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Multistep variable methods for exact
integration of perturbed stiff linear systems

Abstract: A family of real and analytical functions with values within the ring of M(m, R) is introduced. The
solution for linear systems of differential equations is expressed as a series of @-functions. This new multi-
step method is defined for variable-step and variable-order, maintains the good properties of the @-function
series method. It incorporates to compute the coefficients of the algorithm a recurrent algebraic procedure,
based in the existing relation between the divided differences and the elemental and complete symmetrical
functions. In addition, under certain hypotheses, the new multistep method calculates the exact solution of
the perturbed problem.

The new method is implemented in a computational algorithm which enables us to resolve in a general man-
ner some physics and engineering IVP’s modeled by means systems of differential equations. The good be-
haviour and precision of the method is evidenced by contrasting the results with other-reputed algorithms
and even with methods based on Scheifele’s G-functions.
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1 Introduction

Perturbed harmonic oscillators are of particular interest in many areas of physics and engineering. They are
also of great interest in Astrodynamics, as newtonian equations of motion can be reduced to harmonic os-
cillators by means of the Kustaanheimo-Stiefel [19] and Burdet—Ferrandiz [2] transformations. In addition,
all natural phenomena, which can be modelled using perturbed oscillators, permit a model using perturbed
differential linear equation systems.

The numerical methods used to solve these kinds of systems should preferably have the property that, if
the terms of perturbation disappear from the independent variable t at an arbitrary moment, the numerical
method then integrates the non-perturbed system without any discretisation error [19]. Methods with this
desirable property are found in [3, 5, 10, 11, 15, 16].

In [4] the @-function series method is presented, for the precise integration of perturbed linear differ-
ential equations. Compared with the G-function series [16], this method has the advantage of integrating the
perturbed problem without any discretisation error, under certain conditions and with only the first two terms
of the series. It also maintains the desirable properties of the Scheifele methods.

The @-function series method is extremely precise. However, it is difficult to calculate coefficients for
each specific case it is applied to, which makes it difficult to implement on a computer.

In order to solve this problem, this article describes a variable-step, variable-order multistep method
(VSVO0), which maintains the good properties of the @-function series method and incorporates an algebraic
procedure to compute the coefficients of the algorithm.
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This multistep method is obtained by approximating the perturbation function derivatives, which appear
in the series method, using divided differences. This allows us to establish a recurrent calculation procedure
to compute the coefficients of the algorithm. This recurrent procedure is based on the relationship existing
between the divided differences of the perturbation function and the elementary and complete symmetric
functions.

Both explicit and implicit multistep VSVO algorithms are constructed and, from these, a predictor-
corrector algorithm. A computational algorithm is also designed to implement the method on a computer.

The excellent behaviour of the method can be seen when it is applied to stiff and highly oscillatory prob-
lems, comparing the numerical results obtained with those calculated by other well-known integrators and
even with methods based on Scheifele’s G-functions.

2 Basic ideas and formulations

Let us consider the following IVP:

X +Ax=¢-fx(t),t)

xX(0)=xqp, tela,b]l=1
wherex : R - R™, A € M(m,R)and f : R™ x R — R™ . The components of the vector perturbation
field f(x(¢t), t) are f;(x(t), t) withi = 1, ..., m and the field is continuous, with continuous derivatives until
a certain order that satisfies the conditions for existence and uniqueness of solution. This type of system is
called a perturbed linear system.

Assuming that g(t) = f(x(t), t) is analytical in I with regard to t, where it is sufficient that f is analytical in

its arguments. In terms of the linear operator derivation D, with respect to the variable ¢, (2.1) can be written
as follows:

(2.1)

(D +A)x =¢-g(t)
x(0)=xg, te[0,T]=1
for which it is supposed that x(t) will be the only solution, in I, which can be developed in a power series.
Applying the operator (D + B) to (2.2), where B € M(m, R), and noting L, = D? + (A + B)D + B A, the new
IVP is obtained:

(2.2)

Ly(x) = (D + B)eg(t) 23)
x(0) =Xo, X'(0) = -Axq +£8(0) = x|, '
whose exact solution x(t) is the same as that of (2.1) and (2.2).
The idea that leads us to consider this ‘enlarged’ IVP, is that of cancelling the perturbation with the op-
erator (D + B).

Given that g(t) is analytical in its arguments, we can write

o) n) X ¢n
g =fxn, 0=y EQpoy Lo, (24)
n=0 ° n=0 ""°

with [4]

L) =2 Y, — (Cnur + By 05)
n=1 """ .

x(0) = Xo, X'(0) = —-Axo + £8(0) = Xy.
The solution of the IVP (2.5) is obtained by adding a specific unperturbed IVP solution with null initial con-

ditions to the general solution of the perturbed IVP with given initial conditions. The former can be obtained
by resolving the following specific IVPs:

t
X! + (A +B)X| + BAXj = — I, j=0,1,...

X(0)=0,  X/(0)=0
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where X; is a real function with values in the ring M(m, R) of the squared matrices of order m, with I;;, and
0 being, respectively, the unit and neutral elements of said ring. The solutions of (2.6) are the so-called @-

functions.

Definition 2.1.
D (1) = X;(t), j=0, jeN.

Proposition 2.1 (law of derivation). The @-functions verify:
Q(t) = D1 (t),  j=3, jeN.
Proposition 2.2 (law of recurrence). The @-functions verify the following recurrence law:

2

Dj-2(t) + (A + B)Dj-1(8) + BADIO) = =7 m,

jz4, jeN.

In order to complete the construction of the @-functions, given in (2.7), are defined @ (t) and @4 (¢).
Definition 2.2. @ (t) and @(t), are respectively, the solutions of the following IVP
X"(t)+(A+B)X; + BAX(t) =0, X(0)=1I,, X'(0)=0
X"(t)+(A+B)X; + BAX(t) =0, X(0)=0, X'(0)=In.
The law of derivation presented in Proposition 2.1, is completed by the proposition below.

Proposition 2.3.
@5(8) = P1(8).

Theorem 2.1. The solution of the IVP
L(x)=0
x(0) = X, x'(0) = -AXo + £8(0) = X,

is [4]
Do ()Xo + D1 (1)X]).

Theorem 2.2. The solution of the IVP (2.5), in terms of @-functions [4], is given by

X(t) = Qo(OXo + D1 (X + € Y. Dn(t) (Cny + Ben-a) .

n=2
Proposition 2.4 (truncation error). Carrying out a truncation of m + 1 @-functions, with m > 2,
m-2
Xm(t) = Do(t)Xo + (Dl(l’)X6 +& Z Dny2(t) (Cny1 + Bey)

n=0

the truncation error corresponding to X,,(t), shall be given by [4]

S
En(t)=¢ z n (Cns1 + Bey) .
n=m-1 """

27)

(2.8

(2.9)

(2.10)
(2.11)

(212)

(213)

(2.14)

(2.15)

As a result the truncation error is small with €. If € = O, that is, if the perturbation disappear in an arbitrary

instant of the independent variable ¢, the @-functions integrates without discretisation error (2.5).
The above results and their proofs are presented in detail in [4].
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3 Multistep methods

The series method described in [4] is very precise, however there is a difficulty adapting it to each specific
problem. To solve this difficulty, we will proceed to describe the conversion of the series method to a multistep
method similar to the SMF [10, 11] and EIpPC [15], VSVO [26] methods, which has the advantage of precisely
integrating the perturbed problem under certain conditions.
Denoting by t, = ty,-1 + hy, with n = 1, 2,. .., an approach to the solution x(¢t), in the point t = ¢4, ie
X1 = X(t1) is given by:
m—2
Xy = @o(h1)Xo + @1(h1)XG + € ) Priz(hy) (Cns1 + Ben) . 3.1)
n=0
Let us suppose that we have calculated an approximation to the solution x(t) and its derivative x'(¢) in
the point t = t,,, we shall call these approximations x, and x/,, respectively.
As
Ly(x(8)) = (D + B)e g(t)

, , (3.2
X(ty) =Xn, X (tn) =X, = -AX, +£8(tn)
to calculate an approximation to the solution at the point t,,1, the change was made to the independent
variable t = T + t,,, becoming (3.2) in the system:

Ly(x(1)) = (D + B)e g(1)

, , (3.3)
X(0) =x,, Xx(0)=x,.
Calculating the expansion coefficients
0 Tn
F(X(1), T+ tn) =8(1) = ) 170 (3.4)
k=0 "
where . .
d*g(0) d“g(tn) [ ®) t
@= = = (8, g ) (3.5)
The approximation to the solution in point t,,+1 = (n + 1)h, is given by
m-2
Xn+1 = Po(hpe1)Xn + D1 (hn+1)X;1 + & z Dpi2(Mns1) (Ars1 + Bqx) -« (3.6)

k=0

3.1 Explicit multistep method MDFSpE, for perturbed systems

In order to obtain an explicit method the derivatives of the perturbation function are substituted by divided
differences.
To make a variable step explicit multistep method of p-step, series

Y D(t) (Qrs1 + Bax)
k=0

is truncated, such that the higher order derivative is (p — 1), i.e, qp_1 = gP-1(ty), so that:

Xni1 = (Po(hns1) — P1(hns1)A) Xn + @1 (hps1)do

p=2 (3.7)
+& Y Dpi2(h) (Qrsr + BAx) + @i (hni1)Bap1.
k=0

Properly rearranging (3.7), we obtain:

p-1
Xn+1 = (Po(hne1) — P1(hns1)A) Xp + € Z (Dr+1(hnse1) + Pr2(hns1)B) qi. (3.8)
k=0
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Therefore it would be necessary to use divided differences (p — 1)-th order of each of the component fields of
the function g, in the values ty, . .., ty_p+1, thatis gi[tn, . .., th—p+1] function withi=1,...m.
As the divided differences of an arbitrary function g(t), satisfy the identity

o0
gltns .- stail = Y Pj[0,—Hy, ..., -H]-g(tn) (3.9)
j=0
with Py (t) = t*/k!and H; = t, — tn_; [15, 25].
Denoting by .
Dpn = (( = D'Giltns - s trjen]) iy (3.10)

.....

the next matrix, with m x p order and H = max {H, ..., Hp_1}, it verify the identity

. i=1
Dlt,’n = Ap (g]('l 1)(tn))j=1 m + Opxm (3.11)
where Oy, is a matrix of order p x m , whose i-th row is

(O(Hp7i+1) . O(priJrl))

and A, is the non singular matrix of order p:

1 P1[0]  P,[0] e Pp_4[0]
0 1 1!Py[0,-Hq] -+ 1!Pp_1[0,-Hq]
Ay = 0 0 1 -+ 21Pp_1[0, -Hy, —H,] . (3.12)
0O O 0 e 1
pxp
Using a more compact notation
. i=1,...,p
Dpn = Ap x Zpem + Opsms Zpsm = (g tw)) ™ (3.13)
Truncating the expansion obtained and solving Z,n it results in:
prm = Agl X (ng,n)pxm (3.14)
replacing in (3.8) the derivatives of the components fields of the perturbed function, we can write
p-1
Xni1 = (Po(hni1) = P1(hni1)A) Xy + € z (Pri1(hns1) + Dir2(hni1)B) Prrt (3.15)
k=0
being p; withj = 1, ..., p the j-th. column of the matrix D), , x A;t.
Let (dyj);;"""> be the matrix A, then
p
Y giltns -+ tngion)ldij(i — 1)!
i=1
p
Y &altns - v tgion)ldij(i — 1)!
pj = i=1 (3.16)

p
Y gmltn, « oy taopldy(i— 1)!
i=1
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which substituted in ¥§) (®ks1(hn+1) + Pks2(hns1)B) Pi+1 allow us to write

p-1 p (p-1
Z (®k+1(hn+1) + (Dk+2(hn+1)B) Pk+1 = Z ( Z (l - 1)!di,k+1 ((Dk+1 (hn+1)
k=0 i=1 \ k=0

gl[tn’ ceey tn—(i—l)] (3 17)

g2ltn, o5 tnoic1)]
+ Djy2(hns1)B) .

Emltn, « s tn(i-1)]

Defining
p-1
Ai =Y (i- DM ke1 (Pis1(Ans1) + Prsa(hns1)B), i=1,...,p (318)
k=0
we obtain
g1ltns - o5 th(i-1)]
p-1 p galtn, ., theqicyyl
Z (Dies1(hpg1) + P2 (Mns1)B) Prs1 = Z A; . . (3.19)
k=0 i=1 :

gn[tn, ceey tn—(i—l)]

Replacing (3.19) in (3.15), we obtain the next formula for a explicit multistep method

giltn, -5 tn—i-1)]

p S2(tns « o5 tn(i-1)]
Xn+1 = (DPo(hns1) — P1(hns1)A) Xn + € z A; . . (3.20)

i=1 .
gm[tn, DRI tn—(i—l)]

We introduce the next notation, we obtain the next definition.

Definition 3.1. Let x,, be the approximation to the value of the solution at the point t,, and let

p-1 .
A= Z (i- 1)!di,k+1 (@i+1(hns1) + Pps2(hns1)B) , (dl]);;i’:i = A;;t
k=0

Fﬁl,,- = (g1ltns -+ o tne(i=1)]s + + +» 8mltn, - o o5 tni-1)])

The starting values for X are: Xo, X1, X2, X3, ..., Xp1.
The explicit method MDFSpE, variable step size of p step, for perturbed linear systems, it is formulated
through the next equation:

D
Xn+1 = (Po(hns1) — P1(hps1)A) Xn + € zAiFn,i, nzp-1.
i=1

3.2 Implicit multistep method MDFSpl, for perturbed systems

In order to obtain an implicit method of p steps, we will use the same idea as in the previous section, the
Yoo Pi(t)(di+1 + Bqy) series is truncated, such that the higher order derivative is p, i.e, q, = g (t,), to
correspond with the latest g[tn.1, . . ., tn+1-p] divided difference, so that:

Xn+1 = (Po(hpi1) — P1(hns1)A) X + €D1(hns1)qo

p-1 (3.21)
+€ Y Dria(Ans1)(@rs + BAi) + €@y (h)Bgp
k=0
rearrange (3.21), we obtain:
p
Xn+1 = (Po(hns1) — P1(hpe1)A)Xp + € Z (Dics1(hps1) + Dic+2(hns1)B) Ak (3.22)

k=0
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It will be necessary to use the divided differences of order p-th of each of the fields of components of the
function of g, in the values ty.1, . . ., ths1-p.
Given that hy,q = tpe1 — tn, it is defined

H; =t, - thi. (3.23)

Denoting by L
Dp,n+1 = ((] -D!giltnsts .-+ tn—j+2] );'_1 """ 21+1 (3.24)

.....

the next matrix, with m x (p + 1) order, and H = max {hy41, H1, . . ., Hp_l}, it verify the identity

. i=1 1
Dlt;,rwl =B, (g](} 1)(tn))j:1 N + Op+1)xm (3.25)

where Oy.1)xm is a matrix of order (p + 1) x m, whose i-th row is
(O(Hp7i+2) . O(Hp7i+2))

and By, is the non singular matrix of order p + 1

1 Pl[hn+1] Pz[hn+1] Pp[hn+1]
0 1 1!P2[hn+1, 0] 1!Pp[hn+1’ 0]

Bp — 0 0 1 cee Z!Pp[hn+1, O, —Hl] . (326)
0 0 0 1

(p+1)x(p+1)

Using a more compact notation:

t (i-1) i=1,..., p+1
Dp,n+1 = Bp X Z(p+1)><m + O(p+1)><m, Z(p+1)><m = (gj (tn))jzl Cm (3.27)
Truncating the expansion obtained and solving for Z,.,1)xm results in:
Zips1yem = Byt x (DY 111) - (3.28)
replacing in (3.22) the derivatives of the components fields of the perturbed function, we can write
p
Xn+1 = (Po(hns1) — P1(hpi1)A)Xp + € z (Dic+1(hns1) + P2 (Mns1)B) Pt (3.29)
k=0
being pj withj = 1, ..., p + 1 the j-th column of the matrix Dp,n.1 x B;".
Let (d,,)]ljgﬁ; be the matrix B!, then
5;:11 giltnsts + oy thrr—-pldi(i = 1)}
Y galtnets - s tari—g-p]dy(i - 1)!
pj = . (3.30)
Y2 gmltnits - - - tut—on))di(i = 1!
which substituted in ¥}_o (@ke1(fns1) + Pics2(hnse1)B) Pis1 allow us to write:
p p+l / p
Z (Di+1(hns1) + Pis2(hns1)B) Ps1 = Z Z (i-1)! di,k+1 (Dies1(hns1)
k=0 i=1 \k=0
gl[tn+13 ceey tn+1—(i—1)] (3.31)

gz[l‘n+1, ) tn+1—(i—1)]
+ Dps2(hne1)B) .

gm[tn+1, D) tn+1—(i—1)]
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Defining
)4
I = Z(l -1)! di,k+1 (Dies1(hps1) + Pis2(hns1)B) i=1,...,p+1 (3.32)
k=0
we obtain
gl[tn+1’ D) tn+1—(i—1)]
p p+l gZ[tn+1, ) tn+1—(i—1)]
Y (Pis1(hns) + Prsa(hns1)B) Prsr = ) T . : (333)
k=0 i=1 .
gm[tn+1, ey tn+1—(i—1)]

Replacing (3.33) in (3.29), we obtain the next formula for a implicit multistep method:

gl[tn+1, L) tn+1—(i—l)]
p+l gaoltns1s - v vy tner—(i-1)]
Xn+1 = (@o(Ans1) = P1(hns1)A) Xn +€ ) T . : (334)
i=1 .
gm[tn+1’ sy tn+1—(i—1)]

The next notation is introduced, giving rise to the following definition.

Definition 3.2. Let x, be the approximation to the value of the solution at the point ¢,, and let

p
. . i=1,..., 1
[i= Y (i- D'digs1 (Prst(nsr) + Praa(hni1)B), Byt = (dy)iy e
k=0
Tﬁz,i = (gl[tn+1’ ey tn+1—(i—1)], e ,gm[tn+1, DRI tn+1—(i—1)]) .
The starting values for x are: Xo, X1, X2, X3, ..., Xp-1.

The implicit method MDFSpl, variable step size of p step, for perturbed linear systems, it is formulated
through the next equation:

p+1
Xni1 = (@o(hns1) = P1(ni1)A)Xn +€ Y TiTni,  n=p-1.
i=1

3.3 Predictor-corrector multistep method MDFSpPC, for perturbed systems

We define the predictor-corrector method, with variable step size of p step MDFSpPC for perturbed linear
systems, which has as predictor to MDFpE and as corrector to MDFSpl.
The predictor-corrector method used is like P(EC)*E' -t with yu = t = 1.

4 Recurrent calculus of the matrices A;', B;' and new definition the
multistep methods

The next methods described in Defmitions 3.1and 3.2, present the difficulty that the coefficients of the matrices
Ayt = (dl-,-)]l.j:::::ﬁ and B, = (di,-);.j::::gﬁ;, are not expressed in a recurrent way, which leads to difficulties
in its codification to automatize its calculation.

Once this problem is resulted, the methods will be able to be codified and will enable one to chose the
step size and the number of steps, that each execution requires.

The problem is then reduced to find a recurrent formula, that allows us to calculate the elements of ma-

; —t —t
trices A, and B,'.
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4.1 Recurrent calculus of A;t and new definition the multistep explicit method

......

step, variable-order method (VSVO), we use elementary symmetric functions e, , and complete symmetric
functions hy, ; [9, 15, 23], defined as:

n

eno=1, enr= Z ti, - ti,, enr=0, r<o (4.
11<iy <<y
Bop= ) Y% A=(A-A) €N, A=A+ + Ay 4.2)
|Al=r Sa

and S) = {all the different permutations a = (a - -- ay) of A} with t& = ¢{" --- t5".

Particularly h, o = 1 and hy,,; = ep,1. In the case r < 0, it is defined as h,,, = 0.

Between the divided differences of g(t) = t™, that we will denoted by t™[¢1, ..., t,] and the complete
symmetrical polynomial the next relation holds: t™[t1, ..., tn] = hn,m—n+1-

Considering the point t,, it is defined the complete symmetric functions [15] and [23]:

gij(n) = " [Hy, ..., Ho_inyl, 0i,j(n) = (1Y "ej_1 j-i (4.3)
in the values Hy,_y = t,_ — t* withk =0, ...,i—1and t* € [a, b].
The square matrices of order k,
i=1...k i=1...k
Pin = (qz',j(n));-zi_,_k, Sk,n = (Ui,j(n))]l-:;_.k (4.4)
are inverse to each other.
As Hy_j = ty_j — t* and H; = t, - t,_j we can write (t, — t*) - H; = Hy_j withj = 0,...,i- 1. In the

particular case t* = t,, we will get H,_; = -H; withj =0, ...,i-1.
The divided differences of one function g satisfy the property:

(o)
1 j *
gltn, - ostnin] = ) qi,,-+1(n>j—,g<f>(t ). (4.5)
j=0 ’
If H=max {|Hql, ..., |[Hn—i-1)l}, as g; j(n) have order j — i in H, due to the last result, we can write

p-1
1, i .
gltn, th-1, -+ ., thgi-)] = Z Qi,j+1(")].—,g(])(t )+ OHP™DY i=1,...,p. (4.6)
=0 ’

Considering t* = t, and expressing those equalities in a matricial way, we have

gltn] q1,1(n) -+ q1,p(n) g,(ftn) O(HP)
gltns tn 1] G21(n) - qap(n) gll) O(HP™)
. = . } . + . (4.7)
gltn, ..., tn—(p—l)] Qp,l(n) ... Qp,p(n) g”’(p’i)l()t!,,) O(H)

and as g j+1(n) = h; j in the arguments Hy, . .., Hy—i-1) , we can write

gltn] 1 hy1 - hipa g,(tn) O(HP)

8ltn, tn-1] 0 1 - hypo % O(HPY)
: ={ . . . . : + (4.8)

gltn, s tn_(p-1)] 00 -~ 1 gi‘;’gﬁ O(H)

As 01 (n) = 0i-1,j-1(n) — Hy_j12 01j-1(n) for i, j > 2 [23], if we consider t* = t,, then
o1,1(n) = 1
i=1,..., 01,j(n) =0, 1<j<

Sp,n — (Uu(n))]l:i .... i , 1 }( ) Jsp (4.9)

0i1(n) =0, 1<i<p
0;,j(n) = 0i-1j-1(n) —Hyji2045-1(n), 2<i, j<p.
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The recurrent form of the matrix A;t is got through:

Ayt = My x Pl x Np = My x S5 x Ny (4.10)
that is to say G- Do ()
- D!oji(n ..
di’jz(l'_—lj),: 1,]=1,...,p (4'11)

where M), = (mi,-);:j::::ji is a diagonal matrix, such that m;; = 1/i!, withi=0,...,p-1and N, = M;,l.

The expressions (4.10) and (4.11) allow us to compute the A, matrix by recurrence, from S}, , matrix.
Substituting (4.11) in Definition 3.1, we obtain the explicit method modified.

Definition 4.1. Let x, be the approximation to the value of the solution at the point t,, and let

p
Ai =Y (k=1 0k (Pi(hns1) + Pis1(hns1)B), i=1,...,p
k=1

F;,i =(g1ltn, -+ tnei=)1s « + - » 8mltns -« o s tnoiicny]) -

The starting values for x are: Xo, X1, X2, X3, ..., Xp_1.
The explicit method MDFSpE, variable step size of p step, for perturbed linear systems, it is formulated
through the next equation:

p
Xn+1 = (Po(hns1) — P1(hps1)A) X + € ZAiFn,i, nzp-1.
i=1

4.2 Recurrent calculus of B,‘,‘ and new definition the multistep implicit method

As in the case above, we use elementary symmetric functions en,, and complete symmetric functions hy,y to
T i:};, allowing us to construct a variable-step,
variable-order method (VSVO).

Taking hn.1 = th+1 — t*, the divided differences of one function g satisfy the property:
[e) 1 .
Siltnsts tny o v v tn—(i—l)] = Z Qi+1,j+1(n)].—|g])(t*)- (4.12)
j=0 '
If H = max {|hps1l, |Hnl, - - - s [Ho-g-1)}, as qi,j(n) have order j—iin H, due to the last result, we can write
p-1 1 . .
giltnsts oo tn—(i—l)] = Z Qi+1,j+1(n)j_lg])(t*) +0 (Hp_(l_l)) s i=1,...,p. (4.13)
j=0 :

Considering t* = t, and expressing those equalities in a matricial way, we have

gltne] qi1(n) - q1,p+1(N) g’(tn) O(HP*Y)
8ltns1, tn] G21(n) - Gapia(n) £ O(HP)
. = . . . . + . (4.14)
g[tYH—l’ L) tn—(p—l)] qp+1,1(n) T qp+1,p+1(n) % O(H)

and as gis1,j+1(n) = hiy1,j-; in the arguments hp.q, Hy, . . ., Hp_(i-1), We can write

8ltn+1] 1 hyg o+ Rppa g(tn) O(HP)
g[ti‘l+1’ tn] 0 1 XX hZ,P+1 % O(Hp)

. =l . . . . . + . . (4.15)
8ltnts -+ tn-p)] 00 - 1 £t O(H)
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As 0;j(n) = 0i-1,j-1(n) — Hy—js3 0i,j-1(n) for i, j = 2 [23], if we consider t* = ¢t,, then

01,1(n) =1
- 01,2(n) = ~hn41
Spnst = (o) 0 o1;(n) =0, 2<j<p+1 (4.16)

0i1(n) =0, 1<ig<p+1
0;j(n) = 0i_1j1(n) - Hyj3055-1(n), 2<i, j<p+1.

The recurrent form of the matrix B;,t is got through:

B;,t = Mp+1 X S;’nJrl X Np+1 (4.17)
that is G- Do)
= 1):0jin ..
dij=——"20" " jj=1,...,p+1. 418
1,] (l _ 1)! ] b+ ( )
In this case My, = (mij);:j::ﬁ: is a diagonal matrix, such that m;; = 1/i!, withi = 0, ..., pand Np,; = M;il.

The expressions (4.17) and (4.18) allow us to compute the B, matrix by recurrence, from S, ., matrix.
Substituting (4.18) in Definition 3.2, we obtain the implicit method modified.

Definition 4.2. Let x, be the approximation to the value of the solution at the point ¢,, and let

)4
I = Z k! 0g+1,i (Pkr1(hns1) + Pir2(hns1)B) , i=1,...,p+1

k=0
T;,i = (gl[tn+1, e il - oo mltnets - vy tn+1—(i—1)]) .
The starting values for x are: Xo, X1, X2, X3, ..., Xp-1.

The implicit method MDFSpl, variable step size of p step, for perturbed linear systems, it is formulated
through the next equation:
p+1

Xn+1 = (Po(hne1) — P1(hns1)A) Xn + € z IiTy,i, nzp-1.
i=1

4.3 New predictor-corrector multistep method

We define the predictor-corrector method, with variable step size of p step MDFSpPC for perturbed linear
systems, which has as predictor to MDFSpE and as corrector to MDFSpI, with the previous definition.

5 Numerical experiments

In this section we use the MDFSpPC method to solve the test problems proposed in [4], showing the validity
of this VSVO method, as we can obtain similar precision to that obtained with the @-function series method
without having to design the recurrences in each case.

The solutions obtained using the MDFSpPC method for stiff and highly oscillatory problems are compared
with those calculated using the best-known codes:
— LSODE methods, causes a numerical solution to be found using the Livermore Stiff ODE solver.
— GEAR causes a numerical solution to be found by way of a Burlirsch-Stoer rational extrapolation method.
— MGEAR [msteppart] is a multistep method suitable for stiff systems.

Using in the last ones the implementations of MAPLE to ensure that the results are not distorted by a deficient
programmation that favours the new code.

The results obtained using the new method are also compared with those calculated using the multistep
methods based on Scheifele’s G-functions, specifically with the EIpPC [15].
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Figure 1. Problem 1, relative error. Figure 2. Problem 1, efficiency plot for the integration of x(t)
at last point.

5.1 Problem1

Let us consider the following stiff problem, which appears in [6, 7, 22]:

X} () = 2x1(t) + x2(t) + 2 sin(t) 51
x’z(t) =—(B+2)x1(t) + (B + 1) (x2(t) — cos(t) + sin(t)) '
with initial conditions x;(0) = 2, x,(0) = 3, and exact solution, independent of j3,
x1(t) = 27" + sin(¢) 52)

x2(t) = 2e7! + cos(t).

The eigenvalues of the system are —1 and f which enables its degree of stiffness to be regulated. For the
case 8 = —1000, the following stiff problem is obtained, proposed in [8]:

(x’l(t)>+( 2 -1 )(xﬂt))_( 2 sin(t) >
x5 (t) -998 999 )\ x2() /  \ 999(cos(t) - sin(t)) (5.3)
X1(0) =2, Xz(O) = 3.

In this article has been resolved (5.3) by the method MDFSpPC, based on the series of @-functions [4], using
the matrix
-1 -2
B- 999
(999 1 )

as a matrix for annulment of the perturbation function. The IPV expanded which is obtained of applied the
differential operator (D + B) to (5.3), is expressed as:

o (40)- (LB (B E-()
X () 1 1000 J \ x,(t) 1000 0 /\ xa(t) 0
this being the problem solved by the method MDFSpPC.

The results are compared with those obtained by integrators, LSODE , MGEAR, GEAR, implemented in
MAPLE and the multistep method EIPpPC [15], based on the Scheifele G-functions.

In Fig. 1 contrasts the decimal logarithm of module of the relative error of the solution x(¢), calculated
using @-functions method MDFSpPC, with step size h = 1073, 40 digits and p = 11, with the numerical

integration codes MGEAR[msteppart] with errorper = Float(1, —-13), LSODE with a tolerance of 1072°, GEAR
with errorper = Float(1, —22) and EIpPC with step size h = 1073, 40 digits and p = 11.
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In Fig. 2 we show an efficiency plot where @-functions multistep methods are compared with integrations
using well known general purpose codes. The computation time is represented in the horizontal axis, in log-
arithmic scale, and the decimal logarithm of the integration error at the last point, is shown in the vertical
axis. The tolerances used in the standard codes are displayed in the figure into parentheses, marking each
time-error point.

We show the results of a few runs of it where the number of @-functions has been kept fixed at 4 and
the number of digits used in the computations, that of course limit the attainable accuracy, has been var-
ied to illustrate the behaviour of the method. The accuracy increases as the number of digits do, with a
no noticeable major computational overhead. That number of digits is marked by the relevant point in the
curve, with the figure followed by ‘d’. To make the comparisons as honest as we can, the length of the man-
tissa used by MAPLE is adjusted according to the tolerances required to the integrator, so that for tolerances
10713,107%,10717, 1072, and 1072° in LSODE and 10713, 107>, 10717, 1072, 1072%, 10731, and 1073% in
GEAR. We use 13 + 4 digits, 15 + 4 digits, 17 + 4 digits, 21 + 4 digits, 25 + 4 digits, 31 + 4 digits, and 36 + 4
digits to avoid spurious increase of the computation times.

5.2 Problem 2

Let’s consider the highly oscillatory problem proposed by Petzold [13] and [12], which contains a harmonic
oscillator:

xi(t) s 0 A2\ [ x1(0) _ ( asin(A0)

x5(t) -1 0 J\ x2() 0

X

2
(z)-(4)
x2(0) 1)

Although its solution can be calculated exactly by means of analytical procedures, this example has been
chosen to illustrate how the MDFSpPC works for highly oscillatory harmonic perturbation functions.

For more easily a matrix B, which annihilates the function of disturbance, is applied the procedure de-
scribed by Steffensen [20] and [21].

We define a new variable x3(t) = a sin(At), which allows to express the system (5.5) as follows:

(5.5)

xi(t) 0 A2 0 x1(8) a sin(At)
x5 |+ -1 00 x(t) | = 0
x4 (t) 0 00 x3(t) a cos(At)
3 ’ (5.6)
x1(0) 31
Xz(O) = 1
X3(O) 0
and exact solution
x1(t) -A (1 - %t) sin(At) - 55 t cos(At)
x(t) | = (1 - 2L‘;lt) cos(At) . (5.7)
x3(t) asin(At)
By applying the operator (D + B) to the system (5.6), we obtain:
X (t) 0 A% -1 xi(t) 000 x1(t) 0
Lix)=| xj@® |+ -1 1 0 xh@t) |+ -1 00 x(t) |=| O
x5 (t) A2 00 x5(t) 0 A0 x3(t) 0
x1(0) 3%
x(0) =] x2(0) |= 1 (5.8)
X3(0) 0
x}(0) -A2

|
|4

x'(0) = x5(0)
x5(0) al
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Figure 3. Problem 2, relative error. Figure 4. Problem 2, efficiency plot for the integration of x(¢)

at last point.

This problem is resolved by A = 10, by applying the MDFSpPC method.

The results are compared with those obtained by integrators, LSODE, MGEAR, GEAR, implemented in
MAPLE and the multistep method EIPpPC [15], based on the Scheifele G-functions.

In Fig. 3 contrasts the decimal logarithm of module of the relative error of the solution x(t), calculated
using @-functions method MDFSpPC, with step size h = 1073, 40 digits and p = 17, with the numerical
integration codes MGEAR[msteppart] with errorper = Float(1, —-13), LSODE with a tolerance of 1072>, GEAR
with errorper = Float(1, —-31) and EIpPC with step size h = 1073, 40 digitsand p = 17.

The results for the integration of the function x are shown in Fig. 4 in which the information is arranged
as in Fig. 2.

5.3 Problem 3

Denk [1] proposed the following highly oscillatory problem:

X, (1) 0 -1\(xut)\_ ,(0
(x’z(t)>+(u2 0>(X2(t)>_% (t) (5.9)
where x1(0) = 1075, x5(0) = 1 - 10-5x cot k with » = 314.16.

With eigenvalues +»i and with an exact solution

_( t+107° (cos(sxt) — cot(x) sin(s«t))

x1(t)
(XZ(t) ) - ( 1 — 1072 (sin(xt) + cot(s) cos(xt)) ) ) (5.10)

A new variable x3(t) = —»?t is defined [20] and [21], which permits the system (5.9) to be expressed as follows:

xi(t) 0-10 x1(t) 0
xh@t) |+ »*2 00 () |=+»| t
x5 (t) 0 00 x3(t) -1
(5.11)
x1(0) 10~°
x2(0) | = 1-10"%xcot(x)
X3(0) 0
and exact solution
x1(8) t + 107> (cos(xt) — cot(s) sin(st))
x(t) | = 1-10%x(sin(st) + cot(x) cos(xt)) |. (5.12)

x3(t) -2t
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Figure 5. Problem 3, relative error. Figure 6. Problem 3, efficiency plot for the integration of x(t)
at last point.
100
By applying the operator (D + B) to the system (5.11), withthe B=| 0 0 1 | result:
100
X () 1-10 X (t) 0-10 x1(t) 0
Lix)=| x5 |+| »* 01 x5t |+ 000 x(t) |=| o
x5 (t) 1 00 x5(t) 0-10 x3(t) 0
x1(0) 107
x(0) = | x2(0) |=[ 1-10"%xcots (5.13)
X3 (0) 0
x}(0) 1-10">xcotx
x'(0) = x50) |= -107°5?
x'3 (0) -2

In Fig. 5 contrasts the decimal logarithm of module of the relative error of the solution x(t), calculated
using @-functions method MDFSpPC, with step size h = 1073, 40 digits and p = 2, with the numerical
integration codes MGEAR[msteppart] with errorper = Float(1, —-10), LSODE with a tolerance of 1072, GEAR
with errorper = Float(1, —22) and EIpPC with step size h = 1073, 40 digits and p = 8.

The results for the integration of the function x(¢) are shown in Fig. 6 in which the information is arranged
as in Fig. 2.

5.4 Problem 4

This example shows an application of the MDFSpPC to a problem of quasiperiodic orbits studied by [18],
which can also be found in [14, 17, 22, 24], among others.

Let
x"(t) + x(t) = 1073,  x(0)=1, x'(0)=0.99951i, (5.14)

for which the analytical solution is:
x(t) = (1= 5-107*it)ell = (cos(t) + 5 - 10~*¢sin(t)) + 1 (sin(t) - 5 - 107t cos(t)). (5.15)

The solution represents motion on a perturbation of a circular orbit in the complex plane. The problem may
be solved either as a single equation in complex arithmetic or a pair of uncoupled equations.
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Noting x(t) = u(t) + iv(t), and by substituting in (5.14), we get the following second order system:
u"'(t) + u(t) = 1073 cos(t)
V' (6) + v(t) = 1073 sin(t) (5.16)
u0)=1, u'(0)=0, v(0)=0, V'(0)=0.9995.

By defining the variables x1 (t) = u(t), x2(t) = u'(t) , x3(t) = v(t) and x4(t) = v'(t) becomes the system of first
order linear equations:

xi(t) 0-100 x1(t) 0
x5 (t) . 1000 x(t) | 103 cos(t)
x5(t) 000-1 xt) | 0
x;,(t) 0010 x4(t) sin(t)
(5.17)
X1(0) 1
X2(0) _ 0
x3(0) | 0
x4(0) 0.9995
with double eigenvalues +i and exact solution:
x1(t) cos(t) + 5 - 107t sin(t)
x2(t) | [ -0.9995sin(t) + 5 - 107t cos(t) (5.18)
x3(t) | sin(t) - 5 - 10~*¢t cos(t) )
X4(t) 0.9995 cos(t) + 5 - 10~*¢ sin(t)
The matrix which annihilates the disturbance function is
1000
B 0001
0010
0-100
Applying the operator (D + B) to the system (5.17) with the result:
X (t) 1-100 X () 0-100 x1(t) 0
n 1 1 ! 1
Ly(x) = xlzl(t) . 00 xlz(t) N 00 0 x> (t) _ 0
X5 () 00 1-1 x5 (t) 0 00-1 x3(t) 0
Xy (t) 0-110 xy,(t) -1000 x4(t) 0
(5.19)
x1(0) 1 x(0) 1
x2(0) | 0 x50) | [ -0.999
x3(0) 0 ’ x5(0) 0.9995
x4(0) 0.9995 x;,(0) 0

In Fig. 7 contrasts the decimal logarithm of the relative error model of the solution x(¢), calculated using
@-functions method MDFSpPC, with step size h = 1073, 40 digits and p = 10, with the numerical integra-
tion codes MGEAR[msteppart] with errorper = Float(1, -13), LSODE with a tolerance of 10~2%, GEAR with
errorper = Float(1, —-22) and EIpPC with step size h = 1073, 40 digits and p = 10.

6 Conclusions

The multistep method MDFSpPC introduced in this paper it is based on the ideas developed by G. Scheifele
and it is constructed taking as point of departure the @-functions series method.
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Figure 7. Problem 4, relative error.

The new method allows a more accurate integration of a wide range of problems, and under certain

hypotheses, the multistep method calculates the exact solution of the perturbed problem.

Moreover the multistep method is defined for variable-step and variable-order, VSVO, maintains the good

properties of the @-functions series method and it incorporates an algebraic recurrent procedure to compute
the coefficients of the algorithm, what facilitates its implementation on a computer.

This new method can successfully compete with well known general and special-purpose integrators

as shown in the examples, where it gains in the attainable accuracy and the efficiency of several orders of
magnitude have been shown for different stiff perturbed problems.

Funding: This work has been supported by GRE09-13 project of the University of Alicante and the project of
the Generalitat Valenciana GV/2011/032.
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