Home Generalized piezothermoelastic interactions in a piezoelectric rod subjected to pulse heat flux
Article
Licensed
Unlicensed Requires Authentication

Generalized piezothermoelastic interactions in a piezoelectric rod subjected to pulse heat flux

  • Zuhur Alqahtani , Ibrahim Abbas EMAIL logo and Alaa A. El-Bary
Published/Copyright: November 20, 2024

Abstract

This work investigates, using the Laplace transforms, the influence of thermal relaxation time in the piezo-thermoelastic rod under pulse heat flux. For the piezoelectric medium, the generalized piezothermoelastic fundamental equations are developed. The analytical solutions are expressed in the transformation domain using Laplace transforms. Laplace transforms are presented to solve the problem’s governing equations, removing the time impact and yielding analytical solutions for the temperature, electric field, displacement, and stresses in the Laplace domain. The time domain solutions of the variables under consideration are then found using numerical Laplace inversion and visually shown. The effects of the thermal time, pulse heating flux characteristic time, and constant heat flux are studied in a piezoelectric thermoelastic medium. The figures show that the thermal time, pulse heating flux characteristic time, and constant heat flux play significant roles in determining the values of all physical quantities.


Corresponding author: Ibrahim Abbas, Mathematics Department, Faculty of Science, Sohag University, Sohag, Egypt, E-mail: 

Acknowledgments

Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2024R518), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors state no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: The raw data can be obtained on request from the corresponding author.

Nomenclature

u i

Displacement vector components

ɛ kl

Strain tensor components

E i

Electric field vector the components

D i

Components of electric displacement

C ijkl

Elastic constants,

ρ

Mass density

k ii

Coefficients of thermal conductivity

t p

The characteristic time of pulses heat flux

e ijk

The piezoelectric constants

σ ij

The stress components

T o

The initial temperature of medium

φ

The electric potential function

β ij

The thermal modulus

δ ij

Kronecker symbol

t

The time

c e

Specific heat

T

Medium temperature

q

Heat flux

q o

Constant heat flux

τ ik

The dielectric constants

τ o

The thermal relaxation time

P i

The pyroelectric constant

l

The length

References

[1] M. A. Biot, “Thermoelasticity and irreversible thermodynamics,” J. Appl. Phys., vol. 27, no. 3, pp. 240–253, 1956. https://doi.org/10.1063/1.1722351.Search in Google Scholar

[2] H. W. Lord and Y. Shulman, “A generalized dynamical theory of thermoelasticity,” J. Mech. Phys. Solids, vol. 15, no. 5, pp. 299–309, 1967. https://doi.org/10.1016/0022-5096(67)90024-5.Search in Google Scholar

[3] T. H. He, L. Cao, and S. R. Li, “Dynamic response of a piezoelectric rod with thermal relaxation,” J. Sound Vib., vol. 306, nos. 3–5, pp. 897–907, 2007. https://doi.org/10.1016/j.jsv.2007.06.018.Search in Google Scholar

[4] M. Aouadi, “Generalized thermoelastic-piezoelectric problem by hybrid Laplace transform-finite element method,” Int. J. Comput. Methods Eng. Sci. Mech., vol. 8, no. 3, pp. 137–147, 2007. https://doi.org/10.1080/15502280701252404.Search in Google Scholar

[5] N. Cheng and C. Sun, “Wave propagation in two− layered piezoelectric plates,” J. Acoust. Soc. Am., vol. 57, no. 3, pp. 632–638, 1975. https://doi.org/10.1121/1.380479.Search in Google Scholar

[6] S. Biswas, “Surface waves in piezothermoelastic transversely isotropic layer lying over piezothermoelastic transversely isotropic half-space,” Acta Mech., vol. 232, no. 2, pp. 373–387, 2021. https://doi.org/10.1007/s00707-020-02848-8.Search in Google Scholar

[7] S. Guha and A. K. Singh, “Plane wave reflection/transmission in imperfectly bonded initially stressed rotating piezothermoelastic fiber-reinforced composite half-spaces,” Eur. J. Mech. A: Solids, vol. 88, 2021, Art. no. 104242. https://doi.org/10.1016/j.euromechsol.2021.104242.Search in Google Scholar

[8] M. Ragab, S. M. Abo-Dahab, A. E. Abouelregal, and A. A. Kilany, “A thermoelastic piezoelectric fixed rod exposed to an axial moving heat source via a dual-phase-lag model,” Complexity, vol. 2021, no. 1, pp. 1–11, 2021. https://doi.org/10.1155/2021/5547566.Search in Google Scholar

[9] Y. B. Ma and T. H. He, “Dynamic response of a generalized piezoelectric-thermoelastic problem under fractional order theory of thermoelasticity,” Mech. Adv. Mater. Struct., vol. 23, no. 10, pp. 1173–1180, 2016. https://doi.org/10.1080/15376494.2015.1068397.Search in Google Scholar

[10] A. H. Akbarzadeh, M. H. Babaei, and Z. T. Chen, “Thermopiezoelectric analysis of a functionally graded piezoelectric medium,” Int. J. Appl. Mech., vol. 03, no. 01, pp. 47–68, 2012. https://doi.org/10.1142/s1758825111000865.Search in Google Scholar

[11] I. A. Abbas and R. Kumar, “Deformation due to thermal source in micropolar generalized thermoelastic half-space by finite element method,” J. Comput. Theor. Nanosci., vol. 11, no. 1, pp. 185–190, 2014. https://doi.org/10.1166/jctn.2014.3335.Search in Google Scholar

[12] I. A. Abbas, R. Kumar, and V. Chawla, “Response of thermal source in a transversely isotropic thermoelastic half-space with mass diffusion by using a finite element method,” Chin. Phys. B, vol. 21, no. 8, p. 084601, 2012. https://doi.org/10.1088/1674-1056/21/8/084601.Search in Google Scholar

[13] M. Marin, A. Öchsner, S. Vlase, D. O. Grigorescu, and I. Tuns, “Some results on eigenvalue problems in the theory of piezoelectric porous dipolar bodies,” Continuum Mech. Thermodyn., vol. 35, no. 5, pp. 1969–1979, 2023. https://doi.org/10.1007/s00161-023-01220-0.Search in Google Scholar

[14] T. Saeed, “Hybrid finite element method to thermo-elastic interactions in a piezo-thermo-elastic medium under a fractional time derivative model,” Mathematics, vol. 10, no. 4, p. 650, 2022. https://doi.org/10.3390/math10040650.Search in Google Scholar

[15] Y. J. Yu and Z. C. Deng, “Fractional order thermoelasticity for piezoelectric materials,” Fractals-Complex Geom. Patterns Scaling Nat. Soc., vol. 29, no. 04, p. 2150082, 2021. https://doi.org/10.1142/s0218348x21500821.Search in Google Scholar

[16] R. Tiwari, R. Kumar, and A. E. Abouelregal, “Analysis of a magneto-thermoelastic problem in a piezoelastic medium using the non-local memory-dependent heat conduction theory involving three phase lags,” Mech. Time-Depend. Mater., vol. 26, no. 2, pp. 271–287, 2021. https://doi.org/10.1007/s11043-021-09487-z.Search in Google Scholar

[17] G. O. Putra, D. H. Hwang, and J. H. Han, “Effective elastic, thermoelastic, and piezoelectric properties of braided composites using equivalent laminate modeling,” Adv. Compos. Mater., vol. 30, no. 4, pp. 338–364, 2021. https://doi.org/10.1080/09243046.2020.1815133.Search in Google Scholar

[18] C. Hwu, “Piezoelectric and magneto-electro-elastic materials,” in Solid Mechanics and its Applications, Springer Science and Business Media B.V, 2021, pp. 265–287.10.1007/978-3-030-66676-7_11Search in Google Scholar

[19] N. S. Al-Huniti and M. D. A. Al-Nimr, “A novel piezoelectric system for thermal energy harvesting from temperature fluctuations,” Int. J. Appl. Mech., vol. 12, no. 10, p. 2050112, 2021. https://doi.org/10.1142/s1758825120501124.Search in Google Scholar

[20] E. A. A. Ahmed, A. R. El Dhaba, M. S. Abou-Dina, and A. F. Ghaleb, “Thermoelastic wave propagation in a piezoelectric layered half-space within the dual-phase-lag model,” Eur. Phys. J. Plus, vol. 136, no. 5, 2021, Art. no. 585. https://doi.org/10.1140/epjp/s13360-021-01567-w.Search in Google Scholar

[21] C. Li, H. Guo, and X. Tian, “Generalized piezoelectric thermoelasticity problems with strain rate and transient thermo‐electromechanical responses analysis,” ZAMM – J. Appl. Math. Mech., vol. 100, no. 5, 2020. https://doi.org/10.1002/zamm.201900067.Search in Google Scholar

[22] I. A. Abbas and M. I. A. Othman, “Generalized thermoelsticity of the thermal shock problem in an isotropic hollow cylinder and temperature dependent elastic moduli,” Chin. Phys. B, vol. 21, no. 1, p. 014601, 2012. https://doi.org/10.1088/1674-1056/21/1/014601.Search in Google Scholar

[23] I. A. Abbas, “Generalized thermoelastic interaction in functional graded material with fractional order three-phase lag heat transfer,” J. Cent. South Univ., vol. 22, no. 5, pp. 1606–1613, 2015. https://doi.org/10.1007/s11771-015-2677-5.Search in Google Scholar

[24] I. Abbas, T. Saeed, and M. Alhothuali, “Hyperbolic two-temperature photo-thermal interaction in a semiconductor medium with a cylindrical cavity,” Silicon, vol. 13, no. 6, pp. 1871–1878, 2020. https://doi.org/10.1007/s12633-020-00570-7.Search in Google Scholar

[25] F. S. Alzahrani and I. A. Abbas, “Photo-thermal interactions in a semiconducting media with a spherical cavity under hyperbolic two-temperature model,” Mathematics, vol. 8, no. 4, p. 585, 2020. https://doi.org/10.3390/math8040585.Search in Google Scholar

[26] E. Carrera, A. E. Abouelregal, I. A. Abbas, and A. M. Zenkour, “Vibrational analysis for an axially moving microbeam with two temperatures,” J. Therm. Stresses, vol. 38, no. 6, pp. 569–590, 2015. https://doi.org/10.1080/01495739.2015.1015837.Search in Google Scholar

[27] I. A. Abbas and M. I. A. Othman, “Plane waves in generalized thermo-microstretch elastic solid with thermal relaxation using finite element method,” Int. J. Thermophys., vol. 33, no. 12, pp. 2407–2423, 2012. https://doi.org/10.1007/s10765-012-1340-8.Search in Google Scholar

[28] I. A. Abbas, “A GN model for thermoelastic interaction in a microscale beam subjected to a moving heat source,” Acta Mech., vol. 226, no. 8, pp. 2527–2536, 2015. https://doi.org/10.1007/s00707-015-1340-4.Search in Google Scholar

[29] I. A. Abbas and H. M. Youssef, “Two-dimensional fractional order generalized thermoelastic porous material,” Lat. Am. J. Solids Struct., vol. 12, no. 7, pp. 1415–1431, 2015. https://doi.org/10.1590/1679-78251584.Search in Google Scholar

[30] T. He and L. Cao, “Generalized thermoelastic responses of a piezoelectric rod subjected to a moving heat source,” Key Eng. Mater., vol. 353, pp. 1149–1152, 2007. https://doi.org/10.4028/0-87849-456-1.1149.Search in Google Scholar

[31] M. A. Ezzat, A. S. El-Karamany, and E. S. Awad, “On the coupled theory of thermo-piezoelectric/piezomagnetic materials with two temperatures,” Can. J. Phys., vol. 88, no. 5, pp. 307–315, 2010. https://doi.org/10.1139/p10-015.Search in Google Scholar

[32] A. M. Zenkour, “Piezoelectric behavior of an inhomogeneous hollow cylinder with thermal gradient,” Int. J. Thermophys., vol. 33, no. 7, pp. 1288–1301, 2012. https://doi.org/10.1007/s10765-012-1248-3.Search in Google Scholar

[33] A. M. Zenkour, “Exact solution of thermal stress problem of an inhomogeneous hygrothermal piezoelectric hollow cylinder,” Appl. Math. Model., vol. 38, no. 24, pp. 6133–6143, 2014. https://doi.org/10.1016/j.apm.2014.05.028.Search in Google Scholar

[34] A. E. N. N. Abd-Alla, F. Alshaikh, I. Mechai, and I. A. Abbas, “Influence of initial stresses and piezoelectric constants on the propagation bulk acoustic waves in an anisotropic smart material (aluminum nitrite),” J. Comput. Theor. Nanosci., vol. 13, no. 10, pp. 6488–6494, 2016. https://doi.org/10.1166/jctn.2016.5591.Search in Google Scholar

[35] F. Ebrahimi and M. R. Barati, “Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment,” J. Vib. Control, vol. 24, no. 3, pp. 549–564, 2016. https://doi.org/10.1177/1077546316646239.Search in Google Scholar

[36] F. Ebrahimi and M. R. Barati, “Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field,” Appl. Phys. A: Mater. Sci. Process., vol. 122, no. 4, 2016, Art. no. 451. https://doi.org/10.1007/s00339-016-0001-3.Search in Google Scholar

[37] M. I. A. Othman and E. A. A. Ahmed, “Effect of gravity field on piezothermoelastic medium with three theories,” J. Therm. Stresses, vol. 39, no. 4, pp. 474–486, 2016. https://doi.org/10.1080/01495739.2016.1152136.Search in Google Scholar

[38] T. Saeed and I. Abbas, “Finite element analyses of nonlinear DPL bioheat model in spherical tissues using experimental data,” Mech. Based Des. Struct. Mach., vol. 50, no. 4, pp. 1287–1297, 2020. https://doi.org/10.1080/15397734.2020.1749068.Search in Google Scholar

[39] M. Marin, A. Hobiny, and I. Abbas, “Finite element analysis of nonlinear bioheat model in skin tissue due to external thermal sources,” Mathematics, vol. 9, no. 13, p. 1459, 2021. https://doi.org/10.3390/math9131459.Search in Google Scholar

[40] R. Tiwari, “Mathematical modelling of laser-instigated magneto-thermo-mechanical interactions inside half-space,” J. Eng. Math., vol. 142, no. 1, p. 10, 2023. https://doi.org/10.1007/s10665-023-10292-5.Search in Google Scholar

[41] R. Tiwari, A. E. Abouelregal, O. N. Shivay, and S. F. Megahid, “Thermoelastic vibrations in electro-mechanical resonators based on rotating microbeams exposed to laser heat under generalized thermoelasticity with three relaxation times,” Mech. Time-Depend. Mater., vol. 28, no. 2, pp. 423–447, 2024. https://doi.org/10.1007/s11043-022-09578-5.Search in Google Scholar

[42] R. Tiwari, R. Kumar, and A. E. Abouelregal, “Analysis of a magneto-thermoelastic problem in a piezoelastic medium using the non-local memory-dependent heat conduction theory involving three phase lags,” Mech. Time-Depend. Mater., vol. 26, no. 2, pp. 271–287, 2022. https://doi.org/10.1007/s11043-021-09487-z.Search in Google Scholar

[43] K. Lotfy, A. A. El-Bary, and R. S. Tantawi, “Effects of variable thermal conductivity of a small semiconductor cavity through the fractional order heat-magneto-photothermal theory,” Eur. Phys. J. Plus, vol. 134, no. 6, p. 280, 2019. https://doi.org/10.1140/epjp/i2019-12631-1.Search in Google Scholar

[44] K. Lotfy and R. S. Tantawi, “Photo-thermal-elastic interaction in a functionally graded material (FGM) and magnetic field,” Silicon, vol. 12, no. 2, pp. 295–303, 2020. https://doi.org/10.1007/s12633-019-00125-5.Search in Google Scholar

[45] K. Lotfy, E. S. Elidy, and R. S. Tantawi, “Piezo-photo-thermoelasticity transport process for hyperbolic two-temperature theory of semiconductor material,” Int. J. Mod. Phys. C, vol. 32, no. 07, 2021, Art. no. 2150088. https://doi.org/10.1142/s0129183121500881.Search in Google Scholar

[46] A. H. Akbarzadeh, M. H. Babaei, and Z. T. Chen, “Coupled thermopiezoelectric behaviour of a onedimensional functionally graded piezoelectric medium based on C-T theory,” Proc. Inst. Mech. Eng., Part C, vol. 225, no. 11, pp. 2537–2551, 2011. https://doi.org/10.1177/0954406211406954.Search in Google Scholar

[47] J. Sharma, V. Walia, and S. Gupta, “Reflection of piezothermoelastic waves from the charge and stress free boundary of a transversely isotropic half space,” Int. J. Eng. Sci., vol. 46, no. 2, pp. 131–146, 2008. https://doi.org/10.1016/j.ijengsci.2007.10.003.Search in Google Scholar

[48] D. Y. Tzou, Macro-to Micro-scale Heat Transfer: The Lagging Behavior, Boco Raton, John Wiley & Sons, 1996.Search in Google Scholar

Received: 2024-08-22
Accepted: 2024-10-23
Published Online: 2024-11-20
Published in Print: 2025-01-29

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jnet-2024-0077/html
Scroll to top button