is a very good value for such a complex example especially
in the presence of the nonsmooth differential operator. The indicator indices are smaller than 1.85 in most
iterations, which is also a good result. We find that the overall quadrature refinement levels are lower than for
the L-domain example. The distribution of the quadrature level in the 8 iteration of the adaptive algorithm
for the piecewise linear boundary approximation is depicted in Fig.13c. The quadrature levels are higher
on coarser mesh cells and smaller on fine mesh cells similar to the other examples. It should be pointed out
that the quadrature is exact on the straight lines of the holes such that no quadrature refinements at all are
carried out. The level is one because the quadrature level is adjusted to the minimal quadrature level during
the refinement process of the mesh cells.
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5.4 Implementation details and analysis of computing time

Finally, we give some remarks on the implementation and take a look at the computing time of the adaptive
algorithm. We have implemented the numerical quadrature in parallel on shared memory computers, so that
all integration operations as the assembling of vectors and matrices or the evaluation of J and the error es-
timator are performed in parallel with a good strong scaling. However, all other parts of the code especially
the linear solvers are not parallelized. The nonlinear systems are solved with a damped Newton iteration. In
this example, we need up to 40 Newton iterations with strong damping in the first iterations, when the mesh
is refined. We refer to [38] for more information concerning the solution algorithm used for this class of prob-
lems. If a quadrature refinement is performed, the quadratic convergence of the Newton scheme is realized
and only two or three Newton iterations are needed. The linear system in each Newton step is solved with a
conjugate gradients (CG) method preconditioned by a symmetric SOR scheme.

In Fig. 15, we compare the computing time of the different parts of the adaptive algorithm. We summarize
all operations concerning memory allocation, quadrature and parallelization preparation and so on under
the designation ‘setup’. By ‘assemble’ all assembling operations during the solution of the primal problem
are collected, while ‘solve’ is the cumulated computing time for solving all linear systems in this part. The
counterparts concerning the dual problem are named by ‘dual assemble’ and ‘dual solve’. The evaluation of
the quantity of interest is given by ‘evaluate J’. The process of the calculation of the error estimator 1 is sum-
marized in ‘evaluate n’, where we note that several operations especially concerning the localization are not
parallelised. The adaptive refinement routines for the mesh and the quadrature are considered under the des-
ignation ‘adaptivity’. The graphical output of the mesh and the output of the data for the tables and graphs
are collected in ‘post processing’. The computations are carried out on a Sun Fire compute server with 8 AMD
Quad-Core Opteron 8356 CPUs (2.3 GHz) and 64GB RAM, where we use 16 cores for the calculations concern-
ing this example. Figure 15 shows that the computing time for a large number of unknowns is dominated by
the solution process of the linear systems. In the last step nearly 92% of the computing time is needed for
the solution of the linear systems. Approximately 1.2% is used for the assembling and 5.9% for the solution
of the dual problem. All other parts are less than 1%. Note that fewer Newton iterations are required during
the quadrature refinement steps. Thus the computational amount of solving the dual problem increases and
the computational amount of solving the primal problem decreases. It is an interesting question for further
research how the distribution of the computing time changes if the solver is also parallelized and if more
sophisticated preconditioners, for instance, based on algebraic multigrid adapted to the special challenges
of the finite cell method are used. However, such research is out of the scope of the article at hand.

6 Conclusion

In this article, we present a dual weighted residual (DWR) error estimator for the finite cell method (FCM).
The DWR method allows for goal-oriented error control and incorporates the information of a user-defined
quantity of interest into the solution of a dual problem that has to be solved alongside the primal problem.
In the FCM, the computational domain is replaced by a simpler enclosing domain on which the finite ele-
ment space is constructed. The original, possibly complicated domain is approximated by a quadrature mesh.
Thereby, a quadrature error is introduced. The presented method allows for splitting the DWR error contri-
bution into an error term related to the discretization, an error term related to the quadrature, and involves
several additional terms which cannot be computed numerically. These additional terms may be neglected
if the quadrature is sufficiently accurate. From the numerical results one may conclude that the quadrature
error term has to be several magnitudes smaller than the discretization error term to obtain accurate error
estimates. However, according to the numerical results, this accuracy of the quadrature is not required to ob-
tain optimal convergence rates. We present a refinement strategy that adapts the FCM mesh or the quadrature
mesh to keep the quadrature error below the discretization error up to a user-defined multiplicative constant.
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Its efficiency is underlined by several examples involving complex geometries and nonsmooth differential
operators.
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schaft in the Priority Programme 1748 ‘Reliable simulation techniques in solid mechanics. Development of
non-standard discretization methods, mechanical and mathematical analysis’ under the project ‘High-order
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