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1 Introduction
Conservation laws are time-dependent systems of hyperbolic partial di�erential equations which describe,
for example, the conservation of quantities such as mass, momentum and energy, and are usually nonlinear.
In one dimensional space, the equations take the form:

∂tu + ∂xF(u) = 0, u(x, t = 0) = u0(x)
t ∈ [0,∞), x ∈ (−∞,∞)

(1.1)

where u : ℝ × ℝ+ → ℝm is a vector with m conserved quantities uj, and F : ℝm → ℝm is a smooth vector-
valued �ux function, in which each jth component fj(u) is a function of components uj of u. Equations of type
(1.1) are popularly referred to as Cauchy problems.

In this paper the computational solutions of optimization problems governed by a system of hyperbolic
conservation laws of the form of equation (1.1) will be investigated. As a prototype, the following problemwill
be considered:

min
u0

J(u(⋅, T), ud);

subject to ∂tu + ∂xF(u) = 0
u(x, t = 0) = u0(x)

t ∈ [0, T), x ∈ (−∞,∞).

(1.2)

Contrary to the existing results in [7, 34, 42], the main contribution of this paper is the extension of the
adjoint method to second-order relaxing schemes, in general, for numerical optimization. In addition the
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second-order approachwill be applied to nonlinear systems using the Euler systems of gas dynamics as a pro-
totype for the �rst time. In particular, a detailed computational study of the discrete velocity kinetic system
formulation [3, 32] of equation (1.1) will be undertaken. The performance of this formulationwill be compared
with the relaxation approach in [24]. In this approach the hyperbolic systems of conservation laws (HCL) are
rewritten as relaxation systems with a sti� source term. For more discussion on relaxation approaches, the
reader is referred to [4, 8, 11]. Analysis on the existence and uniqueness of the solution for the relaxation
approach described in [24] was given in [43]. Further study on the relaxation approach in [3, 4] is found in
[29, 31–33]. The relaxation method or the discrete velocity formulation was chosen due to its promising fea-
tures of simplicity which can lead to generalization to both higher orders and high dimensional systems of
HCLs without further modi�cation. The semilinearity structure of the relaxation system allows for Riemann-
solvers free treatment and avoids the computation of Jacobians. The relaxation approximation preserves the
hyperbolic nature of the system at the expense of additional sti� source terms and additional equations.

HCLs are commonly applied in the optimal control problems [10, 13, 15, 27, 41] – �nding some geometry
that optimizes performance subject to a set of constraints [20]. Several authors including [23] have employed
the nonsmooth optimization in combination with the adjoint methods for subgradient computation. They
studied the optimal control of �ows with discontinuities and tested the approach using one-dimensional
(1D) Riemann problem for Euler equations. In the cases where gradient-based methods were employed, ei-
ther discontinuities were ignored or means to circumvent their e�ects were employed. In many situations
shocks were smoothed using numerical dissipation. It has been shown that smoothing is sometimes equiv-
alent to modifying the cost function [28]. It is generally known that the semi-group generated by a HCL is
not di�erentiable in L1 even in the scalar, one-dimensional (1D) case [7, 10, 12–14] and the solution of HCL is
needed in the optimization cycle, it is therefore important to pay close attention to its solution. To circumvent
this challenge a notion of shift di�erentiability is introduced in [10, 12, 13].

In this paper an adjoint-based approach will be considered to solve the optimal control problems nu-
merically. Adjoint and sensitivity calculus based on shift di�erentiability in the optimal control of entropy
solutions of scalar conservation laws with a source term is discussed in [41]. First-order necessary optimal-
ity conditions for systems of conservation laws are given in [16]. Discussion on adjoint-based optimization
of problems governed by partial di�erential equations (PDEs) is presented in [20, 21]. Many adjoint-based
softwares for CFD have been developed by di�erent pioneers. These include: adjoint-based optimal designs
with an application to designing business jets [20], adjoint approach to aerodynamic designs [18, 19], adjoint
approach to shape and airfoil designs [1, 17] and continuous adjoint formulation [2, 35]. For trade-o� between
continuous and discrete adjoint approach to automatic aerodynamic optimization, consult [30]. The adjoint
approach is robust in the sense that all sensitivities are calculated only once via the adjoint equation in each
iteration cycle regardless of the number of control parameters [21].

In combination with the adjoint approach, the relaxation method becomes more appealing due to the
simplicity of the relaxation approaches. Other attempts to apply this approach to systems of HCL can be
found in [34, 42] where formally �rst-order schemes were applied. In the current presentation a framework
for higher-order extensions is presented. In Section 2 themathematical framework is summarised. Thereafter
the numerical approach is presented in Section 3 which is followed by test cases in Section 4. Conclusions
can be found in Section 5.

2 The mathematical formulation
This section presents themathematical framework and develops the adjoint systems which will be solved us-
ing numerical approaches in the next section. The relaxation systems under consideration will be presented.
Thereafter the adjoint formulation will be derived.



E.M. Yohana and M. K. Banda, Relaxation approaches for adjoint control | 47

2.1 Relaxation approaches

The relaxation approach [4, 24] transforms a nonlinear conservation law into a system of semi-linear equa-
tions with a nonlinear source term. A good approximation to the original conservation law is achieved by
solving relaxation systems for a positive parameter ε ≪ 1. Such relaxation systems are sti�. These systems
can be solved numerically by avoiding computationally costly Riemann solvers. Here, two classes of relax-
ation approaches are considered, namely the relaxation approximation [24] and the discrete kinetic model
[3] for the purpose of a comparative study in optimization.

The �rst relaxation fomulation for the Cauchy problem in equation (1.1) is obtained by replacing (1.1) by
a semi-linear system with a sti� lower order term as follows:

∂tuε + ∂xvε = 0

∂tvε + A2∂xuε = −
1
ε
(vε − F(uε))

(2.1)

where ε is the small positive parameter called the relaxation rate, vε ∈ ℝm is the arti�cial variable and A =
diag{a1, a2, . . . , am} is a positive diagonal matrix. As ε → 0, the relaxation system (2.1) formally relaxes
to the original HCL. For the solution of equation (2.1) to approach solutions of equation (1.1) as ε → 0, the
following sub-characteristic condition needs to be satis�ed [24, 25, 43]:

A2 − F�(uε)2 ⩾ 0 ∀uε

where F�(uε) is the Jacobian matrix of the �ux function F. In addition, the linear hyperbolic part of equation
(2.1) has two characteristic variables:

vε ± Auε . (2.2)

The above relaxation systemwill be referred to as the JXM in the sequel and it is solved subject to the following
initial conditions:

uε(x, t = 0) = u0(x), vε(x, t = 0) = F(u0(x))

with u0(x) given in equation (1.1).
Next a di�erent relaxation system presented in [3, 29, 32] namely the discrete kinetic system will be in-

troduced. In this relaxation system, which is simply a BGK model [9], the system of conservation equations
in equation (1.1) is approximated by the following semi-linear systems:

∂tfεk + λk∂xf
ε
k =

1
ε
(Mk(Pfε) − fεk ), k ∈ {1, . . . , L} (2.3)

where ε > 0, each fεk ∈ ℝ
m, λk ∈ ℝ are �xed velocities, P is de�ned by Pf = ∑k fk. In addition the following

initial conditions will be imposed:
fεk (x, t = 0) = Mk(u0(x)).

The Maxwellian functionsMk : ℝm → ℝm depend on the quantities uε = Pfε, the �ux F and the veloc-
ities λk. These functions are continuous and piecewise C1. To link the system in equation (1.1) and (2.3), the
following compatibility conditions must be satis�ed

N
∑
k=1

Mk(u) = u,
N
∑
k=1

λkMk(u) = F(u) (2.4)

for all u. A model of equation (2.3) satisfying condition (2.4) can have the following Maxwellian: N = 2, λ1 =
−λ, λ2 = λ and

M1(u) =
1
2(

u − F(u)
λ ), M2(u) =

1
2(

u + F(u)
λ ).

In the sequel the relaxation system in equation (2.3) will be referred to as the DKS. For more analytical
properties of the DKS, the reader may refer to [4, 5]. In general, the Maxwellian functions take the form [5]:

Mk(u) = αku + βkF(u), αk , βk ∈ ℝ. (2.5)

In the next section, the optimization problem to be considered will be introduced in conjuction with the
adjoint-based method, which is also discussed in the subsequent sections.
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2.2 Adjoint approach to optimization

To solve the problem in equation (1.2) the matching-type objective functional of the form:

J(u(x, T;u0);u0, ud) =
1
2 ∫

Ω
|u(x, T;u0) − ud(x)|2 dΩ. (2.6)

where u is the solution of (1.1) at a terminal time T, u0 is the initial condition and ud is the target (desired)
solution. The idea is to solve the equivalent problems which minimise (2.6) subject to either JXM (equation
(2.1)) or DKS (equation (2.3)). Hence the initial valueu0(x) that will generate an optimal solutionu(⋅, T)which
matches the given target solution ud at terminal time T will be identi�ed. The optimization problem will be
solved using an adjoint-type approach.

Firstly, the problemwith constraints that are the JXM systemwill be discussed. Considering optimization
of the objective function in equation (2.6) above constrained by JXM (2.1), where u0, the initial condition, is
the control variable;
u(x, T;u0) is the solution at time T and ud is the desired pro�le. This problem can thus be re-written as an
unconstrained optimal control problem,

L = L(u(x, T), u0, µ;ud)

= J(u(x, T), u0;ud) + ∫
T

0
∫
Ω
µt [

∂tu + ∂xv
∂tv + A2∂xu +1ε (v − f(u))

] dx dt

where µ = (p, q), p, q ∈ ℝm is the co-state variable which is assumed to be a smooth function with compact
support in Ω and µ = 0 on the boundaries of Ω.

In [7] the �rst-order optimality system was given as: Consider the optimization of the objective function
in equation (2.6) above. Note that the superscript ε can be dropped for simplicity in notation while the super-
script t stands for transpose. To derive the �rst-order optimality system, the �rst variations of Lwith respect
to each of the variables in µ, u, v and u0 are set equal to zero. Hence one obtains:

∂tuε + ∂xvε = 0, uε(x, t = 0) = uε0(x)

∂tvε + A2∂xuε = −
1
ε
(vε − F(uε)), vε(x, t = 0) = F(uε0(x))

(2.7)
−∂tp − A2∂xq = F�(u)

q
ε
, p(x, t = T) = pT(x)

−∂tq − ∂xq = −
q
ε
, q(x, t = T) = qT(x).

Setting the partial derivative of ∇u0L to zero, gives the optimality condition

∇u0 J = ∫
Ω
[p0 − F�(u0)

q0
ε ] dx.

This simpli�es to the gradient

∇u0 J = p0 + F(u0)Tq0. (2.8)

The system (2.7) which comprises the JXM system (2.1) with initial conditions, the adjoint equations with
terminal conditions and the gradient (2.8) together form the �rst-order optimality system [7].

A similar approach is undertaken for the DKS. Consider the Maxwellians of the form in equation (2.5):

Mk(u) = αku + βkF(u) = αk
N
∑
i=1

fi + βk
N
∑
i=1
λifi . (2.9)

Hence for the discrete kinetic model one obtains the Lagrangian of the form:

L = L(u(x, T)(u0), µk;ud)

= J(u(x, T)(u0);ud) +
N
∑
k=1

(∫
T

0
∫
Ω
µk [∂tfk + λk∂xfk −

1
ε
(Mk(u) − fk)] dx dt).
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Introducing the Maxwellians in equation (2.9) as above and re-writing the Lagrangian functional gives

L = J(u(x, T)(u0);ud) +
N
∑
k=1

(∫
T

0
∫
Ω
µk [∂tfk + λk∂kfk −

1
ε (αk

N
∑
i=1

fi + βk
N
∑
i=1
λifi − fk)] dx dt).

The �rst-order optimality system for the above Lagrangian takes the form:

∂tfεk + λk∂xf
ε
k =

1
ε
(Mk(Pfε) − fεk ), k ∈ {1, . . . , L}

(2.10)

−∂tpk − λk∂xpk =
1
ε [

N
∑
i=1

(αipi + βiλipi) − pi]

with

pi(x, T) = Mi(uT , ud), i = 1, . . . , L.

The framework introduced in this section serves as a foundation for the numerical solution of hyperbolic
partial di�erential equation as well as for the optimization process. In the next section, the discretization
methods for the relaxations systems (2.1) and (2.3)will be considered, aswell as for thederivedadjoint systems
(2.7) and (2.10).

3 Discretizations of the relaxation systems
In this section discretization approaches for the problems discussed in the previous sectionwill be discussed.
In the solution approach, the semi-discrete method in combination with the Implicit–Explicit (IMEX) [7, 37]
Runge–Kutta schemes will be applied. The numerical schemes will be tested on one-dimensional nonlinear
systems of hyperbolic partial di�erential equations in the next section.

3.1 Discretization of the systems based on JXM

Let hj denote a grid cell width, with grid spacing hj = xj+1/2−xj−1/2, where xj+1/2 = ( j+1/2)hj, and a uniform
discrete time step,△t = tn+1 − tn for n = 0, 1, 2, . . . . Next approximatewn

j+1/2 = w(xj+1/2, tn), and de�ne

Dxwj =
wj+1/2 −wj−1/2

hj

to obtain the following discretization of the forward system in equation (2.1):

∂tuj +
1
hj

(vj+1/2 − vj−1/2) = 0

∂tvj +
1
hj
A2 (uj+1/2 − uj−1/2) = −

1
ε
(vj − Fj)

where
Fj =

1
hj

∫
xj+1/2

xj−1/2
F(u) dx = F(

1
hj

∫
xj+1/2

xj−1/2
u dx) + O(h2) = F(uj) + O(h2)

see [24] for details. Applying the �rst-order upwind scheme to the characteristic variables in equation (2.2)
gives the following, for each component of u and v:

uj+1/2 =
1
2
(uj + uj+1) −

1
2
a−1(vj+1 − vj)

vj+1/2 =
1
2
(vj + vj+1) −

1
2
a(uj+1 − uj)
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where a canbe chosenasmax{|a1|, |a2|, . . . , |am|}, also seeSection4 for speci�c examples. Similarly, second-
order schemes can be derived based on the MUSCL formulation as presented in [24]. Note that here the piece-
wise linear interpolation to the components of v ± Au are considered [24].

An Implicit–Explicit (IMEX) algorithmpresented in [7] for the time discretization of the relaxation system
(2.1)will be considered. See also, for example,more recentwork on Total Variation diminishing (TVD) Runge–
Kutta time discretizations construction for relaxation systems in [38, 39].

Following the same discretization as in [7, 24], starting with initial conditions unj , v
n
j = F(u

∗
j ) one pro-

ceeds as follows:

u∗j = u
n
j , v∗j = v

n
i −
△t
ε
(v∗j − f(u

∗
j ))

u(1)j = u
∗
j − △tDxv

∗
j , v(1)j = v

∗
j − △ta

2Dxu∗j
un+1j = u

1
j , vn+1j = v

1
j .

Following a similar Runge–Kutta time discretization algorithm as for the �rst-order scheme, one obtains
the following second-order time-discretization:

u∗ = un , vn = f(u∗)

v∗ = vn + △t
ε
(v∗ − f(u∗))

u(1) = u∗ − △tDxv∗

v(1) = v∗ − △ta2Dxu∗.

Hence,

un+1 = 1
2
(un + u(2)), vn+1 = 1

2
(vn + v(2)).

3.2 Discretization of systems based on DKS

A discretization of a BGK-like model is considered:

∂tfεi + λi∂xf
ε
i =

1
ε
(Mi(Pfε) − fεi ), i ∈ {1, . . . , N} (3.1)

which is the model based on a kinetic approximation of the problem (1.1) with initial conditions

fε(x, 0) = fε0(x) = Mi(u0)

where Mi are Lipschitz (piecewise C1) continuous functions called Maxwellians, de�ned on ℝm, and other
conditions are satis�ed as discussed under Section 2.

The �rst-order spatial discretization of the discrete kineticmodel is simple upwinding [3]. For the Runge–
Kutta time discretization scheme, the operator splitting approach is applied and split the relaxation system
(3.1) into sti� ODE and an advection system. These will be presented below for completeness:

Considering Maxwellian functionsMi(u) = αiu + βiF(u), Mi(u) ∈ ℝm (i = 1, 2, . . .), one obtains, for the
sti� ordinary di�erential equation (ODE):

u∗
j = u

n
j , fnj,i = Mj,i(u∗

j )

∂tfi =
1
ε
(Mi(u) − fi) â⇒ f∗j,i = f

n
j,i +
△t
ε
(Mj,i(u∗

j ) − f
∗
j,i).

And for the advection system,

∂tfi + λi∂xfi = 0

fn+1/2j,i = f
n
j,i − λi
△t
2hj

(f∗j+1,i − f
∗
j−1,i) +

|λi|△t
2hj

(f∗j+1,i − 2f
∗
j,i + f

∗
j−1,i)

un+1j = ∑
j
fn+1/2j,i , fnj,i = Mj,i(un+1j ).
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For practical reasons, for example, for two-velocities (N = 2) discrete kinetic model, the Maxwellians take
the form [3],

Mi(u) =
1
2 (u ±

F(u)
λi

) , λ1 = λ, λ2 = −λ.

The second-order spatial discretisation is applied as follows [3]: consider χi = |λ|△t/hj. For positive ve-
locity λi, and for all j ⩾ 0,

fn+1/2j,i = (1 − χi)f
n
j,i + χif

n
j−1,i − hj

χi(1 − χi)
2 (σj,i − σj−1,i) .

For all j ⩾ 0, and for non-positive velocities, λi,

fn+1/2j,i = (1 − χi)f
n
j,i + χif

n
j+1,i − hj

χi(1 − χi)
2 (σj+1,i − σj,i) .

A minmod slope limiter is used for all j ⩾ 0,

σni,j = minmod(X1,i,j
△fnj+1/2,i
hj

, X2,i,j
△fnj−1/2,i
hj

)

where

minmod(a, b) = sgn(a) + sgn(b)
2

min(|a|, |b|)

and

△fnj+1/2,i = f
n
j+1,i − f

n
j,i , △fnj−1/2,i = f

n
j,i − f

n
j−1,i

where X1,i,j and X2,i,j can be chosen according to [3].
To demonstrate the implementation of the temporal discretization a 3-velocitiesmodel relaxation system,

corresponding to λ1 = −λ2 = λ > 0 and λ0 = 0will be applied. This was proposed in [5], where f+ corresponds
to λ1, f0 corresponds to λ0 and f− corresponds to λ2

∂tf+ + λ∂xf+ =
1
ε
(M+(u) − f+)

∂tf0 =
1
ε
(M0(u) − f0)

∂tf− − λ∂xf− =
1
ε
(M−(u) − f−).

For Runge–Kutta time discretization, the system above is split into two parts: the collision/sti� ODE part

∂tf+ =
1
ε
(M+(u) − f+)

∂tf0 =
1
ε
(M0(u) − f0)

∂tf− =
1
ε
(M−(u) − f−)

and the transport system
∂tf+ + λ∂xf+ = 0
∂tf0 = 0
∂tf− − λ∂xf− = 0.

As for the �rst-order scheme, an IMEX scheme is applied,which takes two stages, one for sti� part and another
for advection system, thus, for unj = u

∗
j ,

∂tf+ =
1
ε
(M+(u) − f+)

∂tf0 =
1
ε
(M0(u) − f0)

∂tf− =
1
ε
(M−(u) − f−)
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f∗j,+ = f
n
j,+ −

1
ε
(Mj,+(u∗

j ) − f
∗
j,+)

f∗j,0 = f
n
j,0 −

1
ε
(Mj,0(u∗

j ) − f
∗
j,0)

f∗j,− = f
n
j,− −

1
ε
(Mj,−(u∗

j ) − f
∗
j,−)

f(1)j,+ = f
∗
j,+ − △tλDxf

∗
j,+ = f

∗
j,+ − χi(f

∗
j,+ − f

∗
j−1,+) − hj

χi(1 − χi)
2 (σ∗j,+ − σ

∗
j−1,+)

f(1)j,− = f
∗
j,− + △tλDxf

∗
j,− = f

∗
j,− + χi(f

∗
j+1,− − f

∗
j,−) − hj

χi(1 − χi)
2 (σ∗j+1,− − σ

∗
j,−)

f∗∗j,+ = f
(1)
j,+ +
△t
ε
(Mj,+(u∗∗

j ) − f∗∗j,+ ) +
2△t
ε

(Mj,+(u∗
j ) − f

∗
j,+)

f∗∗j,0 = f
(1)
j,0 +
△t
ε
(Mj,0(u∗∗

j ) − f∗∗j,0 ) +
2△t
ε

(Mj,0(u∗
j ) − f

∗
j,0)

f∗∗j,− = f
(1)
j,− +
△t
ε
(Mj,−(u∗∗

j ) − f∗∗j,− ) +
2△t
ε

(Mj,−(u∗
j ) − f

∗
j,−)

f(2)j,+ = f
∗∗
j,+ − △tλDxf

∗∗
j,+ = f

∗∗
j,+ − χi(f

∗∗
j,+ − f

∗∗
j−1,+) − hj

χi(1 − χi)
2 (σ∗∗j,+ − σ

∗∗
j−1,+)

f(2)j,− = f
∗∗
j,− + △tλDxf

∗∗
j,− = f

∗∗
j,− + χi(f

∗∗
j+1,− − f

∗∗
j,− ) − hj

χi(1 − χi)
2 (σ∗∗j+1,− − σ

∗∗
j,−)

fn+1j,+ =
1
2
(f(2)j,+ + f

n
j,+), f

n+1
j,− =

1
2
(f(2)j,− + f

n
j,−), f

n+1
j,0 = f

∗∗
j,0

where
un+1j =

1
2 ∑

i
(f(2)j,i + f

n
j,i).

In the following section, the discrete version of the adjoint relaxation system in (2.7) will be derived.
Analogously, the discretization process for both space and time is achieved separately, and then, the two
semi-discrete schemes are merged to obtain a fully discrete scheme.

3.3 Discretization of the adjoint systems

A similar approach for the discretization of the adjoint system as above will be applied, following a similar
approach to [7]. The adjoint system is solved backwards in time.

The set of adjoint equations (2.7) is considered.
As shown in [7], the characteristic variables p ± Aq satisfy

−∂t(p ± Aq) ∓ A2∂x(p ± Aq) = 0
∂t(−p ∓ A(−q)) ∓ A2∂x(−p ± A(−q)) = 0.

The adjoint equation is solved backwards in time, thus an upwind discretization for each component of the
linear system advects p ± aq and −p ± a(−q) with velocity ∓a. Therefore,

pj+1/2 = −
pj + pj+1

2
− a

qj+1 − qj
2

qj+1/2 = −
qj + qj+1

2
−
pj+1 − pj

2a
.

The time discretization of the adjoint system takes the form [7]:

p(1)j = p
n+1
j , q(1)j = q

n+1
j

p∗j = p
(1)
j +
△t
ε
q∗j fj(u

∗
j ) − △ta

2Dxq1j , q∗j = q
(1)
j −
△t
ε
q∗j − △tDxp

(1)
j

pnj = p
∗
j , qnj = q

∗
j .
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For the second-order approach anMUSCLmethod is applied. Thiswas �rst developedbySweby [40]. Schemes
developed using this approach satisfy the TVD property and are utmost second-order accurate.

Similarly, the second-order in time and space discretization is similar to the �rst order scheme, see [7].
A second-order accurate discretization of the adjoint equations in space can be summarised as follows:

pj+1/2 =
1
2 (pj + pj+1 + a(qj+1 − qj) +

1
2
(σ−j − σ

+
j+1)) .

Similarly,

qj+1/2 =
1
2
(qj+1 + qj) +

1
2a

(−pj + pj+1) −
1
4a

(σ+j+1 + σ
−
j ).

Replacing p by −p and q by −q, one obtains:

pj+1/2 =
1
2 (−pj − pj+1 + a(−qj+1 + qj) +

1
2
(σ−j − σ

+
j+1)) (3.2)

qj+1/2 =
1
2
(−qj+1 − qj) +

1
2a

(pj − pj+1) −
1
4a

(σ+j+1 + σ
−
j ) (3.3)

where

σ−j = (pj+1 − aqj+1 − pj + aqj)φ(ϑ
−
j )

σ+j+1 = (pj+2 + aqj+2 − pj+1 − aqj+1)φ(ϑ
+
j+1).

Furthermore,

φ(ϑ±j ) = φ (
pj ± aqj − (pj−1 ± aqj−1)
pj+1 ± aqj+1 − (pj ± aqj)

) .

To conform with the format of the adjoint equations, equations (3.2) and (3.3) are written as

pj+1/2 = − [
1
2
(pj + pj+1) −

a
2
(qj − qj+1) −

1
4
(σ−j − σ

+
j+1)]

qj+1/2 = − [
1
2
(qj+1 + qj) −

1
2a

(pj − pj+1) +
1
4a

(σ+j+1 + σ
−
j )] .

The second-order TVD Runge–Kutta time discretization takes the form (also see [7]):

p(2)j =
1
2
pn+1j , q(2)j =

1
2
qn+1j

q∗∗j = (
ε

ε + △t)
q(2)j + (

ε
ε + △t)

△t
2hj

[(p(2)j+1 − p
(2)
j+1) + a(q

(2)
j+1 − 2q

(2)
j + q

(2)
j−1)]

+ (
ε

ε + △t)
△t
4hj

[σ−j−1 − (σ
+
j + σ
−
j ) + σ

+
j−1]

p∗∗j = p
(2)
j + q

∗∗
j
△t
ε
f �(u∗∗j ) + a2 △t

2hj
[(q(2)j+1 − q

(2)
j−1) +

1
a
(p(2)j+1 − 2p

(2)
j + p

(2)
j−1)]

− a △t
4hj

[σ−j−1 + (σ
+
j − σ
−
j ) − σ

+
j+1]

p(1)j = p
∗∗
j , q(1)j = q

∗∗
j

q∗j = (
ε

ε + △t)
q(1)j − (

ε
ε + △t)

2△t
ε
q∗∗j

+ (
ε

ε + △t)
△t
2hj

[(p(1)j+1 − p
(1)
j−1) + a(q

(1)
j+1 − 2q

(1)
j + q

(1)
j−1)]

+ (
ε

ε + △t)
△t
4hj

[σ−j−1 − (σ
+
j + σ
−
j ) + σ

+
j+1]
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p∗j = p
(1)
j −
△t
ε
f �(u∗∗j )(q∗j − 2q

∗∗
j )

+ a2 △t
2hj

[(q(1)j+1 − q
(1)
j−1) +

1
a
(p(1)j+1 − 2p

(1)
j + p

(1)
j−1)]

− a △t
4hj

[σ−j−1 + (σ
+
j − σ
−
j ) − σ

+
j+1]

pnj =
1
2
pn+1j + p

∗
j , qnj =

1
2
qn+1j + q

∗
j .

Without loss of generality, the discretization of the adjoint system (2.10) is considered for a 3-velocity system:

−∂tpi − λi∂xpi =
1
ε
(Mi(u) − fi), i = 1, . . . , 3.

If the system is written in an extended form

−∂tp+ + λ∂xp+ =
1
ε
(M+(u) − f+)

−∂tp0 =
1
ε
(M0(u) − f0)

−∂tp− − λ∂xp− =
1
ε
(M−(u) − f−).

(3.4)

Thus, second-order Runge–Kutta time discretization for the adjoint system (3.4) would be

p(2)j,+ =
1
2
pn+1j,+ , p(2)j,− =

1
2
pn+1j,−

p∗∗j,+ = p
(2)
j,+ −
△t
ε (Mj,+(u∗∗

j ) − f∗∗j,+ ) − λ△tDxp
(2)
j,+

p∗∗j,− = p
(2)
j,− +
△t
ε (Mj,−(u∗∗

j ) − f∗∗j,− ) + λ△tDxp
(2)
j,−

p(1)j,+ = p
∗∗
j,+, p(1)j,− = p

∗∗
j,−

p∗j,+ = p
(1)
j,+ −

1
ε (Mj,+(u∗

j ) − f
∗
j,+) +

2△t
ε (Mj,+(u∗∗

j ) − f∗∗j,+ ) − λ△tDxp
(1)
j,+

p∗j,− = p
(1)
j,− −
△t
ε (Mj,−(u∗

j ) − f
∗
j,−) +

2△t
ε (Mj,−(u∗∗

j ) − f∗∗j,− ) + λ△tDxp
(1)
j,−

pnj,+ =
1
2
(pn+1j,+ + p

∗
j,+), pnj,−

1
2
(pn+1j,− + p

∗
j,−).

3.4 Algorithm for gradient computing

The optimal control method under consideration involves the computation of the cost functional (2.6) gradi-
ent. This gradient is used to modify the design variable (in this case initial condition) which adjusts in such
a way to produce an optimal solution that matches the given target. To compute the gradient of (2.6) and
incorporate it in the optimal control method, the following algorithm can be applied.

Algorithm 3.1. The following is the algorithm to minimize the functional:
1. Consider the constraint in relaxation form (2.1) and (2.3);
2. Derive its adjoint system;
3. Solve for the �ow variable u(⋅, T) forward in time;
4. Use the solutionof the�owvariable above at the terminal time T to solve for the adjoint variable backward

in time;
5. Use the adjoint variable and the control variable u0 to evaluate the gradient of the cost functional (2.6),

∇u0 J;
6. Update the control variable by using the gradient obtained above and the chosen step size by making a

step in the negative gradient direction,

αnew = αold∇u0 J;
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7. Repeat steps 3 to 6 until minimization is reached.

This algorithm was applied to optimize the Euler equations of gas dynamics. To ensure convergence of the
optimization process the Armijo step-size rule described in [6] was considered to automatically choose the
optimal value of α while making steps towards the steepest descent direction.

4 Numerical results
This Section presents a comparative study of the second-order numerical results based on implementation
of the two relaxing schemes derived under Section 3. The main focus was to investigate systems of Euler
equations by �rst computing their solutions and then employing adjoint-based control summarized by Al-
gorithm 3.1 as an optimal control strategy. Two relaxing schemes: the JXM scheme described in [24] and the
discrete kinetic scheme (DKS) presented in [3, 32] are compared. Schemes applied are based on the method
of lines associated with Runge–Kutta type time discretizations which are total variation diminishing (TVD).
Second-order accuracy in solution is achieved through second-order MUSCL type space discretization cou-
pled with a second-order Runge–Kutta time splitting scheme.

All numerical results that will be presented in the sequel were performedwith Intel core i5 processor with
2.67 GHz, and 4 GB RAM, and the programs are developed using the Python scripting language.

4.1 Numerical discretizations of spatial and temporal domains

To discretize both the time and spatial domains, consider a bounded domain of ℝ, [xL , xR]. For the sake of
simplicity, the domain [xL , xR] is divided uniformly into a sequence of M + 1 gridpoints, m = 0, . . . ,M + 1,
such that x0 = xL, xM = xR; with a mesh size ∆x = 1/(M − 1) each and gridcell width ∆x = xj+1/2 − xj−1/2. The
temporal domain is considered to be [0, T], discretized into N time levels, tn, with time step, ∆t = tn+1 − tn,
and the time horizon is given by T = N∆t. In the spirit of �nite volumes, the approximate solution based on
cell averages u(xj , tn) will be denoted by unj .

The approximate solutions were computed on a uniformmesh, with 200, 400, 800, and 1600 gridpoints
and present results for di�erent values of time. The time step is �xed at ∆t selected based on the CFL condition
as ∆t = CFL∆x/amax for stability, where amax is the maximum of the characteristic speeds. Without loss of
generality, solutions are computed on the spatial computational domain [0, 1], and a mesh with M + 1 grid
points. Where possible, numerical solutions are comparedwith exact solutions or a reference solution solved
with the number of spatial grid points M = 1600.

For the relaxing scheme DKS, the macroscopic variable u is linked to microscopic fi by the Maxwellians
given in equation (2.5) where Maxwellians must be monotone preserving according to [3].

Next, the following variables related to DKS, that will be used throughout the course of this section are
de�ned: for a system with two velocity models λ1 = −λ2, while for three velocities discrete kinetic scheme,
λ3 = −λ1, where λ2 is set to 0. Furthermore, α = α1 = α3, α2 = 1 − 2α, β = β2, hence

β1 =
1
2 (−

1
λ3
− β) , β3 =

1
2 (

1
λ3
− β) .

For two-velocity models, obviously the diagonal relation

M1(u) =
1
2 (u +

F(u)
λ1

) , M2(u) =
1
2 (u +

F(u)
λ2

)

between macroscopic u and Maxwellians is obtained. Here, numerical results for discrete kinetic model are
restricted to two or three velocities schemes. A relaxation rate ε = 10−8 is considered for both schemes.

In the sequel, �rstly numerical results obtainedwith the schemes as derived in Section 3will be presented
for various gas dynamic problems. The aim is to demonstrate the performance of these accurate numerical
schemes to be incorporated in adjoint-based optimal control process.
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(a) First-order test (b) Second-order test

(c) First-order test (d) Second-order test

(e) First-order test (f) Second-order test

Figure 1. First and second order numerical solutions for density, velocity and pressure pro�les with JXM and DKS, for 1D Euler
equations at time, T = 0.17, uL = (1.25, 0.0, 1.2), uR = (0.25, 0.0, 0.25), for a1 = 1.0, a2 = 2.5, a3 = 5.2, M = 400 and
ε = 10−8.

4.2 Numerical solutions for systems of equations

Here, the solution of one-dimensional system of equations will be considered, and in particular, these solu-
tions will act as an illustration of the optimization process under consideration.

Consider the approximate numerical solution of the one-dimensional Euler equations of gas dynamics
in a conserved form

∂
∂t
ρ + ∂

∂x
m = 0

∂
∂t
m + ∂

∂x
(ρu2 + p) = 0

∂
∂t
E + ∂

∂x
(u(E + p)) = 0

(4.1)
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(a) First-order test (b) Second-order test

(c) First-order test (d) Second-order test

(e) First-order test (f) Second-order test

Figure 2. First and second order numerical solutions for density, velocity and pressure pro�les with JXM and DKS, for 1D Euler
equations at time, T = 0.17, uL = (1.45, 0.0, 1.5), uR = (0.45, 0.0, 0.5); a1 = 2.2, a2 = 2.5, a3 = 5.0, M = 400 and
ε = 10−8.

where ρ, u, m = ρu, p, and E are, respectively, the density, velocity, momentum, pressure, and total energy
of the gas. For a perfect gas, E is related to other quantities by

E = p
ã− 1
+
1
2
ρu2

where ã = 1.4 constitutes the thermodynamic property of the gas and is the ratio of speci�c heat constants.
The Jacobian of the �uxes of (4.1), therefore, has three eigenvalues given by

λ− = u − c, λ0 = u, λ+ = u + c

where c = √ãp/ρ = √ãRT is the local sound speed, R the universal gas constant and T is the temperature of
the gas. For computational tests, the choices according to [24], i.e., a1, a2, a3 = sup|u − c|, sup|u|, sup|u + c|,
respectively, or a1 = a2 = a3 =max(sup|u − c|, sup|u|, sup|u + c|) can be applied. The two relaxation systems
(2.1) and (2.3) with appropriate parameters will be solved.
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(a) First-order test (b) Second-order test

(c) First-order test (d) Second-order test

(e) First-order test (f) Second-order test

Figure 3. First and second order numerical solutions for density, velocity and pressure pro�les with JXM and DKS, for 1D Euler
equations at time, T = 0.17, uL = (2.5, 0.0, 2.0), uR = (0.5, 0.0, 0.6); a1 = 3.5, a2 = 4.5, a3 = 5.5, M = 400 and ε = 10−8.

4.3 Sod shock tube problem

The computational tests involved experimentation with the Sod’s data for the Shock Tube problem. Detailed
descriptions of the shock tube problem is found in [22, 26].

The schemes derived in Section 3 were implemented with the Riemann data de�ned in this way:
uL = (ρL , vL , pL) corresponding to the density, velocity and pressure on the left part of the domain, i.e.,
0 ⩽ x < 0.5 and uR = (ρR , vR , pR) is the data corresponding to density, velocity and pressure on the right
part of the domain, i.e., 0.5 ⩽ x ⩽ 1. All tests (unless stated otherwise) for the system of the Euler equations
are carried out for the following set of values: T = 0.17, the computational space domain is [0, 1], M = 400
grid-points, CFL = 0.75 and ε = 10−8. In addition, for the second-order relaxing schemes the minmod slope
limiter was used.

The solution of the Euler equations was computed with the following pair of Riemann data:

uL = (1.25, 0.0, 1.2), uR = (0.25, 0.0, 0.25).
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(a) First-order (b) Second-order

(c) First-order (d) Second-order

(e) First-order (f) Second-order

Figure 4. Comparing �rst-order and second-order solutions for di�erent grids with JXM scheme, T = 0.17, uL = (2.5, 0.0, 2.0),
uR = (0.5, 0.0, 0.6); a1 = 2.0, a2 = 3.5, a3 = 5.5, ε = 10−8.

For this a1 = 1.0, a2 = 2.5, a3 = 5.2 is considered. Results obtainedwith the �rst and second order relaxing
schemes are presented in Fig. 1. In this �gure it can be observed that the two schemes agree very well with
each other.

The second example is solved with initial condition uL = (1.45, 0.0, 1.5), uR = (0.45, 0.0, 0.5). This
time a1 = 2.2, a2 = 2.5, a3 = 5.0 is chosen. Solutions computed over a time length T = 0.17 are displayed
in Fig. 2. Density, velocity and pressure pro�les for both schemes are reasonably equivalent.

Finally, the last example evolved from initial data uL = (2.5, 0.0, 2.0), uR = (0.5, 0.0, 0.6) computed
over same time horizon T = 0.17 as for previous examples, and the present simulated results are displayed
in Fig. 3. Simulations show that, solutions obtained with two di�erent relaxing schemes are comparable.

These examples demonstrate that the two relaxing schemes under consideration are basically equivalent
and give similar results in one-dimension as expected.

All numerical results for the two relaxing schemes presented for di�erent meshes show that the two
schemes, the JXM and the DKS give similar results. The meshes of 200, 400, 800, 1600 gridpoints were
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(a) First-order (b) Second-order

(c) First-order (d) Second-order

(e) First-order (f) Second-order

Figure 5. Comparing �rst-order and second-order solutions for di�erent grids with DKS. Same parameters as in Fig. 4.

considered for the sake of grid convergence. Clearly, results show schemes convergence with mesh re�ne-
ment, but beyond 400 gridpoints, numerical experiments reveal that re�nement is no longer necessary as
solutions are already sharp enough at this point (see Figs. 4 and 5). Thus, only numerical results for 400 grid
points are presented, and this grid will be used for optimization as well.

It needs to be noted that some sets of data introduce more viscosity, see for example in Fig. 3, consid-
erably smearing contact discontinuities while others produce sharper solutions even for �rst-order schemes
especially with increased grid re�nement. In addition, these numerical results further verify the applicability
and the robustness of the methods considered.

4.4 Adjoint-optimization tests

The optimal control is carried out by matching the numerical solution to the target for a given time length as
discussed in Algorithm 3.1. The minimization process, therefore, involves the cost functional of L2 norm as
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(a) First-order test (b) Second-order test

(c) First-order test (d) Second-order test

(e) First-order test (f) Second-order test

Figure 6. First-order (Left) and second-order (Right) 1D Euler equations optimal control results. The optimal solution is shown by
the red solid line and target by black solid line with squares at data points, T = 0.17, uL = (1.2, 0.078, 1.2),
uR = (0.325, 0.285, 0.295), a1 = 2.183, a2 = 3.004, a3 = 4.286, M = 400 and ε = 10−8.

de�ned in (2.6). In addition, the Wolfe conditions [6, 36] to restrict the choice of the step-size α which is used
tomodify the functional gradient (2.8) that perturb the �ow solution is employed. The control parameters are
chosen to be initial values of the primitive variables: density, velocity and pressure. Existence of the optimal
control solution can be conceptualized fromnumerical results. A goodmatch between the numerical solution
and the desired one for both �rst and second order schemes was obtained.

The process is initiated by choosing some initial guess u0, and then using the relaxing schemes derived
under Section 3 to solve the hyperbolic conservation laws inorder to obtain the solution u(x, T), a function of
u0 at some terminal time, T. The functional gradient (2.8) is calculated and used at every optimization cycle
to modify the design parameter u0, and eachmodi�ed u0 is evolved by the relaxing scheme until the optimal
solution u(x, T) that matches the target is attained. The initial solution, denoted V(x, T)(u0), is obtained
by solving the �ow equation once forward in time, where V is any primitive quantity (density, velocity and
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(a) First-order test (b) Second-order test

(c) First-order test (d) Second-order test

(e) First-order test (f) Second-order test

Figure 7. First-order (Left) and second-order (Right) 1D Euler equations optimal control results obtained with DKS. Optimal
solution is depicted by the red solid line and target by black solid line with squares at data points, same parameters as used for
Fig. 6.

pressure for the Euler system of equations). Optimal denotes the numerical solution that matches the desired
pro�le (solution) and the desired pro�le is called Target.

The stopping criterion used for the functional (2.6) is de�ned using absolute values, |J(u0, ud)| < 10−4.
In the �rst example, the initial guess for the target solution comprises the Sod shock tube data for the

system of Euler equations (4.1),

uL = (1.0, 0.0, 1.0) , uR = (0.125, 0.0, 0.1) . (4.2)

The target solution for the initial data (4.2) is obtained using a1 = 1.0, a2 = 1.68, a3 = 5.045 over T = 0.17.
The optimal control results presented are �rst-order and second-order in time and space for the two relaxing
schemes presented in Section 3.

The �rst example considered matches the target to the optimal solution computed from the set of data

uL = (1.2, 0.078, 1.2) , uR = (0.325, 0.285, 0.295)
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(a) First-order test (b) Second-order test

(c) First-order test (d) Second-order test

(e) First-order test (f) Second-order test

Figure 8. First-order (Left) and second-order (Right) 1D Euler equations optimal control results. Optimal (red solid line) and
target (black solid line with squares at data points) solutions, for density, velocity and pressure pro�les with JXM scheme at
time, T = 0.17, uL = (1.2, 0.2, 1.25), uR = (0.32, 0.73, 0.32), a1 = 2.47, a2 = 3.5, a3 = 4.36, M = 400 and ε = 10−8.

a1 = 2.183, a2 = 3.004, a3 = 4.286 over the time T = 0.17. The optimal solution for density, pressure and
velocity were found to be in a very good agreement with the target for both schemes. First and second order
optimal control results for JXM scheme and DKS are, respectively, displayed in Figs. 6 and 7.

The second example considered inwhich also the optimal solutions for the density, velocity and pressure
match accurately with the target solutions. Optimal solutions are solved for values of initial condition,

uL = (1.2, 0.2, 1.25) , uR = (0.32, 0.73, 0.32)

a1 = 2.47, a2 = 3.5, a3 = 4.36. The computations were carried out over usual time T = 0.17. First and
second order results for this set of data are displayed in Fig. 8 for JXM scheme and in Fig. 9 for DKS.

Thirdly, results for initial Riemann data

uL = (1.24, 0.1852, 1.25) , uR = (0.366, 0.629, 0.33)
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(a) First-order test (b) Second-order test

(c) First-order test (d) Second-order test

(e) First-order test (f) Second-order test

Figure 9. First-order (Left) and second-order (Right) 1D Euler equations optimal control results. Optimal (red solid line) and
target (black solid line with squares at data points) solutions, for density, velocity and pressure pro�les with DKS. Same
parameters as in Fig. 8.

are presented. The following parameters are chosen: a1 = 1.96, a2 = 2.9, a3 = 4.33. As for the previous ex-
amples, a goodmatch between the optimal and target solutions is obtained. Results are visualized in Figs. 10
and 11.

Finally, an example presented in [23] is considered. In this case, initial optimal solutions are solved for
values of Sod data initial condition,

uL = (1.0, 0.0, 1.0) , uR = (0.125, 0.0, 0.1)

and the target is the solution of the initial conditions

uL = (1.1, 0.0, 1.1) , uR = (0.2, 0.0, 0.2)

for a1 = 1.6, a2 = 2.82, a3 = 4, 25. Computations are carried out over usual time T = 0.17. First and
second order results for this example are given in Fig. 12 for JXM scheme and in Fig. 13 for DKS. A goodmatch
between optimal and target solutions was observed.
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(a) First-order test (b) Second-order test

(c) First-order test (d) Second-order test

(e) First-order test (f) Second-order test

Figure 10. First-order (Left) and second-order (Right) 1D Euler equations optimal control results. Optimal (red solid line) and
target (black solid line with squares at data points) solutions, for density, velocity and pressure pro�les with JXM scheme at
time, T = 0.17, uL = (1.24, 0.1852, 1.25), uR = (0.366, 0.629, 0.33), a1 = 1.96, a2 = 2.9, a3 = 4.33, M = 400 and
ε = 10−8.

In conclusion it can be pointed out that the numerical approach based on the two relaxation formulation
give very accurate results for the systems of conservation laws. This is achieved while the details of the �ow
are under-resolved. There is no need for following the shocks along the characteristics or such technical
computations.

4.4.1 Functional Convergence

The optimal control results presented above will be further analysed by giving a brief convergence history for
the two relaxing schemes. Under this analysis, the representative optimal control example associated with a
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(a) First-order test (b) Second-order test

(c) First-order test (d) Second-order test

(e) First-order test (f) Second-order test

Figure 11. First-order (Left) and second-order (Right) 1D Euler equations optimal control results. Optimal (red solid line) and
target (black solid line with squares at data points) solutions, for density, velocity and pressure pro�les obtained with the DKS.
Same parameters as in Fig. 10.

set of data

uL = (1.2, 0.078, 1.2) , uR = (0.325, 0.285, 0.295)

whose computationswere carried out over time T = 0.17 is chosen. The two graphs below summarize the pro-
gressive minimization of the cost functional with the number of iterations for both the �rst-order and second
order relaxing schemes. Results show that second-order schemes need fewer iterations to converge than �rst-
order ones. However, it must also be pointed out that the number of optimization iterations is independent
of the grid size.
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(a) First-order test (b) Second-order test

(c) First-order test (d) Second-order test

(e) First-order test (f) Second-order test

Figure 12. First-order (Left) and second-order (Right) 1D Euler equations optimal control results. Optimal (red solid line) and
target (black solid line with squares at data points) solutions, for density, velocity and pressure pro�les with JXM scheme at
time, T = 0.17, uL = (1.0, 0.0, 1.0), uR = (0.1, 0.0, 0.125) for optimal, and uL = (1.1, 0.0, 1.1), uR = (0.2, 0.0, 0.2) for
target. a1 = 1.96, a2 = 2.9, a3 = 4.33, M = 400 and ε = 10−8.

4.4.2 Comparison of computation time

Besides qualitatively and physically comparing optimal control results for the JXM scheme and the DKS dis-
cussed in the previous sections, a brief discussion of the computation time taken for simulation of these
results will follow. The time needed for the JXM scheme to converge is larger than that needed for the DKS.
Obviously, time taken for the algorithm to converge for both schemes increases with the number of discretiza-
tion points,M. The computation time for a representative example is reported in Tables 1 and 2 for the space
discretization with M = 200, 400, 800 gridpoints against the number of iterations, NI. All computations
are performed on a 2.67 GHz Intel Core dual i5 processor using Python 2.5.6.
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(a) First-order test (b) Second-order test

(c) First-order test (d) Second-order test

(e) First-order test (f) Second-order test

Figure 13. First-order (Left) and second-order (Right) 1D Euler equations optimal control results. Optimal (red solid line) and
target (black solid line with squares at data points) solutions, for density, velocity and pressure pro�les with DKS at time,
T = 0.17. Same parameters as in Fig. 12.

Table 1. Computational time for �rst-order
JXM and DKS.

M NI JXM DKS

200 22 1.8245× 102 1.26 × 102

400 22 9.07168 × 102 4.9572 × 102

800 22 1.9837 × 103 1.2961 × 103

Table 2. Computational time for
second-order JXM and DKS.

M NI JXM DKS

200 15 4.3234 × 102 2.97 × 102

400 15 1.7576 × 103 1.1453 × 103

800 15 3.2761 × 103 2.370 × 103
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(a) Convergence history for
�rst-order schemes

(b) Convergence history for
second-order schemes

Figure 14. Convergence history for the solution of the optimization problem computed with the �rst order (left) and
second-order (right) relaxing schemes for both JXM and discrete kinetic schemes DKS.

5 Conclusions
In this work we extended the adjoint based framework to second-order accurate solution approaches for
the hyperbolic systems of conservation laws. Some theoretical perspectives from previous works have been
substantiated by the numerical results obtained.

Research focused on the adjoint approach to optimize a problem constrained by nonlinear systems of Hy-
perbolic Conservation Laws. The optimality conditionswere derived giving the optimality systems for the two
relaxation approaches discussed. Thereafter their corresponding relaxing schemes of both �rst and second
order in time and spacewere derived. Contrary to the existing results, the adjoint schemederived in [7]was ex-
tended to systems and up to second-order optimal control results were obtained. Through generalization new
adjoint relaxing schemes were developed also for the discrete-velocity kinetic model. The coupling informa-
tion obtained by solving �ow and adjoint systems during optimization cycle for both relaxation approaches,
demonstrate that the �rst and second order numerical results obtained are promising and comparable.

From the point of view of e�ciency, computer runtimes for both schemes, of the �ow equations and that
of the adjoint equations are almost equal. But in general the discrete-velocity kinetic scheme tends to bemore
e�cient in terms of runtime. The storage requirements are almost equal since each scheme fundamentally
handles and processes almost the same amount of data during computations.

The hyperbolic systems of equations develop discontinuities due to the interaction of characteristics even
if their initial conditions are smooth. As a result solving the backward problem seems to be more sensitive.
Information is hardly reversible for interesting problems. Thus stability conditions need to be accurately sat-
is�ed at every time step especially for the adjoint problem.

For systems of hyperbolic conservation laws, the Euler equations of gas dynamics have been considered.
It is expected that these results can be extended to other nonlinear systems of hyperbolic conservation laws.
This study could have contributions in these areas of applications and also presents challenges to researchers
and scientists for further investigations.

It can, therefore, be concluded that the study lays down a foundation for possible application of ad-
joint optimization schemes to other application areas. Areas of further study may include incorporation of
schemes higher than second-order in optimization processes. It is also possible to extend this work to deal
withmulti-dimensional problems.More importantly, higher than�rst-order optimality conditions for adjoint-
based optimization are still elusive.
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