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Multistep variable methods for exact
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Abstract: A family of real and analytical functions with values within the ring of M(m, R) is introduced. The
solution for linear systems of di�erential equations is expressed as a series of Φ-functions. This new multi-
step method is de�ned for variable-step and variable-order, maintains the good properties of the Φ-function
series method. It incorporates to compute the coe�cients of the algorithm a recurrent algebraic procedure,
based in the existing relation between the divided di�erences and the elemental and complete symmetrical
functions. In addition, under certain hypotheses, the new multistep method calculates the exact solution of
the perturbed problem.
The newmethod is implemented in a computational algorithmwhich enables us to resolve in a general man-
ner some physics and engineering IVP’s modeled by means systems of di�erential equations. The good be-
haviour and precision of the method is evidenced by contrasting the results with other-reputed algorithms
and even with methods based on Scheifele’s G-functions.
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1 Introduction
Perturbed harmonic oscillators are of particular interest in many areas of physics and engineering. They are
also of great interest in Astrodynamics, as newtonian equations of motion can be reduced to harmonic os-
cillators by means of the Kustaanheimo–Stiefel [19] and Burdet–Ferrándiz [2] transformations. In addition,
all natural phenomena, which can be modelled using perturbed oscillators, permit a model using perturbed
di�erential linear equation systems.

The numerical methods used to solve these kinds of systems should preferably have the property that, if
the terms of perturbation disappear from the independent variable t at an arbitrary moment, the numerical
method then integrates the non-perturbed system without any discretisation error [19]. Methods with this
desirable property are found in [3, 5, 10, 11, 15, 16].

In [4] the Φ-function series method is presented, for the precise integration of perturbed linear di�er-
ential equations. Compared with the G-function series [16], this method has the advantage of integrating the
perturbed problemwithout any discretisation error, under certain conditions andwith only the �rst two terms
of the series. It also maintains the desirable properties of the Scheifele methods.

The Φ-function series method is extremely precise. However, it is di�cult to calculate coe�cients for
each speci�c case it is applied to, which makes it di�cult to implement on a computer.

In order to solve this problem, this article describes a variable-step, variable-order multistep method
(VSVO), which maintains the good properties of the Φ-function series method and incorporates an algebraic
procedure to compute the coe�cients of the algorithm.
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Thismultistepmethod is obtained by approximating the perturbation function derivatives, which appear
in the series method, using divided di�erences. This allows us to establish a recurrent calculation procedure
to compute the coe�cients of the algorithm. This recurrent procedure is based on the relationship existing
between the divided di�erences of the perturbation function and the elementary and complete symmetric
functions.

Both explicit and implicit multistep VSVO algorithms are constructed and, from these, a predictor-
corrector algorithm. A computational algorithm is also designed to implement the method on a computer.

The excellent behaviour of the method can be seen when it is applied to sti� and highly oscillatory prob-
lems, comparing the numerical results obtained with those calculated by other well-known integrators and
even with methods based on Scheifele’s G-functions.

2 Basic ideas and formulations
Let us consider the following IVP:

x� + A x = ε ⋅ f(x(t), t)
x(0) = x0, t ∈ [a, b] = I

(2.1)

where x : R → Rm, A ∈ M(m, R) and f : Rm × R → Rm . The components of the vector perturbation
�eld f(x(t), t) are fi(x(t), t) with i = 1, . . . ,m and the �eld is continuous, with continuous derivatives until
a certain order that satis�es the conditions for existence and uniqueness of solution. This type of system is
called a perturbed linear system.

Assuming that g(t) = f(x(t), t) is analytical in I with regard to t, where it is su�cient that f is analytical in
its arguments. In terms of the linear operator derivation D, with respect to the variable t, (2.1) can be written
as follows:

(D + A)x = ε ⋅ g(t)
x(0) = x0, t ∈ [0, T] = I

(2.2)

for which it is supposed that x(t) will be the only solution, in I, which can be developed in a power series.
Applying the operator (D + B) to (2.2), where B ∈ M(m, R), and noting L2 = D2 + (A + B)D + B A, the new

IVP is obtained:
L2(x) = (D + B)εg(t)
x(0) = x0, x�(0) = −Ax0 + εg(0) = x�0 (2.3)

whose exact solution x(t) is the same as that of (2.1) and (2.2).
The idea that leads us to consider this ‘enlarged’ IVP, is that of cancelling the perturbation with the op-

erator (D + B).
Given that g(t) is analytical in its arguments, we can write

g(t) = f(x(t), t) =
∞
∑
n=0 g n)(0)n!

tn =
∞
∑
n=0 tnn!cn (2.4)

with [4]

L2(x) = ε
∞
∑
n=1 tnn! (cn+1 + Bcn)

x(0) = x0, x�(0) = −Ax0 + εg(0) = x�0. (2.5)

The solution of the IVP (2.5) is obtained by adding a speci�c unperturbed IVP solution with null initial con-
ditions to the general solution of the perturbed IVP with given initial conditions. The former can be obtained
by resolving the following speci�c IVPs:

X��
j + (A + B)X

�
j + BAXj =

tj

j!
Im , j = 0, 1, . . .

Xj(0) = 0, X�
j (0) = 0

(2.6)
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where Xj is a real function with values in the ring M(m, R) of the squared matrices of order m, with Im and
0 being, respectively, the unit and neutral elements of said ring. The solutions of (2.6) are the so-called Φ-
functions.

De�nition 2.1.
Φj+2(t) = Xj(t), j ⩾ 0, j ∈ ℕ. (2.7)

Proposition 2.1 (law of derivation). The Φ-functions verify:

Φ�
j (t) = Φj−1(t), j ⩾ 3, j ∈ ℕ. (2.8)

Proposition 2.2 (law of recurrence). The Φ-functions verify the following recurrence law:

Φj−2(t) + (A + B)Φj−1(t) + BAΦj(t) = tj−2
(j − 2)!

Im , j ⩾ 4, j ∈ ℕ. (2.9)

In order to complete the construction of the Φ-functions, given in (2.7), are de�ned Φ0(t) and Φ1(t).

De�nition 2.2. Φ0(t) and Φ1(t), are respectively, the solutions of the following IVP

X��(t) + (A + B)X�
t + BAX(t) = 0, X(0) = Im , X�(0) = 0 (2.10)

X��(t) + (A + B)X�
t + BAX(t) = 0, X(0) = 0, X�(0) = Im . (2.11)

The law of derivation presented in Proposition 2.1, is completed by the proposition below.

Proposition 2.3.
Φ�
2(t) = Φ1(t).

Theorem 2.1. The solution of the IVP

L2(x) = 0
x(0) = x0, x�(0) = −Ax0 + εg(0) = x�0 (2.12)

is [4]
Φ0(t)x0 + Φ1(t)x�0. (2.13)

Theorem 2.2. The solution of the IVP (2.5), in terms of Φ-functions [4], is given by

x(t) = Φ0(t)x0 + Φ1(t)x�0 + ε ∞
∑
n=2Φn(t) (cn−1 + Bcn−2) . (2.14)

Proposition 2.4 (truncation error). Carrying out a truncation of m + 1 Φ-functions, with m ⩾ 2,

xm(t) = Φ0(t)x0 + Φ1(t)x�0 + ε m−2∑
n=0 Φn+2(t) (cn+1 + Bcn)

the truncation error corresponding to xm(t), shall be given by [4]

Em(t) = ε
∞
∑

n=m−1 tnn! (cn+1 + Bcn) . (2.15)

As a result the truncation error is small with ε. If ε = 0, that is, if the perturbation disappear in an arbitrary
instant of the independent variable t, the Φ-functions integrates without discretisation error (2.5).

The above results and their proofs are presented in detail in [4].
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3 Multistep methods
The series method described in [4] is very precise, however there is a di�culty adapting it to each speci�c
problem. To solve this di�culty, wewill proceed to describe the conversion of the seriesmethod to amultistep
method similar to the SMF [10, 11] and EIpPC [15], VSVO [26] methods, which has the advantage of precisely
integrating the perturbed problem under certain conditions.

Denoting by tn = tn−1 + hn, with n = 1, 2, . . ., an approach to the solution x(t), in the point t = t1, ie
x1 = x(t1) is given by:

x1 = Φ0(h1)x0 + Φ1(h1)x�0 + ε m−2∑
n=0 Φn+2(h1) (cn+1 + Bcn) . (3.1)

Let us suppose that we have calculated an approximation to the solution x(t) and its derivative x�(t) in
the point t = tn, we shall call these approximations xn and x�n, respectively.

As
L2(x(t)) = (D + B)ε g(t)
x(tn) = xn , x�(tn) = x�n = −Axn + εg(tn) (3.2)

to calculate an approximation to the solution at the point tn+1, the change was made to the independent
variable t = τ + tn, becoming (3.2) in the system:

L2(x(τ)) = (D + B)ε g(τ)
x(0) = xn , x�(0) = x�n . (3.3)

Calculating the expansion coe�cients

f(x(τ), τ + tn) = g(τ) =
∞
∑
k=0 τnk! qk (3.4)

where
qk =

dkg(0)
dτk
=
dkg(tn)
dtk
= (g(k)1 (tn), . . . , g(k)m (tn))

t
. (3.5)

The approximation to the solution in point tn+1 = (n + 1)h, is given by

xn+1 = Φ0(hn+1)xn + Φ1(hn+1)x�n + ε m−2∑
k=0 Φk+2(hn+1) (qk+1 + Bqk) . (3.6)

3.1 Explicit multistep method MDFSpE, for perturbed systems

In order to obtain an explicit method the derivatives of the perturbation function are substituted by divided
di�erences.

To make a variable step explicit multistep method of p-step, series∞
∑
k=0Φk(t) (qk+1 + Bqk)

is truncated, such that the higher order derivative is (p − 1), i.e, qp−1 = g(p−1)(tn), so that:

xn+1 = (Φ0(hn+1) − Φ1(hn+1)A)xn + εΦ1(hn+1)q0
+ ε

p−2
∑
k=0Φk+2(h) (qk+1 + Bqk) + εΦp+1(hn+1)Bqp−1. (3.7)

Properly rearranging (3.7), we obtain:

xn+1 = (Φ0(hn+1) − Φ1(hn+1)A)xn + ε p−1∑
k=0 (Φk+1(hn+1) + Φk+2(hn+1)B)qk . (3.8)
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Therefore it would be necessary to use divided di�erences (p − 1)-th order of each of the component �elds of
the function g, in the values tn , . . . , tn−p+1, that is gi[tn , . . . , tn−p+1] function with i = 1, . . .m.

As the divided di�erences of an arbitrary function g(t), satisfy the identity

g[tn , . . . , tn−i] = ∞
∑
j=0 Pj[0, −H1, . . . , −Hi] ⋅ gj)(tn) (3.9)

with Pk(t) = tk/k! and Hi = tn − tn−i [15, 25].
Denoting by

Dp,n = (( j − 1)!gi[tn , . . . , tn−j+1])i=1,...,mj=1,...,p (3.10)

the next matrix, with m × p order and H = max {H1, . . . , Hp−1}, it verify the identity

Dtp,n = Ap (g
(i−1)
j (tn))

i=1,...,p
j=1,...,m + Op×m (3.11)

where Op×m is a matrix of order p × m , whose i-th row is

(O(Hp−i+1) ⋅ ⋅ ⋅O(Hp−i+1))
and Ap is the non singular matrix of order p:

Ap =((

(

1 P1[0] P2[0] ⋅ ⋅ ⋅ Pp−1[0]
0 1 1!P2[0, −H1] ⋅ ⋅ ⋅ 1!Pp−1[0, −H1]
0 0 1 ⋅ ⋅ ⋅ 2!Pn−1[0, −H1, −H2]
...

...
...

. . .
...

0 0 0 ⋅ ⋅ ⋅ 1

))

)p×p
. (3.12)

Using a more compact notation

Dtp,n = Ap × Zp×m + Op×m , Zp×m = (g(i−1)j (tn))
i=1,...,p
j=1,...,m . (3.13)

Truncating the expansion obtained and solving Zp×m it results in:

Zp×m = A−1p × (Dtp,n)p×m (3.14)

replacing in (3.8) the derivatives of the components �elds of the perturbed function, we can write

xn+1 = (Φ0(hn+1) − Φ1(hn+1)A)xn + ε p−1∑
k=0 (Φk+1(hn+1) + Φk+2(hn+1)B)pk+1 (3.15)

being pj with j = 1, . . . , p the j-th. column of the matrix Dp,n × A−tp .
Let (dij)

i=1,...,p
j=1,...,p be the matrix A−tp , then

pj =

(((((((((

(

p
∑
i=1 g1[tn , . . . , tn−(i−1)]dij(i − 1)!
p
∑
i=1 g2[tn , . . . , tn−(i−1)]dij(i − 1)!

...
p
∑
i=1 gm[tn , . . . , tn−(i−1)]dij(i − 1)!

)))))))))

)

(3.16)
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which substituted in∑p−1
k=0 (Φk+1(hn+1) + Φk+2(hn+1)B)pk+1 allow us to write

p−1
∑
k=0 (Φk+1(hn+1) + Φk+2(hn+1)B)pk+1 = p

∑
i=1(p−1∑

k=0(i − 1)!di,k+1 (Φk+1(hn+1)
+ Φk+2(hn+1)B)(

g1[tn , . . . , tn−(i−1)]
g2[tn , . . . , tn−(i−1)]

...
gm[tn , . . . , tn−(i−1)]

)) .

(3.17)

De�ning

Λi =
p−1
∑
k=0(i − 1)!di,k+1 (Φk+1(hn+1) + Φk+2(hn+1)B) , i = 1, . . . , p (3.18)

we obtain

p−1
∑
k=0 (Φk+1(hn+1) + Φk+2(hn+1)B)pk+1 = p

∑
i=1 Λi(

g1[tn , . . . , tn−(i−1)]
g2[tn , . . . , tn−(i−1)]

...
gn[tn , . . . , tn−(i−1)]

) . (3.19)

Replacing (3.19) in (3.15), we obtain the next formula for a explicit multistep method

xn+1 = (Φ0(hn+1) − Φ1(hn+1)A)xn + ε p
∑
i=1 Λi(

g1[tn , . . . , tn−(i−1)]
g2[tn , . . . , tn−(i−1)]

...
gm[tn , . . . , tn−(i−1)]

) . (3.20)

We introduce the next notation, we obtain the next de�nition.

De�nition 3.1. Let xn be the approximation to the value of the solution at the point tn, and let

Λi =
p−1
∑
k=0(i − 1)!di,k+1 (Φk+1(hn+1) + Φk+2(hn+1)B) , (dij)

i=1,...,p
j=1,...,p = A−tp

Ftn,i = (g1[tn , . . . , tn−(i−1)], . . . , gm[tn , . . . , tn−(i−1)]) .
The starting values for x are: x0, x1, x2, x3, . . . , xp−1.
The explicit method MDFSpE, variable step size of p step, for perturbed linear systems, it is formulated

through the next equation:

xn+1 = (Φ0(hn+1) − Φ1(hn+1)A)xn + ε p
∑
i=1 ΛiFn,i , n ⩾ p − 1.

3.2 Implicit multistep method MDFSpI, for perturbed systems

In order to obtain an implicit method of p steps, we will use the same idea as in the previous section, the
∑∞
k=0 Φk(t)(qk+1 + Bqk) series is truncated, such that the higher order derivative is p, i.e, qp = g(p)(tn), to

correspond with the latest g[tn+1, . . . , tn+1−p] divided di�erence, so that:

xn+1 = (Φ0(hn+1) − Φ1(hn+1)A)xn + εΦ1(hn+1)q0
+ ε

p−1
∑
k=0Φk+2(hn+1)(qk+1 + Bqk) + εΦp+2(h)Bqp (3.21)

rearrange (3.21), we obtain:

xn+1 = (Φ0(hn+1) − Φ1(hn+1)A)xn + ε p
∑
k=0 (Φk+1(hn+1) + Φk+2(hn+1)B)qk . (3.22)
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It will be necessary to use the divided di�erences of order p-th of each of the �elds of components of the
function of g , in the values tn+1, . . . , tn+1−p.

Given that hn+1 = tn+1 − tn, it is de�ned
Hi = tn − tn−i . (3.23)

Denoting by
Dp,n+1 = ( (j − 1)! gi[tn+1, . . . , tn−j+2] )i=1,...,mj=1,...,p+1 (3.24)

the next matrix, with m × (p + 1) order, and H = max {hn+1, H1, . . . , Hp−1}, it verify the identity

Dtp,n+1 = Bp (g(i−1)j (tn))
i=1,...,p+1
j=1,...,m + O(p+1)×m (3.25)

where O(p+1)×m is a matrix of order (p + 1) × m, whose i-th row is

(O(Hp−i+2) ⋅ ⋅ ⋅O(Hp−i+2))
and Bp is the non singular matrix of order p + 1

Bp =((

(

1 P1[hn+1] P2[hn+1] ⋅ ⋅ ⋅ Pp[hn+1]
0 1 1!P2[hn+1, 0] ⋅ ⋅ ⋅ 1!Pp[hn+1, 0]
0 0 1 ⋅ ⋅ ⋅ 2!Pp[hn+1, 0, −H1]
...

...
...

. . .
...

0 0 0 ⋅ ⋅ ⋅ 1

))

)(p+1)×(p+1)
. (3.26)

Using a more compact notation:

Dtp,n+1 = Bp × Z(p+1)×m + O(p+1)×m , Z(p+1)×m = (g(i−1)j (tn))
i=1,...,p+1
j=1,...,m . (3.27)

Truncating the expansion obtained and solving for Z(p+1)×m results in:

Z(p+1)×m = B−1p × (Dtp,n+1)(p+1)×m (3.28)

replacing in (3.22) the derivatives of the components �elds of the perturbed function, we can write

xn+1 = (Φ0(hn+1) − Φ1(hn+1)A)xn + ε p
∑
k=0 (Φk+1(hn+1) + Φk+2(hn+1)B)pk+1 (3.29)

being pj with j = 1, . . . , p + 1 the j-th column of the matrix Dp,n+1 × B−tp .
Let (dij)

i=1,...,(p+1)
j=1,...,(p+1) be the matrix B−tp , then

pj =(

∑p+1
i=1 g1[tn+1, . . . , tn+1−(i−1)]dij(i − 1)!

∑p+1
i=1 g2[tn+1, . . . , tn+1−(i−1)]dij(i − 1)!

...
∑p+1
i=1 gm[tn+1, . . . , tn+1−(i−1)]dij(i − 1)!

) (3.30)

which substituted in∑p
k=0 (Φk+1(hn+1) + Φk+2(hn+1)B)pk+1 allow us to write:

p
∑
k=0 (Φk+1(hn+1) + Φk+2(hn+1)B)pk+1 = p+1

∑
i=1 ( p

∑
k=0(i − 1)! di,k+1 (Φk+1(hn+1)

+ Φk+2(hn+1)B) (
g1[tn+1, . . . , tn+1−(i−1)]
g2[tn+1, . . . , tn+1−(i−1)]

...
gm[tn+1, . . . , tn+1−(i−1)]

)) .

(3.31)
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De�ning

Γi =
p
∑
k=0(i − 1)! di,k+1 (Φk+1(hn+1) + Φk+2(hn+1)B) , i = 1, . . . , p + 1 (3.32)

we obtain

p
∑
k=0 (Φk+1(hn+1) + Φk+2(hn+1)B)pk+1 = p+1∑

i=1 Γi(
g1[tn+1, . . . , tn+1−(i−1)]
g2[tn+1, . . . , tn+1−(i−1)]

...
gm[tn+1, . . . , tn+1−(i−1)]

) . (3.33)

Replacing (3.33) in (3.29), we obtain the next formula for a implicit multistep method:

xn+1 = (Φ0(hn+1) − Φ1(hn+1)A)xn + ε p+1∑
i=1 Γi(

g1[tn+1, . . . , tn+1−(i−1)]
g2[tn+1, . . . , tn+1−(i−1)]

...
gm[tn+1, . . . , tn+1−(i−1)]

) . (3.34)

The next notation is introduced, giving rise to the following de�nition.

De�nition 3.2. Let xn be the approximation to the value of the solution at the point tn, and let

Γi =
p
∑
k=0(i − 1)! di,k+1 (Φk+1(hn+1) + Φk+2(hn+1)B) , B−tp = (dij)i=1,...,(p+1)j=1,...,(p+1)

T tn,i = (g1[tn+1, . . . , tn+1−(i−1)], . . . , gm[tn+1, . . . , tn+1−(i−1)]) .
The starting values for x are: x0, x1, x2, x3, . . . , xp−1.

The implicit method MDFSpI, variable step size of p step, for perturbed linear systems, it is formulated
through the next equation:

xn+1 = (Φ0(hn+1) − Φ1(hn+1)A)xn + ε p+1∑
i=1 ΓiTn,i , n ⩾ p − 1.

3.3 Predictor-corrector multistep method MDFSpPC, for perturbed systems

We de�ne the predictor-corrector method, with variable step size of p step MDFSpPC for perturbed linear
systems, which has as predictor to MDFpE and as corrector to MDFSpI.

The predictor-corrector method used is like P(EC)µE1−t with µ = t = 1.

4 Recurrent calculus of the matrices A−tp , B−tp and new de�nition the
multistep methods

Thenextmethodsdescribed inDe�nitions 3.1 and3.2, present thedi�culty that the coe�cients of thematrices
A−tp = (dij)i=1,...,pj=1,...,p and B−tp = (dij)i=1,...,(p+1)j=1,...,(p+1), are not expressed in a recurrent way, which leads to di�culties
in its codi�cation to automatize its calculation.

Once this problem is resulted, the methods will be able to be codi�ed and will enable one to chose the
step size and the number of steps, that each execution requires.

The problem is then reduced to �nd a recurrent formula, that allows us to calculate the elements of ma-
trices A−tp and B−tp .
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4.1 Recurrent calculus of A−tp and new de�nition the multistep explicit method

To obtain the recurrent calculus of thematrix elements A−tp = (dij)i=1,...,pj=1,...,p, allowing us to construct a variable-
step, variable-order method (VSVO), we use elementary symmetric functions en,r and complete symmetric
functions hn,r [9, 15, 23], de�ned as:

en,0 = 1, en,r =
n
∑

i1<i2<⋅⋅⋅<ir ti1 ⋅ ⋅ ⋅ tir , en,r = 0, r < 0 (4.1)

hn,r = ∑|λ|=r∑Sλ tα , λ = (λ1 ⋅ ⋅ ⋅ λn) ∈ ℕn , |λ| = λ1 + ⋅ ⋅ ⋅ + λn (4.2)

and Sλ = {all the di�erent permutations α = (α1 ⋅ ⋅ ⋅ αn) of λ} with tα = tα11 ⋅ ⋅ ⋅ tαnn .
Particularly hn,0 = 1 and hn,1 = en,1. In the case r < 0, it is de�ned as hn,r = 0.
Between the divided di�erences of g(t) = tm, that we will denoted by tm[t1, . . . , tn] and the complete

symmetrical polynomial the next relation holds: tm[t1, . . . , tn] = hn,m−n+1.
Considering the point tn, it is de�ned the complete symmetric functions [15] and [23]:

qi,j(n) = tj−1[Hn , . . . , Hn−(i−1)], σi,j(n) = (−1)j−iej−1,j−i (4.3)

in the values Hn−k = tn−k − t∗ with k = 0, . . . , i − 1 and t∗ ∈ [a, b].
The square matrices of order k,

Pk,n = (qi,j(n))i=1...kj=1...k , Sk,n = (σi,j(n))i=1...kj=1...k (4.4)

are inverse to each other.
As Hn−j = tn−j − t∗ and Hj = tn − tn−j we can write (tn − t∗) − Hj = Hn−j with j = 0, . . . , i − 1. In the

particular case t∗ = tn, we will get Hn−j = −Hj with j = 0, . . . , i − 1.
The divided di�erences of one function g satisfy the property:

g[tn , . . . , tn−(i−1)] = ∞
∑
j=0 qi,j+1(n)1j! g(j)(t∗). (4.5)

If H = max {|Hn|, . . . , |Hn−(i−1)|}, as qi,j(n) have order j − i in H, due to the last result, we can write

g[tn , tn−1, . . . , tn−(i−1)] = p−1∑
j=0 qi,j+1(n)1j! g(j)(t∗) + O(Hp−(i−1)), i = 1, . . . , p. (4.6)

Considering t∗ = tn and expressing those equalities in a matricial way, we have

(

g[tn]
g[tn , tn−1]

...
g[tn, . . . , tn−(p−1)]

) =(

q1,1(n) ⋅ ⋅ ⋅ q1,p(n)
q2,1(n) ⋅ ⋅ ⋅ q2,p(n)

...
. . .

...
qp,1(n) ⋅ ⋅ ⋅ qp,p(n)

)(

g(tn)
g�(tn)
1!
...

g(p−1)(tn)(p−1)!
)+(

O(Hp)
O(Hp−1)

...
O(H)

) (4.7)

and as qi,j+1(n) = hi,j in the arguments Hn , . . . , Hn−(i−1) , we can write

(

g[tn]
g[tn , tn−1]

...
g[tn, . . . , tn−(p−1)]

) =(

1 h1,1 ⋅ ⋅ ⋅ h1,p−1
0 1 ⋅ ⋅ ⋅ h2,p−2
...

...
. . .

...
0 0 ⋅ ⋅ ⋅ 1

)(

g(tn)
g�(tn)
1!
...

g(p−1)(tn)(p−1)!
)+(

O(Hp)
O(Hp−1)

...
O(H)

) . (4.8)

As σi,j(n) = σi−1,j−1(n) − Hn−j+2 σi,j−1(n) for i, j ⩾ 2 [23], if we consider t∗ = tn, then
Sp,n = (σij(n))

i=1,...,p
j=1,...,p , {{{{

{{{{
{

σ1,1(n) = 1
σ1,j(n) = 0, 1 < j ⩽ p
σi,1(n) = 0, 1 < i ⩽ p
σi,j(n) = σi−1,j−1(n) − Hn−j+2 σi,j−1(n), 2 ⩽ i, j ⩽ p.

(4.9)
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The recurrent form of the matrix A−tp is got through:

A−tp = Mp × P−tp,n × Np = Mp × Stp,n × Np (4.10)

that is to say

di,j =
(j − 1)!σj,i(n)

(i − 1)!
i, j = 1, . . . , p (4.11)

where Mp = (mij)
i=1,...,p
j=1,...,p is a diagonal matrix, such that mii = 1/i!, with i = 0, . . . , p − 1 and Np = M−1p .

The expressions (4.10) and (4.11) allow us to compute the A−tp matrix by recurrence, from Stp,n matrix.
Substituting (4.11) in De�nition 3.1, we obtain the explicit method modi�ed.

De�nition 4.1. Let xn be the approximation to the value of the solution at the point tn, and let

Λi =
p
∑
k=1(k − 1)! σk,i (Φk(hn+1) + Φk+1(hn+1)B) , i = 1, . . . , p

Ftn,i = (g1[tn , . . . , tn−(i−1)], . . . , gm[tn , . . . , tn−(i−1)]) .
The starting values for x are: x0, x1, x2, x3, . . . , xp−1.
The explicit method MDFSpE, variable step size of p step, for perturbed linear systems, it is formulated

through the next equation:

xn+1 = (Φ0(hn+1) − Φ1(hn+1)A)xn + ε p
∑
i=1 ΛiFn,i , n ⩾ p − 1.

4.2 Recurrent calculus of B−tp and new de�nition the multistep implicit method

As in the case above, we use elementary symmetric functions en,r and complete symmetric functions hn,r to
obtain the recurrent calculus matrix elements B−tp = (dij)i=1,...,(p+1)j=1,...,(p+1), allowing us to construct a variable-step,
variable-order method (VSVO).

Taking hn+1 = tn+1 − t∗, the divided di�erences of one function g satisfy the property:

g1[tn+1, tn , . . . , tn−(i−1)] = ∞
∑
j=0 qi+1,j+1(n)1j! gj)(t∗). (4.12)

If H = max {|hn+1|, |Hn|, . . . , |Hn−(i−1)|}, as qi,j(n) have order j− i in H, due to the last result, we can write

g1[tn+1, . . . , tn−(i−1)] = p−1∑
j=0 qi+1,j+1(n)1j! gj)(t∗) + O (Hp−(i−1)) , i = 1, . . . , p. (4.13)

Considering t∗ = tn and expressing those equalities in a matricial way, we have

(

g[tn+1]
g[tn+1, tn]

...
g[tn+1, . . . , tn−(p−1)]

) =(

q1,1(n) ⋅ ⋅ ⋅ q1,p+1(n)
q2,1(n) ⋅ ⋅ ⋅ q2,p+1(n)

...
. . .

...
qp+1,1(n) ⋅ ⋅ ⋅ qp+1,p+1(n)

)(

g(tn)
g�(tn)
1!
...

g(p)(tn)
p!

)+(

O(Hp+1)
O(Hp)

...
O(H)

) (4.14)

and as qi+1,j+1(n) = hi+1,j−i in the arguments hn+1, Hn , . . . , Hn−(i−1), we can write

(

g[tn+1]
g[tn+1, tn]

...
g[tn+1, . . . , tn−(p−1)]

) =(

1 h1,1 ⋅ ⋅ ⋅ h1,p+1
0 1 ⋅ ⋅ ⋅ h2,p+1
...

...
. . .

...
0 0 ⋅ ⋅ ⋅ 1

)(

g(tn)
g�(tn)
1!
...

g(p)(tn)
p!

)+(

O(Hp+1)
O(Hp)

...
O(H)

) . (4.15)
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As σi,j(n) = σi−1,j−1(n) − Hn−j+3 σi,j−1(n) for i, j ⩾ 2 [23], if we consider t∗ = tn, then
Sp,n+1 = (σij(n))i=1...(p+1)j=1...(p+1) ,

{{{{{{
{{{{{{
{

σ1,1(n) = 1
σ1,2(n) = −hn+1
σ1,j(n) = 0, 2 < j ⩽ p + 1
σi,1(n) = 0, 1 < i ⩽ p + 1
σi,j(n) = σi−1,j−1(n) − Hn−j+3 σi,j−1(n), 2 ⩽ i, j ⩽ p + 1.

(4.16)

The recurrent form of the matrix B−tp is got through:

B−tp = Mp+1 × Stp,n+1 × Np+1 (4.17)

that is
di,j =

(j − 1)! σj,i(n)
(i − 1)!

, i, j = 1, . . . , p + 1. (4.18)

In this caseMp+1 = (mij)
i=1...p+1
j=1...p+1 is a diagonalmatrix, such thatmii = 1/i!, with i = 0, . . . , p andNp+1 = M−1p+1.

The expressions (4.17) and (4.18) allow us to compute the B−tp matrix by recurrence, from S−tp,n+1 matrix.
Substituting (4.18) in De�nition 3.2, we obtain the implicit method modi�ed.

De�nition 4.2. Let xn be the approximation to the value of the solution at the point tn, and let

Γi =
p
∑
k=0 k! σk+1,i (Φk+1(hn+1) + Φk+2(hn+1)B) , i = 1, . . . , p + 1

T tn,i = (g1[tn+1, . . . , tn+1−(i−1)], . . . , gm[tn+1, . . . , tn+1−(i−1)]) .
The starting values for x are: x0, x1, x2, x3, . . . , xp−1.
The implicit method MDFSpI, variable step size of p step, for perturbed linear systems, it is formulated

through the next equation:

xn+1 = (Φ0(hn+1) − Φ1(hn+1)A)xn + ε p+1∑
i=1 ΓiTn,i , n ⩾ p − 1.

4.3 New predictor-corrector multistep method

We de�ne the predictor-corrector method, with variable step size of p step MDFSpPC for perturbed linear
systems, which has as predictor to MDFSpE and as corrector to MDFSpI, with the previous de�nition.

5 Numerical experiments
In this section we use the MDFSpPC method to solve the test problems proposed in [4], showing the validity
of this VSVO method, as we can obtain similar precision to that obtained with the Φ-function series method
without having to design the recurrences in each case.

The solutions obtainedusing theMDFSpPCmethod for sti� andhighly oscillatory problems are compared
with those calculated using the best-known codes:
– LSODE methods, causes a numerical solution to be found using the Livermore Sti� ODE solver.
– GEAR causes a numerical solution to be found byway of a Burlirsch-Stoer rational extrapolationmethod.
– MGEAR [msteppart] is a multistep method suitable for sti� systems.

Using in the last ones the implementations of MAPLE to ensure that the results are not distorted by a de�cient
programmation that favours the new code.

The results obtained using the newmethod are also compared with those calculated using the multistep
methods based on Scheifele’s G-functions, speci�cally with the EIpPC [15].
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Figure 1. Problem 1, relative error. Figure 2. Problem 1, e�ciency plot for the integration of x(t)
at last point.

5.1 Problem 1

Let us consider the following sti� problem, which appears in [6, 7, 22]:

{
x�1(t) = 2x1(t) + x2(t) + 2 sin(t)
x�2(t) = −(β + 2)x1(t) + (β + 1) (x2(t) − cos(t) + sin(t)) (5.1)

with initial conditions x1(0) = 2, x2(0) = 3, and exact solution, independent of β,

x1(t) = 2e−t + sin(t)
x2(t) = 2e−t + cos(t). (5.2)

The eigenvalues of the system are −1 and β which enables its degree of sti�ness to be regulated. For the
case β = −1000, the following sti� problem is obtained, proposed in [8]:

(
x�1(t)
x�2(t) ) + ( 2 −1

−998 999
)(

x1(t)
x2(t)

) = (
2 sin(t)

999(cos(t) − sin(t))
)

x1(0) = 2, x2(0) = 3.
(5.3)

In this article has been resolved (5.3) by the method MDFSpPC, based on the series of Φ-functions [4], using
the matrix

B = ( −1 −
2

999
999 1

)

as a matrix for annulment of the perturbation function. The IPV expanded which is obtained of applied the
di�erential operator (D + B) to (5.3), is expressed as:

L2(x) = (
x��1 (t)
x��2 (t) ) + ( 1 −1001999

1 1000
)(

x�1(t)
x�2(t) ) + ( − 2

999 −1
1000 0

)(
x1(t)
x2(t)

) = (
0
0
) (5.4)

this being the problem solved by the method MDFSpPC.
The results are compared with those obtained by integrators, LSODE , MGEAR, GEAR, implemented in

MAPLE and the multistep method EIPpPC [15], based on the Scheifele G-functions.
In Fig. 1 contrasts the decimal logarithm of module of the relative error of the solution x(t), calculated

using Φ-functions method MDFSpPC, with step size h = 10−3, 40 digits and p = 11, with the numerical
integration codes MGEAR[msteppart] with errorper = Float(1, −13), LSODE with a tolerance of 10−25, GEAR
with errorper = Float(1, −22) and EIpPC with step size h = 10−3, 40 digits and p = 11.
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In Fig. 2we showan e�ciency plotwhereΦ-functionsmultistepmethods are comparedwith integrations
using well known general purpose codes. The computation time is represented in the horizontal axis, in log-
arithmic scale, and the decimal logarithm of the integration error at the last point, is shown in the vertical
axis. The tolerances used in the standard codes are displayed in the �gure into parentheses, marking each
time-error point.

We show the results of a few runs of it where the number of Φ-functions has been kept �xed at 4 and
the number of digits used in the computations, that of course limit the attainable accuracy, has been var-
ied to illustrate the behaviour of the method. The accuracy increases as the number of digits do, with a
no noticeable major computational overhead. That number of digits is marked by the relevant point in the
curve, with the �gure followed by ‘d’. To make the comparisons as honest as we can, the length of the man-
tissa used by MAPLE is adjusted according to the tolerances required to the integrator, so that for tolerances
10−13, 10−15, 10−17, 10−21, and 10−25 in LSODE and 10−13, 10−15, 10−17, 10−21, 10−25, 10−31, and 10−36 in
GEAR. We use 13 + 4 digits, 15 + 4 digits, 17 + 4 digits, 21 + 4 digits, 25 + 4 digits, 31 + 4 digits, and 36 + 4
digits to avoid spurious increase of the computation times.

5.2 Problem 2

Let’s consider the highly oscillatory problem proposed by Petzold [13] and [12], which contains a harmonic
oscillator:

(
x�1(t)
x�2(t) ) + ( 0 λ2

−1 0
)(

x1(t)
x2(t)

) = (
a sin(λt)

0
)

(
x1(0)
x2(0)

) = (
−a
2λ
1

) .
(5.5)

Although its solution can be calculated exactly by means of analytical procedures, this example has been
chosen to illustrate how the MDFSpPC works for highly oscillatory harmonic perturbation functions.

For more easily a matrix B, which annihilates the function of disturbance, is applied the procedure de-
scribed by Ste�ensen [20] and [21].

We de�ne a new variable x3(t) = a sin(λt), which allows to express the system (5.5) as follows:

(
x�1(t)
x�2(t)
x�3(t) ) +(

0 λ2 0
−1 0 0
0 0 0

)(
x1(t)
x2(t)
x3(t)

) = (
a sin(λt)

0
aλ cos(λt)

)

(
x1(0)
x2(0)
x3(0)

) = (

−a
2λ
1
0

)

(5.6)

and exact solution

(
x1(t)
x2(t)
x3(t)

) = (
−λ (1 − a

2λ t) sin(λt) −
a
2λ t cos(λt)

(1 − a
2λ t) cos(λt)
a sin(λt)

) . (5.7)

By applying the operator (D + B) to the system (5.6), we obtain:

L2(x) = (
x��1 (t)
x��2 (t)
x��3 (t) ) +(

0 λ2 −1
−1 1 0
λ2 0 0

)(
x�1(t)
x�2(t)
x�3(t) ) +(

0 0 0
−1 0 0
0 λ4 0

)(
x1(t)
x2(t)
x3(t)

) = (
0
0
0
)

x(0) = (
x1(0)
x2(0)
x3(0)

) = (

−a
2λ
1
0

)

x�(0) = ( x�1(0)
x�2(0)
x�3(0) ) = (

−λ2−a
2λ
aλ

) .

(5.8)
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Figure 3. Problem 2, relative error. Figure 4. Problem 2, e�ciency plot for the integration of x(t)
at last point.

This problem is resolved by λ = 10, by applying the MDFSpPC method.
The results are compared with those obtained by integrators, LSODE, MGEAR, GEAR, implemented in

MAPLE and the multistep method EIPpPC [15], based on the Scheifele G-functions.
In Fig. 3 contrasts the decimal logarithm of module of the relative error of the solution x(t), calculated

using Φ-functions method MDFSpPC, with step size h = 10−3, 40 digits and p = 17, with the numerical
integration codes MGEAR[msteppart] with errorper = Float(1, −13), LSODE with a tolerance of 10−25, GEAR
with errorper = Float(1, −31) and EIpPC with step size h = 10−3, 40 digits and p = 17.

The results for the integration of the function x are shown in Fig. 4 in which the information is arranged
as in Fig. 2.

5.3 Problem 3

Denk [1] proposed the following highly oscillatory problem:

(
x�1(t)
x�2(t) ) + ( 0 −1

û2 0
)(

x1(t)
x2(t)

) = û2 (
0
t
) (5.9)

where x1(0) = 10−5, x2(0) = 1 − 10−5û cot k with û = 314.16.
With eigenvalues ±ûi and with an exact solution

(
x1(t)
x2(t)

) = (
t + 10−5 (cos(ût) − cot(û) sin(ût))
1 − 10−5û (sin(ût) + cot(û) cos(ût))

) . (5.10)

A new variable x3(t) = −û2t is de�ned [20] and [21], which permits the system (5.9) to be expressed as follows:

(
x�1(t)
x�2(t)
x�3(t) ) +(

0 −1 0
û2 0 0
0 0 0

)(
x1(t)
x2(t)
x3(t)

) = û2(
0
t
−1

)

(
x1(0)
x2(0)
x3(0)

) = (
10−5

1 − 10−5û cot(û)
0

)

(5.11)

and exact solution

(
x1(t)
x2(t)
x3(t)

) = (
t + 10−5 (cos(ût) − cot(û) sin(ût))
1 − 10−5û (sin(ût) + cot(û) cos(ût))

−û2t
) . (5.12)
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Figure 5. Problem 3, relative error. Figure 6. Problem 3, e�ciency plot for the integration of x(t)
at last point.

By applying the operator (D + B) to the system (5.11), with the B = (
1 0 0
0 0 1
1 0 0

) result:

L2(x) = (
x��1 (t)
x��2 (t)
x��3 (t) ) +(

1 −1 0
û2 0 1
1 0 0

)(
x�1(t)
x�2(t)
x�3(t) ) +(

0 −1 0
0 0 0
0 −1 0

)(
x1(t)
x2(t)
x3(t)

) = (
0
0
0
)

x(0) = (
x1(0)
x2(0)
x3(0)

) = (
10−5

1 − 10−5û cotû
0

)

x�(0) = ( x�1(0)
x�2(0)
x�3(0) ) = (

1 − 10−5û cotû
−10−5û2
−û2

) .

(5.13)

In Fig. 5 contrasts the decimal logarithm of module of the relative error of the solution x(t), calculated
using Φ-functions method MDFSpPC, with step size h = 10−3, 40 digits and p = 2, with the numerical
integration codes MGEAR[msteppart] with errorper = Float(1, −10), LSODE with a tolerance of 10−25, GEAR
with errorper = Float(1, −22) and EIpPC with step size h = 10−3, 40 digits and p = 8.

The results for the integration of the functionx(t) are shown in Fig. 6 inwhich the information is arranged
as in Fig. 2.

5.4 Problem 4

This example shows an application of the MDFSpPC to a problem of quasiperiodic orbits studied by [18],
which can also be found in [14, 17, 22, 24], among others.

Let
x��(t) + x(t) = 10−3eit , x(0) = 1, x�(0) = 0.9995 i, (5.14)

for which the analytical solution is:

x(t) = (1 − 5 ⋅ 10−4 it)eit = (cos(t) + 5 ⋅ 10−4t sin(t)) + i (sin(t) − 5 ⋅ 10−4t cos(t)). (5.15)

The solution represents motion on a perturbation of a circular orbit in the complex plane. The problem may
be solved either as a single equation in complex arithmetic or a pair of uncoupled equations.
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Noting x(t) = u(t) + iv(t), and by substituting in (5.14), we get the following second order system:

{
u��(t) + u(t) = 10−3 cos(t)
v��(t) + v(t) = 10−3 sin(t)

u(0) = 1, u�(0) = 0, v(0) = 0, v�(0) = 0.9995. (5.16)

By de�ning the variables x1(t) = u(t), x2(t) = u�(t) , x3(t) = v(t) and x4(t) = v�(t) becomes the system of �rst
order linear equations:

(

x�1(t)
x�2(t)
x�3(t)
x�4(t)

) +(

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

)(

x1(t)
x2(t)
x3(t)
x4(t)

) = 10−3( 0
cos(t)
0

sin(t)

)

(

x1(0)
x2(0)
x3(0)
x4(0)

) =(

1
0
0

0.9995

)

(5.17)

with double eigenvalues ±i and exact solution:

(

x1(t)
x2(t)
x3(t)
x4(t)

) =(

cos(t) + 5 ⋅ 10−4t sin(t)
−0.9995 sin(t) + 5 ⋅ 10−4t cos(t)

sin(t) − 5 ⋅ 10−4t cos(t)
0.9995 cos(t) + 5 ⋅ 10−4t sin(t) ) . (5.18)

The matrix which annihilates the disturbance function is

B = (

1 0 0 0
0 0 0 1
0 0 1 0
0 −1 0 0

) .

Applying the operator (D + B) to the system (5.17) with the result:

L2(x) = (

x��1 (t)
x��2 (t)
x��3 (t)
x��4 (t)

) +(

1 −1 0 0
1 0 0 1
0 0 1 −1
0 −1 1 0

)(

x�1(t)
x�2(t)
x�3(t)
x�4(t)

) +(

0 −1 0 0
0 0 1 0
0 0 0 −1
−1 0 0 0

)(

x1(t)
x2(t)
x3(t)
x4(t)

) =(

0
0
0
0

)

(

x1(0)
x2(0)
x3(0)
x4(0)

) =(

1
0
0

0.9995

) , (

x�1(0)
x�2(0)
x�3(0)
x�4(0)

) =(

1
−0.999
0.9995

0

) .

(5.19)

In Fig. 7 contrasts the decimal logarithm of the relative error model of the solution x(t), calculated using
Φ-functions method MDFSpPC, with step size h = 10−3, 40 digits and p = 10, with the numerical integra-
tion codes MGEAR[msteppart] with errorper = Float(1, −13), LSODE with a tolerance of 10−25, GEAR with
errorper = Float(1, −22) and EIpPC with step size h = 10−3, 40 digits and p = 10.

6 Conclusions
The multistep method MDFSpPC introduced in this paper it is based on the ideas developed by G. Scheifele
and it is constructed taking as point of departure the Φ-functions series method.
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Figure 7. Problem 4, relative error.

The new method allows a more accurate integration of a wide range of problems, and under certain
hypotheses, the multistep method calculates the exact solution of the perturbed problem.

Moreover themultistepmethod is de�ned for variable-step and variable-order, VSVO,maintains the good
properties of the Φ-functions series method and it incorporates an algebraic recurrent procedure to compute
the coe�cients of the algorithm, what facilitates its implementation on a computer.

This new method can successfully compete with well known general and special-purpose integrators
as shown in the examples, where it gains in the attainable accuracy and the e�ciency of several orders of
magnitude have been shown for di�erent sti� perturbed problems.

Funding: This work has been supported by GRE09-13 project of the University of Alicante and the project of
the Generalitat Valenciana GV/2011/032.

References
[1] G. Denk, A new numerical method for the integration of highly oscillatory second-order ordinary di�erential equations,

Appl. Numer. Math. 13 (1993), 57–67.
[2] J.M. Ferrándiz, A general canonical transformation increasing the number of variables with application to the two–body

problem, Celestial Mech. 41 (1988), 343–357.
[3] F. Garcia-Alonso, J. A. Reyes, J.M. Ferrándiz, and J. Vigo-Aguiar, Accurate numerical integration of perturbed oscillatory

systems in two frequencies, ACM Trans. Math. Software TOMS, 36 (2009), No. 4, article 21.
[4] F. Garcia-Alonso and J. A. Reyes, A new approach for exact integration of some perturbed sti� linear systems of oscillatory

type, Appl. Math. Comput. 215 (2009), 2649–2662.
[5] F. Garcia-Alonso, J. A. Reyes, and Y. Villacampa, A new approach for multistep numerical methods in several frequencies

for perturbed oscillators, Adv. Engrg. Softw. 45 (2012), 252–260.
[6] L. G. Ixaru, G. Vanden Berghe, and H. De Meyer, Exponentially �tted variable two–step BDF algorithm for �rst order ODE’s,

Comp. Phys. Commun. 100 (2003), 56–70.
[7] L. G. Ixaru, G. Vanden Berghe, and H. De Meyer, Frequency evaluation in exponential �tting multistep algorithms for

ODE’s, J. Comp. Appl. Math. 140 (2002), 423–434.
[8] J. D. Lambert, Numerical Methods for Ordinary Di�erential Systems, John Wiley and Sons Ltd., New York, 1991.
[9] I. G. MacDonald, Symmetric Functions and Hall Polynomials, Oxford University Press Inc., New York, 1998.
[10] P.Martin and J.M. Ferrándiz, Behaviour of the SMF method for the numerical integration of satellite orbits, Celestial Mech.

63 (1995), 29–40.
[11] P.Martin and J.M. Ferrándiz, Multistep numerical methods based on Scheifele G-functions with application to satellite

dynamics, SIAM J. Numer. Anal. 34 (1997), 359–375.
[12] M. Palacios, Métodos multirevolución simétricos para propagación de órbitas en intervalos grandes de tiempo,Mono-

gra�as de la Real Academia de ciencias de Zaragoza 22 (2003), 55–66.
[13] L. R. Petzold, An E�cient numerical method for highly oscillatory ordinary di�erential equations, SIAM J. Numer. Anal. 18

(1981), No. 3, 455–479.



34 | J.A. Reyes, M. Cortés-Molina, and F. García-Alonso, Exact integration of perturbed sti� systems

[14] J. I. Ramos, Piecewise-linearized methods for initial-value problems with oscillating solutions, Appl. Math. Comput. 181
(2006), 123–146.

[15] J. A. Reyes, F. Garcia-Alonso, J.M. Ferrándiz, and J. Vigo-Aguiar, Numeric multistep variable methods for perturbed linear
system integration, Appl. Math. Comput. 190 (2007), 63–79.

[16] G. Scheifele, On numerical integration of perturbed linear oscillating systems, Z. Angew. Math. Phys. 22 (1971), 186–210.
[17] T. E. Simos and J. Vigo-Aguiar, Exponentially �tted symplectic integrator, Phys. Rev. E. 67 (2003), 1–7.
[18] E. L. Stiefel and D. G. Bettis, Stabilization of Cowell’s method, Numer. Math. 13 (1969), 154–175.
[19] E. L. Stiefel and G. Scheifele, Linear and Regular Celestial Mechanics, Springer, Berlin–Heldelberg–New York, 1971.
[20] J. F. Ste�ensen, On the di�erential equations of Hill in the theory of the motion of the Moon, Acta Math. 93 (1955), 169–

177.
[21] J. F. Ste�ensen, On the di�erential equations of Hill in the theory of the motion of the Moon (II), Acta Math. 95 (1956), 25–

37.
[22] H. Van de Vyver, Two-step hybrid methods adapted to the numerical integration of perturbed oscillators,

arXiv:math/0612637v1 [math.NA], 2006.
[23] J. Vigo-Aguiar, An approach to variable coe�cients methods for special di�erential equations, Int. J. Appl. Math. 1 (1999),

No. 8, 911–921.
[24] J. Vigo-Aguiar and J.M. Ferrándiz, A general procedure for the adaptation of multistep algorithms to the integration of

oscillatory problems, SIAM J. Numer. Anal. 35 (1998), No. 4, 1684–1708.
[25] J. Vigo-Aguiar and J.M. Ferrándiz, Higher-order variable-step algorithms adapted to the accurate numerical integration of

perturbed oscillators, Computer in Physics 12 (1998), 467–470.
[26] J. Vigo-Aguiar and J.M. Ferrándiz, VSVO adapted multistep methods for the numerical integration of second order di�eren-

tial equations, Appl. Math. Lett. 11 (1998), 83–89.


	Multistep variable methods for exact integration of perturbed stiff linear systems
	1 Introduction
	2 Basic ideas and formulations
	3 Multistep methods
	3.1 Explicit multistep method MDFSpE, for perturbed systems
	3.2 Implicit multistep method MDFSpI, for perturbed systems
	3.3 Predictor-corrector multistep method MDFSpPC, for perturbed systems

	4 Recurrent calculus of the matrices Ap-t, Bp-t and new definition the multistep methods
	4.1 Recurrent calculus of Ap-t and new definition the multistep explicit method
	4.2 Recurrent calculus of Bp-t and new definition the multistep implicit method
	4.3 New predictor-corrector multistep method

	5 Numerical experiments
	5.1 Problem 1
	5.2 Problem 2
	5.3 Problem 3
	5.4 Problem 4

	6 Conclusions


