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Abstract: Given a particle system obeying overdamped Langevin dynamics, we demonstrate that it is always

possible to construct a thermodynamically consistent macroscopic model which obeys a gradient flow with

respect to its non-equilibrium free energy. To do so, we significantly extend the recent Stochastic Thermody-

namics with Internal Variables (STIV) framework, a method for producingmacroscopic thermodynamic models

far-from-equilibrium from the underlying mesoscopic dynamics and an approximate probability density of

states parameterized with so-called internal variables. Though originally explored for Gaussian probability

distributions, we here allow for an arbitrary choice of the approximate probability density while retaining a

gradient flow dynamics. This greatly extends its range of applicability and automatically ensures consistency

with the second law of thermodynamics, without the need for secondary verification. We demonstrate numer-

ical convergence, in the limit of increasing internal variables, to the true probability density of states for both

a multi-modal relaxation problem, a protein diffusing on a strand of DNA, and for an externally driven particle

in a periodic landscape. Finally, we provide a reformulation of STIV with the quasi-equilibrium approximations

in terms of the averages of observables of the mesostate, and show that these, too, obey a gradient flow.

Keywords: stochastic thermodynamics; thermodynamics with internal variables; gradient flow

1 Introduction

The field of non-equilibrium thermodynamics boldly seeks to describe themacroscopic behavior of awide range

of physical systems. Using various formulations, such as irreversible thermodynamics [1], [2], rational thermo-

dynamics [3], [4], thermodynamics with internal variables [5], or the General Equation for Non-Equilibrium

Reversible-Irreversible Coupling (GENERIC) formalism [6]–[8], complex phenomena like creep [9], damage

[10]–[12], thermoplatiscity [7], and fluid rheology [13], to name a few, have been modeled effectively and sys-

tematically. However, central to our understanding, and at the heart of Hilbert’s sixth problem, is the abil-

ity to formally and practically connect these macroscopic models to more fundamental microscopic physics.

Perhaps the two most important contributions on this front are the Mori–Zwanzig formalism and other pro-

jection operator approaches which seek to project out noisy or irrelevant aspects of a Hamiltonian system,

leaving only quantities which vary over long time scales, and the utilization of large deviation principles to
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coarse-grain microscopic stochastic processes [14]–[17]. Although these two theories provide the cornerstone of

our theoretical understanding, significant challenges limit their utility in producing usable models.

In a previous work [18], the authors leveraged the theory of stochastic thermodynamics [19], [20] and a

variational principle due to Eyink [21] to derive thermodynamically consistent macroscopic models directly

from microscopic particle systems obeying an overdamped Langevin dynamics of the form

dxt = − 1

𝜂
𝜕xe dt +

√
2

𝜂𝛽
d𝑤t, (1)

where the interaction energy e(x, 𝜆) is potentially dependent on an external driving protocol 𝜆, 𝜂 and 𝛽 are

the viscosity and inverse temperature respectively (both assumed to be constant), and 𝑤t is a standard Brow-

nian motion. Stochastic thermodynamics provided the definitions for thermodynamic quantities both at the

level of individual trajectories and at the macroscopic scale via ensemble averages. The system was then mod-

eled using a parametrized approximate probability density of states, where the dynamics of the parameters

(called internal variables) were determined using the variational method of Eyink. One obtained an approx-

imate macroscopic thermodynamic model with internal variables by replacing the true probability density

of states with its parameterized approximation in the definitions of macroscopic quantities from stochastic

thermodynamics. The resultingmacroscopicmodels exhibited the thermodynamicswith internal variable struc-

ture for an arbitrary choice of approximation to the probability density of states, and hence the framework

was named Stochastic Thermodynamics with Internal Variables (STIV). For the particular choice of a Gaussian

approximation to the probability density of states, the dynamics of the internal variables obeyed a gradient

flow with respect to the non-equilibrium free energy, Âneq, thereby guaranteeing a non-negative rate of total

entropy production. The STIV framework with a Gaussian approximation to the probability density of states

has proven useful so far in providing the first ab-initio derivation of phase field models of front propaga-

tion in elastic media [22] as well as capturing the evolution and spreading of orientations of cell populations

[23].

In this work, we expand the utility of the STIV framework by showing that the Gaussian approximation is

not the onlyway to ensure the gradient flow structure, andhence a non-negative rate of total entropy production.

In fact, the gradient flow structure can be achieved for any choice of approximate probability density of states.

This is fitting, as it is well known that the Fokker–Planck equation associated with Langevin dynamics can be

formulated as a gradient flow of the free energy Aneq = ∫ (e+ 𝛽−1 log p
)
p dx with respect to the Wasserstein-2

metric [24]

𝜕t p =
1

𝜂
𝜕xi

(
p 𝜕xi

𝛿Aneq

𝛿 p

)
. (2)

Preserving the gradient flow structure offers several benefits. As already mentioned, within the STIV

framework it guarantees that the approximate rate of total entropy production is non-negative and ensures

thermodynamic consistency with the second law of thermodynamics. Typically, the second law must be

enforced in an additional step, such as through the Coleman–Noll procedure [25]. Structure preservation has

also been found both to improve the numerical accuracy of an approximation, and lead to more accurate

qualitative behaviors [26]. This has proved vital to the numerical study of complex systems in many fields,

including celestial mechanics [27], [28], molecular dynamics [29], control theory [30], and non-equilibrium

mechanics [31].

2 Derivation

The dynamical equations for the STIV framework are derived from the variational method of Eyink [21], which

provides amethod for approximating the solution to differential equations arising in non-equilibrium statistical
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mechanics. Starting from the Fokker–Planck equation associated with the microscopic stochastic differential

equation in Eq. (1)1

𝜕t p(x, t) = p(x, t) = 𝜕xi
(
1

𝜂
p(x, t)𝜕xi e+

1

𝜂𝛽
𝜕xi p(x, t)

)
one can recast the problem in a variational form by introducing a test function 𝜓 , and the action

Γ[𝜓, p] =
∞

∫
0

∫
X

𝜓
(
𝜕t − )p dxdt.

Stationary points (𝜓∗, p∗) of this action are solutions to the adjoint and standard forms of the original

Fokker–Planck equation respectively, and solve an infinite dimensional Hamilton equation

𝜕t p =
𝛿

𝛿𝜓
[𝜓, p]

𝜕t𝜓 = − 𝛿

𝛿 p
[𝜓, p]

where  = ∫
X
𝜓p dx is the Hamiltonian. The adjoint equation is trivially solvable with solution 𝜓∗ ≡ 1. The

equation for p is intractable in general, so to find an approximate solution one proposes a parameterized approx-

imate probability density of states, p̂(x, 𝛼 ), and a parameterized test function, 𝜓̂ (x, 𝛼 ). Writing û = log(p̂) and⟨ f ⟩p̂ = ∫ f (x)p̂(x, 𝛼 )dx, the dynamical equations for the parameters 𝛼 reduce to⟨
[𝜕𝜓̂, 𝜕û]i j

⟩
p̂
𝛼̇ j = 𝜕𝛼i

⟨†𝜓̂
⟩
p̂

where [𝜕𝜓̂, 𝜕û]i j = 𝜕𝛼i𝜓̂𝜕𝛼 j
û− 𝜕𝛼 j

𝜓̂𝜕𝛼i û and † is the adjoint of . The matrix ⟨[𝜕𝜓̂, 𝜕û]i j⟩p̂ is anti-symmetric
and obeys the Jacobi identity, so these dynamics retain the Hamiltonian form.

In the original framework [18], the parameters were split into two sets: the variables parameterizing p

denoted (with a slight abuse of notation) 𝛼 and referred to as internal variables, and dummy variables 𝛾 of

the same dimension as 𝛼. The approximate density is assumed to only depend on 𝛼 while 𝜓̂ was defined as

𝜓̂ = 1+ 𝛾i 𝜕𝛼i ŝ, where ŝ = −kBû = −kB log(p̂) is the approximate microscopic entropy, and kB is the Boltzmann
constant. With this particular choice, the dynamical equations reduce to⟨

𝜕𝛼i ŝ 𝜕𝛼 j
ŝ
⟩
p̂
𝛼̇ j = −kB

⟨†𝜕𝛼i ŝ
⟩
p̂
, 𝛾(t) ≡ 0.

This “linear ansatz” using the 𝛼-gradient of the microscopic entropy in the test function 𝜓̂ produces a spe-

cific case of the moment-closure equations called “entropic matching” [32], and ultimately leads to irreversible

dynamics for 𝛼.

Once the dynamics for the internal variables are obtained, one can approximate macroscopic thermody-

namic quantities defined via stochastic thermodynamics by substituting the approximate probability density of

states for the true solution. For example, the macroscopic non-equilibrium free energy defined as Aneq = ⟨e⟩ p −
T⟨s⟩ p becomes Âneq = ⟨e⟩p̂ − T

⟨
ŝ
⟩
p̂
, from which one can approximate both the external force Fex = ⟨𝜕𝜆e⟩ p by

F̂ex = 𝜕𝜆Âneq and the rate of total entropy production d

dt
Stot by

d

dt
Ŝtot = 1

T

(
F̂ex𝜆̇− d

dt
Âneq
)
= − 1

T
𝜕𝛼i Â

neq𝛼̇i.

Previously, the STIV framework was effectively used to study the dynamics and thermodynamics of phase

front propagation in an elasticmedium,where one could derive both the continuum limit [18], and an equivalent

phase fieldmodel directly frommicroscopic physics [22]. This previous implementation, however, was limited to

a multivariate Gaussian approximation to the probability density of states p̂ as this was the only form in which

the gradient flow structure, and hence non-decreasing total entropy production, could be ensured at the time.

The key findings of this work are a number of options for preserving the gradient flow structure of the under-

lying Fokker–Planck equation which are flexible enough to approximate any probability density to arbitrary

1 We shall use the Einstein summation convention, summing all repeated indices, butwithout regard for raised and lowered indices.
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Table 1: Key features of the closure methods.a

Method name Operator method Quasi-equilibrium Exponential family

Probability density of states p̂ Arbitrary exp(−𝛽e+ 𝛼𝜙− f ) exp(𝛼𝜙− f )

Test functions 𝜓̂ 1+ 𝛾
(†

û

)−1
𝜕𝛼 û 1+ 𝛾𝜕𝛼 û 1+ 𝛾𝜕𝛼 û

Dynamical equations 𝔽 𝛼̇ = − 1

𝜂
𝜕𝛼 Â

neq ℂ𝛼̇ = − 1

𝜂
𝕄ℂ−1𝜕𝛼 Â

neq ℂ𝛼̇ = − 1

𝜂
𝕄ℂ−1𝜕𝛼 Â

neqc

Dynamics with external driving 𝔽 𝛼̇ = − 1

𝜂
𝜕𝛼 Â

neq ℂ𝛼̇ +
⟨
𝜙̄𝜕𝜆û
⟩
p̂
𝜆̇ = − 1

𝜂
𝕄ℂ−1𝜕𝛼 Â

neq ℂ𝛼̇ = − 1

𝜂
𝕄ℂ−1𝜕𝛼 Â

neq

Dual dynamics Not studied here
d

dt
Φ̂ = − 1

𝜂
𝕄𝜕ΦÂneqb

d

dt
Φ̂ = − 1

𝜂
𝕄𝜕ΦÂneq

Entropy production T
d

dt
Ŝtot 𝜂𝔽i j𝛼̇i𝛼̇ j

1

𝜂𝛽2
𝕄i j𝛼i𝛼 j 𝜂𝕄−1

i j

d

dt
Φ̂i

d

dt
Φ̂ j

aDefinition of terms for Table 1: ℂi j =
⟨
𝜕𝛼i û𝜕𝛼 j

û
⟩
p̂
= Covp̂(𝜙i, 𝜙 j ),𝕄i j =

⟨
𝜕xk𝜕𝛼i û𝜕xk𝜕𝛼 j

û
⟩
p̂
=
⟨
𝜕xk𝜙i𝜕xk𝜙 j

⟩
p̂
,

†
û
g = 𝜕xi û𝜕xi g+ 𝜕xi𝜕xi g, 𝔽i j =

⟨
𝜕𝛼i û
(†

û

)−1
𝜕𝛼 j

û

⟩
p̂

, 𝜙̄ = 𝜙− Φ̂, Φ̂ = ⟨𝜙⟩p̂. bThis equation holds with and without external driving.
cThese dynamics are not given by moment closure, but approximate it for large number of observables.

accuracy in the limit of increasing internal variables. The first method, which we call the “operator method”,

utilizes an alternative form for the approximate test function that allows for a completely unconstrained choice

of approximate probability density of states. The second uses the original approximate test functions and

entropic matching moment-closure equations, but requires one to restrict the approximate probability den-

sity of states using a “quasi-equilibrium” distributions [33]. The final method forgoes the need to include the

Boltzmann factor exp(−𝛽e(x, 𝜆)) in the approximate probability density of states, which could reduce compu-
tational costs in some cases, but the internal variable dynamics given by entropic matching only approximate

a gradient flow. We label this method as “exponential family” throughout. A detailed analysis of each of these

three methods is provided next, and the key elements and results for each of them are summarized in Table 1

as reference.

2.1 The operator method

We now motivate an alternative choice for the approximate test function 𝜓̂ to show how the STIV method can

produce gradient flow equations for an arbitrary approximate probability density of states. Again, we fix an

approximate density p̂(x, 𝛼 ), and let û = log(p̂). We then assume that𝜒 (x, 𝛼) is a vector valued function with the

same dimension as 𝛼, and define 𝜓̂ (x, 𝛼, 𝛾 ) = 1+ 𝛾i 𝜒i(x, 𝛼 ). Following the same steps as above, the dynamical
equations induced by the variational method become⟨

𝜒i 𝜕𝛼 j
û
⟩
p̂
𝛼̇ j =
⟨†𝜒i

⟩
p̂
, 𝛾(t) = 0.

For convenience, we define 𝔽i j ≡
⟨
𝜒i 𝜕𝛼 j

û
⟩
p̂
and ℂi j ≡

⟨
𝜕𝛼i û 𝜕𝛼 j

û
⟩
p̂
.

We have not specified new test functions yet, but to do so we examine the approximate rate of total entropy

production, T ̇̂Stot = −𝛼̇i 𝜕𝛼i Â
neq.We recall that Âneq = Ê − TŜ = ⟨e⟩p̂ + ⟨û∕𝛽⟩p̂, and since 0 = 𝜕𝛼i⟨1⟩p̂ = ⟨𝜕𝛼i û⟩p̂

and e does not depend on 𝛼, we have 𝜕𝛼i Â
neq =
⟨
(e+ û∕𝛽 )𝜕𝛼i û

⟩
p̂
. On the other hand, repeated integration by

parts reveals that

⟨†𝜒i
⟩
p̂
=
⟨(

− 1

𝜂
𝜕xk e𝜕xk𝜒i + d𝜕xl𝜕xl𝜒i

)⟩
p̂

= − 1

𝜂

⟨
𝜕xk

(
e+ û∕𝛽

)
𝜕xk𝜒i
⟩
p̂

= 1

𝜂

⟨
(e+ û∕𝛽 )

(
𝜕xk û𝜕xk𝜒i + 𝜕xk𝜕xk𝜒i

)⟩
p̂

≡ 1

𝜂

⟨
(e+ û∕𝛽 )†

û
𝜒i

⟩
p̂
.
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This new operator †
û
g = 𝜕xk û𝜕xk g + 𝜕xl𝜕xl g is also the adjoint of a Fokker Planck operator which only depends

on û. The final line resembles the equation for 𝜕𝛼i Â
neq, and suggests that one should choose test functions which

obey

†
û
𝜒i = −𝜕𝛼i û. (3)

Assuming one can solve this differential equation, the dynamical equations become a gradient flow

𝔽i j𝛼̇ j = − 1

𝜂
𝜕𝛼i Â

neq, (4)

since 𝔽i j is positive semi-definite as

𝔽i j =
⟨
𝜒i𝜕𝛼 j

û
⟩
p̂

= −
⟨
𝜒i†

û
𝜒 j

⟩
p̂

= −∫ 𝜒i𝜕xk

(
p̂𝜕xk𝜒 j

)
dx

=
⟨
𝜕xk𝜒i𝜕xk𝜒 j

⟩
p̂
.

Between the second and third lines, we have made use of the fact that p̂†
û
𝜒 j = 𝜕xk

(
p̂𝜕xk𝜒 j

)
. With the gradient

flow structure comes the guarantee of non-negative rate of total entropy production

T ̇̂Stot = 𝜂𝔽i j𝛼̇i𝛼̇ j ≥ 0.

This strategy allows for a completely general choice of approximate probability density of states p̂(x, 𝛼 ).

Solving Eq. (3), though, is challenging in general. However, following a well known trick [34], one can define a

“Hamiltonian” conjugation of †
û
by

−û g =
√
p̂ †

û

(
g√
p̂

)
= 𝜕2

x
g − 𝑣(x, 𝛼 )g

where 𝑣 = 𝜕2
x
û∕2+ |𝜕xû|2∕4. Unlike †

û
,û is self-adjoint with respect to the Lebesgue measure. Note, also thatû defines a Schrödinger operator, and it is immediately clear that if (𝜆

∗, g∗) is an eigenvalue-eigenvector pair

forû, then (−𝜆∗, g∗∕
√
p̂) is an eigenvalue-eigenvector pair for †

û
. Hence, one can take advantage of existing

eigenvalue solvers for quantum systems in order to compute the necessary test functions.

2.2 Quasi-equilibrium distribution

The primary advantage of the previous method for producing a gradient flow dynamics is that it allows for

an arbitrary choice of approximate probability density of states. The disadvantage is that the test functions

must be computed as solutions to the differential equation in Eq. (3). Alternatively, we show now that if one

restricts the approximate probability density of states to a specific class known as quasi-equilibrium densities (a

specific form of exponential family) [33], then one may use the original test functions 𝜒i = 𝜕𝛼i û and still achieve
a gradient flow (here, we have replaced ŝ by û for notational simplicity). This is only a minor restriction as

any continuous probability distribution can be approximated by an exponential family or quasi-equilibrium

distribution to arbitrary accuracy (see Appendix C for one such proof).

Assume that the approximate probability density of states takes a quasi-equilibrium form. That is

p̂(x, 𝛼, 𝛽 ) = exp(−𝛽e(x)+ 𝛼i𝜙i(x)− f (𝛼, 𝛽 )), (5)

for some set of “observables” 𝜙i(x) and internal variables 𝛼i(t). Here, 𝛽 (taken as a constant) and the internal

variables 𝛼, form the natural parameters of the exponential family, while the energy e and observables 𝜙 form

the “sufficient statistics” [35]. It will be helpful to define Φ̂i as the p̂ averages of the observables, i.e., Φ̂i ≡ ⟨𝜙i⟩p̂.
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To see the gradient flow structure, note first that in this case⟨
𝜒i𝜕𝛼 j

û
⟩
p̂
=
⟨
(𝜙i − Φ̂i )(𝜙 j − Φ̂ j )

⟩
p̂
= ℂi j.

Second, since e+ û∕𝛽 = (𝛼i𝜙i − f (𝛼, 𝛽 ))∕𝛽 , we have

𝜕𝛼i Â
neq =
⟨
(e+ û∕𝛽 )𝜕𝛼i û

⟩
p̂
=

ℂi j𝛼 j

𝛽
.

Finally, again by integrating by parts

⟨†𝜒i
⟩
p̂
= − 1

𝜂

⟨
𝜕xk (e+ û∕𝛽 )𝜕xk𝜒i

⟩
p̂

= −
⟨
𝜕xk𝜙i𝜕xk𝜙 j

⟩
p̂
𝛼 j

𝜂𝛽

≡ − 1

𝜂𝛽
𝕄i j𝛼 j.

As with 𝔽 in the earlier discussion,𝕄i j =
⟨
𝜕xk𝜙i𝜕xk𝜙 j

⟩
p̂
is positive semi-definite. Putting the pieces together, we

get

ℂi j𝛼̇ j = − 1

𝜂𝛽
𝕄i j𝛼 j (6)

or, by inserting the identity as 𝛿 jk = ℂ−1
jl
ℂlk between𝕄 and 𝛼 (we assume ℂ is invertible),

𝛼̇i = − 1

𝜂
ℂ−1
i j
𝕄 jkℂ−1

kl
𝜕𝛼l Â

neq. (7)

Since𝕄 is positive semi-definite, and ℂ is symmetric, ℂ−1𝕄ℂ−1 is positive semi-definite and the dynamics obey

a gradient flow.

2.3 Exponential family

Using a quasi-equilibrium distribution which includes the total energy leads to gradient flow dynamics exactly.

However, one may not always wish to include the energy in the approximate density of states, for example, if

it would make computing the normalizing function more challenging. If one removes the energy and uses an

exponential family of the form

p̂(x, 𝛼 ) = exp(𝛼i𝜙i − f (𝛼 )) (8)

the dynamics are not always a gradient flow. Specifically, they become

ℂ𝛼̇ = − 1

𝜂
𝕄ℂ−1𝜕𝛼Â

neq (9)

− 1

𝜂

(⟨
𝜕xk e𝜕xk𝜙

⟩
p̂
−𝕄ℂ−1

⟨
e(𝜙− Φ̂)

⟩
p̂

)
.

The second term on the right hand side only depends on the (non-constant) part of the energy which is p̂-

orthogonal to the span of the 𝜙. Mathematically, if we can write e(x) = 𝛾 j(𝜙 j(x)− Φ̂ j )+ e0 + e⊥(x) where⟨
e⊥(𝜙 j − Φ̂ j )

⟩
p̂
= 0 for all j, then the second term becomes

(⟨
𝜕xk e𝜕xk𝜙

⟩
p̂
−𝕄ℂ−1

⟨
e(𝜙− Φ̂)

⟩
p̂

)
=
⟨
𝜕xk e

⊥𝜕xk𝜙
⟩
p̂
.

If the observables are chosen to produce a highly flexible approximation, for example by using machine learn-

ing techniques or a basis expansion, it is reasonable to assume that this term is negligible and therefore one
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can set it to zero, giving a gradient flow structure. In this case, 𝜕𝛼Â
neq = ℂ𝛼∕𝛽 +

⟨
e(𝜙− Φ̂)

⟩
p̂
, and again the

dynamical equations are given by Eq. (7). To minimize confusion, we shall refer to an approximate probability

density of states of the form p̂ = exp(𝛼i𝜙i − f (𝛼 )) which does not include the energy as an exponential family

approximation. When p̂ = exp(−𝛽e+ 𝛼i𝜙i − f (𝛼, 𝛽 )) explicitly includes the energy, we shall refer to this as a

quasi-equilibrium approximation (although it is also an exponential family).

2.4 Time dependent external driving

Now we consider the case when the total energy is time dependent through some external driving protocol,

e = e(x, 𝜆(t)). In the operator formulation, with test functions u𝜒i = 𝜕𝛼i û, nothing needs change to maintain
the original STIV definitions. Since the approximate probability density of states can still be chosen to be inde-

pendent of 𝜆 (for fixed 𝛼), the approximate external force remains F̂ex = 𝜕𝜆Âneq [18]. In the quasi-equilibrium
formulation, p̂ explicitly depends on 𝜆 through e and so it is no longer true that F̂ex = 𝜕𝜆Âneq. Moreover, when
deriving the dynamical equations from the variational method [21], it was assumed that all of the time depen-

dence of p̂ was captured through the internal variables 𝛼. When p̂ takes the quasi-equilibrium form this is not

the case since the energy is now time dependent. This is fixed through the proper modification of the dynamical

equations given in Eq. (6) (which can be found in Appendix A). The resulting dynamical equations are

ℂi j𝛼̇ j +
⟨
(𝜙i − Φ̂i )𝜕𝜆û

⟩
p̂
𝜆̇ = − 1

𝜂𝛽
𝕄ik𝛼k (10)

and the external force becomes

F̂ex = 𝜕𝜆
(
Âneq − 𝛼iΦ̂i

𝛽

)
= − 1

𝛽
𝜕𝜆 f (𝛼, 𝛽, 𝜆). (11)

The equation for the rate of total entropy production is also impacted, but it still remains non-negative

T
d

dt
Ŝtot = 1

𝜂𝛽2
𝛼i𝕄i j𝛼 j (12)

(see the Appendix B for the derivation of both the approximate external force and approximate rate of total

entropy production).

The new dynamical equations appear to break the gradient flow structure. However, in the following

section, we show that the gradient flow structure remains intact when the equations are recast in terms of

the dynamics of the averages of observables Φ̂.

2.5 Dual formulation

So far, the dynamics of the system have been tracked through the internal variables 𝛼. However, in traditional

internal variable formulations, the internal variables are generally assumed to be averages of microscopic sub-

structures which are not captured in equilibrium. Thus, it seems more natural to consider the averages of the

observables, that is Φ̂i = ⟨𝜙i⟩p̂ as independent variables, and develop the system’s dynamics in terms of their
behavior. Fortunately, this is readily achievable through a simple change of variables. Assuming the map from

the internal variables to the averages of the observables, 𝛼→ Φ̂, is invertible, we can define the non-equilibrium
free energy as a function of Φ̂. Using the chain rule, we find that 𝜕𝛼Âneq = ℂ𝜕ΦÂneq. Combining this with

d

dt
Φ̂i =
⟨
𝜙i𝜕𝛼 j

u
⟩
p̂
𝛼̇ j +
⟨
𝜙i𝜕𝜆û
⟩
p̂
𝜆̇

= ℂi j𝛼̇ j +
⟨
(𝜙i − Φ̂i )𝜕𝜆û

⟩
p̂
𝜆̇,
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which reproduces the left hand side of Eq. (10) (or Eqs. (6) and (9) when p̂ doesn’t depend on 𝜆), gives the

equivalent dynamics for Φ̂
d

dt
Φ̂i = − 1

𝜂
𝕄i j𝜕Φ j

Âneq

which again have the gradient flow structure. This holds true for both the quasi-equilibrium and exponential

family approximations. Moreover, when p̂ is independent of 𝜆 (either the exponential family approximation or

the quasi-equilibrium approximation with no external driving), the form of the rate of total entropy production

is invariant under the change of variables [22]

T
d

dt
Ŝtot = −𝜕𝛼i Â

neq(𝛼i, 𝛽 )𝛼̇i

= −𝜕Φi
Âneq(Φ̂, 𝛽 )dΦ̂i

dt

= 𝜂 dΦ̂i

dt
𝕄−1

i j

dΦ̂ j

dt
.

In this form, it becomes clear that𝕄i j =
⟨
𝜕x𝜙i𝜕x𝜙 j

⟩
p̂
is an approximation to the true average dissipationmatrix

of the observables 𝜙i(xt) along fluctuating trajectories. Mathematically, since the governing Langevin equation

is given by

dxt = −𝜕xe∕𝜂 dt +
√
2∕𝜂𝛽 d𝑤t,

we know by Itô’s formula that

d𝜙i(xt ) =
(
− 1

𝜂
𝜕xe𝜕x𝜙i +

1

𝜂𝛽
Δx𝜙i

)
dt +
√

2

𝜂𝛽
𝜕x𝜙i d𝑤t

and hence the diffusion matrix of 𝜙(xt) isi j(xt ) ∝ 𝜕x𝜙i𝜕x𝜙 j. When p̂ depends on 𝜆, the approximate rate of

total entropy production cannot be written as a quadratic form in d

dt
Φ̂ but is still given by Eq. (12).

It is also interesting to note that in the case of the quasi-equilibrium approximation, the non-equilibrium

free energy is the convex dual of the normalizing function

f (𝛼, 𝛽, 𝜆) = log

(
∫ exp(−𝛽e+ 𝛼𝜙)dx

)
.

f is convex in 𝛼 since 𝜕𝛼i𝜕𝛼 j
f =
⟨
(𝜙i − Φ̂i )(𝜙 j − Φ̂ j )

⟩
p̂
= ℂi j is positive semi-definite and we know

Φ̂i = ⟨𝜙i⟩p̂ = 𝜕𝛼i f .
Using the Legendre transform, we can define the convex dual to f as f ∗(Φ, 𝛽, 𝜆) = sup𝛼

(
𝛼Φ− f (𝛼, 𝛽, 𝜆)

)
so

that

𝛼i = 𝜕Φi
f ∗(Φ = Φ̂, 𝛽, 𝜆).

Looking at the definition for Âneq(𝛼, 𝛽, 𝜆) =
⟨
e+ û∕𝛽

⟩
p̂
= ⟨(𝛼i𝜙i − f (𝛼, 𝛽, 𝜆)⟩p̂∕𝛽 = (𝛼iΦ̂i −

f (𝛼, 𝛽, 𝜆))∕𝛽 , it’s clear that Âneq(Φ, 𝛽, 𝜆) = f ∗(Φ, 𝛽, 𝜆)∕𝛽 . Since Âneq(𝛼, 𝛽, 𝜆) ≠ f (𝛼, 𝛽, 𝜆), the non-equilibrium

free energies driving the dynamics for 𝛼 and Φ̂, that is Âneq(𝛼 ) and Âneq(Φ), are not related through a Legendre

transform as is typically the case when one changes between dual variables in classical thermodynamics.

3 An information theoretic view

Beforemoving on to the example implementations of the STIV framework,we highlight an information theoretic

perspective on the dynamical equations for the internal variables based on minimizing the Kullback–Leibler

(KL) divergence between the approximate and true probability density of states. Following Bronstein andKoeppl
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[32], we assume that the true probability density of states if governed by the equation 𝜕t p = p, and try to

minimize the KL-divergence

𝔻KL(𝛼 ) ≡ 𝔻KL[p̂‖p] = ∫ p̂ log

(
p̂

p

)
dx.

Differentiating in 𝛼 gives

0 = ∫ log

(
p̂

p

)
𝜕𝛼i p̂ dx.

We would like this to be true for all time, and hence we differentiate in time to get

0 = ∫
{
log

(
p̂

p

)
𝜕𝛼i𝜕𝛼 j

p̂+ p̂ 𝜕𝛼i û𝜕𝛼 j
û

}
𝛼̇ jdx

+ ∫
{
log

(
p̂

p

)
𝜕𝛼i𝜕𝜆p̂+ p̂𝜕𝛼i û𝜕𝜆û

}
𝜆̇− ∫ 𝜕𝛼i û

p
p
p̂dx

or in terms of expectations with respect to p̂,

⟨
𝜕𝛼i û

p
p

⟩
p̂

=
⟨
log

(
p̂

p

)
𝜕𝛼i𝜕𝛼 j

p̂

p̂

⟩
p̂

𝛼̇ j + ℂi j𝛼̇ j

+
⟨
log

(
p̂

p

)
𝜕𝛼i𝜕𝜆p̂

p̂

⟩
p̂

𝜆̇+
⟨
𝜕𝛼i û𝜕𝜆û

⟩
p̂
𝜆̇.

Since this equation contains p, it is unlikely that one could simplify it without significant approximation. More-

over, the best approximation one has for p at any given time within our framework is p̂. If we make this

substitution in the previous equation, we achieve

ℂi j𝛼̇ j +
⟨
𝜕𝛼i û 𝜕𝜆û

⟩
p̂
𝜆̇ =
⟨†𝜕𝛼i û

⟩
p̂

which is exactly the original dynamical equations given by the variational method of Eyink. Thus, these dynam-

ics minimize the KL-divergence between the true probability density of states and the approximate probability

density of states at each instance in time.

4 Examples

As a demonstration of the enhanced flexibility of the modified STIV framework presented above, we compare

the results of STIV using an exponential family and quasi-equilibrium approximation to the true probability

density of states for two example systems. The first example is that of a colloidal protein diffusing along a string

of DNA [36], [37]. This system is approximately described by a single particle diffusing in a one dimensional

potential consisting of the product of a sinusoidal function and a decaying exponential. Mathematically,

u(x) = c0 exp(−c1x) sin(c2x + c3 )+ bounding box. (13)

The parameters c0,… , c3 were chosen to fit the potential shown in Figure 6 of [37], and the bounding box is

specified to hold the particle within 60 base pairs of deepest minima (the values of the parameters and the

bounding box are detailed in Appendix D). This example allows us to study the approximation error during

a relaxation towards equilibrium. The second example includes time dependent driving. A colloidal particle

is assumed to diffuse in a sinusoidal landscape while coupled to an external driving protocol via a harmonic

potential, a prototypical model of an optical trap. The external drivingmoves in the positive x axis with constant

velocity 𝑣. Mathematically,

e(x, 𝜆) = − cos
(
2𝜋x

l

)
+ k

2
(x − 𝜆)2, (14)
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with 𝜆(t) = vt (see Appendix D for parameter details). Here, we can evaluate the accumulation of error in time

since this system never reaches a steady state.

For these examples, we compare the approximation accuracy of the quasi-equilibrium approximate density

as in Eq. (5), and a traditional exponential family without the energy as in Eq. (8). Since both examples are

one dimensional, we chose sinusoidal Fourier expansion functions as the observables 𝜙n = sin(n𝜋(x − x0)∕L)
where x0 and L are chosen to fit the bounding box in the diffusing protein example or the spatial extent of

the simulation in the external driving example. Due to the computational complexity of solving the differential

equation †
û
𝜒i = 𝜕𝛼i û to find 𝜒 i at each step, we choose not to implement the operator method. It is likely that

this method will only become feasible for specific choices of observables for which the differential equation can

be inverted exactly (as happens to be the case for a univariate Gaussian).

Figure 1 shows results for the colloidal protein example, and Figure 2 shows those of the time dependent

driving example. Three different implementations of the STIV framework are highlighted throughout. The first,

labeled “p̂ ∝ exp(−𝛽e+ 𝛼𝜙)” and colored green, uses the quasi-equilibrium probability density of states and

the dynamics obtained in Eq. (6). The second, labeled “p̂ ∝ exp(𝛼𝜙) Moment Closure” and colored yellow, uses

just the exponential family approximation and the dynamics obtained from the variational method of Eyink,

Eq. (9). Finally, the method labeled “p̂ ∝ exp(𝛼𝜙) Gradient Flow” and colored pink also uses the exponential

family approximation but the second term on the right hand side of Eq. (9) (which is expected to vanish as the

number of observables increases) is set to zero to obtain a gradient flow. The convergence of each method to

the ground truth probability density of states is shown in panel A. The metric used is the time averaged total

variation distance between the ground truth and the approximation

Figure 1: The convergence of STIV to the true probability density of states in a model of protein diffusion on DNA. Panel A shows the time

averaged total variation distance between each STIV model (the quasi-equilibrium approximation in green, the exponential family

approximation without the energy in yellow, and the exponential family approximation with modified dynamics to produce a gradient

flow in pink) and the true probability density of states (obtained via a traditional solver) as a function of the number of internal variables.

Panel B depicts the energy landscape. Panels C and D show the approximate probability density of states for each model for 8 and 32

internal variables respectively and the true probability density of states (in dark blue) at the same fixed time point (midway between the

initial time and fully relaxed in equilibrium).
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Figure 2: Investigation of the error accumulation of the STIV models for a single particle in a sinusoidal potential driven by a linear

external force. Panel A shows the total variation distance between each model (same colors as Figure 1) and the true probability density

of states when 64 internal variables are used. Panel B depicts the sinusoidal landscape and the quadratic potential associated with the

external driving from an optical trap (at t = 0.79tfinal). Panels C and D show the approximate probability density of states for each model

using 64 internal variables and the true probability density of states (in dark blue) for two different points in time. (tfinal = 10).

d( p, p̂) = 1

2T

T

∫
0

∫
ℝ

|p(x, t)− p̂(x, 𝛼(t))| dxdt.
Although previously we have made use of the KL divergence to interpret the choice of dynamical equations for

the internal variables, here we use the total variation distance to measure the error in the approximation as

the numerical computation of the KL divergence tended to be poorly behaved. Fortunately, the total variation

distance is bounded above by the KL divergence by [38]–[40]

d( p, q) ≤ min

(√
1

2
𝔻KL( p‖q),√1− exp(−𝔻KL( p‖q))

)
.

In panel B of Figure 1, we show the potential energy governing the system, along with a cartoon of the

model setup. In the remaining panels C and D, snapshots of the densities at an intermediate time for two differ-

ent numbers of observables are shown. In these frames, the ground truth probability density of states is shown

in dark blue. At this time point, the probability density of states has not fully relaxed from the initial Gaussian

distribution, and is still far from equilibrium. All methods converge to the ground truth solution, however, the

quasi-equilibrium distribution outperforms the two exponential family models by an order of magnitude for 32

and 64 observables. As is expected, the interaction energy is a good observable and provides important infor-

mation about the probability density of states, particularly in a problem concerning relaxation to the equilib-

rium state. Interestingly, the exponential family with gradient flow dynamics outperforms the moment-closure

dynamics for small numbers of internal variables. As expected, this gap decreases for 64 internal variables once

the approximate density has become highly flexible. Computationally, each of the three models require about

the same run time (on a standard laptop computer), and run faster than computing the ground truth pde for

few observables (4–32), but become slower for large numbers of internal variables (64) due to the need to solve

linear systems involving the covariance matrix ℂi j.
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Figure 2 shows the results for the external driving example. Panel A, again, shows the total variationdistance

from the ground truth for each model, but now as a function of time over the whole course of the simulation,

and for the approximations with 16 and 64 internal variables. After an initial increase, the error of each of

the methods is relatively stable in time. This mirrors the observation made in previous implementations of the

STIV framework, where the approximation seemed to recover despite passing through regions in time where

the approximation was quite poor [18]. Panel B shows the sinusoidal potential in blue and the external driving

potential due to an optical trap in pink, along with a cartoon of the model setup. The remaining two panels (C

and D) compare the approximate densities with 64 internal variables to the ground truth at two representative

points in time. Although not shown here, it is worth noting that when fewer than 64 internal variables are used,

including the energy greatly improves the approximation in this example. The external driving is slow enough

that the density remains close to equilibrium at all times, and hence the energy is a very good observable.

5 Conclusions

We have shown that given a microscopic particle system governed by overdamped Langevin dynamics it is

always possible to construct a thermodynamically consistent macroscopic (ensemble averaged) model with a

gradient flow evolution for the internal variables. One strategy, which we’ve called the operator method, appli-

cable for an arbitrary choice of approximate probability density of states, is presented but not pursued due to

computational challenges of a general implementation. Alternative methods, restricted to quasi-equilibrium or

exponential family approximations, can be implemented relatively simply. These latter models can either be

formulated in terms of averaged observables or their dual internal variables, and can approximate continuous

probability distributions with arbitrary accuracy.

In this work, we have shown the flexibility of this framework by considering Fourier basis functions as

observables. Such basis functions provide an essentially system agnostic model, as the only way the approxi-

mate probability density of states depends on the system of study is through the system size. Since the Fourier

basis functions can approximate any continuous function, in principle, one could use them to model systems

of arbitrary complexity. However, this becomes impracticable both because the number of observables needed

for a reasonable approximation would scale exponentially in the number of degrees of freedom in the system,

and because the Fourier functions provide relatively little insight into the underlying structure of the system.

Alternatively, if one can capture the salient features of the system using observables especially chosen for the

problem, one can expect the STIV framework to produce accurate predictions with relatively little computa-

tional cost, as was the case in the previous works [18], [22]. The true utility of internal variablemodels, therefore,

comes from the intelligent choice of a few highly descriptive observables. Thus, a key task for continuing work

is that of finding descriptive observables for a given microscopic system (see [41], [42] for emerging efforts in

this direction).
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Appendix A: The variational method of Eyink with external driving

In the original derivation of the variational method of Eyink [21], when the true solution to the Fokker–Planck

equation 𝜕t p(x, t) = p(x, t) is approximated by a parameterized density of states p̂(x, 𝛼 ), it was assumed that
all of the time dependence of p̂ is captured by the parameters 𝛼(t). However, if we wish to implement a quasi-

equilibrium approximation p̂ = exp(−𝛽e+ 𝛼i(t)𝜙i(x)− f (𝛼, 𝛽 )) and the energy depends on a time-dependent

external driving protocol e = e(x, 𝜆(t)), we must modify the variational method since the time dependence

assumption has been broken.

Assume for fixed external driving protocol 𝜆(t), we approximate the density of states via p̂(x, 𝛼, 𝜆)

(here 𝛽 is assumed to be fixed), and approximate test function 𝜓̂ (x, 𝛼 ). The variational action is S(𝛼 ) =
∫ ∞
0

∫
X
𝜓̂
(
𝜕t − )p̂ dxdt. Stationary points of the action are given by

0 = 𝜕𝛼i S(𝛼 )

=
∞

∫
0

∫
X

{
𝜕𝛼i𝜓̂𝜕tp̂− 𝜕𝛼i p̂𝜕t𝜓̂

}
dxdt − 𝜕𝛼i

∞

∫
0

∫
X

𝜓̂p̂ dxdt

=
∞

∫
0

∫
X

{
𝜕𝛼i𝜓̂𝜕𝛼 j

p̂𝛼̇ j + 𝜕𝛼i𝜓̂𝜕𝜆p̂𝜆̇− 𝜕𝛼i p̂𝜕𝛼 j
𝜓̂ 𝛼̇ j

}

−
∞

∫
0

𝜕𝛼i

⟨†𝜓̂
⟩
p̂
dt

=
∞

∫
0

{⟨
[𝜕𝜓̂, 𝜕û]i j

⟩
p̂
𝛼̇ j +
⟨
𝜕𝛼i𝜓̂𝜕𝜆û

⟩
p̂
𝜆̇− 𝜕𝛼i

⟨†𝜓̂
⟩
p̂

}
dt.

The proper dynamics are recovered by setting the integrand equal to zero.

We now assume the “linear ansatz” for the test function by introducing the paired set of parameters (𝛼, 𝛾)

and write 𝜓̂ = 1+ 𝛾i𝜕𝛼i û. Plugging this in to the dynamical equation above leads to two coupled equations

𝛾k𝜕𝛼i

⟨†𝜕𝛼k û
⟩
p̂
= 𝛾k
⟨
𝜕𝛼i𝜕𝛼k û𝜕𝛼 j

û− 𝜕𝛼 j
𝜕𝛼k û𝜕𝛼i û

⟩
p̂
𝛼̇ j

−
⟨
𝜕𝛼i û𝜕𝛼 j

û
⟩
p̂
𝛾̇ j + 𝛾k

⟨
𝜕𝛼i𝜕𝛼k û𝜕𝜆û

⟩
p̂
𝜆̇

⟨†𝜕𝛼i û
⟩
p̂
=
⟨
𝜕𝛼i û𝜕𝛼 j

û
⟩
p̂
𝛼̇ j +
⟨
𝜕𝛼i û𝜕𝜆û

⟩
p̂
𝜆̇.

The first equation is trivially solved by 𝛾 i ≡ 0, whereas the second equation is independent of 𝛾 i and gives

the resulting dynamics we need.

Appendix B: Approximate thermodynamic quantities for the

quasi-equilibrium approximation of a system with external driving

Since the inclusion of the energy in the approximate probability density of states breaks the assumption that p̂ be

independent of𝜆, the formof the approximate thermodynamic quantitiesmust change as a result. Recall that the

quasi-equilibrium approximation takes the form p̂ = exp(−𝛽e(x, 𝜆)+ 𝛼i𝜙i(x)− f (𝛼, 𝛽, 𝜆)) so that 𝜕𝛼i û = 𝜙i −
Φ̂i, â

neq = e+ û∕𝛽 = (𝛼i𝜙i − f )∕𝛽 and, following the same steps as in the main text,
⟨†𝜕𝛼i û

⟩
p̂
= − 1

𝜂𝛽
𝕄i j𝛼 j

where𝕄i j =
⟨
𝜕x𝜙i𝜕x𝜙 j

⟩
p̂
. Plugging this into the dynamical equations derived from the previous section leads

to
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ℂi j𝛼̇ j +
⟨
(𝜙i − Φ̂i )𝜕𝜆û

⟩
p̂
𝜆̇ = − 1

𝜂𝛽
𝕄i j𝛼 j

where ℂi j =
⟨
(𝜙i − Φ̂i )(𝜙 j − Φ̂ j )

⟩
p̂
. The approximate external force is defined as F̂ex ≡ ⟨𝜕𝜆e⟩p̂ which is no

longer simply 𝜕𝜆Â
neq. Now

𝜕𝜆Â
neq = ⟨𝜕𝜆e⟩p̂ + ⟨(e+ û∕𝛽 )𝜕𝜆û

⟩
p̂

= F̂ex + 1

𝛽

⟨
𝛼i𝜙i𝜕𝜆û

⟩
p̂

= F̂ex + 1

𝛽
𝜕𝜆(𝛼iΦ̂i )

which gives the first part of Eq. (11) of the main text. Since Âneq = (𝛼iΦ̂i − f )∕𝛽 , Âneq − 𝛼iΦi∕𝛽 = − f∕𝛽 and we
recover the second part.

To identify the form of the entropy production, we return to its definition from stochastic thermodynamics

and its approximation via STIV. The incremental entropy production is the difference in the incremental work

minus the incremental free energy, Tdstot = d𝑤− daneq. Approximating these terms at the ensemble average

level leads to the required relation T
d

dt
Ŝtot = d

dt
Ŵ − d

dt
Âneq. The work rate is identified at

d

dt
Ŵ = F̂ex𝜆̇ and the

rate of change in the non-equilibrium free energy writes
d

dt
Âneq = 𝜕𝜆Âneq𝜆̇+ 𝜕𝛼Âneq𝛼̇. Inserting 𝜕𝜆Âneq = F̂ex +

𝛼i

⟨
(𝜙i − Φ̂i )𝜕𝜆û

⟩
p̂
∕𝛽 into the equation for T d

dt
Ŝtot leaves (note 𝜕𝜆û has mean zero due to normalization)

T
d

dt
Ŝtot = −𝛼̇𝜕𝛼Âneq −

𝛼i
𝛽

⟨
(𝜙i − Φ̂i )𝜕𝜆û

⟩
p̂
𝜆̇.

Since 𝜕𝛼i Â
neq = ℂi j𝛼 j∕𝛽 , we can multiply the whole dynamical equation by −𝛼i∕𝛽 to see

T
d

dt
Ŝtot =

𝛼i𝕄i j𝛼 j

𝜂𝛽2

giving Eq. (12) in the main text.

Appendix C: Proof that exponential families and quasi-equilibrium

distributions can approximate any continuous probability density

onℝn in total variation distance

Let p be a continuous probability density onℝn and let u = log(p). Since p is integrable, for any fixed 0 < 𝜖 < 1,

we can find a compact subset K ⊂ ℝn such that Kc = ℝn∖K obeys ∫
Kc p(x)dx < 𝜖/2. Let K′ = K ∩ {p ≥ 𝜖

2Vol(K )
}.

K′ is compact since p is continuous, and we know

∫
K′c

p(x)dx = ∫
Kc

p(x)dx + ∫
K∩{ p<𝜖∕2Vol(K )}

p(x)dx

< 𝜖∕2+ 𝜖∕2 = 𝜖.

u is bounded on K′, so by the Stone–Weierstrass theorem, we can find a polynomial q(x) such that‖u− q‖∞(K′ ) = supx∈K′ |u(x)− q(x)| < 𝜖. As eq(x) = eu(x)eq(x)−u(x) ≤ eu(x)e𝜖 , Zq ≡ ∫
K′eq(x)dx <∞ and we can

define p̂ = 𝟙x∈K′
eq(x )

Zq
. In fact, we have e−𝜖(1− 𝜖) ≤ Zq ≤ e𝜖 . Now
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dTV( p, p̂) =
1

2 ∫ |p(x)− p̂(x)|dx
= 1

2∫
K′

|p(x)− p̂(x)|dx + 1

2∫
K′c

p(x)dx

≤ 1

2∫
K′

eu
|||||1−

eq−u

Zq

|||||dx +
𝜖

2

≤ 1

2
‖1− eq−u

Zq
‖∞(K

′ )∫
K′

p dx + 𝜖

2

≤ 1

2

(
e2𝜖 − 1

)
+ 𝜖→ 0

as 𝜖→ 0 since ‖1− eq−u

Zq
‖∞(K′ ) ≤ max

(
e2𝜖

1−𝜖 − 1, 1− e−2𝜖
)
= e2𝜖

1−𝜖 − 1.

An analogous proof shows that the same is true for quasi-equilibrium distributions. Assuming that the

energy is continuous as well, we simply choose K′ as above, q such that ‖u+ 𝛽e− q‖∞(K′ ) < 𝜖, define Zq =
∫
K′e−𝛽e+qdx. And let p̂ = 𝟙x∈K′

e−𝛽e+q

Zq
. The same bounds hold for Zq so we again have

dTV( p, p̂) ≤ 1

2

(
e2𝜖 − 1

)
+ 𝜖→ 0.

Appendix D: Details of the numerical implementation of STIV for

examples

As discussed in the main text, the energy used to study relaxation to equilibrium comes from a model of the

energy landscape of a protein diffusing on a strand of DNA. The original experimental data was published by

[36], and the particular choice of model energy landscape was taken from [37]. The parameters used in Eq. (13)

are c0 = −0.87817, c1 = 0.04736, c2 = 0.60955, c3 = 1.25408. A bounding box of the form (where x has units of

base pairs)

Bounding Box(x) = 100 e−x−401(x<−25) +
(
(x + 10)

30

)100
was used to constrain the simulated proteins to x ∈ [−40, 20] (that is, the initial range of the model energy
landscape in [37]) and to insure that the minima at x ≈ −30 was the left most minima. This range is translated
to [0,60] in the video in Appendix E. Since the energy has units of kBT , we used 𝛽 = 1. We chose 𝜂 = 0.83 which

is artificially large to accelerate all simulations.

For the external driving example, we chose parameters l = 1.0, k = 1.6287, 𝛽 = 1.0, and 𝜂 = 0.8298. The

external protocol was chosen as 𝜆(t) = 0.5t.

All models (both STIV and the ground truth) were implemented on a discrete grid of 2,000 equally spaced

points (between [−39, 21.1] for the relaxation example and [−2, 8] for the external driving example). The ground
truth was obtained from discretizing the true pde, 𝜕t p = p, and solving the resulting ode using the Dor-

mand–Prince adaptive Runge–Kutta scheme with variable step size to ensure the relative error remained less

than 0.001. For the STIVmodels, the energy and observables were computed on the grid points ei = e(xi ) ∈ ℝ2000

and 𝜙i j = 𝜙 j(xi ) ∈ ℝ2000×d where d is the number of internal variables used. p̂i = p̂(xi, 𝛼 ) was then approxi-

mated as

p̂i =
1

Δx exp(−𝛽ei + 𝜙i j𝛼 j − f (𝛼, 𝛽 ))

with

f (𝛼, 𝛽 ) = log

(
2,000∑
i=1

exp(−𝛽ei + 𝜙i j𝛼 j )

)
.
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Any expectations in the dynamical equations were then approximated using the discrete approximate

density of states

⟨g⟩p̂ ≈ 2000∑
i=1

g(xi )p̂iΔx.

The exponential family models which did not include the energy were obtained the same way but with 𝛽

fixed to zero.

Some numerical difficulties arose while inverting the covariance matrixℂi j. Thus,ℂ−1
i j
was further approx-

imated using the pseudo-inverse ℂ+
i j
truncating singular values (of ℂi j) falling below 10−8. Various truncation

levels (10−2 through 10−15) were tested to ensure this choice did not impact numerical accuracy.

Appendix E: Full video of examples

The video provided in the supplementarymaterials shows a comparison between the true probability density of

states in dark blue and the approximate densities using the quasi-equilibrium method (green), the exponential

family approximation with dynamics given by the variational method (equivalent to moment closure, yellow),

and the exponential family approximation with dynamics given by a gradient flow (salmon). The first part of

the video shows, sequentially, the approximation for the model of proteins diffusing on DNA using 4, 8, 16, 32,

and 64 internal variables (the legend |𝜙| = N in each part shows the number of internal variables/observables).

The second half of the video shows the approximation for the externally driven particle in a periodic landscape

for 4, 8, 16, 32, and 64 internal variables.
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