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1 Introduction

For the linear system
Ax=b (1.1)

where A € R™" is nonsingular, and x, b € R" are n-dimensional vectors. Let us consider the splitting of the
matrix A of linear system (1.1):
A=D-L-U

where D = diag(A), —L and -U are strictly lower and strictly upper triangular parts of A, respectively. James
[2] presented a generalized accelerated overrelaxation (GAOR) method given by

X™ = Li(r, Qx™ + (D - rQL) b, m=0,1,2,...

or
x™L = Uy (r, Qx™ + (D - rQU) b, m=0,1,2,...
where
Li(r,Q) =D -rQL)y YU - Q)D + (1 - QL + QU}
and
Ui(r, Q) = (D-rQU) YU - Q)D+ (1 - QU + QL}
are iterative matrices and Q = diag(w,, w> ..., w,) with w; € R* and r € [0, 1].

Then generalized symmetric AOR method (GSAOR) can be defined as follows [8].
X™1 = Y™ + Cb, m=0,1,2,...

where T = Ui (r, Q)L1(r, Q) and C = U1 (r, Q)(D - rQL)1Q + (D - rQU)1Q.
In the following, we recall the mathematical descriptions of the block linear system and the BMM intro-
duced in [5, 6].
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Let s(< n)and nj(< n),i=1,2,...,s, be given positive integers satisfying Zle n; = n, and denote
Va(ny,...,ng) ={x e R"x = (xlT, - ,xST)T,x,- ¢ R"}

Ly(ni,...,n) ={A e R""|A = (Aij)sxs, Aij € RN}

for the convenience, we will simply use L, for L,(ny, ..., ns) and V, for V,(ny, ..., ns). Then, the block
linear system to be solved can be expressed as the form

Ax=b, Ael,, x,beVy 1.2

where A € IL, is nonsingular and b € V,, are general known coefficient matrix and right-hand vector, respec-
tively, and x € V, is the unknown vector.

If block matrices My, Nk, Ex € L,, k=1, 2, ..., a, satisfy:

1) A = My — Ny, My nonsingular, k=1,2,...,a;

2) Ex = diag(E%, ..., E®¥), k=1,2,...,a

YL NEP=1,i=1,2,...,s;
then we call the collection of triples (Mg, Ny, Ex), k = 1,2, ..., a, is a block matrices multisplitting (BMM)
of the block matrix A € L, where || - || denotes the consistent matrix norm.

O’Leary and White [4] invented the matrix multisplitting method in 1985 for solving parallely the large
sparse linear systems on the multiprocessor systems and was further studied by many authors [1,5-14,17—
citenum19].

Suppose that we have a multiprocessor with a processors connected to a host processor, that is, the same
number of processors as splittings, and that all processors have the last update vector x¥, then the kth pro-
cessor only computes those entries of the vector

M Nix* + M'b

which correspond to the block diagonal entries E flk ) of the block matrix E k- The processor then scales these
entries so as to be able to deliver the vector

Ex(M*Nix* + M ' b)
to the host processor, performing the parallel multisplitting scheme
a a
XM= N E M Nix™ + ) ExMi'b = HX™ +Gb,  m=0,1,2,... .
k=1 k=1

In this paper, we investigate the domain of convergence of block GSAOR multisplittings methods for solv-
ing linear system (1.1). When the coefficient matrix A is a block H-matrix or a block strictly diagonally domi-
nant matrix.

2 Parallel multisplitting GSAOR methods

Given a positive integer a (a < s), we separate the number set {1, 2, ..., s} into a nonempty subsets J,
k=1,2,...,a,such that

]kg{l!z""’s}) U]k:{l!z”"’s}'
k=1
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Note that there may be overlappings among the subsets J1, J2, . . . , Ja. Corresponding to this separation,
we introduce matrices

D= diag(All, . ’ASS) elL,

(k) .. L.
Lij s I’JEIk; 1>)

(k) (k)
Li=(L:;Yel,, L. =
Y " v 0 otherwise

o .,

Kk Kk U.’, 1#]
Uk= ) e Lo, UP =17 _
0 otherwise

(k) .
. E., i€]
Ex = diag(EY), ..., E¥) en,, EP = {70 ko
0 otherwise

i,j:1,2,...,s, k=1,2,...,0(.

Obviously, D is a block diagonal matrix, Ly, k = 1,2,..., a, are block strictly lower triangular matrices,
U, k=1,2,...,a, are general block matrices, and Ex, k = 1, 2, ..., &, are block diagonal matrices. If they
satisfy:

1) D is nonsingular;

DA=D-Li-Ugk=1,2,...,a;

3) ZZ=1 Ex=1
then the collection of triples (D - Uy, Lk, Ex) and (D-Lg, Uy, Ex), k=1, 2, ..., a, are BMM of the block matrix
A € L. Here, I denotes the identity matrix of order n x n.

Let (My, Ny, Ex), k=1, 2,...,a,isa BMM of the block matrix A € IL,,. We will definite local parallel mul-
tisplittings blockwise relaxation generalized SAOR method (LMBGSAOR) and global parallel multisplittings
blockwise relaxation generalized SAOR method (GMBGSAOR).

Algorithm 2.1 (local parallel multisplittings blockwise relaxation method).
Given the initial vector.
Form=0,1,2,...repeat (I) and (II), until convergence.
() Fork=1,2,...,a,(parallel) solving yy:

My = Nix™ + b.
(II) Computing
a
Xm+1 — z Ek)/k-
k=1
Algorithm 2.1 associated with LMBGSAOR method can be written as

1
x™** = HimeosaorX™ + Grmecsaorb, m=0,1,... (2.1)

where .
Himposaor = Y. ExUR (AL (A4)
k=1
UR ) = (D -rQU) YU - Q)D + (1 - r)QUi + QL}

2.2
LOA) = (D -rQL) MU - Q)D + (1 - 1)QLx + QUy} 22

24
Gumpasaor = Y, E{UN(A)(D - rQL) ™ Q + (D - rQU) " Q).
k=1

By using a suitable positive relaxation parameter 8, we will establish global parallel multisplitting block-
wise relaxation GSAOR method which is based on Algorithm 2.1.
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Algorithm 2.2 (global parallel multisplittings blockwise relaxation method).

Given the initial vector.
Form=0,1,2,...repeat (I) and (II), until convergence.
() Fork=1,2,...,a, (parallel) solving y:

Miyx = Nikx™ + b.
(I) Computing
a
X" =B Y Exyi+ (1 - px™.
k=1
Algorithm 2.2 associated with GMBGSAOR method can be written as
X™1 = HomposaorX™ + BGomBGsaorb, m=0,1,... (2.3)

where Hgompgsaor = BHompgsaor + (1 — B)1.

3 Preliminaries

We shall use the following notations and Lemmas. A matrix A = (a;;) is called a Z-matrix if for any i # j,
a;j < 0. A Z-matrix is a nonsingular M-matrix if A is nonsingular and A= > 0. Additionally, we denote the
spectral radius of A by p(A). It is well-known that if A > 0 and there exists a vector x > 0 such that Ax < ax,
then p(A) < a [3]. Let

Ly(ni,...,ns) ={A = (A;) €e R”"| A;; e R nonsingular, i=1,...,s}

lL‘,f,I(nl, ..o, ng) = {A =diag(411), (422), ..., (Ass) | Aji € R™™ nonsingular, i=1,...,s}.
We will review the concepts of strictly block diagonally dominant matrix and block H-matrix.

Definition 3.1 ([1, 20]). Let A € Ly, (I) block comparison matrix M(4) = (M(A));;) € R¥ and (1I) block
comparison matrix N(A) = ((N(A));;) € R®*S are defined respectively as follows:

AZL, i=),

oty = 4 T s
_”Al]"y 1 51: ])
1’ izj) . .

(N(A))ij = i o i,j=1,...,s
_”Ai]‘ Aij”y L#],

where | - || is a consistent matrix norm such that ||I]| = 1.

For block matrices A € L, 1, we define D(A) = diag(A11, 422, ..., 4Ass), B(A) = D(A) - A, J(A) = D(A)"1B(4),
u1(A) = pUnta)), u2(A) = p(I - N(4)). In [1], Liu et al. show that M(I — J(M)) = N(I - J(M)), p2(A) < p1(4A).

Definition 3.2 ([15, 16]). Let A € L, ;. A matrix A is said to be a strictly (I) block diagonally dominant matrix,
if
A > Y 1Al =12,
i#

A matrix A is said to be a strictly (II) block diagonally dominant matrix, if

YA Al < 1, j=1,2,...,s.

i#j
Remark 3.1. From Definition 3.2, we know a strictly (I) block diagonally dominant matrix must be a strictly
(II) block diagonally dominant matrix, but not conversely.
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Definition 3.3 ([1, 15, 16]). Let A € Ly ;. A matrix A is said to be a (I) block H-matrix (Hg)(P, Q)-matrix) with
respect to nonsingular matrices P and Q if there are two matrices P, Q € IL‘rf’ ; such that M(PAQ) is an M-

matrix; A matrix A is said to be a (II) block H-matrix (H;H ) (P, Q)-matrix) with respect to nonsingular matrices
P and Q if N(PAQ) is an M-matrix.

Remark 3.2 ([1]). From Definition 3.3, we obtain a (I) block H-matrix (Hg)(P, Q)-matrix) must be a (II) block
H-matrix (HJ(BH)(P, Q)-matrix), but conversely, it is not true.

Combining Remarks 3.1 and 3.2, we have

Remark 3.3. A strictly (I) block diagonally dominant matrix must be Hg)(P, Q)-matrix; A strictly (II) block
diagonally dominant matrix must be a (II) block H-matrix H](BH ) (P, Q)-matrix.

Definition 3.4 ([15]). If there exists a block diagonal matrix X such that AX is a strictly block diagonally dom-
inant matrix, then A is said to be a block H-matrix (Hg) (P, Q)-matrix and H)(BH)(P, Q)-matrix).

Definition 3.5 ([1, 5, 6]). Let A € L. We call [A] = (|Al)) € RN*N the block absolute value of the block matrix
M. The block absolute value [x] € RY of a block vector x € V,, is defined in an analogous way.

These kinds of block absolute values have the following important properties.
Lemma3.1([1,5,6]). LetL,M € Ly, x,y € V, and r € RL. Then

D L] = [M]I < [L+M]<[L]+[M](I[x] - [yl < Ix +y] < [x]+ [yD);

2) [LM] < [L]IM] ([xy] < [X]yD);

3) [rM] < |rl[M] ([rx] < |rl[x]);

4) pM) < p(IM]) < p([M]) (here, || - || is either || - o O7 || - [I1).

Lemma 3.2 ([5, 6]). Let A € L, 1 be a strictly block diagonally dominant matrix, then
1) A s nonsingular;

2) (A<M

3) pU(M(A))) < 1.

Let
Qp(A) = {F = (Fy) € Ln1(n1, na, ..., n) LIFF I = 1AM, IFyll = 1Ayl i#j, i,j=1,2,...,s}
QF(A) = {F = (Fj) € Lni(n1, na, ..., no) | IF Fyjll = 145" Agll,  1,j=1,2,...,s}

denote respectively the set of (I) and (II) matrices such that the absolute values of whose elements are equal
to absolute values of corresponding elements of matrix A.

4 Main results

For the present Algorithms 2.1 and 2.2, we give convergence theorems for block diagonally dominant matrices
and block H-matrices.

Theorem 4.1. Let M € Ly 1(n1, na, ..., ng) be a strictly (I) block diagonally dominant matrix, A € Qg(PMQ)
and the collection of triples (D — Uy, Ly, Ex) and (D - Ly, Uy, Ex), k=1, 2, ..., a, are BMM of the block matrix
A € Ly (n1,ny,...,ns). Assume that

M(A) = M(D) - [Li] - [Ux] = M(D) - [B], k=1,2,...,a (4.1)
if
O<w'<; i=1,2 n
T 14 u (PMQ)’ P

then LMBGSAOR method converges for any initial vector x° € V.
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Proof. By Lemma 3.1, we know

p(HrmBesaor) < P(|Himpesaorl) < p([HimBgsaor])

and then, the iteration (2.1) converges for any initial vector x° € Vy if and only if

p([Himpesaor]) < 1.
Since A € Q%(PM Q), then M(A) = M(PMQ). Because
A € Ly (n1,ny, ..., ns)

is a strictly (I) block diagonally dominant matrix, so A € Ly, ;(n1, na, . .., ns) is a strictly (I) block diagonally
dominant matrix and p; = p(J(M(A))) = pJ(M(PMQ))) = u1(PMQ), and thus, we have pu; = p(J(M(PMQ))) =
U1(PMQ) < 1, it follows from Lemma 3.2. Let B = Ly + Uy, by (2.2), we know that [B] = [Li] + [Uk], k =
1,2,...,a,clearly, D-rQLy, k=1,2,...,a,are strictly (I) block diagonally dominant matrix and M(D) —
r[Q][B] are strictly diagonally dominant matrix for O < w; < 2/(1 + u1(PMQ)),i=1,2,...,n,andr € [0, 1]
which follow from A is a strictly (I) block diagonally dominant matrix. Since

M(D) - r[Q][B] s M(D) - r[Q2][Ui] < M(D)

for0 < w; < 2/(1 + u1(PMQ)), i =1,2,...,n,r€[0,1],k=1,2,...,a, and M(A) is a strictly diagonally
dominant matrix, we have M(D)-r[Q][B] and M(D) are strictly diagonally dominant M-matrices, for 0 < w; <
2/(1 +u1(PMQ)), i = 1,2,...,n, r € [0, 1]. Therefore, M(D) — r[Q][Uyx] are strictly diagonally dominant
M-matrices, and then D - rQUy, k = 1, 2,...,a, are strictly (I) block diagonally dominant matrices, for
O0<w;<2/(1+pu(PMQ)),i=1,2,...,n,andr € [0, 1].

Let Ly = DLy and Uy = D~1Uy, then I-rQLy and I-rQUj are also strictly (I) block diagonally dominant
matrices, for 0 < w; < 2/(1 + u1(PMQ)),i=1,2,...,n,r€[0,1],k=1,2,...,a. Thus, by Lemma 3.1, we

have _ _
<M - rQLy))™ = (I - r[QI[Li])

[ - QU™ < MU - rQUK) ™ = (I - r[QI[U) .

From (4.1), we have

(URA)] = [(D - rQU) YT - Q)D + (1 - NQU + QLi}

= [-rQU) M- Q+ (1 -1nNQUx + QLi}

<[ -rQUY ™ {II - Q] + (1 - N[QUK] + [QLi]}

< I -r[QIUD) ™M - Q] + (1 - n[QI[Ux] + [Q1[Lk]}
I+ (I-r[QIUD) MU - Q] - I+ [Q][Uk + Lil}.

Since Ly = D™'Ly and Uy = D~1Uy, we have [Li] < M(D) " [Li] and [Ux] < M(D)~1[Ux] which follow
from Lemma 3.1 and Lemma 3.2, and then

(Uil + [Li] < M(D) L [Uk + Li] = M(D)e L[B] = JOM(4)), k=1,2,...,a.

Therefore, we have
[URA)] <I-UT-r[QIUD U - T(1Q)))

where T([Q]) = [I - Q] + [Q]J(V(A)). Note that (I - r[Q][Ux()) L =1, k=1,2,...,a,and then
[UN@A)] <I-1-T(QD) = T(Q)).
Similar to the above proving process, we have

[LWA)] < I- (I - T(Q)) = T(Q)).
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Let §; = max{w;}, 9> = min{w;} and f(t) = |1 -t|{I[+tJ(M(A)), where t > 0. Obviously, f(t) is nonincreasing
for 0 < t < 1 and f{(t) is nondecreasing for t > 1. Therefore, we have

T([Q]) < (1 - 9)I + 9J(A)), O<wi<l, i=1,2,...,n

2 -
T([Q])S(31—1)I+191](M(A))y 1<a)i<m, i=1,2,...,n.

Let e denotes the vector e = (1,1, ..., 1)T € Vs and J.(M(A)) = JOM(A)) + eeeT, since J(M(A)) is non-
negative, the matrix J.(M(A)) has only positive entries and irreducible for any € > 0. By the Perron-Frobenius
theorem [3] for any € > 0, there exists a vector x, > O such that

JeM(A)xe = pUe(M(A)))Xe = peXe

where p; = p(Je(M(A))). Moreover, if € > 0 is small enough, we have p, < 1 by continuity of the spectral
radius. Thus, we can get 91 — 1 + 91p. < 1and 1 - 9, + 92p¢ < 1. And then
a

[HimBesaor]Xe < Z TP @A)LOA)]x Z [Ex]T(1Q])?

Stepl.ForO<w;<1,i=1,2,...,n,
[Himpesaor]Xe < (1 — 92 + 92pe)Xe < Xe;
Step2.For1 < w; < 2/(1 +u1(PMQ)),i=1,2,...,n

[Himposaor]Xe < (91 — 1 + 91pe)*Xe < Xe.

Then, we have [Hiumpgsaor]Xe < X and p([Himpesaor]) < 1. O
Theorem 4.2. Let M € L, ;(n1, na, ..., ns) bean Hg)(P, Q)-matrix, A € Qg(PMQ), and the collection of triples

(D - Lg, Uy, Ex) and (D - Uy, Ly, Ex), k=1, 2, ..., a, are BMM of the block matrix A € Ly (n1, ny, ..., ng).
Assume that
M(A) = M(D) - [Li] - [Ux] = M(D) - [B], k=1,2,...,a.
If
2

0 < ———— i=1,2,...,
< Wi < T+ 5 (PMQ) i n

then LMBGSAOR method converges for any initial vector x° € V.

Proof. Since A € Q%(PMQ), then M(A4) = M(PMQ). Because M € L (n1, ny, ..., ng)isan Hg)(P, Q)-matrix,
so A € Ly (ny, ny, ..., ng)isanblock Hg) (I, I)-matrix. From Definition 3.5, there exists a block diagonal ma-
trix X such that AX is a strictly (I) block diagonally dominant matrix. Let Hyypgsaor(4) and Hympgsaor(AX)
denote the iterative matrices of LMBGSAOR methods for block matrix A and AX, respectively. By simple cal-
culation, we have Hympgsaor(A) and Hyypgsaor(AX) are similar. Since similar matrices have the same eigen-
values, it follows that p(Hrmpgsaor(4)) = p(Himeesaor(AX)) < 1. O

Theorem 4.3. Let M € L, j(n1, na, ..., ng) be a strictly (I) block diagonally dominant matrix, A € Qg (PMQ)
and the collection of triples (D — Uy, Ly, Ex) and (D - Ly, Uy, Ex), k=1, 2, ..., a, are BMM of the block matrix
A € Ly (n1,ny,...,ns). Assume that

M(A) = M(D) - [Li] - [Ux] = M(D) - [B], k=1,2,...,a.

[f
O<wi< 2 1—1 2 n
! 1+HZ(PMQ), Tt

then LMBGSAOR method converges for any initial vector x° e V.
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Proof. The proof goes along the same lines as in the Theorem 4.1 except that strictly (I) block diagonally
dominant matrix and Qg (PMQ) play the roles of strictly (II) block diagonally dominant matrix and Qg (PMQ),
respectively, which completes the proof. O

Theorem 4.4. Let M € Ly,(ny,ny,...,ns) be an H](BH)(P, Q)-matrix, A € Qg(PMQ), and the collec-
tion of triples (D — Ly, Uy, Ex) and (D — Uy, Ly, Ex), k = 1,2,...,a, are BMM of the block matrix
A e Ly (n1,ny,...,ns). Assume that

M(A) = M(D) - [Lg] - [Ux] = M(D) - [B], k=1,2,...,a.

If
2

1+ pu2(PMQ)’
then LMBGSAOR method converges for any initial vector x° € V.

0<wi< i=1,2,...,n

Proof. The proof is similar to that given in Theorem 4.2, so omitted. O
Using GMBGSAOR method, we can also get the following convergence results.

Theorem 4.5. Let M € Ly 1(n1, na, ..., ns) be a strictly (I) block diagonally dominant matrix, A € Q%(PMQ)
and the collection of triples (D — Uy, L, Ex) and (D - L, Uy, Ex), k=1, 2, ..., a, are BMM of the block matrix
A e Ly (n1,na,...,ns). Assume that

M(A) = M(D) - [Li] - [Ux] = M(D) - [B], k=1,2,...,a

(@ if0<wi<1,i=1,2,...,n,and 0 < B < 2/(1 + h3), hy = 1 - 9 + Su1 (PMQ);
(b) if1 < wi<2/(1+u1(PMQ)), i=1,2,...,n,and0 < B <2/(1+h?), hy = 91 - 1 + 9141 (PMQ).
Then GMBGSAOR method converges for any initial vector x° € Vs, where 91 = max{w;}, 9, = min{w;}.

Proof. Since p(Hgmpgsaor) < P(|Hompcsaor!) < p([Hgmeesaor]), the iteration (2.3) converges for any initial
vector x° € Vy if and only if

p([Hompgsaor]) < 1.

Similar to the proof of Theorem 4.1, we have
u1 = p(J(M(A4))) = 1 (PMQ) < 1

and there exists € > 0 such that J:(M(A)) = J(M(A)) + eee” has only positive entries and irreducible for any
€ > 0. By the Perron-Frobenius theorem for any € > 0, there exists a vector x > 0 such that

JeM(A))xe = pUe(M(A)))Xe = peXe

where p. = p(J:(M(A))). Moreover, if € > 0 is small enough, we have p, < 1, by continuity of the spectral
radius. Under the condition of Theorem 4.5, we notonly get hy = 91 -1+ 91p < 1and hy = 1-9,+9,p < 1,
but also fh? + |1 - Bl < 1, and Bh3 + |1 - B| < 1, and then

Xe <P i[EkMU“O(A)][L“‘)(A)ng +11 - Blxe
k=1

<B Y [ET([Q])*Xe + 11 - Blxe.
k=1

Case (a).ForO<w;<1,i=1,2,...,n.
[Himposaor)Xe < B(1 — 92 + 92pg)xe + 11 - Blxe = (Bh3 + |1 - Bl)xe < Xe.
Case (b).For 1 < w; < 2/(1 + u1(PMQ)), i=1,2,...,n.

[Himposaor]Xe < (91 — 1+ 91pe)xe + 11 = Blxe = (BhT + |1 - BI)xe < Xe.



DE GRUYTER X.Z.Wang and C. X. Li, A note on the parallel GSAOR =— 43

Then [Hgmsgsaor]Xe < X and p([Hempesaor]) < 1. O

Theorem 4.6. Let M € Ly ((n1,ny, ..., ns) bean Hy (P, Q)-matrix, A € QL(PMQ), and the collection of triples
(D - Lk, Uk, Ex) and (D - Uy, Lk, Ex), k =1, 2, ..., a, are BMM of the block matrix A € Ly (n1, ny, ..., ng).
Assume that

M(A) = M(D) - [Ly] - [Ux] = M(D) - [B], k=1,2,...,«a

(@ if0<wi<1,i=1,2,...,n,and 0 < B < 2/(1 + h3), hy = 1 — 9 + Su1 (PMQ);
(b) ifl<w;j<2/(1+u1(PMQ)), i=1,2,...,n,and0<B<2/(1+ h%), hy =81 -1+ 9141 (PMQ).
Then GMBGSAOR method converges for any initial vector x° € Vs, where 9; = max{w;}, 9, = min{w;}.

Theorem 4.7. Let M € Ly 1(ny1, ny, . .., ng) be a strictly (I) block diagonally dominant matrix, A € Qg(PMQ)
and the collection of triples (D — U, L, Ex) and (D - Ly, Uy, Ex), k=1, 2, ..., a, are BMM of the block matrix
A € Lp(n1,na,...,ns). Assume that

M(A) = M(D) - [Lg] - [Ux] = M(D) - [B], k=1,2,...,a

(@ if0o<wi<1,i=1,2,...,n,and 0 < B < 2/(1 + h3), hy = 1 - 9 + Su2(PMQ);
(b) if1 <w;<2/(1+u2(PMQ)), i=1,2,...,n,and0< B <2/(1+ h%), hi1 =91 -1+ 91u2(PMQ).
Then GMBGSAOR method converges for any initial vector x° € Vs, where 9, = max{w;}, 9, = min{w;}.

Theorem 4.8. Let M € L, (n1,nz,...,ns) be an Hgn(P, Q)-matrix, A € Qg(PMQ), and the collec-
tion of triples (D — Ly, Uy, Ex) and (D — Uy, Ly, Ex), k = 1,2,...,a, are BMM of the block matrix
A € Ly, (n1,ny,...,ns). Assume that

M(A) = M(D) - [L] - [Ux] = M(D) - [B], k=1,2,...,a

(@ if0<wi<1,i=1,2,...,n,and0 < B <2/(1+h3), hy =1 -9, + 42 (PMQ);
(b) if1<wi<2/(1+u2(PMQ)), i=1,2,...,n,and0 < B <2/(1+h?), hy =91 - 1 + 9142 (PMQ).
Then GMBGSAOR method converges for any initial vector x° € Vs, where 9, = max{w;}, 9, = min{w;}.

Proof. Similar to the proof of Theorem 4.2, Theorem 4.3, and Theorem 4.4, we can prove Theorem 4.6, Theo-
rem 4.7, and Theorem 4.8, respectively. So omitted. O

5 Conclusion

Liu et al. [1] consider the convergence of block parallel multisplittings GSAOR iterative methods for 1 < w; <
2/(1 + u1(PMQ)) or 1 < w; < 2/(1 + u(PMQ)), i = 1,2,...,n. In this paper, we extend interval of w;,
i=1,2,...,n,to(0,2/(1+ u1(PMQ))) or (0, 2/(1 + u2(PMQ))) for block parallel multisplittings GSAOR
iterative methods.

Acknowledgment: We express our thanks to the anonymous referees who made much useful and detailed
suggestions that helped us to correct some minor errors and improve the quality of the paper.
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