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Abstract: The complete description of energy andmaterial transport within the Generalized energy-conserving

dissipative particle dynamics with mass transfer (GenDPDE-M) methodology is presented. In particular, the

dynamic coupling between mass and energy is incorporated into the GenDPDE-M, which was previously intro-

duced with dynamically decoupled fluxes (J. Bonet Avalos et al., J. Chem. Theory Comput., 18 (12): 7639–7652,

2022). From a theoretical perspective, we have derived the appropriate Fluctuation-Dissipation theorems along

with Onsager’s reciprocal relations, suitable formesoscalemodels featuring this coupling. Equilibrium and non-

equilibrium simulations are performed to demonstrate the internal thermodynamic consistency of the method,

as well as the ability to capture the Ludwig–Soret effect, and tune its strength through the mesoscopic parame-

ters. In view of the completeness of the presented approach, GenDPDE-M is themost general Lagrangianmethod

to deal with complex fluids and systems at the mesoscale, where thermal agitation is relevant.

Keywords: dissipative particle dynamics; nonequilibrium thermodynamics; coupled energy-mass transfer; ther-

modiffusion

1 Introduction

The macroscopic behavior and properties of complex systems such as biological matter, composite materials or

complex fluids, depend on the dynamics of phenomena occurring at themicro- andmesoscale. For such systems,

the coupling between energy andmass transport is important for the understanding of several physicochemical

scenarios, ranging from molecular motors to heterogeneous catalysis, with many important applications, e.g.,

in most chemical engineering processes. While atomistic modeling and simulation is a valuable tool, the compu-

tational cost of its application to such complex systems, whose characteristic temporal and spatial breadths are

typically large compared to molecular dimensions, is often prohibitive. Coarse-grain (CG) modeling has become

a vital alternative in cases where atomistic approaches are limiting or impractical. Among the wide variety

of CG methods developed over the last decades, Dissipative Particle Dynamics (DPD) [1] has become a popular
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tool. Standard DPD is a Lagrangian, Galilean-invariant method whose dynamics conserves the total momen-

tum and number of particles. As a consequence, the associated fields satisfy the corresponding hydrodynamic

equations in the hydrodynamic limit [2], namely, Navier–Stokes and continuity equations [3]. In the standard

DPD approach, the total force acting on a CG particle takes into account conservative aswell as dissipative forces.

The dissipation enters into the description through the CGing, due to the coupling between the resolved and CG

degrees of freedom. Wherever dissipation occurs, implicitly there is a random contribution due to the ther-

mal agitation of the non-resolved degrees of freedom [2]. In the DPD method, these contributions are added

in the form of Langevin-like random forces between particles, which still preserve the Galilean invariance of

the model. The dissipative friction force depends on both the positions and linearly on the velocity difference

between the particles, through a coefficient that determines the strength of the force. The random contribution,

on the other hand, is characterized by a Gaussian distribution and an amplitude that is related to the strength

of the friction force through the corresponding Fluctuation-Dissipation (FD) theorem. In standard DPD method,

the intensity of the random force depends on the system temperature T as a parameter [4]. Therefore, DPD is by

construction isothermal and as a consequence heat flow cannot be modeled. An extension of the original DPD

method was developed afterwards to include energy conservation, referred to as DPD with Energy Conserva-

tion (DPDE) [5], [6]. In DPDE, particles carry internal energy, stored into the CG degrees of freedom, and exhibit a

particle temperature involved in the interparticle heat exchange. Since their development, both DPD and DPDE

have been increasingly applied in different research areas [7]–[10]. Recently, theGeneralized Energy-Conserving

DPD (GenDPDE) method [11], [12] has been proposed as a further extension of DPDE. The fundamental idea

behind GenDPDE is the introduction of a particle fluctuating thermodynamics, which allows for a consistent

definition ofmany-body forces that can depend on the particle temperature and particle density, unlike previous

many-body DPD models in which the forces depend only on the local density [13]–[20], or even parametri-

cally on the system temperature [21]. More specifically, within the GenDPDE framework the force exerted by

each mesoparticle can be related to its internal pressure, which depends on the particle volume and tem-

perature through a particle Equation of State (EoS). In this way, the GenDPDE method permits the definition

of temperature- and density-dependent forces, which are relevant for modeling non-equilibrium phenomena

occurring in systems undergoing, e.g., chemical reactions [22] or shock compressions [23].

The concept of a fluctuating particle thermodynamics readily allowed for an extension of the GenDPDE

framework to also include chemical composition into the description of the particle thermodynamic state. This

extension is referred to as GenDPDE-M [24], [25]. Analogous to the heat flux in GenDPDE, in the new framework

matter can be exchanged with neighboring mesoparticles through diffusive fluxes. However, GenDPDE-M in its

first formulation (see the aforementioned references) disregarded any dynamic coupling between energy and

material transport, which is in reality present in many relevant physical scenarios. Therefore, the introduc-

tion of the dynamic coupling between energy and mass fluxes presented in this work is a critical extension of

GenDPDE-M.

In this article, we develop the theoretical framework to account for the coupling between mass and energy

transport at the mesoscale. The outcome of our work is, therefore, a GenDPDE-M method that is complete and

allows general, complex cases, involving momentum, energy and material transports, to be addressed in a uni-

fied way. Thus, within the complete GenDPDE-M method, phenomena such as the Ludwig–Soret effect can be

properly modeled.

The manuscript is organized as follows. In Section 2, we review the theoretical framework based on the

definition of the heat and diffusive fluxes along the lines of classical Onsager’s non-equilibrium thermodynam-

ics [26], formulated at the mesoscale, where thermal agitation is relevant. We derive Langevin equations for the

coupled energy andmass transfers to account for the thermal fluctuations. We highlight the key role of Detailed

Balance (DB) in consistently formulating the fluctuating dynamics of complex CG systems. We show that DB

not only sets the amplitude of the random contributions through FD relations, but also imposes the validity

of Onsager’s reciprocal relations (ORR) at the mesoscopic level. We then introduce the van der Waals (vdW)

particle thermodynamic model as a case study, which is used in both equilibrium and non-equilibrium simula-

tions. In Section 3, we provide the computational details regarding our GenDPDE-M simulations. In Section 4, we

present data obtained from equilibrium and non-equilibrium simulations. From these simulations, we show the
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consistency of the fluctuating local thermodynamic description, when coupling between mass and energy

is present. Moreover, non-equilibrium simulations results are shown in which the dependency of the Lud-

wig–Soret effect on the strength of the mesoscopic coupling is discussed, along with the impact of the latter

on the thermal conductivity of the system. Finally, Section 5 provides conclusions and future outlooks regarding

GenDPDE-M.

2 Theoretical framework

In the general GenDPDE-M framework [24], [25],mesoparticles are regarded as property carrierswhose state and

dynamics are ultimately inherited from an existing underlying physical system. The latter can be regarded as

being described by a classical Hamiltonian, with time-reversible trajectories, which ensures that an equilibrium

probability distribution function exists and that DB is satisfied. The mesoscopic state variables are then a collec-

tion of surviving variables resulting from the CG process. Due to the elimination of internal degrees of freedom

(non-surviving variables), the mesoscopic state variables can then be treated in a manner analogous to macro-

scopic Thermodynamics. For a simple multicomponent system, these surviving variables are the mesoparticle

mass, mi, position, ri, momentum, pi, internal energy, ui, number density, ni (representative of the mesoparti-

cle volume), and chemical composition. The dependence of the particle state on the chemical composition was

introduced in the formulation of GenDPDE-M to incorporate material exchange into the GenDPDE framework

[11], [12]. To describe composition, let us assume that the underlying physical system contains a number Ns of

different chemical species, each denoted by 𝛼 and having a molecular mass m̄𝛼 . Due to the CG process, a given

number of these particles can be found within mesoparticle i at a given instant of time. This number is denoted

by  𝛼
i
. These  𝛼

i
physical particles are thus embedded into mesoparticle i and hence contribute to its mass

withm𝛼
i
=  𝛼

i
m̄𝛼 . Therefore, the composition of mesoparticle i is specified by the set of aggregate masses of the

embedded species, i.e., by the set
{
m𝛼
i

}Ns

𝛼=1.

It is very important to realize that a given extensive property should be specified for each mesoparti-

cle, to characterize its size. Without loss of generality, we fix the total mesoparticle mass mi =
∑Ns

𝛼=1m
𝛼
i
as the

size characterization. This choice is compatible with the mesoparticle velocity being an estimator of the so-

called baricentric velocity [26], [27] (which is used in the Navier–Stokes equation and has a central role in fluid

mechanics), and has the added benefit of decoupling the mechanical dynamics of the system from the particle

composition. Therefore, the diffusive fluxes are defined as material fluxes relative to the baricentric motion of

the mesoparticles, so that not all of them are independent, since

dmi =
Ns∑
𝛼=1

dm𝛼
i
= 0 (1)

due to the constantmass constraint. Here, dm𝛼
i
represents an arbitrary variation of themass of species𝛼. Thus, in

the GenDPDE-M framework, only Ns − 1 masses of the embedded species are treated as independent variables.

Other choices, such as fixing the totalmolar number, are also possible, inwhich case di =
∑Ns

𝛼=1d
𝛼
i
= 0. How-

ever, it is well known that the physical dynamic processes related to advection and diffusion are independent of

these choices [26], [27].

In the following, we formulate heat and diffusive fluxes with coupling between them, which go beyond the

initial approach presented in Refs. [24], [25]. We start by introducing, in Section 2.1, the concept of the particle

fluctuating thermodynamics while the particles are kept at rest, for simplicity. We further outline the central

object of the mesoscale thermodynamic description, i.e., the probability distributions for the state variables. In

Section 2.2,we introduce theheat anddiffusivefluxes, usingOnsager’s formulation of non-equilibriumprocesses

at the mesoscopic level [26], [28], since particles at rest can still exchange energy and mass due to these fluxes.

We then provide explicit expressions for the general relations between the heat and diffusive fluxes with the

corresponding thermodynamic forces, togetherwith the associated random contributions, in Section 2.3. Finally,

we derive the complete Equations-of-Motion (EoM) for the system of moving particles, which exchange energy
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andmatter (Section 2.4). For completeness, in Section 2.5 we provide an example of a thermodynamic model for

the mesoparticles, which is used in the simulations.

2.1 Probability distribution and intensive variables

For simplicity and clarity, but without loss of generality, let us consider mesoparticles with their positions

fixed in space. Moreover, we restrain the discussion to binary mixtures (Ns = 2). Although the generalization

to multicomponent systems is straightforward, it requires quite a lengthy algebraic treatment [27].

The state of a static mesoparticle is defined by specifying its energetic content ui and the mass of the A-

componentmA
i
. Here, we can ignore the density ni as a state variable, since the latter enters the thermodynamic

description only parametrically for static particles, along with the constant particle mass mi. Due to the mass

constraint Eq. (1), the amount of the second component B is simply given by

mB
i
= mi −mA

i
> 0 (2)

Following the analysis in Refs. [11], [12], the canonical equilibrium probability distribution for a system of

N static mesoparticles with an embedded binary mixture is given by

Peq(Γ̃) = Peq
(
{ui},

{
mA
i

})
∝ e

−
N∑
i=1

[
ui−Ts̃i

(
ui,m

A
i

)]
∕(kBT)

(3)

where Γ̃ ≡
(
{ui},

{
mA
i

})
, kB is the Boltzmann constant, T is the reservoir temperature, and s̃i is the so-called

bare particle entropy, which is a function of ui and m
A
i
[29]. From a physical point of view, the bare entropy is

related to the density of microscopic states g for the CG variables within the mesoparticle for given ui and m
A
i

[11], i.e.,

s̃i = kB ln g
(
ui,m

A
i

)
(4)

In Eq. (3) we have explicitly assumed that the independent variables are the particles energies, ui, and the

mass of species A, mA
i
. According to Refs. [11], [12], by analogy with macroscopic thermodynamics, without loss

of generality we can write,

ds̃i =
𝜕s̃i
𝜕ui

||||mA
i
,mB

i

dui +
𝜕s̃i
𝜕mA

i

|||||ui,mB
i

dmA
i
+ 𝜕s̃i
𝜕mB

i

|||||ui,mA
i

dmB
i

≡
1

𝜃̃i
dui −

𝜇̃A
i

𝜃̃i
dmA

i
−

𝜇̃B
i

𝜃̃i
dmB

i
(5)

which is a definition of the bare intensive variables,

𝜕s̃i
𝜕ui

||||mA
i
,mB

i

≡
1

𝜃̃i
(6)

𝜕s̃i
𝜕mA

i

|||||ui,mB
i

≡
𝜇̃A
i

𝜃̃i
(7)

𝜕s̃i
𝜕mB

i

|||||ui,mA
i

≡
𝜇̃B
i

𝜃̃i
(8)

where 𝜃̃i is the bare particle temperature and 𝜇̃
A
i
, and 𝜇̃B

i
are the respective species bare chemical potentials.

Then, using Eq. (1) we can eliminate the dependent variablemB
i
in Eq. (5), and introduce the exchange chemical

potential ̄̃𝜇i ≡ 𝜇̃A
i
− 𝜇̃B

i
, yielding

ds̃i =
1

𝜃̃i
dui −

̄̃𝜇i

𝜃̃i
dmA

i
(9)
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It is important to realize that these intensive variables are estimators of the ensemble temperature and

chemical potential, due to the fact that their equilibrium average yields [12],⟨
1

𝜃̃i

⟩
T

= 1

T
(10)

⟨
̄̃𝜇i

𝜃̃i

⟩
T

= 𝜇̄

T
(11)

where the macroscopic exchange chemical potential is defined as 𝜇̄ ≡ 𝜇A − 𝜇B, by analogy with the mesoscopic

counterpart.

According to Refs. [11], [12], Eq. (9) cannot be trivially inverted to express ui as a function of s̃i andm
A
i
, due

to the fact that the traditional macroscopic thermodynamic relations transform as distributions when formu-

lated at the mesoscale. Effectively, by demanding that the physical equilibrium distribution is invariant under

a change of independent variables, P(Γ̃)dΓ̃ = P(Γ)dΓ, we can introduce the dressed variables Γ ≡
(
{si},

{
mA
i

})
from the relation,

Peq(Γ) = Peq
(
{si},

{
mA
i

})
∝ e

−
N∑
i=1

[
ui
(
si,m

A
i

)
−Tsi

]
∕(kBT)

(12)

where we have introduced si as the so-called dressed particle entropy, related to the bare particle entropy by

si = s̃i − kB ln J (13)

with the Jacobian,

J
(
ui,m

A
i

)
= 𝜕si

𝜕ui

||||mA
i

(14)

From Eq. (13), the relationship between the bare and dressed temperatures follows (see Eq. (17) of Ref. [12]),

1

𝜃̃i
= 1

𝜃i
+ kB

𝜕

𝜕ui
ln J

||||mA
i

(15)

Therefore, the thermodynamic relationship in Eq. (9) transforms into

dui = 𝜃idsi + 𝜇̄idm
A
i

(16)

where 𝜇̄i is the dressed exchange chemical potential,

̄̃𝜇i

𝜃̃i
= 𝜇̄i

𝜃i
− kB

𝜕

𝜕mA
i

ln J
|||||ui (17)

The dressed variables are different estimators of the ensemble properties, i.e.,

⟨𝜃i⟩T = T (18)

⟨𝜇̄i⟩T = 𝜇̄ (19)

Notice that the difference between dressed and bare variables is of the order of magnitude of the fluctua-

tions, which should vanish with the size of the mesoparticles as kB∕CV → 0, with CV being the mesoparticle heat

capacity. In what follows, we require both the dressed and bare representations of the variables.

2.2 Heat and diffusive fluxes

From the exponent on the right-hand side of Eq. (3), we identify the free energy functional of the system, namely

̃ =
N∑
i=1

[
ui − Ts̃i

(
ui,m

A
i

)]
(20)
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Notice that this functional corresponds to the canonical ensemble and contains information about reservoir

properties, i.e., the temperature T , which differs from the fluctuating particle temperature 𝜃. In this form, we

have arbitrarily chosen ui and m
A
i
as the independent variables, so that s̃i is automatically the bare entropy.

As in Refs. [24], [25], we demand that the dissipative processes for the energy and material exchange between

mesoparticles, in the absence of fluctuations, drive ̃ to a minimum, for the Second Law of Thermodynamics to

be satisfied at the mesoscopic level also, i.e.,
̇̃ < 0 (21)

where the dot represents time-differentiation. Thus,

N∑
i=1

[
u̇i − T ̇̃si

]
< 0 (22)

The equivalence of such statement and the traditional positiveness of the entropy production has been

shown in Ref. [12]. Here, we will proceed straightforwardly from Eq. (22). As the independent variables are ui
andmi, from Eq. (9), we can write

̇̃si =
1

𝜃̃i
u̇i −

̄̃𝜇i

𝜃̃i
ṁA
i

(23)

Thus,
N∑
i=1

[
u̇i − T

(
1

𝜃̃i
u̇i −

̄̃𝜇i

𝜃̃i
ṁA
i

)]
< 0 (24)

The conserved quantities ui and mi follow some dynamic equations, which we aim at deriving eventually.

On the one hand, the First Law of Thermodynamics also holds at the mesoscopic level,

dui = dqi + dWi (25)

where qi andWi are, respectively, the total heat transferred bymesoparticle i and thework done onmesoparticle

i by the mechanical forces. Hence,

u̇i = q̇i + Ẇi (26)

Since the mesoparticles are static, no mechanical work is exerted and, as a consequence, Ẇi = 0. Further-

more, separating the heat flux q̇i into pairwise contributions, we arrive at

u̇i =
∑
j≠i

q̇i j (27)

namely, the irreversible energy exchange produced between particles is due to the exchange ofmesoscopic heat.

On the other hand, we can similarly assume that the irreversible material exchanges between particles are due

to pairwise diffusive fluxes, i.e.,

ṁA
i
=

∑
j≠i

JA
i j

(28)

The interparticle fluxes satisfy q̇i j = −q̇ ji and JA
i j
= − JA

ji
, due to property conservation. Then, from Eq. (24),

and using Eqs. (27) and (28), we can write,

N∑
i=1

[∑
j≠i

q̇i j − T

(
1

𝜃̃i

∑
j≠i

q̇i j −
̄̃𝜇i

𝜃̃i

∑
j≠i

JA
i j

)]
< 0 (29)

To develop this equation further, we can first separate the summation over j ≠ i into two contributions,

namely, j < i and j > i. Second, focusing on the second contribution, we can change the order of summation

in such a way that
∑

i,j>i… = ∑
j,i<j…. Third, we can re-label the dummy indices i ↔ j and use the change of

sign of q̇i j and JA
i j
under this permutation, to arrive at,
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N∑
i=1

∑
j<i

[
T

(
1

𝜃̃ j

− 1

𝜃̃i

)
q̇i j + T

(
̄̃𝜇i

𝜃̃i
−

̄̃𝜇 j

𝜃̃ j

)
JA
i j

]
< 0 (30)

As the inequality must be satisfied irrespective of the number of pairs, we arrive to a more restrictive

condition for every pair, i.e., [
T

(
1

𝜃̃ j

− 1

𝜃̃i

)
q̇i j + T

(
̄̃𝜇i

𝜃̃i
−

̄̃𝜇 j

𝜃̃ j

)
JA
i j

]
< 0 (31)

From Eq. (31), we can identify the thermodynamic forces as

Yu
i j
= −

(
1

𝜃̃ j

− 1

𝜃̃i

)
(32)

Ym
i j
= −

(
̄̃𝜇i

𝜃̃i
−

̄̃𝜇 j

𝜃̃ j

)
(33)

Notice that the thermodynamic forces are defined in terms of the bare intensive variables. Furthermore,

from Eqs. (10) and (11) we can see that their equilibrium average exactly vanishes.

According to Onsager’s linear non-equilibrium thermodynamics [26], the heat and diffusive fluxes are

defined as linear combinations of the thermodynamic forces sharing the same tensorial nature (Curie’s prin-

ciple), which turns Eq. (31) into a quadratic expression in terms of the Yij’s. The implications of the inequality in

Eq. (31) will be the subject of a later analysis. For our example, we thus write,

q̇i j = Luu
i j
Yu
i j
+ Lum

i j
Ym
i j

(34)

JA
i j
= Lmu

i j
Yu
i j
+ Lmm

i j
Ym
i j

(35)

where Luu
i j
, Lum

i j
, Lmu

i j
, and Lmm

i j
are coefficients representing the mesoscopic equivalent of Onsager’s phenomeno-

logical coefficients. Notice that Eqs. (34) and (35) allow for a dynamic coupling between energy and material

exchange. The inequality in Eq. (31) restricts the range of allowed values for these Onsager’s phenomenological

coefficients. Notice that, we discussed the simplified dynamics in Ref. [24], in which Lum
i j

= Lmu
i j

= 0, correspond-

ing to dynamically decoupled fluxes between interacting mesoscopic particles.

As a concluding remark, we comment on the usual distinction between the heat flux and measurable heat

flux in the literature (see, e.g., [26], [30]). Theoretically, this distinction is related to what one would measure in

a temperature gradient subject to the condition ∇𝜇𝛼
T
= 0. Thermodynamically, ∇𝜇𝛼

T
is an object defined from

the relation [26],

Td
(
𝜇𝛼

T

)
≡ d𝜇𝛼

T
− h𝛼

T
dT (36)

where h𝛼 is the enthalpy per unit of mass of species 𝛼. Then, in classical non-equilibrium thermodynamics, from

the entropy production equation it follows that themeasurable heat flux can be defined as,

q̇′ = q̇−
∑
𝛼

h𝛼 J𝛼 (37)

However, Eqs. (36) and (37) are only valid at the macroscopic level, i.e., with regards to the overall behavior

of the ensemble of mesoparticles, independently of the form of Eqs. (34) and (35). For their validity, it is required

that the spatial differences in the thermodynamic intensive variables are sufficiently small so that only the linear

terms need to be retained, in view of Eq. (36). In Appendix A we show that the distinction between heat flux and

a measurable counterpart at the level of the mesoparticles cannot be made. Only, if additional conditions on the

size of the differences between particle temperatures apply, one can define a q̇′
i j
analogue to the macroscopic

measurable heat flux, in Eq. (37). In conclusion, as the dynamics of the fluxes is well defined by Eqs. (34) and (35)
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and there is no conceptual gain in introducing an interparticle measurable heat flux at the mesoscopic level,

where the measure does not occur, we will not proceed further with this analogy.

2.3 Dynamics of energy and mass exchange of static mesoparticles

To the form given in Eqs. (34) and (35) for the systematic component of the dynamics, following the general

GenDPDE-M scheme of Refs. [24], [25], we now add the effect of the thermal agitation through random fluxes, in

the spirit of the so-called fluctuating hydrodynamics of Landau and Lifshitz [3]. We thus propose the complete

EoM for static mesoparticles in a discrete form,

u′
i
= ui +

∑
j≠i

q̇i j𝛿t +
∑
j≠i

𝛿uR
i j

(38)

mA
i

′ = mA
i
+

∑
j≠i

JA
i j
𝛿t +

∑
j≠i

𝛿mR
i j

(39)

In Eqs. (38) and (39), prime and non-prime variables refer to the time t + 𝛿t and t, respectively; 𝛿t is the

timestep, and 𝛿uR
i j
and 𝛿mR

i j
are random contributions to the internal energy andmass of the embedded physical

species A, respectively. Due to conservation, 𝛿uR
i j
= −𝛿uR

ji
and 𝛿mR

i j
= −𝛿mR

ji
are also satisfied. In the same spirit

as with the linear relations of Eqs. (34) and (35), the random terms are also given by a linear combination of the

form,

𝛿uR
i j
=

(
𝜎uu
i j
Ωu

i j
+ 𝜎um

i j
Ωm

i j

)
𝛿t1∕2 (40)

𝛿mR
i j
=

(
𝜎mu
i j
Ωu

i j
+ 𝜎mm

i j
Ωm

i j

)
𝛿t1∕2 (41)

whereΩu

i j
andΩm

i j
are normalised Gaussian numbers for each pair of particles with the properties

⟨Ωu,m

i j
⟩ = 0 (42)

⟨Ωu

i j
(t)Ωu

kl
(t′)⟩ = ⟨Ωm

i j
(t)Ωm

kl
(t′)⟩ = (

𝛿ik𝛿 jl − 𝛿il𝛿 jk
)
𝛿tt′ (43)

with ⟨Ωu

i j
(t)Ωm

kl
(t′)⟩ = 0 (44)

The coefficients 𝜎uu
i j
, 𝜎um

i j
, 𝜎mu

i j
, and 𝜎mm

i j
are the amplitudes of the thermal fluctuations, which will be set by

the corresponding FD theorem. Equations (38) and (39) are complemented by the mass constraint in Eq. (1), i.e.,

mB
i

′ = mi −mA
i

′
> 0 (45)

asmi is kept constant in GenDPDE-M. The EoM in Eqs. (38) and (39) can be written in amore compact form using

matrix notation, i.e.,

xi
′ = xi +

∑
j≠i

Li j ⋅ Yi j𝛿t +
∑
j≠i

𝝈i j ⋅𝛀i j𝛿t
1∕2 (46)

where we have defined the vectors for the mesoscopic state, xi, thermodynamic forces, Yij, and random contri-

butions,𝛀ij, as

xi =
(
ui

mA
i

)
Yi j =

(
Yu
i j

Ym
i j

)
𝛀i j =

(
Ωu

i j

Ωm

i j

)
(47)

together with the matrices of Onsager’s phenomenological coefficients, Lij, and the amplitudes of the random

contributions, 𝝈ij, according to

Li j =
(
Luu
i j

Lum
i j

Lmu
i j

Lmm
i j

)
𝝈 =

(
𝜎uu
i j

𝜎um
i j

𝜎mu
i j

𝜎mm
i j

)
(48)
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The mesoscopic transport coefficients in Lij and the amplitudes of the random terms in 𝝈ij are linked

together by the general FD theorem,

𝝈i j ⋅ 𝝈
T
i j
= kB

(
Li j + L

T
i j

)
(49)

which is derived in Appendix B. In Eq. (49), the superscript T represents the transposed matrix. Moreover, in

Appendix C we demonstrate that the ORR are also a consequence of DB, which implies that

L
T
i j
= Li j (50)

For a binary mixture, this simply reduces to

Lum
i j

= Lmu
i j

(51)

Due to this symmetry, Eq. (49) implies that(
𝜎uu
i j

)2
+

(
𝜎um
i j

)2
= 2kB𝜅i j(

𝜎mu
i j

)2
+

(
𝜎mm
i j

)2
= 2kBÐi j

𝜎uu
i j
𝜎mu
i j

+ 𝜎um
i j
𝜎mm
i j

= 2kBL
um
i j

(52)

where we introduced more natural notation for the coefficients, namely,

Luu
i j

≡ 𝜅i j (53)

Lmm
i j

≡ −Di j (54)

Here, 𝜅 ij can be regarded as the mesoscopic thermal conductivity coefficient, while Ðij would be the

mesoscopic Maxwell–Stefan diffusion coefficient [27]. Next, for convenience, we introduce the positive-definite

coupling constants ku and km from the relations,

(
𝜎uu
i j

)2
≡ ku𝜅i j (55)

(
𝜎mm
i j

)2
≡ km−Di j (56)

Equation (52) thus become

ku𝜅i j +
(
𝜎um
i j

)2
= 2kB𝜅i j

km−Di j +
(
𝜎mu
i j

)2
= 2kB−Di j (57)√

ku𝜅i j 𝜎
mu
i j

+
√
km−Di j 𝜎

um
i j

= 2kBL
um
i j

These equations then can be solved to find the parameters involved in the coupling dynamics, i.e., Lum
i j
, 𝜎um

i j
,

and 𝜎mu
i j
, as functions of 𝜅 ij, Ðij, ku, and km. We obtain for the noise amplitudes,

𝜎um
i j

=
√
(2kB − ku)𝜅i j (58)

𝜎mu
i j

= −
√
(2kB − km)−Di j (59)

Moreover, the cross-coefficient takes the form,

Lum
i j

=
√
𝜅i j−Di j

(
−
√

ku
2kB

− kukm
4k2

B

+
√

km
2kB

− kukm
4k2

B

)
(60)
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It is important to note that the amplitudes of the random terms are not unequivocally determined by simply

fixing 𝜅 ij, Ðij and L
um
i j
. Effectively, 𝜎uu

i j
, 𝜎mm

i j
, 𝜎um

i j
, and 𝜎mu

i j
additionally depend upon the two coupling constants

ku and km in such a way that there exists a multiplicity of values of these that are compatible with the same

dissipative processes described by the coefficients 𝜅 ij, Ðij and L
um
i j
. This fact indicates that, at the current level of

description of Langevin-like equations, one still has an additional degree of freedom in the choice of the relative

amplitude of the randomcurrents, keeping𝜅 ij, Ðij, andL
um
i j

fixednevertheless, without violatingDB. At this point,

if there is no additional physical information that could allow us to elucidate the values of ku and km, we are

forced to make an educated choice, as the overall macroscopic processes are not affected. Moreover, notice that

we have chosen 𝜎um
i j
𝜎mu
i j

< 0 as it is the only physically meaningful solution of Eq. (49) for the dynamic coupling

of the mass and energy fluxes.

Next, in view of Eq. (31), Onsager’s coefficients must satisfy the following sign conditions,

Luu
i j
> 0 (61)

Lmm
i j

> 0 (62)

Luu
i j
Lmm
i j

−
(
Lum
i j

)2
> 0 (63)

which imply that 𝜅 ij > 0 and Ðij > 0. In addition, from Eqs. (55) and (56) it also follows that ku > 0 and km > 0.

Moreover, from Eq. (63) we also find that the coupling constants are subject to the following inequality,

ku + km
2kB

− kukm
2k2

B

−
√

kukm
k2
B

(
1− ku + km

2kB
+ kukm

4k2
B

)
< 1 (64)

Combining Eq. (64) with the definitions of the amplitudes of the random terms, Eqs. (55), (56), (58), and (59),

we arrive at the identification of the physically acceptable bounds for the coupling constants, namely,

ku ∈
[
0, 2kB

]
(65)

km ∈
[
0, 2kB

]
(66)

The choice ku = km implies that Lum
i j

= 0, and no coupling between the energy and mass transport occurs.

However, notice that under this choice 𝜎um
i j

and 𝜎mu
i j

may still be different from zero. As we mentioned, this

situation has no effect on the overall dynamics of the system. Only in the case where ku = km = 2kB, do all coeffi-

cients in Eqs. (58)–(60) identically vanish. This latter situation exactly corresponds to the decoupled GenDPDE-M

method presented in our prior publications [24], [25].

2.4 The equations of motion

The dynamics of heat and mass transport, Eq. (46), with the corresponding FD relations, expressed in Eqs. (55),

(56), (58) and (59), can be easily incorporated into the mechanical motion of a system of moving mesoparticles

with an embedded binary mixture, because of our choice of constant mass (cf . Eq. (1)). The equilibrium distri-

bution for the complete set of variables is the extension of Eq. (3) with the energy due to the mechanical degrees

of freedom, i.e.,

Peq(Γ̃) = Peq
(
{pi}, {ri}, {ui},

{
mA
i

})
∝ e

−
N∑
i=1

[
p2
i

2mi
+̃

(
ui,ni,m

A
i

)]
∕(kBT)

(67)

where the functional form of ̃ is defined in Eq. (20). In Eq. (67), the local particle density ni({r j}) is defined
from the particle positions, according to the expression,

ni =
∑
j≠i

𝑤i j (68)
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where 𝑤ij ≡ 𝑤(rij) is a smooth, monotonically decreasing (d𝑤ij∕drij < 0), non-negative, spherically symmet-

ric weighting function. It vanishes for an interparticle distance, rij ≡ |ri − r j|, such that rij ≥ Rcut, where Rcut
is the cut-off range. Unlike the other weighting functions defined in this work, 𝑤ij is normalized so that

4𝜋∫
Rcut
0

𝑤(r)r2dr = 1, for convenience. Notice that ni is in fact a measure of the particle volume 𝑣i ≡ 1∕ni, which
is directly connected to the compression-expansion work implicit of the local thermodynamic description.

Due to the spatial motion of the particles, here we have to explicitly take into account that the dissipative

parameters are space-dependent, i.e.,

𝜅i j = 𝜅 𝜔u(ri j) (69)

−Di j = −D𝜔m(ri j) (70)

where 𝜔u(rij) and 𝜔m(rij) are smooth, monotonically decreasing, non-negative, and spherically symmetric

weighting functions. They vanish for ri j ≥ Ru
cut

and ri j ≥ Rm
cut
, with Ru

cut
and Rm

cut
being the cutoff distances for

𝜔u(rij) and𝜔
m(rij), respectively. The energy andmass weighting functions are defined independently of the den-

sity weighting function defined in Eq. (68). From Eqs. (69) and (70), using Eq. (60), we can furthermore highlight

the spatial dependence of the cross-coefficient Lum
i j
, i.e.,

Lum
i j

= Lum
√
𝜔u(ri j)𝜔

m(ri j) (71)

where

Lum =
√
𝜅 −D

(
−
√

ku
2kB

− kukm
4k2

B

+
√

km
2kB

− kukm
4k2

B

)
(72)

As the positions are slow variables compared to ui,m
A
i
and the particle velocities vi = pi∕mi, we can safely

substitute the expressions in Eqs. (69) and (70) into the FD relations Eqs. (55), (56), (58), and (59), without further

change.

The EoM for N mesoparticles in the coupled GenDPDE-M method are identical to those of Ref. [24], i.e.,

r
′
i
= ri +

pi

mi

𝛿t (73)

p
′
i
= pi +

∑
j≠i

f
C
i j
𝛿t +

∑
j≠i

f
D
i j
𝛿t +

∑
j≠i

𝛿pR
i j

(74)

u′
i
= ui −

1

2

∑
j≠i

(
pi

mi

−
p j

m j

)
⋅ fC

i j
𝛿t (75)

− 1

2

∑
j≠i

(
pi

mi

−
p j

m j

)
⋅ fD

i j
𝛿t

− 1

2

∑
j≠i

(
pi

mi

−
p j

m j

)
⋅ 𝛿pR

i j

− 1

2mi

∑
j≠i

∑
l≠i

𝛿pR
i j
⋅ 𝛿pR

il

+
∑
j≠i

q̇i j𝛿t +
∑
j≠i

𝛿uR
i j

mA
i

′ = mA
i
+

∑
j≠i

JA
i j
𝛿t +

∑
j≠i

𝛿mR
i j

(76)

mB
i

′ = mi −mA
i

′
(77)
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Thedynamic coupling betweenmass and energy transport is taken into account through the formof the heat

andmass fluxes, given by Eqs. (34) and (35), togetherwith the randomfluxes, Eqs. (40) and (41). For completeness,

in Eqs. (74) and (75),

f
C
i j
= −

(
𝜋i
n2
i

+
𝜋 j

n2
j

)
d𝑤i j

dri j
ei j (78)

is the conservative force between a pair of mesoparticles i and j, where 𝜋i the particle pressure that follows

from the free energy of the EoS for themesoparticle. Note that the particle pressurewill contribute to the overall

system pressure as an excess pressure, as there is always an ideal contribution due to the thermal agitation of

the mesoparticles. This point is important when defining the particle EoS targeting a given specificmacroscopic

thermodynamic behavior. In Eq. (78), eij ≡ rij∕rij. Further, the friction force takes the usual DPD form (see, e.g.,

[12]),

f
D
i j
= −𝛾i j

(
pi

mi

−
p j

m j

)
⋅ ei jei j (79)

for a pair of mesoparticles i and j. Here, 𝛾 ij = 𝛾 𝜔p(rij), 𝛾 being the mesoscopic friction coefficient, and 𝜔p(rij)

being a weighting function with the same properties as the other functions in Eqs. (69) and (70), vanishing for

ri j ≥ R
p

cut
, where R

p

cut
is the cut-off range for this property. Finally, according to Ref. [24],

𝛿pR
i j
=

√
kB(𝜃i + 𝜃 j)𝛾i j Ω

p

i j
ei j𝛿t

1∕2 (80)

is the random contribution to the particle momentum, and Ω p

i j
is a normalised Gaussian number with analo-

gous properties to those defined in Eqs. (42) and (43). It is very important to realize that, according to Refs. [12],

[24], Eq. (80) explicitly depends upon the dressed temperature. The latter can be written in terms of the bare

temperature, using Eq. (15).

2.5 Particle thermodynamic model

As a representative example, we aim at describing a macroscopic system whose thermodynamics is given by

the vdW mixture model, based on the vdW EoS [31], and the one-fluid (1f) conformational solution theory [32],

which treats a mixture as a pseudo-fluid with composition-dependent parameters.

Specifically, the vdW EoS ai and bi parameters of the mesoparticle i are given by the combining rules [32],

[33]

ai =
∑
𝛼

∑
𝛽

x𝛼
i
x
𝛽

i

√
a𝛼a𝛽 (81)

bi =
∑
𝛼

x𝛼
i
b𝛼 (82)

where a𝛼 and b𝛼 are the vdW EoS parameters of the embedded physical species 𝛼, and x𝛼
i
=  𝛼

i
∕i is its molar

fraction.

Then, for the particle pressure needed for evaluation of the conservative force, Eq. (78), we propose a cor-

rected vdW EoS by the subtraction of the ideal gas contribution due to the mesoparticle agitation, namely,

𝜋i =
inikB𝜃i
1− b̄ini

− āin
2
i
− kB𝜃ini

≡ 𝜋EoS
i

− kB𝜃ini

(83)

where [25],

āi ≡  2
i
ai (84)

b̄i ≡ ibi (85)

We have chosen to express the mesoparticle thermodynamics in terms of dressed variables, although the

physically relevant properties of the model can equally be expressed in terms of bare variables. Effectively, if
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Eq. (15) is taken into account, together with the fact that the bare pressure is related to the dressed one through

the relation,
𝜋̃i

𝜃̃i
= 𝜋i

𝜃i
+ kB

𝜕

𝜕ni
ln J

||||ui,mA
i

(86)

then the equilibrium probability distributions remain invariant.

Equation (83) can be derived from the appropriate particleHelmholtz free-energy f , as found inAppendix A

of Ref. [25]. The expression reads

fi = kB𝜃i
∑
𝛼

 𝛼
i
ln

(
 𝛼

i
ni

(1− b̄ini)n0

)
− āini + CV ,i𝜃i − CV ,i𝜃i ln

(
1+ 𝜃i

𝜃0

)
− kB𝜃i ln

(
ni
n0

)
(87)

where CV ,i =
∑

𝛼
𝛼
i
C𝛼
V ,i
is the composition-dependent heat capacity of the mesoparticle, with C𝛼

V ,i
the constant-

volume heat capacity per molecule belonging to the embedded physical species 𝛼, and āi together with b̄i are

given in Eqs. (84) and (85), respectively. Notice that, we have not subtracted in Eq. (87) the contribution due to

the mesoparticle agitation, as we did in the right-hand side of Eq. (A3) of Ref. [25]. The parameters n0 and 𝜃0 are

included for dimensional consistency, and will be considered as constants.

Therefore, to obtain the expression of the internal energy ui, from which the temperature 𝜃i can be calcu-

lated, we have to first derive the particle entropy, from the usual relation si = −𝜕 fi∕𝜕𝜃i|ni,{m𝛼
i }, i.e.,

si = −kB
∑
𝛼

 𝛼
i
ln

(
 𝛼

i
ni

(1− b̄ini)n0

)
− CV ,i + CV ,i ln

(
1+ 𝜃i

𝜃0

)
+ CV ,i

𝜃i∕𝜃0
1+ 𝜃i∕𝜃0

+ kB ln

(
ni
n0

)
(88)

Equation (A4) in Ref. [25] corresponds to the high-temperature limit 𝜃i∕𝜃0 ≫ 1 of this expression. We will

also take such limit in this work, to make our expressions in more accordance with real gases. However, before

we simplify our expressions, we can calculate the formof the internal energy ui fromEq. (87) using ui = fi + 𝜃isi,

which reads,

ui = CV ,i𝜃i
𝜃i∕𝜃0

1+ 𝜃i∕𝜃0
− āini (89)

Finally, the chemical potential of species 𝛼 is obtained from Eq. (87) through differentiation with respect to

m𝛼
i
, where one obtains,

𝜇𝛼
i
= 1

m̄𝛼

{
kB𝜃i

[
ln

(
 𝛼

i
ni

(1− b̄ini)n0

)
+ 1+ ini

1− b̄ini
b𝛼

]
− 2ni

∑
𝛽


𝛽

i

√
a𝛼a𝛽+ C𝛼

V ,i
𝜃i

[
1− ln

(
1+ 𝜃i

𝜃0

)]}
(90)

From a practical point of view, we are using the simplified expressions for the internal energy as well as

the chemical potentials in the high temperature limit 𝜃i∕𝜃0 ≫ 1, thus obtaining our final expressions required

for the simulations, i.e.,

ui = CV ,i𝜃i − āini (91)

for the internal energy, and

𝜇𝛼
i
= 1

m̄𝛼

[(
kB + C𝛼

V ,i

)
𝜃i + kB𝜃i ln

(
 𝛼

i
ni

(1− b̄ini)n0

)
+ kB𝜃iini

1− b̄ini
b𝛼− 2ni

∑
𝛽


𝛽

i

√
a𝛼a𝛽 − C𝛼

V ,i
𝜃i ln

(
𝜃i
𝜃0

)]
(92)

for the chemical potential.

2.5.1 Bare variables

Since the thermodynamic forces in Eqs. (32) and (33) are expressed in terms of bare variables, the explicit expres-

sions for the bare temperature as well as the bare chemical potentials are required. To this end, let us first

consider the form of the Jacobian of the transformation, given in Eq. (14), already in the high temperature limit,
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J = 𝜕si
𝜕ui

||||ni,{m𝛼
i }

= 𝜕si
𝜕𝜃i

||||ni,{m𝛼
i }

× 𝜕𝜃i
𝜕ui

||||ni,{m𝛼
i }

= 1

𝜃i
(93)

where use has beenmade of Eqs. (88) and (91) to calculate the derivatives. Therefore, fromEq. (91), using Eq. (15),

1

𝜃̃i
= 1

𝜃i

(
1− kB

CV ,i

)
(94)

In the same way, from Eq. (17), using again Eq. (91), one finds,

𝜇̃𝛼
i

𝜃̃i
=

𝜇𝛼
i

𝜃i
+ kB
CV ,i𝜃i

1

m̄𝛼

[
2ni

∑
𝛽


𝛽

i

√
a𝛼a𝛽 − C𝛼

V ,i
𝜃i

]
(95)

The vdW EoS, and in fact all properties derived from Eq. (87), is not defined for b̄ini > 1. Thus, we employed

an extension to avoid numerical problems, whose details are given in Refs. [11], [25].

3 Computational details

As in the decoupled GenDPDE-M method [24], [25], the EoM in Eqs. (73)–(77) were integrated by the extended

Shardlow splitting algorithm, which separately discretizes the reversible and irreversible parts of the dynamics

[34], [35].

We consider an embedded binary mixture of an atomic and a diatomic fluid, taking the equimolar

Ar(A)/Cl2(B) binary mixture as a representative example. Values of the vdW EoS parameters were determined

from the critical temperature, Tc, and critical pressure, Pc, of Ar and Cl2, according to [32]

a𝛼 =
27

64

(
kBT

𝛼
c

)2
P𝛼c

b𝛼 =
1

8

kBT
𝛼
c

P𝛼c

where TAr
c

= 150.69 K and PAr
c
= 48.63 bar, and T

Cl2
c = 417 K and P

Cl2
c = 79.91 bar. GenDPDE-M simulations for the

mixture were carried out at state points such that both substances would be under supercritical conditions if

pure. Thus, the simulated mixture behavior is far from ideal gas conditions.

The simulations were performed using Lennard–Jones reduced units, where mref = m̄A, 𝜀ref = aA∕bA,
𝜎ref = 3

√
bA were taken as the units of mass, energy, and length, respectively, thus fixing the time unit to

tref =
√
𝜎2
ref
mref∕𝜀ref. Hence, in reduced units, m𝛼 ∗

i
≡ m𝛼

i
∕mref, n

∗
i
≡ ni𝜎

3
ref
, 𝜃∗

i
≡ kB𝜃i∕𝜀ref, u∗i ≡ ui∕𝜀ref, 𝜋∗

i
≡

𝜋i𝜎
3
ref
∕𝜀ref, and t∗ = t∕tref . In the following, we will use only reduced variables and drop the ∗ where confusion

cannot occur. From the molecular masses of Ar and Cl2, for simplicity we further set m̄B = 2m̄A, C
A
V
= (3∕2)kB,

CB
V
= (5∕2)kB, and the level of CGing Φ = 10. Hence, since we chose an initial equimolar mixture, the initial

composition of mesoparticle i corresponds to A
i
=  B

i
= 5 (mA

i
= 5,mB

i
= 10), withmi = 15 = const.

We used the Lucy weighting function [36] for 𝑤(r), and the quadratic weighting function [11] for 𝜔p(r),

𝜔u(r) and 𝜔m(r), with cut-off distances Rcut = R
p

cut
= Ru

cut
= Rm

cut
. Equilibrium simulations were performed in

a cubic simulation box with periodic boundary conditions (PBC) in all three directions, and with N = 5,000

mesoparticles. Non-equilibrium simulationswere carried out in an orthorhombic simulation box of volumeV =
LxLyLz, with PBC andLy = Lz = Lx∕3, containingN = 9,000mesoparticles. Finally, we employed 𝛿t = 0.005, and

varied 𝛾 , 𝜅, Ð, ku, and km, to consider different simulation scenarios.
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3.1 Simulations under temperature gradient

To simulate the dependence of the Ludwig–Soret effect (thermodiffusion) with the dynamic coupling between

energy and mass within the GenDPDE-M method, we modified the reverse PeX non-equilibrium method by

Müller–Plathe [37], [38], often used inmolecular dynamics to generate a temperature gradient while conserving

the total energy and momentum. The method sets hot (h) and cold (c) regions (slabs) at prefixed x-positions in

an orthorhombic simulation box, such that they are at the same distance within the box as well as across the

PBC in the x-direction. Relative to Lx , the slab thickness was set small enough to have a sufficiently long section

for the temperature gradient to develop and occupy most of the box, but at the same time, sufficiently large

to contain enough mesoparticles so that the estimated mean temperatures minimally fluctuate. Unlike the PeX

method described in Refs. [37], [38], where fast particles in the cold slab virtually collide with slow particles in

the hot slab to create a net energy flux from cold to hot, here, at a given frequency fexc during the simulations, the

mesoparticle with the highest particle temperature in the cold slab is selected to exchange a prescribed amount

of heat, 𝛿q > 0, with the mesoparticle with the lowest temperature in the hot slab. This procedure ensures that

the total momentum and energy of the system remain invariant, despite the temperature gradient that develops

as a consequence of the forced heat flux across the sample, which is externally controlled by the values of 𝛿q

and fexc. Therefore, the internal energy of the mesoparticles involved in the exchange is updated as

uh = uh + 𝛿q

uc = uc − 𝛿q

In our simulations, the virtual heat transfer between the cold and hot slabs was performed every timestep,

i.e., fexc = 1, and the value of 𝛿q was adjusted to produce a small, linear temperature gradient profile between

the hot and cold slabs. The linearity of the obtained temperature profile allows us to use linear response theory,

and evaluate the macroscopic thermal conductivity together with the Soret coefficient [26].

Once the system has reached steady state, the heat-flux density is calculated as

Jx =
Q

AΔt (96)

where A = LyLz is the cross-sectional area of the slab, Δt is the time between the initial measuring time t1 and
the final time t2, during which the exchanged energy is accumulated into Q = ∑t2

t1
𝛿q. Since 𝛿q is a constant,

Eq. (96) becomes

Jx =
1

A

𝛿q

𝛿t
(97)

The macroscopic thermal conductivity 𝜆 is then defined from the relation,

𝜆 = − lim
dT

dx
→0

Jx
dT∕dx (98)

where it is assumed that the material flux is zero at steady state. Here, T(x) = ⟨𝜃(x)⟩ and dT∕dx is the average
particle temperature gradient in the x-direction, taken over measures at different times while in steady state. In

Eq. (98), the dT∕dx→ 0 formally expresses the necessity of a very small gradient to achieve the linearity of the

response [26]. To determine the local values of the temperature, we divided the space between the slabs into sev-

eral narrow bins and evaluated the local average of the dressed temperature, ⟨𝜃i⟩, over the particles within each
bin. Notice that we use the dressed temperature here because it is an estimator of the equilibrium temperature,

in view of Eq. (18). After taking different snapshots of the temperature distribution along the sample, we aver-

aged them and evaluated the temperature gradient from the mean profile, using a linear regression over most

of the central section between the slabs. Then, the thermal conductivity 𝜆 is obtained from Eq. (98). Notice that

while the heat flux is externally imposed and has no variability, the determination of the temperature gradient

is affected by numerical uncertainty, which propagates to the reported value of 𝜆.

Equation (98) follows the criterion of Refs. [30], [38] inwhich, in amulticomponent system, 𝜆 is definedwith

the material fluxes set to zero, as it agrees with a simple experimental setup. Hence, the relationship between
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the heat transported and the temperature gradient follows from Fourier’s law, but also includes the effects of

the coupling between the energy and mass transport through the concentration gradient. Other criteria could

be invoked [26], in which the thermal conductivity is defined also from Eq. (98), but under the assumption that

either ∇𝜇̄ = 0 or ∇(𝜇̄∕T) = 0. Although the values for the thermal conductivity may differ, depending on the

conditions chosen, the physical phenomena is invariant if the implications of these definitions are properly

taken into consideration.

Finally, the Soret coefficient for embedded species B in a binarymixture is also obtained from the condition

of zero material flux at steady state, and can be computed as [26]

sB
T
= − 1

x̄Ax̄B
dxB∕dx
dT∕dx (99)

where x̄A and x̄B are the overall average molar fractions of the embedded species A and B, respectively, and

dxB∕dx is the average molar fraction gradient of embedded species B in the x-direction. The Soret coefficient for

embedded species A can be analogously defined. Moreover, in a binary mixture, sA
T
= −sB

T
. Similarly as with 𝜆,

sA
T
and sB

T
in our model are affected by the strength of the coupling between energy and mass at the mesoscale.

4 Results

In this section, we present and discuss the results of equilibrium and non-equilibrium GenDPDE-M simulations

with different values for the parameters that govern the dynamic coupling between energy and mass trans-

fer at the mesoscale. Equilibrium simulations provide numerical proof of the independence of the probability

distributions from the mesoscopic transport coefficients. Non-equilibrium simulations, on the other hand, are

used to explore the effects of the coupling on heat transport and thermodiffusion. Finally, the dependence of the

system’s properties on the level of CGing is also analyzed.

4.1 Equilibrium simulations

Three GenDPDE-M simulations of the CG equimolar Ar/Cl2 binarymixture were performed for an initial temper-

ature T = 1.081 and an overall system number density c = 0.3152, which correspond to supercritical conditions

for the pure substances. In these simulations, we varied the mesoscopic dynamic coefficients 𝛾 , 𝜅 and Ð, as well

as the coupling constants, ku and km, as reported in Table 1. For each of these sets of parameters, we evaluated

the equilibrium distributions for 𝜃i (dressed temperature), m
A
i
and mB

i
, as shown in Figure 1. Here, test Dec-E

corresponds to the decoupled case in which the values of the coupling constants were chosen to simulate the

same algorithm as in Refs. [24], [25], namely, ku = km = 2kB, in view of Eqs. (58) and (59). Tests C1-E and C2-E, on

the other hand, correspond to coupled energy-mass dynamics scenarios.

From Figure 1, we can see that P(𝜃i) as well as P
(
mA
i

)
and P

(
mB
i

)
perfectly overlap for all cases, thus provid-

ing a numerical proof of consistency of the FD theorem. Effectively, since the particle thermodynamic model is

the same in all tests, the system dynamics is expected to sample the same equilibrium distributions regardless

of the chosen values of the mesoscopic transport coefficients and coupling constants.

Table 1: Parameters employed in equilibrium GenDPDE-M simulations. The mesoscopic transport coefficients 𝛾 , 𝜅 and Ð represent the

friction, thermal conductivity and Maxwell-Stefan coefficients, respectively. The coupling constants ku and km are energy and mass

prefactors with the dimensions of kB. nrun is the selected number of simulation timesteps.

Test 𝜸 𝜿 Ð ku km nrun

Dec-E 4.5 1.0 0.01 2.0 2.0 1 × 106

C1-E 4.5 1.0 0.01 1.0 1.5 1 × 106

C2-E 0.9 5.0 0.05 1.0 1.5 1 × 106
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Figure 1: The equilibrium probability distributions of the particle temperature (top) and embedded species masses (bottom) for the CG

equimolar Ar/Cl2 binary mixture at an initial temperature T = 1.081 and system number density c = 0.3152, as obtained from the

decoupled GenDPDE-M simulation, Dec-E, and coupled GenDPDE-M simulations C1-E and C2-E. All the distributions consistently overlap.

4.2 Non-equilibrium simulations

Non-equilibrium simulations of the CG equimolar Ar/Cl2 binary mixture were carried out for an initial state

T = 0.885 and c = 0.5775, corresponding again to supercritical conditions for the pure substances. Six GenDPDE-

M tests were performed, in which we set 𝛾 = 4.5, 𝜅 = 1 and Ð = 5, and varied Lum according to the values of ku
and km given in Table 2. Notice that the mesoscopic Maxwell–Stefan coefficient Ð was increased with respect

to the equilibrium simulations to allow the system to quickly relax to steady-state conditions, thus reducing the

computational cost of the tests. A short equilibration run of nequil = 1 × 105 timesteps was performed before

imposing heat transfer between the hot and cold slabs. A relaxation period of nrelax = 4 × 105 timesteps was

subsequently considered, after which no variation in the average temperature and concentration profiles was

observed.

Similarly to the equilibrium cases, here test Dec-NE refers to a decoupled system simulating the same

algorithm as in Refs. [24], [25]. As shown in Table 2, tests C1-NE, C2-NE and C3-NE consider coupled configurations

with different strengths of the dynamic energy-mass coupling effect, controlled by the value of the coefficient

Lum. Furthermore, with the aim of assessing the independence of the results from the choice of ku and km pro-

vided that Lum is kept constant, simulations C1b-NE and C2b-NE were performed, testing identical conditions to

the cases C1-NE and C2-NE, respectively, but using different values of the coupling constants.

Figure 2 shows the steady-state profiles of the local average particle dressed temperature, T(x) = ⟨𝜃(x)⟩,
which is a possible estimator of the local temperature. Notice that, if the bare temperature 𝜃̃ were used as the

Table 2: Parameters employed in non-equilibrium GenDPDE-M simulations. The coupling constants ku and km are energy and mass

prefactors with the dimensions of kB. L
um is the mesoscopic Onsager’s cross-coefficient defined in Eq. (72). nrun is the selected number of

simulation timesteps.

Test ku km Lum nrun

Dec-NE 2.0000 2.0000 0.0 1.5 × 106

C1-NE 1.5000 0.6072 −1.0 1.5 × 106

C2-NE 1.8000 0.4830 −1.5 1.5 × 106

C3-NE 0.5000 1.3929 1.0 1.5 × 106

C1b-NE 0.9000 0.1440 −1.0 1.5 × 106

C2b-NE 1.1000 0.0200 −1.5 1.5 × 106
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Figure 2: The x-profiles of the particle temperature (top),

and the number concentration (middle) and molar fraction

(bottom) of Cl2 for the CG equimolar Ar/Cl2 binary mixture at

an initial temperature T = 0.885 and systemnumber density c

= 0.5775, as obtained from the decoupled GenDPDE-M simu-

lation, Dec-NE, and coupled GenDPDE-M simulations C1-NE,

C2-NE and C3-NE. The circles represent simulation results,

while the solid lines represent linear regressions.
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estimator instead, the correct temperature profile would be obtained from the relation T(x) = ⟨1∕𝜃̃(x)⟩−1. In
addition, Figure 2 shows the average profiles for the number concentration, cB(x), and the molar fraction, xB(x),

of Cl2. Here, only the decoupled case Dec-NE and the coupled cases C1-NE, C2-NE and C3-NE have been consid-

ered. These profiles were obtained by dividing the x-domain between the hot and cold slabs into nine bins,

and calculating averages of the quantities of interest within each bin, after reaching steady state, at a fixed fre-

quency of fsamp = 25,000 timesteps, for a total of 41 snapshots. These instantaneous profiles were subsequently

further averaged to obtain the diagrams shown in Figure 2. From this figure, we can observe that the heat flux Jx ,

imposed on the system via the modified PeX algorithm, not only produces a temperature gradient between the

slabs, but also causes a concentration gradient to develop, in agreement with the experimental findings within

the context of the Ludwig–Soret effect [26]. Furthermore, notice that the heavier species Cl2 accumulates in the

cold region of the simulation box, as expected, even for case Dec-NE. Although no dynamic coupling between

mass and energy is present at themesoscopic level, the observedmaterial gradient for this decoupled case is due

to the dependence of the particle exchange chemical potential on the space-dependent temperature, plus addi-

tional contributions due to the thermal motion of the mesoparticles. As such, the observed thermodiffusion has

a purely thermodynamic origin. However, when the dynamic coupling between energy and matter is included

in the model, as in cases C1-NE, C2-NE, and C3-NE, such a composition gradient is modified by the interspecific

friction [27], gathered in the value of the cross-coefficient Lum.

In Figure 3 we analyze the results of the aforementioned pairs of analogous cases, namely C1-NE and C1b-

NE, as well as C2-NE and C2b-NE. The temperature, concentration andmolar fraction profiles observed for cases

C1b-NE and C2b-NE are practically indiscernable when compared to tests C1-NE and C2-NE, respectively: this

result proves that the overall macroscopic behavior of our model is indeed insensitive to the specific values of

the coupling constants ku and km, and depends only on the parameters 𝜅 and Ð and on the coupling coefficient

Lum.

From the profiles T(x) and xB(x), we evaluated the corresponding gradients, dT∕dx and dxB∕dx, using linear
regressions, and computed the thermal conductivity,𝜆, as well as the Soret coefficient, s

Cl2
T
, as defined by Eqs. (98)

and (99). Themeasured values of 𝜆 and s
Cl2
T
, together with the heat flux density, Jx , and the gradients dT∕dx, and

dxB∕dx, are provided in Table 3.We can see that the value of𝜆decreaseswith an increase in the absolute strength

of the energy and mass coupling, as is to be expected, since from Eqs. (34) and (35) one could estimate that

𝜆 = Jx∕|∇T| ≃ (𝜅 − (Lum)2∕ −D)∕T2 + kinetic contributions [30]. As far as the Ludwig–Soret effect is concerned,

the value of s
Cl2
T

decreases upon increasing the mesoscopic cross-coefficient Lum. However, this should not be

considered as a general trend, but as a result of the particular model we are considering, in which the dynamic

coupling counters the thermodynamic effect caused by the temperature gradient when Lum > 0.

We observe that the measured errors in the determination of both 𝜆 and s
Cl2
T
, shown in Table 3, apprecia-

bly depend on the chosen values of ku and km for the cases considered in Figure 3. A complete analysis of the

influence of the coupling constants on the system properties will be addressed elsewhere.

4.3 Scale-dependence of the mesoscopic model

To conclude this section, we briefly consider the analysis of the system properties as a function of the degree

of CGing,Φ. Although this issue will be examined more thoroughly elsewhere, let us introduce here a minimal
model, satisfying the GenDPDE-M dynamics discussed in this manuscript, in which the scale factor Φ = 1 and

its number of mesoparticles N0 is of the order of the total number of physical particles in the system, 0. More-

over, for theminimal model we have arbitrarily chosen a cutoff distance R0
cut

= 3. Next, under the CGing process

considered here, we group together Φ > 1 particles into one coarser mesoparticle, so that the new number

of mesoparticles is given by N = N0∕Φ. However, we impose that the intensive variables, P, T and 𝜇𝛼 should

remain invariant under this process. In addition, we also keep the total energy U and volume V unchanged,

which implies that the system Helmholtz free energy F should remain invariant under this type of transforma-

tion. Notice that, in this decimation process, c ≡ N0∕V = ΦN∕V is constant, by construction. Next, as a simple

example, let us take the pressure of the system as approximately given by its mean field expression [13]
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Figure 3: The x-profiles of the particle temperature (top),

and the number concentration (middle) and molar fraction

(bottom) of Cl2 for the CG equimolar Ar/Cl2 binary mixture at

an initial temperature T = 0.885 and system number density

c = 0.577, as obtained from the coupled GenDPDE-M sim-

ulations C1-NE and C2-NE and their analogous C1b-NE and

C2b-NE. The circles represent simulation results, while the

solid lines represent linear regressions. The results referring

to identical sets of mesoscopic dynamic coefficients are in

excellent agreement.
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Table 3: Values of the thermal conductivity, 𝜆, and the Soret coefficient for Cl2, s
Cl2
T
, together with the heat flux density, Jx , the average

temperature gradient, dT/dx, and the average molar fraction gradient of Cl2, dx
Cl2∕dx, as obtained from non-equilibrium GenDPDE-M

simulations.

Test Jx × 103 (dT/dx)× 103
(
dxCl2∕dx

)
× 103 𝝀 s

Cl2
T

Dec-NE 6.46 −2.54± 0.05 1.67± 0.03 2.55± 0.05 2.64± 0.07

C1-NE 6.46 −2.89± 0.09 2.12± 0.04 2.23± 0.07 2.94± 0.10

C2-NE 6.46 −3.60± 0.10 2.84± 0.05 1.80± 0.05 3.15± 0.10

C3-NE 6.46 −3.12± 0.10 1.77± 0.06 2.07± 0.07 2.27± 0.11

C1b-NE 6.46 −2.95± 0.06 2.21± 0.02 2.19± 0.05 2.99± 0.07

C2b-NE 6.46 −3.47± 0.07 2.80± 0.06 1.86± 0.04 3.22± 0.10

P = kBTn+ 𝜋𝜁 (Φ) = kBT
c

Φ + 𝜋 𝜁 (Φ) (100)

where 𝜁 (Φ) is proportional to the integration of the product of the weight function𝑤with the pair distribution

function g over the cutoff radius Rcut, 𝜁 = ∫ dr𝑤(r)g(r). This parameter measures the local inhomogeneities in

the particle distribution due to the presence of the interparticle pair potential interaction at the present degree

of CGing. Hence, from Eq. (83), we can write Eq. (100) as

P = kBT
c

Φ (1− 𝜁 (Φ))+ 𝜋EoS(T, c) 𝜁 (Φ) (101)

In addition, we consider that Rcut(Φ) = Φ1∕3R0
cut

to maintain the same number of neighbors within the

interaction range, independently ofΦ. It is important to realize that 𝜋EoS is invariant under this type of transfor-

mation, as it depends only on c, according to Eqs. (83)–(85), and the fact that n = c∕Φ. We can thus conclude that

Eq. (101) depends on the degree of CGing, and the invariance of P under the decimation transformation depends

on how far 𝜁 (Φ) deviates from 1. The effect of such deviations at a given degree of CGing can be absorbed into

the renormalization of the parameters of the model. Unfortunately, this analysis requires a separate treatment

as 𝜁 (Φ) is a complex quantity that depends on the overall behavior of the system, notably on 𝜋EoS itself as well

as on the thermodynamic conditions of the system.

To numerically illustrate these facts, we have conducted simulations at different degrees of CGing. Figure 4

shows the variation of the system pressure P and the internal energy per particle u = U∕N0 as a function ofΦ

Figure 4: The system internal energy per physical particle (top) and the system pressure (bottom) as functions of the level of CGing, for

an equimolar Ar/Cl2 mixture at an initial temperature T = 0.885 and system number density c = 0.5775. The thermodynamic u= 0.56,

and the thermodynamic P = 1.44.
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for an equimolar Ar/Cl2 mixture at a temperature T = 0.885 and number density c = 0.5775, as obtained from

GenDPDE-M simulations. The figure also illustrates the effect of the number of neighbors, which depends on the

chosen value of the cutoff radius. In our analysis, two different nominal cutoff radii were used, namely, R0
cut

= 3

and 5. It can be observed that the scale invariance is attained if we increase the number of CG particles, but

also if we increase the number of neighbors. The latter is an effect of the density-dependent potentials, as the

fluctuations in the particle density Δn within Rcut decrease as Δn ∼
√
n∕R3

cut
. Therefore, the scale-invariant

mean field behavior observed at a higher degree of CGing and with a larger number of neighbors, is lost at a

lower degree of CGing, which should be properly accounted for in the interparticle potential.

5 Conclusions

The Generalized Energy-Conserving Dissipative Particle Dynamics with Mass Transfer method (GenDPDE-M)

was introduced in Refs. [24], [25] as an extension of the GenDPDE algorithm to simulate mesoparticles with

variable composition. These original publications, being a proof of concept, only dealt with the particular case

in which energy and mass transport between particles were dynamically decoupled. In real systems, however,

it is well known that the energy fluxes entrain mass transport, and vice versa, leading to the Ludwig–Soret

and Dufour effects [26]. In this article, we have developed the theoretical framework required to describe such

coupled energy and material transport at the mesoscale. With this addition, GenDPDE-M can simulate general

complex physicochemical scenarios in which the simultaneous transport of energy andmatter takes place at the

mesoscale; the method is therefore complete.

The extension presented in this article is formulated through the introduction of novel forms for the heat

and diffusive fluxes between the mesoparticles. Here, these fluxes depend on both temperature and chemical

potential differences, followingOnsager’s formulation of non-equilibrium thermodynamics. Since theGenDPDE-

M method is formulated as Langevin-like equations, with random contributions simulating the effect of the

hydrodynamic fluctuations [3], expressions for the amplitudes of these random terms need to be derived. Start-

ing from Detailed Balance as the physical link between the mesoscopic model and the underlying physical

system, we obtained the necessary Fluctuation-Dissipation theorems providing these amplitudes as functions

of particle state variables, such as temperature, and also on the dynamic coefficients, which include the cou-

pling. Interestingly, Detailed Balance is sufficient to also demonstrate that Onsager’s reciprocal relations are

valid at the mesoscale.

The consistency of the algorithm is demonstrated by showing that the simulated dynamics effectively sam-

ples the equilibrium probability distributions indicated in Eq. (67). We have checked that the distributions are

independent of the values of the mesoscopic transport coefficients as well as the dynamic coupling between

energy andmass. For completeness, a non-equilibrium simulation scheme, analogous to the setup of a real exper-

iment, was conceivedwith the aim of reproducing the Ludwig–Soret effect for a specific two-component system.

The mesoscopic thermodynamic model employed was the van der Waals one-fluid model describing an Ar/Cl2
mixture. It is shown that GenDPDE-M not only properly reproduces this phenomenon, but crucially also allows

us to control the strength of the Ludwig–Soret effect through the appropriate choice of themesoscopic Onsager’s

cross-coefficient Lum
i j
, coupling energy and material fluxes between particles i and j.

The framework developed in this article aims at the simulation of multicomponent systems, includingmov-

ing interfaces, which are particularly relevant in areas such as chemical engineering, heat transport, materials

engineering, among many others. The most natural step forward is to extend the algorithm to include chemical

reactions within the mesoparticles, coupled to energy and matter transport, which will permit the simulation

of reactive systems with moving interfaces, e.g., detonation and combustion, interfacial growth, among many

other situations inwhich complex fluid processesmay take place. Such an extensionwill be done elsewhere. Fur-

thermore, the use of more complex EoS for the particle thermodynamic description, such as the Lennard–Jones

[31], [39], Exponential-6 [40]–[42] or Statistical Associated Fluid Theory [43] EoS, enables the application of the

method to a panoply of different materials and processes.
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Appendix A: Alternative formulation of the heat and diffusive

fluxes

With the purpose of exploring the possible definition of alternative expressions for the heat and diffusive fluxes,

defined in Eqs. (34) and (35), let us introduce the following definitions:

1


≡
1

2

(
1

𝜃̃i
+ 1

𝜃̃ j

)
(A1)

 ≡
1

2

(
̄̃𝜇i + ̄̃𝜇 j

)
(A2)

Δ 1

𝜃̃
≡
1

2

(
1

𝜃̃i
− 1

𝜃̃ j

)
(A3)

Δ ̄̃𝜇 ≡
1

2

(
̄̃𝜇i − ̄̃𝜇 j

)
(A4)

In view of these equations, the condition ̇̃ < 0 in Eq. (31) can be rewritten as{
T
(
−2Δ 1

𝜃̃

)
q̇i j + T

[(
+Δ ̄̃𝜇

)( 1


+Δ 1

𝜃̃

)
−

(
−Δ ̄̃𝜇

)( 1


−Δ 1

𝜃̃

)]
JA
i j

}
< 0 (A5)

After some algebra, Eq. (A5) becomes[
−2Δ 1

𝜃̃
q̇i j +

(
2Δ 1

𝜃̃
+ 2

1


Δ ̄̃𝜇

)
JA
i j

]
< 0 (A6)

We recall that the bare chemical potential is a function of the bare temperature, according to Eqs. (94) and

(95). Hence, the quantities and Δ ̄̃𝜇 are functions of the particle bare temperature as well and, therefore, an

expansion around the central temperature  can be invoked. It is thus possible to express the term in Eq. (A6)

as
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≃| + 1

2

⎡⎢⎢⎣
𝜕 ̄̃𝜇i

𝜕
1

𝜃̃i

|||||| Δ
1

𝜃̃
−
𝜕 ̄̃𝜇 j

𝜕
1

𝜃̃ j

|||||||
Δ 1

𝜃̃

⎤⎥⎥⎦+ (Δ)2

≃| −  2 1

2

(
𝜕 ̄̃𝜇i

𝜕𝜃̃i

||||| −
𝜕 ̄̃𝜇 j

𝜕𝜃̃ j

|||||
)
Δ 1

𝜃̃
+ 

(
Δ 1

𝜃̃

)2
≃| + (Δ)2

(A7)

where(Δ)2 here represents general second order differences in particle properties. Here, the subscript  indi-

cates that the function should be evaluated at  rather than at the actual particle bare temperature 𝜃̃. Moreover,

the term 2Δ ̄̃𝜇 in Eq. (A6) can be written as,

2Δ ̄̃𝜇 = ̄̃𝜇i

(
1

𝜃̃i

)
− ̄̃𝜇 j

(
1

𝜃̃ j

)

=
[
̄̃𝜇i

(
1



)
− ̄̃𝜇 j

(
1



)]
+

[
̄̃𝜇i

(
1

𝜃̃i

)
− ̄̃𝜇i

(
1



)
− ̄̃𝜇 j

(
1

𝜃̃ j

)
+ ̄̃𝜇 j

(
1



)]

≃ 2Δ ̄̃𝜇|| +
⎛⎜⎜⎝
𝜕 ̄̃𝜇i

𝜕
1

𝜃̃i

|||||| Δ
1

𝜃̃
+
𝜕 ̄̃𝜇 j

𝜕
1

𝜃̃ j

|||||||
Δ 1

𝜃̃

⎞⎟⎟⎠
= 2Δ ̄̃𝜇|| −  2

(
𝜕 ̄̃𝜇i

𝜕𝜃̃i

||||| +
𝜕 ̄̃𝜇 j

𝜕𝜃̃ j

|||||
)
Δ 1

𝜃̃
+ 

(
Δ 1

𝜃

)2
(A8)

According to our formulation of the particle dynamics, the mass and energy transfer occur at constant

local density, as the kinematic move takes place separately from thermodynamic property exchange moves.

Hence, we must consider that the transfer occurs at constant volume (or local density n). Therefore, rather than

proceeding by introducing 𝜕𝜇∕𝜕𝜃|𝜋 = −s, as is usually done,we have instead 𝜕𝜇∕𝜕𝜃|n = −s− (n∕𝜅T )𝜕𝜇∕𝜕𝜋|𝜃 ,
as the processes are not at constant pressure.

At this point, it is rather obvious that the analogy with the macroscopic definition of the measurable heat

flux cannot be continued further. From one perspective, the expansion of the thermodynamic properties around

the central temperature precludes the possibility of having large particle temperature differences, which may

be present in some situations of interest for the application of our model. Notice that, even in equilibrium, the

temperature differences between particles are of the order of Δ(1∕𝜃) ∼ (
√
kB∕CV )∕T , which may be not negli-

gible if the particle heat capacity CV ∼ kB. From another perspective, even if the linearization approximation

holds, the function | , defined as,
| ≡ − 1

2

(
𝜕 ̄̃𝜇i

𝜕𝜃̃i

||||| +
𝜕 ̄̃𝜇 j

𝜕𝜃̃ j

|||||
)

≠
1

2

(
s̃i
|| + s̃ j

|||
)

(A9)

cannot be related to the particle entropies, as
𝜕 ̄̃𝜇i

𝜕𝜃̃i

||| ≠ s̃i
|| . For the sake of completeness, let us introduce | , as

defined in Eqs. (A9), into (A6). Therefore, the condition ̇̃ < 0 becomes,[
−2Δ 1

𝜃̃
q̇i j +

(
2| Δ 1

𝜃̃
+ 2

1


Δ ̄̃𝜇|| + 2 | Δ 1

𝜃̃

)
JA
i j

]
< 0 (A10)

where again we have retained terms up to the first order only. Further, manipulating Eq. (A10) by introducing

| ≡| +  | (A11)

we can write, [
−2Δ 1

𝜃̃
q̇i j +

(
2| Δ 1

𝜃̃
+ 2

1


Δ ̄̃𝜇|| + 2 | Δ 1

𝜃̃

)
JA
i j

]

=
[
−2Δ 1

𝜃̃
q̇i j +

(
2
(
| +  | )Δ 1

𝜃̃
+ 2

1


Δ ̄̃𝜇|| ) JAi j]
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=
[
−2Δ 1

𝜃̃
q̇i j +

(
2| Δ 1

𝜃̃
+ 2

1


Δ ̄̃𝜇|| ) JAi j]

=
[
−2

(
q̇i j −| JAi j)Δ 1

𝜃̃
+ 2

1


Δ ̄̃𝜇|| JAi j]

=
[
−2q̇′

i j
Δ 1

𝜃̃
+ 2

1


Δ ̄̃𝜇|| JAi j] < 0 (A12)

where we have defined what would be the analogous expression of the measurable heat flux at the mesoscale,

i.e.,

q̇′
i j
≡ q̇i j −| JAi j (A13)

Although we show that, under specific thermodynamic conditions the measurable heat flux can be defined,

we stress that the quantity  cannot be interpreted as any given form of particle entropy, in view of Eq. (A9). As

a consequence, cannot be calculated in terms of particle enthalpies, which are forcibly defined as h = 𝜇 + 𝜃s,

either. All in all, using this transformation at the mesoscopic level results in the loss of any intuitive benefit.

Appendix B: Fluctuation-Dissipation theorem

The relation between the matrices containing the mesoscopic transport coefficients, Lij, and the amplitudes of

the random terms, 𝝈ij, as defined in Eq. (48) follows from the evaluation of the second moment of the system

distribution [11], [12] and use of DB. We remind the reader that the validity of DB is only based on the form

of the Hamiltonian of the underlying microscopic physical system, together with the time-reversibility of the

trajectories of the latter [44]. Therefore, as GenDPDE-M aims at simulating physical systems, the assumption of

DB is the most basic assumption that connects its structure to the physical nature of the processes of the system.

Thus, the second moment of the fluctuating mesoscopic state vector xi, defined in Eq. (47) is given by

⟨xixTi ⟩ = ∫
dΓ̃dΓ̃′Peq(Γ̃)x′ix

′T
i
W(Γ̃→ Γ̃′)𝛿t (B1)

whereW(Γ̃→ Γ̃′) represents the transition probability per unit time with the property

∫
dΓ̃′W(Γ̃→ Γ̃′)𝛿t = 1 (B2)

due to causality. Here, Γ̃ represents the full state of themesoparticles, i.e., Γ̃ ≡ (x1,x2,… ,xN ). The tilde indicates

that we are using bare variables to define the state of the system. By construction, the random terms are not

correlatedwith any other variables at the same instant of time. Then, using the compact EoM Eq. (46) to evaluate

x′
i
x′T
i
and retaining terms up to order O (𝛿t) only, we obtain

x
′
i
x
′T
i
= xix

T
i
+ xi(Li j ⋅ Yi j)

T𝛿t + (Li j ⋅ Yi j)x
T
i
𝛿t + (𝝈i j ⋅𝛀i j)(𝝈i j ⋅𝛀i j)

T𝛿t

Here, we have only considered a given pair of mesoparticles i and j as the FD theorem has to be satisfied by

any given number of pairs, which ultimately implies it should be satisfied individually for every pair. In view of

this, we have restricted our demonstration to a given pair for simplicity of notation and clarity, but with no loss

of generality. Hence,

⟨xixTi ⟩ = ∫
dΓ̃Peq(Γ̃)

[
xix

T
i
+ xi(Li j ⋅ Yi j)

T𝛿t+ (Li j ⋅ Yi j)x
T
i
𝛿t + ⟨(𝝈i j ⋅𝛀i j)(𝝈i j ⋅𝛀i j)

T⟩𝛀𝛿t] (B3)

Note that the first term on the right-hand side of Eq. (B3) is exactly ⟨xixTi ⟩, which cancels the left-hand side.
Then, using the properties of the transposed matrix, we get

0 =
∫

dΓ̃Peq(Γ̃)
{[
(Li j ⋅ Yi j)x

T
i

]T + (Li j ⋅ Yi j)x
T
i
+ ⟨(𝝈i j ⋅𝛀i j)(𝝈i j ⋅𝛀i j)

T⟩𝛀} (B4)
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Next, let us focus on individual terms on the right-hand side of Eq. (B4) separately. We start with rewriting

the second term as

∫
dΓ̃Peq(Γ̃)(Li j ⋅ Yi j)xTi

=
∫

dΓ̃Li j
(
Peq(Γ̃)Yi jxTi

)

=
∫

dΓ̃Li j
[
kB

(
𝜕Peq

𝜕xi
−

𝜕Peq

𝜕x j

)
x
T
i

]

= −
∫

dΓ̃Peq(Γ̃)kBLi j (B5)

where partial integration and independence ofLij from ui andm
A
i
(the EoMEq. (46) are linear in Onsager’s sense)

have been used to arrive to the last equality. The first term is simply the transpose of the second term, i.e.,

∫
dΓ̃Peq(Γ̃)

[
(Li j ⋅ Yi j)x

T
i

]T = −
∫

dΓ̃Peq(Γ̃)kBLTi j (B6)

Finally, the third term can be rewritten as

∫
dΓ̃Peq(Γ̃)⟨(𝝈i j ⋅𝛀i j)(𝝈i j ⋅𝛀i j)

T⟩𝛀
=

∫
dΓ̃Peq(Γ̃)⟨(𝝈i j ⋅𝛀i j)

(
𝛀T

i j
𝝈
T
i j

)⟩𝛀
=

∫
dΓ̃Peq(Γ̃)𝝈i j⟨𝛀i j𝛀T

i j
⟩𝛀𝝈T

i j

=
∫

dΓ̃Peq(Γ̃)𝝈i j ⋅ 𝝈
T
i j

(B7)

where use has beenmade of the properties of the normalized random numbers, Eqs. (43) and (44), together with

Eq. (47). Inserting Eqs. (B5)–(B7) into (B4), we get

0 =
∫

dΓ̃Peq(Γ̃)
[
−kB

(
Li j + L

T
i j

)
+ 𝝈i j ⋅ 𝝈

T
i j

]
(B8)

As we demand that the dynamic coefficients of the model be independent of the reservoir characteristics

contained in Peq(Γ̃), to satisfy Eq. (B8) we further impose that

𝝈i j ⋅ 𝝈
T
i j
= kB

(
Li j + L

T
i j

)
(B9)

Equation (B9) represents the general FD theorem relating the mesoscopic transport coefficients to the

amplitudes of the thermal fluctuations.

Appendix C: Onsager’s reciprocal relations

Demonstration of Onsager’s reciprocal relations for the mesoscopic transport coefficients follows from the

evaluation of the autocorrelation of the state vectors at different times, i.e.,

⟨xix′Ti ⟩ =
∫

dΓ̃dΓ̃′Peq(Γ̃)W(Γ̃→ Γ̃′)𝛿t xix
′T
i

(C1)
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Using the compact form of the EoM Eq. (46), together with the property of the transition probability Eq. (B2)

and the fact that the random terms are not correlated to other state variables at the same instant of time, we

can rewrite Eq. (C1) as

⟨xix′Ti ⟩ =
∫

dΓ̃Peq(Γ̃)
[
xix

T
i
+ xi(Li j ⋅ Yi j)

T𝛿t
]

(C2)

Analogously to Appendix B, in this demonstration we only consider a pair of mesoparticles, namely i and j,

as the validity of ORR should be independent of the number of pairs. Next, using DB [44],

Peq(Γ̃)W(Γ̃→ Γ̃′)𝛿t = Peq(Γ̃∗)W(Γ̃∗ → Γ̃∗′)𝛿t

it follows that

⟨xix′Ti ⟩ =
∫

dΓ̃dΓ̃′Peq(Γ̃)W(Γ̃→ Γ̃′) 𝛿t xix
′T
i

=
∫

dΓ̃dΓ̃′Peq(Γ̃∗)W(Γ̃∗ → Γ̃∗′)𝛿t xix
′T
i

=
∫

dΓ̃∗dΓ̃∗′Peq(Γ̃∗)W(Γ̃∗ → Γ̃∗′) 𝛿t x∗′
i
x
∗T
i

= ⟨x′
i
x
T
i
⟩

where ⟨x′
i
x
T
i
⟩ =

∫
dΓ̃Peq(Γ̃)

[
xix

T
i
+ (Li j ⋅ Yi j)x

T
i
𝛿t
]

(C3)

Equating the right-hand sides of Eqs. (C2) and (C3), and using the properties of the transposed matrix, we

get

∫
dΓ̃Peq(Γ̃)

[
(Li j ⋅ Yi j)x

T
i

]T =
∫

dΓ̃Peq(Γ̃)(Li j ⋅ Yi j)xTi (C4)

The above integrals were already solved in Eqs. (B5) and (B6). Invoking again the independence of Lij from

the reservoir properties, Eq. (C4) is satisfied if we further demand that

Li j = L
T
i j

(C5)

Therefore, we conclude that, for a binary mixture, the condition Lum
i j

= Lmu
i j

corresponds to the sought ORR

for the system at the mesoscopic level and for every pair of particles.

References

[1] P. J. Hoogerbrugge and J. M. V. A. Koelman, “Simulating microscopic hydrodynamic phenomena with dissipative particle

dynamics,” Europhys. Lett., vol. 19, no. 3, pp. 155−160, 1992..
[2] J.-P. Hansen and I. R. McDonald, Theory of Simple Liquids, Oxford, Elsevier, 2006.

[3] L. D. Landau and E. M. Lifshitz, Fluid Mechanics. Landau and Lifshitz: Course of Theoretical Physics, vol. 6, 2nd ed Oxford, Pergamon,

1987.

[4] P. Español and P. B. Warren, “Statistical mechanics of dissipative particle dynamics,” Europhys. Lett., vol. 30, no. 4, pp. 191−196,
1995..

[5] J. B. Avalos and A. D. Mackie, “Dissipative particle dynamics with energy conservation,” Europhys. Lett., vol. 40, no. 2, pp. 141−146,
1997..

[6] P. Español, “Dissipative particle dynamics with energy conservation,” Europhys. Lett., vol. 40, no. 6, pp. 631−636, 1997..
[7] R. Qiao and P. He, “Simulation of heat conduction in nanocomposite using energy-conserving dissipative particle dynamics,” Mol.

Simul., vol. 33, no. 8, pp. 677−683, 2007..
[8] G. C. Ganzenmüller, S. Hiermaier, and M. O. Steinhauser, “Shock-wave induced damage in lipid bilayers: a dissipative particle

dynamics simulation study,” Soft Matter, vol. 7, no. 9, pp. 4307−4317, 2011..
[9] Z. Li, Y.-H. Tang, X. Li, and G. E. Karniadakis, “Mesoscale modeling of phase transition dynamics of thermoresponsive polymers,”

Chem. Commun., vol. 51, no. 55, pp. 11038−11040, 2015..



374 — G. Colella et al.: GenDPDE-M: coupled energy and mass transport

[10] E. O. Johansson, T. Yamada, B. Sundén, and J. Yuan, “Modeling mesoscopic solidification using dissipative particle dynamics,” Int. J.

Therm. Sci., vol. 101, pp. 207−216, 2016,.
[11] J. Bonet Avalos, M. Lísal, J. P. Larentzos, A. D. Mackie, and J. K. Brennan, “Generalised dissipative particle dynamics with energy

conservation: density- and temperature-dependent potentials,” Phys. Chem. Chem. Phys., vol. 21, no. 45, pp. 24891−24911, 2019..
[12] J. Bonet Avalos, M. Lísal, J. P. Larentzos, A. D. Mackie, and J. K. Brennan, “Generalised dissipative particle dynamics with energy

conservation revisited: insight from the thermodynamics of the mesoparticle leading to an alternative heat flow model,” Phys. Rev.

E, vol. 103, no. 6, p. 062128, 2021..

[13] I. Pagonabarraga and D. Frenkel, “Dissipative particle dynamics for interacting systems,” J. Chem. Phys., vol. 115, no. 11, pp.

5015−5026, 2001..
[14] P. B. Warren, “Vapor-liquid coexistence in many-body dissipative particle dynamics,” Phys. Rev. E, vol. 68, no. 6, p. 066702, 2003..

[15] E. Moeendarbary, T. Y. Ng, and M. Zangeneh, “Dissipative particle dynamics: introduction, methodology and complex fluid

applications − a review,” Int. J. Appl. Mech., vol. 1, no. 4, pp. 737−763, 2009..
[16] J. K. Brennan, M. Lísal, J. D. Moore, S. Izvekov, I. V. Schweigert, and J. P. Larentzos, “Coarse-grain model simulations of

nonequilibrium dynamics in heterogeneous materials,” J. Phys. Chem. Lett., vol. 5, no. 12, pp. 2144−2149, 2014..
[17] J. D. Moore, et al, “A coarse-grain force field for RDX: density dependent and energy conserving,” J. Chem. Phys., vol. 144, no. 10, p.

104501, 2016..

[18] P. Español and P. B. Warren, “Perspective: dissipative particle dynamics,” J. Chem. Phys., vol. 146, no. 15, p. 150901, 2017..

[19] J. P. Larentzos, J. M. Mansell, M. Lísal, and J. K. Brennan, “Coarse-grain modelling using an equation-of-state many-body potential:

application to fluid mixtures at high temperature and high pressure,” Mol. Phys., vol. 116, no. 21−22, pp. 3271−3282, 2018..
[20] K. P. Santo and A. V. Neimark, “Dissipative particle dynamics simulations in colloid and interface science: a review,” Adv. Colloid

Interface Sci., vol. 298, p. 102545, 2021,.

[21] Z. Li, Y.-H. Tang, H. Lei, B. Caswell, and G. E. Karniadakis, “Energy-conserving dissipative particle dynamics with

temperature-dependent properties,” J. Comput. Phys., vol. 265, pp. 113−127, 2014,.
[22] M. Lísal, J. P. Larentzos, J. B. Avalos, A. D. Mackie, and J. K. Brennan, “Generalized energy-conserving dissipative particle dynamics

with reactions,” J. Chem. Theory Comput., vol. 18, no. 4, pp. 2503−2512, 2022..
[23] B. H. Lee, M. N. Sakano, J. P. Larentzos, J. K. Brennan, and A. Strachan, “A coarse-grain reactive model of RDX: molecular resolution

at the 𝜇m scale,” J. Chem. Phys., vol. 158, no. 2, p. 024702, 2023..

[24] J. B. Avalos, M. Lísal, J. P. Larentzos, A. D. Mackie, and J. K. Brennan, “Generalized energy-conserving dissipative particle dynamics

with mass transfer. Part 1: theoretical foundation and algorithm,” J. Chem. Theory Comput., vol. 18, no. 12, pp. 7639−7652, 2022..
[25] M. Lísal, J. B. Avalos, J. P. Larentzos, A. D. Mackie, and J. K. Brennan, “Generalized energy-conserving dissipative particle dynamics

with mass transfer. Part 2: applications and demonstrations,” J. Chem. Theory Comput., vol. 18, no. 12, pp. 7653−7670, 2022..
[26] S. R. de Groot and P. Mazur, Non-Equilibrium Thermodynamics, New York, Dover Publications, INC., 1984.

[27] R. Taylor and R. Krishna, Multicomponent Mass Transfer, New York, Wiley, 1993.

[28] L. Onsager and S. Machlup, “Fluctuations and irreversible processes,” Phys. Rev., vol. 91, no. 6, pp. 1505−1512, 1953..
[29] H. B. Callen, Thermodynamics and an Introduction to Thermostatistics, New York, John Wiley & Sons, 1985.

[30] J. Armstrong and F. Bresme, “Thermal conductivity of highly asymmetric binary mixtures: how important are heat/mass coupling

effects?,” Phys. Chem. Chem. Phys., vol. 16, no. 24, pp. 12307−12316, 2014..
[31] J. K. Johnson, J. A. Zollweg, and K. E. Gubbins, “The Lennard-Jones equation of state revisited,” Mol. Phys., vol. 78, no. 3,

pp. 591−618, 1993..
[32] J. R. Elliott and T. C. Lira, Introductory Chemical Engineering Thermodynamics, New York, Prentice Hall, 2012.

[33] T. Y. Kwak and G. A. Mansoori, “Van der Waals mixing rules for cubic equations of state. applications for supercritical fluid

extraction modelling,” Chem. Eng. Sci., vol. 41, no. 5, pp. 1303−1309, 1986..
[34] M. Lísal, J. K. Brennan, and J. B. Avalos, “Dissipative particle dynamics at isothermal, isobaric, isoenergetic, and isoenthalpic

conditions using Shardlow-like splitting algorithms,” J. Chem. Phys., vol. 135, no. 20, p. 204105, 2011..

[35] J. P. Larentzos, J. K. Brennan, J. D. Moore, M. Lísal, and W. D. Mattson, “Parallel implementation of isothermal and isoenergetic

dissipative particle dynamics using Shardlow-like splitting algorithms,” Comput. Phys. Commun., vol. 185, no. 7, pp. 1987−1998,
2014..

[36] L. B. Lucy, “A numerical approach to the testing of the fission hypothesis,” Astron. J., vol. 82, pp. 1013−1024, 1977,.
[37] F. Müller-Plathe and P. Bordat, “Reverse non-equilibrium molecular dynamics,” Lect. Notes Phys., vol. 640, pp. 310−326, 2004,.
[38] C. Nieto-Draghi and J. B. Avalos, “Non-equilibriummomentum exchange algorithm for molecular dynamics simulation of heat flow

in multicomponent systems,” Mol. Phys., vol. 101, no. 14, pp. 2303−2307, 2003..
[39] J. Kolafa and I. Nezbeda, “The Lennard-Jones fluid: an accurate analytic and theoretically-based equation of state,” Fluid Phase

Equil., vol. 100, pp. 1−34, 1994,.
[40] H. Vörtler, I. Nezbeda, and M. Lísal, “The exp-6 potential fluid at very high pressures: computer simulations and theory,”Mol. Phys.,

vol. 92, no. 5, pp. 813−824, 1997..
[41] M. Lísal, W. R. Smith, and I. Nezbeda, “Computer simulation of the thermodynamic properties of high-temperature

chemically-reacting plasmas,” J. Chem. Phys., vol. 113, no. 12, pp. 4885−4895, 2000..



G. Colella et al.: GenDPDE-M: coupled energy and mass transport — 375

[42] J.-X. Sun, Q. Wu, L. Cai, and F. Jing, “Analytic equation of state for exponential-six fluid based on the ross variational perturbation

theory and the Percus−Yevick radial distribution function of hard spheres,” Chem. Phys. Lett., vol. 449, no. 1, pp. 72−76, 2007..
[43] W. G. Chapman, K. E. Gubbins, G. Jackson, and M. Radosz, “New reference equation of state for associating liquids,” Ind. Eng. Chem.

Res., vol. 29, no. 8, pp. 1709−1721, 1990..
[44] N. G. van Kampen, Stochastic Processes in Physics and Chemistry, Amsterdam, North Holland, 1992.


	1 Introduction
	2 Theoretical framework
	2.1 Probability distribution and intensive variables
	2.2 Heat and diffusive fluxes
	2.3 Dynamics of energy and mass exchange of static mesoparticles
	2.4 The equations of motion
	2.5 Particle thermodynamic model
	2.5.1  Bare variables


	3 Computational details
	3.1 Simulations under temperature gradient

	4 Results
	4.1 Equilibrium simulations
	4.2 Non-equilibrium simulations
	4.3 Scale-dependence of the mesoscopic model

	5 Conclusions
	Appendix A:
	Appendix B:
	5  Onsagertnqx2019;s reciprocal relations


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 35
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1000
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.10000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /DEU <>
    /ENU ()
    /ENN ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName (ISO Coated v2 \(ECI\))
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 8.503940
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


