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Abstract: The complete description of energy and material transport within the Generalized energy-conserving
dissipative particle dynamics with mass transfer (GenDPDE-M) methodology is presented. In particular, the
dynamic coupling between mass and energy is incorporated into the GenDPDE-M, which was previously intro-
duced with dynamically decoupled fluxes (J. Bonet Avalos et al., J. Chem. Theory Comput., 18 (12): 7639-7652,
2022). From a theoretical perspective, we have derived the appropriate Fluctuation-Dissipation theorems along
with Onsager’s reciprocal relations, suitable for mesoscale models featuring this coupling. Equilibrium and non-
equilibrium simulations are performed to demonstrate the internal thermodynamic consistency of the method,
as well as the ability to capture the Ludwig-Soret effect, and tune its strength through the mesoscopic parame-
ters. In view of the completeness of the presented approach, GenDPDE-M is the most general Lagrangian method
to deal with complex fluids and systems at the mesoscale, where thermal agitation is relevant.

Keywords: dissipative particle dynamics; nonequilibrium thermodynamics; coupled energy-mass transfer; ther-
modiffusion

1 Introduction

The macroscopic behavior and properties of complex systems such as biological matter, composite materials or
complex fluids, depend on the dynamics of phenomena occurring at the micro- and mesoscale. For such systems,
the coupling between energy and mass transport is important for the understanding of several physicochemical
scenarios, ranging from molecular motors to heterogeneous catalysis, with many important applications, e.g.,
in most chemical engineering processes. While atomistic modeling and simulation is a valuable tool, the compu-
tational cost of its application to such complex systems, whose characteristic temporal and spatial breadths are
typically large compared to molecular dimensions, is often prohibitive. Coarse-grain (CG) modeling has become
a vital alternative in cases where atomistic approaches are limiting or impractical. Among the wide variety
of CG methods developed over the last decades, Dissipative Particle Dynamics (DPD) [1] has become a popular
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tool. Standard DPD is a Lagrangian, Galilean-invariant method whose dynamics conserves the total momen-
tum and number of particles. As a consequence, the associated fields satisfy the corresponding hydrodynamic
equations in the hydrodynamic limit [2], namely, Navier—Stokes and continuity equations [3]. In the standard
DPD approach, the total force acting on a CG particle takes into account conservative as well as dissipative forces.
The dissipation enters into the description through the CGing, due to the coupling between the resolved and CG
degrees of freedom. Wherever dissipation occurs, implicitly there is a random contribution due to the ther-
mal agitation of the non-resolved degrees of freedom [2]. In the DPD method, these contributions are added
in the form of Langevin-like random forces between particles, which still preserve the Galilean invariance of
the model. The dissipative friction force depends on both the positions and linearly on the velocity difference
between the particles, through a coefficient that determines the strength of the force. The random contribution,
on the other hand, is characterized by a Gaussian distribution and an amplitude that is related to the strength
of the friction force through the corresponding Fluctuation-Dissipation (FD) theorem. In standard DPD method,
the intensity of the random force depends on the system temperature T as a parameter [4]. Therefore, DPD is by
construction isothermal and as a consequence heat flow cannot be modeled. An extension of the original DPD
method was developed afterwards to include energy conservation, referred to as DPD with Energy Conserva-
tion (DPDE) [5], [6]. In DPDE, particles carry internal energy, stored into the CG degrees of freedom, and exhibit a
particle temperature involved in the interparticle heat exchange. Since their development, both DPD and DPDE
have been increasingly applied in different research areas [7]-[10]. Recently, the Generalized Energy-Conserving
DPD (GenDPDE) method [11], [12] has been proposed as a further extension of DPDE. The fundamental idea
behind GenDPDE is the introduction of a particle fluctuating thermodynamics, which allows for a consistent
definition of many-body forces that can depend on the particle temperature and particle density, unlike previous
many-body DPD models in which the forces depend only on the local density [13]-[20], or even parametri-
cally on the system temperature [21]. More specifically, within the GenDPDE framework the force exerted by
each mesoparticle can be related to its internal pressure, which depends on the particle volume and tem-
perature through a particle Equation of State (EoS). In this way, the GenDPDE method permits the definition
of temperature- and density-dependent forces, which are relevant for modeling non-equilibrium phenomena
occurring in systems undergoing, e.g., chemical reactions [22] or shock compressions [23].

The concept of a fluctuating particle thermodynamics readily allowed for an extension of the GenDPDE
framework to also include chemical composition into the description of the particle thermodynamic state. This
extension is referred to as GenDPDE-M [24], [25]. Analogous to the heat flux in GenDPDE, in the new framework
matter can be exchanged with neighboring mesoparticles through diffusive fluxes. However, GenDPDE-M in its
first formulation (see the aforementioned references) disregarded any dynamic coupling between energy and
material transport, which is in reality present in many relevant physical scenarios. Therefore, the introduc-
tion of the dynamic coupling between energy and mass fluxes presented in this work is a critical extension of
GenDPDE-M.

In this article, we develop the theoretical framework to account for the coupling between mass and energy
transport at the mesoscale. The outcome of our work is, therefore, a GenDPDE-M method that is complete and
allows general, complex cases, involving momentum, energy and material transports, to be addressed in a uni-
fied way. Thus, within the complete GenDPDE-M method, phenomena such as the Ludwig—Soret effect can be
properly modeled.

The manuscript is organized as follows. In Section 2, we review the theoretical framework based on the
definition of the heat and diffusive fluxes along the lines of classical Onsager’s non-equilibrium thermodynam-
ics [26], formulated at the mesoscale, where thermal agitation is relevant. We derive Langevin equations for the
coupled energy and mass transfers to account for the thermal fluctuations. We highlight the key role of Detailed
Balance (DB) in consistently formulating the fluctuating dynamics of complex CG systems. We show that DB
not only sets the amplitude of the random contributions through FD relations, but also imposes the validity
of Onsager’s reciprocal relations (ORR) at the mesoscopic level. We then introduce the van der Waals (vdW)
particle thermodynamic model as a case study, which is used in both equilibrium and non-equilibrium simula-
tions. In Section 3, we provide the computational details regarding our GenDPDE-M simulations. In Section 4, we
present data obtained from equilibrium and non-equilibrium simulations. From these simulations, we show the
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consistency of the fluctuating local thermodynamic description, when coupling between mass and energy
is present. Moreover, non-equilibrium simulations results are shown in which the dependency of the Lud-
wig—Soret effect on the strength of the mesoscopic coupling is discussed, along with the impact of the latter
on the thermal conductivity of the system. Finally, Section 5 provides conclusions and future outlooks regarding
GenDPDE-M.

2 Theoretical framework

In the general GenDPDE-M framework [24], [25], mesoparticles are regarded as property carriers whose state and
dynamics are ultimately inherited from an existing underlying physical system. The latter can be regarded as
being described by a classical Hamiltonian, with time-reversible trajectories, which ensures that an equilibrium
probability distribution function exists and that DB is satisfied. The mesoscopic state variables are then a collec-
tion of surviving variables resulting from the CG process. Due to the elimination of internal degrees of freedom
(non-surviving variables), the mesoscopic state variables can then be treated in a manner analogous to macro-
scopic Thermodynamics. For a simple multicomponent system, these surviving variables are the mesoparticle
mass, m;, position, r;, momentum, p;, internal energy, u;, number density, n; (representative of the mesoparti-
cle volume), and chemical composition. The dependence of the particle state on the chemical composition was
introduced in the formulation of GenDPDE-M to incorporate material exchange into the GenDPDE framework
[11], [12]. To describe composition, let us assume that the underlying physical system contains a number N of
different chemical species, each denoted by « and having a molecular mass m,. Due to the CG process, a given
number of these particles can be found within mesoparticle i at a given instant of time. This number is denoted
by J\/'l."’. These ./\/i" physical particles are thus embedded into mesoparticle i and hence contribute to its mass
withmf = J\/’i"‘rha. Therefore, the composition of mesoparticle i is specified by the set of aggregate masses of the
embedded species, i.e., by the set {m;" }Zszl

It is very important to realize that a given extensive property should be specified for each mesoparti-
cle, to characterize its size. Without loss of generality, we fix the total mesoparticle mass m; = Zf;’;lmf‘ as the
size characterization. This choice is compatible with the mesoparticle velocity being an estimator of the so-
called baricentric velocity [26], [27] (which is used in the Navier—Stokes equation and has a central role in fluid
mechanics), and has the added benefit of decoupling the mechanical dynamics of the system from the particle
composition. Therefore, the diffusive fluxes are defined as material fluxes relative to the baricentric motion of
the mesoparticles, so that not all of them are independent, since

Ny
dm; = 2 dmf =0 M

a=1
due to the constant mass constraint. Here, dml.“ represents an arbitrary variation of the mass of species . Thus, in
the GenDPDE-M framework, only Ny — 1 masses of the embedded species are treated as independent variables.
Other choices, such as fixing the total molar number, are also possible, in which case dV; = Zfszldjxfl."‘ = 0.How-
ever, it is well known that the physical dynamic processes related to advection and diffusion are independent of
these choices [26], [27].

In the following, we formulate heat and diffusive fluxes with coupling between them, which go beyond the
initial approach presented in Refs. [24], [25]. We start by introducing, in Section 2.1, the concept of the particle
fluctuating thermodynamics while the particles are kept at rest, for simplicity. We further outline the central
object of the mesoscale thermodynamic description, i.e., the probability distributions for the state variables. In
Section 2.2, we introduce the heat and diffusive fluxes, using Onsager’s formulation of non-equilibrium processes
at the mesoscopic level [26], [28], since particles at rest can still exchange energy and mass due to these fluxes.
We then provide explicit expressions for the general relations between the heat and diffusive fluxes with the
corresponding thermodynamic forces, together with the associated random contributions, in Section 2.3. Finally,
we derive the complete Equations-of-Motion (EoM) for the system of moving particles, which exchange energy
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and matter (Section 2.4). For completeness, in Section 2.5 we provide an example of a thermodynamic model for
the mesoparticles, which is used in the simulations.

2.1 Probability distribution and intensive variables

For simplicity and clarity, but without loss of generality, let us consider mesoparticles with their positions
fixed in space. Moreover, we restrain the discussion to binary mixtures (N, = 2). Although the generalization
to multicomponent systems is straightforward, it requires quite a lengthy algebraic treatment [27].

The state of a static mesoparticle is defined by specifying its energetic content u; and the mass of the A-
component m;\. Here, we can ignore the density n; as a state variable, since the latter enters the thermodynamic
description only parametrically for static particles, along with the constant particle mass m;. Due to the mass
constraint Eq. (1), the amount of the second component B is simply given by

m=m;—m}>0 )

Following the analysis in Refs. [11], [12], the canonical equilibrium probability distribution for a system of
N static mesoparticles with an embedded binary mixture is given by

Pl = Pg(), ) o 5T ®

where I" = ({ui}, { mf}) kg is the Boltzmann constant, T is the reservoir temperature, and §; is the so-called
bare particle entropy, which is a function of u; and m? [29]. From a physical point of view, the bare entropy is
related to the density of microscopic states g for the CG variables within the mesoparticle for given u; and m‘i*
[11], i.e.,

§; =k In g(u;,m?) @

In Eq. (3) we have explicitly assumed that the independent variables are the particles energies, u;, and the
mass of species A, m?. According to Refs. [11], [12], by analogy with macroscopic thermodynamics, without loss
of generality we can write,

_ 05

ds; = =% du; + dm® + dm®
' aui mé,m? l am? u;,md l am? u;,m# l
~A ~B
= Loy, - Ziamr - Aiame )
0; 0; 0;
which is a definition of the bare intensive variables,
98 -1 (6)
oy mme 0
~ ~A
o | K ™
arni u;,m? 91-
~ ~B
o5 | K ®)
om; _— 0;

where 9,» is the bare particle temperature and ﬁ?, and ﬂ? are the respective species bare chemical potentials.
Then, using Eq. (1) we can eliminate the dependent variable m? in Eq. (5), and introduce the exchange chemical
potential jz; = ji} — fi?, yielding

dy; — %dmf‘ 9
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It is important to realize that these intensive variables are estimators of the ensemble temperature and
chemical potential, due to the fact that their equilibrium average yields [12],

(3),-
(5.~

where the macroscopic exchange chemical potential is defined as ji = u* — u®, by analogy with the mesoscopic
counterpart.

According to Refs. [11], [12], Eq. (9) cannot be trivially inverted to express u; as a function of §; and mf‘, due
to the fact that the traditional macroscopic thermodynamic relations transform as distributions when formu-
lated at the mesoscale. Effectively, by demanding that the physical equilibrium distribution is invariant under
a change of independent variables, P(D)dI" = P(INdI", we can introduce the dressed variables I" = ({si}, {m{‘})
from the relation,

(10)

-

1n

NI

-5 u;(s;,m)=Ts;] / (kg T)
Poy(D) = Py ({5}, {m}}) x e gt/ 12)

where we have introduced s; as the so-called dressed particle entropy, related to the bare particle entropy by

Si = §i - kB ln ] (13)
with the Jacobian,
0s;
. A) — i
J(u;, m?) o, (14)

From Eq. (13), the relationship between the bare and dressed temperatures follows (see Eq. (17) of Ref. [12]),

1 1 0
= =~ +kzg=—1In 15
0 6 P ou / mh =
Therefore, the thermodynamic relationship in Eq. (9) transforms into
dui - Hidsi + ﬁldm‘:\ (16)
where ji; is the dressed exchange chemical potential,
Bi_Bi_p 9 g an
i 0 Tomd |
The dressed variables are different estimators of the ensemble properties, i.e.,
(O =T (18)
(Hiyp = (19)

Notice that the difference between dressed and bare variables is of the order of magnitude of the fluctua-
tions, which should vanish with the size of the mesoparticles as kz /C,, — 0, with C, being the mesoparticle heat
capacity. In what follows, we require both the dressed and bare representations of the variables.

2.2 Heat and diffusive fluxes

From the exponent on the right-hand side of Eq. (3), we identify the free energy functional of the system, namely

N
f’ = 2 [ul‘ - T§i(ui, m?)] (20)
i=1
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Notice that this functional corresponds to the canonical ensemble and contains information about reservoir
properties, i.e., the temperature T, which differs from the fluctuating particle temperature 6. In this form, we
have arbitrarily chosen u; and mf‘ as the independent variables, so that §; is automatically the bare entropy.
As in Refs. [24], [25], we demand that the dissipative processes for the energy and material exchange between
mesoparticles, in the absence of fluctuations, drive F to a minimum, for the Second Law of Thermodynamics to
be satisfied at the mesoscopic level also, i.e.,

F<0 (21

where the dot represents time-differentiation. Thus,
N
> i —15] <0 22)
i=1

The equivalence of such statement and the traditional positiveness of the entropy production has been
shown in Ref. [12]. Here, we will proceed straightforwardly from Eq. (22). As the independent variables are u;
and m;, from Eq. (9), we can write

Thus,
N 1 ,L:l
i —T( =i, — Zim? )| <0 24
;[ (eil 5 )] 24)

The conserved quantities u; and m; follow some dynamic equations, which we aim at deriving eventually.
On the one hand, the First Law of Thermodynamics also holds at the mesoscopic level,

dui = dql + dWl (25)

where q; and W, are, respectively, the total heat transferred by mesoparticle i and the work done on mesoparticle
i by the mechanical forces. Hence,

Since the mesoparticles are static, no mechanical work is exerted and, as a consequence, Wi = 0. Further-
more, separating the heat flux ¢; into pairwise contributions, we arrive at

U= Z‘L’j @7)
J#
namely, the irreversible energy exchange produced between particles is due to the exchange of mesoscopic heat.
On the other hand, we can similarly assume that the irreversible material exchanges between particles are due
to pairwise diffusive fluxes, i.e.,
m? = Z ]if} (28)
j#i
The interparticle fluxes satisfy ¢;; = —¢;; and ]l.‘} =— ]ﬁ, due to property conservation. Then, from Eq. (24),
and using Eqs. (27) and (28), we can write,

i lzqi,- - T(gzqij _

i=1 [ A

=u

iZ];;)] <0 (29)
U ji

To develop this equation further, we can first separate the summation over j # i into two contributions,
namely, j < i and j > i. Second, focusing on the second contribution, we can change the order of summation
in such a way that ;... = ¥, .... Third, we can re-label the dummy indices { < j and use the change of
sign of ¢;; and ]3 under this permutation, to arrive at,

D
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N - =
1_1)\ Bi _Hi) s
22 [T< 0, 9i)qu " T( 0; 0 )Lj] < w

i=1 j<i

As the inequality must be satisfied irrespective of the number of pairs, we arrive to a more restrictive

condition for every pair, i.e.,
T| = —% )g; +T| 5 — 1 <0 3
l (91' 91')% (91- 1')]”] o

From Eq. (31), we can identify the thermodynamic forces as

1
L. 2
9i> (32)
m _ ﬁi ﬁ]'
Yi=—|%—=* 33
ij <9i 9.) (33)

Notice that the thermodynamic forces are defined in terms of the bare intensive variables. Furthermore,
from Egs. (10) and (11) we can see that their equilibrium average exactly vanishes.

According to Onsager’s linear non-equilibrium thermodynamics [26], the heat and diffusive fluxes are
defined as linear combinations of the thermodynamic forces sharing the same tensorial nature (Curie’s prin-
ciple), which turns Eq. (31) into a quadratic expression in terms of the Y;;’s. The implications of the inequality in
Eq. (31) will be the subject of a later analysis. For our example, we thus write,

Q)l‘;:ll

Gy = Lij' Yy + LYy 34)

I =Ly + Lyl 35)

where Ll‘.‘j”, L;‘].’", Lg.‘”, and Lg.”" are coefficients representing the mesoscopic equivalent of Onsager’s phenomeno-
logical coefficients. Notice that Egs. (34) and (35) allow for a dynamic coupling between energy and material
exchange. The inequality in Eq. (31) restricts the range of allowed values for these Onsager’s phenomenological
coefficients. Notice that, we discussed the simplified dynamics in Ref. [24], in which Ll‘.‘}m = Ll’.;."‘ = 0, correspond-
ing to dynamically decoupled fluxes between interacting mesoscopic particles.

As a concluding remark, we comment on the usual distinction between the heat flux and measurable heat
flux in the literature (see, e.g., [26], [30]). Theoretically, this distinction is related to what one would measure in
a temperature gradient subject to the condition V7 = 0. Thermodynamically, V 7 is an object defined from
the relation [26], . o

ra(’y ) =aui -5
where h* is the enthalpy per unit of mass of species a. Then, in classical non-equilibrium thermodynamics, from
the entropy production equation it follows that the measurable heat flux can be defined as,

{=q-YhJ° (37

dT (36)

However, Eqgs. (36) and (37) are only valid at the macroscopic level, i.e., with regards to the overall behavior
of the ensemble of mesoparticles, independently of the form of Eqs. (34) and (35). For their validity, it is required
that the spatial differences in the thermodynamic intensive variables are sufficiently small so that only the linear
terms need to be retained, in view of Eq. (36). In Appendix A we show that the distinction between heat flux and
a measurable counterpart at the level of the mesoparticles cannot be made. Only, if additional conditions on the
size of the differences between particle temperatures apply, one can define a qg}. analogue to the macroscopic
measurable heat flux, in Eq. (37). In conclusion, as the dynamics of the fluxes is well defined by Egs. (34) and (35)
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and there is no conceptual gain in introducing an interparticle measurable heat flux at the mesoscopic level,
where the measure does not occur, we will not proceed further with this analogy.

2.3 Dynamics of energy and mass exchange of static mesoparticles

To the form given in Eqgs. (34) and (35) for the systematic component of the dynamics, following the general
GenDPDE-M scheme of Refs. [24], [25], we now add the effect of the thermal agitation through random fluxes, in
the spirit of the so-called fluctuating hydrodynamics of Landau and Lifshitz [3]. We thus propose the complete
EoM for static mesoparticles in a discrete form,

=+ Y q;St+ Y oul 38)
J# J#
!/
md =md+ Z]g& + Z5m§, (39)
J# J#

In Egs. (38) and (39), prime and non-prime variables refer to the time ¢ + 6t and ¢, respectively; 6t is the
timestep, and Sufj and 5mf}. are random contributions to the internal energy and mass of the embedded physical
species A, respectively. Due to conservation, 6 uf]. =-0 uRi and 5m§. = —5m§i are also satisfied. In the same spirit
as with the linear relations of Eqs. (34) and (35), the random terms are also given by a linear combination of the
form,

oufi = (oWl + o Q) 501/ (40)

smt = (a;;m;. + a;;MQ;;)atl/Z (41)

where Q?j and QZ.‘ are normalised Gaussian numbers for each pair of particles with the properties

(@™ =0 (42)
(@O = (QOQE) = (538 — 6365¢) Sy 43)

with
(QOQ(E) =0 44)

The coefficients o-l.“].“, ol.“j’", o-i’;?“, and ai’;"" are the amplitudes of the thermal fluctuations, which will be set by
the corresponding FD theorem. Equations (38) and (39) are complemented by the mass constraint in Eq. (1), i.e.,

m¥ =m;—m¥ >0 (45)

as m; is kept constant in GenDPDE-M. The EoM in Eqs. (38) and (39) can be written in a more compact form using
matrix notation, i.e.,
X/ =X+ ) Ly Yot + Y o, Q62 (46)
J# J#
where we have defined the vectors for the mesoscopic state, x;, thermodynamic forces, Y;;, and random contri-

butions, Q;;, as

ijs

U; Yy Q?
= ,] Y= ! Q; = " (47)
m; v Q;

together with the matrices of Onsager’s phenomenological coefficients, L
contributions, 6, according to

ijs

i and the amplitudes of the random

L pum o gum
L. = < gt o=( "V ij 48)
ij mu mm - mu mm
Li]. Ll.]. o Oy

ijy
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The mesoscopic transport coefficients in L; and the amplitudes of the random terms in o; are linked
together by the general FD theorem,

which is derived in Appendix B. In Eq. (49), the superscript T represents the transposed matrix. Moreover, in
Appendix C we demonstrate that the ORR are also a consequence of DB, which implies that

Ll.Tj =L (50)
For a binary mixture, this simply reduces to
L?j’" = L;;F“ (51)
Due to this symmetry, Eq. (49) implies that
uu 2 um 2
<6ij ) + <0'l.j ) = ZkBK,»]-
2 2
(o) + (og) =28B, <52’
0}}”0’{?” + cri”/.mcri’;"" = ZkBLE‘j’"
where we introduced more natural notation for the coefficients, namely,
L:.‘].“ = K (53)
L™ =By (54)

Here, k; can be regarded as the mesoscopic thermal conductivity coefficient, while b; would be the
mesoscopic Maxwell-Stefan diffusion coefficient [27]. Next, for convenience, we introduce the positive-definite
coupling constants k, and k,, from the relations,

uu 2
(Gij ) = kykyj (55)
2
(gmm) =k, B, (56)
Equation (52) thus become

2
kuKij + (O-l,jm) = ZkBKif

2
KBy + (a;;."*) = 2Ky By, 57)

These equations then can be solved to find the parameters involved in the coupling dynamics, i.e., L:‘lm o-l.”].’",
and o-l.’;?“, as functions of Kij, b;;, k,, and k,,. We obtain for the noise amplitudes,

o= - fok, — k) B (59)

Moreover, the cross-coefficient takes the form,

K Kkm [k KK
Lwm — P -2 — Zutm Am _ Rufim 60
b=V ”( \/ZkB we T\ 2%, 4k§) (60)

ij)

(o2
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Itis important to note that the amplitudes of the random terms are not unequivocally determined by simply
fixing k;, ; and L{!". Effectively, 6., 6'™, o1, and o;*" additionally depend upon the two coupling constants
i §ooy Ty i
k, and k,, in such a way that there exists a multiplicity of values of these that are compatible with the same
dissipative processes described by the coefficients «;, D; and L{!". This fact indicates that, at the current level of
description of Langevin-like equations, one still has an additional degree of freedom in the choice of the relative
amplitude of the random currents, keeping k , Dy, and Ll%‘j’" fixed nevertheless, without violating DB. At this point,
if there is no additional physical information that could allow us to elucidate the values of k, and k,,, we are
forced to make an educated choice, as the overall macroscopic processes are not affected. Moreover, notice that
- o . . . . .
we have chosen ool < 0 as it is the only physically meaningful solution of Eq. (49) for the dynamic coupling
of the mass and energy fluxes.
Next, in view of Eq. (31), Onsager’s coefficients must satisfy the following sign conditions,

Lij >0 (61)

L™ >0 (62)

Luume _ Lum 2 0 (63)
ij i ij >

which imply that k; > 0 and D; > 0. In addition, from Egs. (55) and (56) it also follows that k, > 0 and k,, > 0.
Moreover, from Eq. (63) we also find that the coupling constants are subject to the following inequality,

Kot Ky Kby \/kukm (1_ Ktk kukm> <1 64)

2ky 2K 1 2ks  4K2

Combining Eq. (64) with the definitions of the amplitudes of the random terms, Egs. (55), (56), (58), and (59),
we arrive at the identification of the physically acceptable bounds for the coupling constants, namely,

k, € [0, 2k] (65)

ky, € [0, 2k (66)

The choice k, = k;, implies that L™ = 0, and no coupling between the energy and mass transport occurs.
However, notice that under this choice o-i”.’” and al."?“ may still be different from zero. As we mentioned, this
situation has no effect on the overall dynamics of the system. Only in the case where k, = k,, = 2k, do all coeffi-
cients in Eqgs. (58)—(60) identically vanish. This latter situation exactly corresponds to the decoupled GenDPDE-M
method presented in our prior publications [24], [25].

2.4 The equations of motion

The dynamics of heat and mass transport, Eq. (46), with the corresponding FD relations, expressed in Egs. (55),
(56), (58) and (59), can be easily incorporated into the mechanical motion of a system of moving mesoparticles
with an embedded binary mixture, because of our choice of constant mass (cf. Eq. (1)). The equilibrium distri-
bution for the complete set of variables is the extension of Eq. (3) with the energy due to the mechanical degrees
of freedom, i.e.,

% [p’g +F (w;,n;,m) | /(kgT)

= T2 | R AU B
P, () = Peq({pi}s {r;}, {w}, {mf%}) xe =t

where the functional form of 7 is defined in Eq. (20). In Eq. (67), the local particle density n({r;}) is defined
from the particle positions, according to the expression,

ni = Zwl/ (68)
i

(67)
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where w; = w(ry) is a smooth, monotonically decreasing (dw;/dr; < 0), non-negative, spherically symmet-
ric weighting function. It vanishes for an interparticle distance, r; = |r; — r;|, such that ry > R.,, where R
is the cut-off range. Unlike the other weighting functions defined in this work, wy is normalized so that
4rn fOR““‘ w(r)rtdr = 1, for convenience. Notice that n; is in fact a measure of the particle volume v; = 1/n;, which
is directly connected to the compression-expansion work implicit of the local thermodynamic description.
Due to the spatial motion of the particles, here we have to explicitly take into account that the dissipative
parameters are space-dependent, i.e.,
Kij = K @"(r;;) (69)
B = Pa™(ry) (70)

where w"(ry) and @™(ry) are smooth, monotonically decreasing, non-negative, and spherically symmetric
weighting functions. They vanish for r;; > R{  and r;; > RY,, with R{ . and R{, being the cutoff distances for
w"(ry) and w™(ry), respectively. The energy and mass weighting functions are defined independently of the den-
sity weighting function defined in Eq. (68). From Eqs. (69) and (70), using Eq. (60), we can furthermore highlight

the spatial dependence of the cross-coefficient Lé‘j’", ie,
L:.‘j’" = L'y " (ry)™ (ry) (71

Lum — ,/—K_D( Ky kK K kukm> (72)

VK 4k 2ky 4K

where

As the positions are slow variables compared to u;, mf‘ and the particle velocities v; = p;/m;, we can safely
substitute the expressions in Eqs. (69) and (70) into the FD relations Eqs. (55), (56), (58), and (59), without further
change.

The EoM for N mesoparticles in the coupled GenDPDE-M method are identical to those of Ref. [24], i.e.,

v =r+ Pig (73)
m.

1
P =p;+ ) £ 5t + Y £t + ) opf (74)
i j# i
o, 1 Pi _ P
u =y 22<mll_ m) Lot (75)
1 p; P
= <l - 1> 'fg'ét

m; m;

B D VR I R NP
22<mi m; opy
J# J

1 R o R
yeriyer
. R
, J#FL J#

— A A R

md =m} + Z]ij5t+ Zémi].
J# J#

m?’ =m;— mf’ (77
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The dynamic coupling between mass and energy transport is taken into account through the form of the heat
and mass fluxes, given by Eqs. (34) and (35), together with the random fluxes, Eqs. (40) and (41). For completeness,

in Egs. (74) and (75),
S | d Ve
fin (n? n?) dry; i 7

1

is the conservative force between a pair of mesoparticles i and j, where z; the particle pressure that follows
from the free energy of the EoS for the mesoparticle. Note that the particle pressure will contribute to the overall
system pressure as an excess pressure, as there is always an ideal contribution due to the thermal agitation of
the mesoparticles. This point is important when defining the particle EoS targeting a given specific macroscopic
thermodynamic behavior. In Eq. (78), e;; = r;;/r;. Further, the friction force takes the usual DPD form (see, e.g.,
(12D,

f = —m(pi - p]> "€y (79)
]

for a pair of mesoparticles i and j. Here, y; = y @P(ry), y being the mesoscopic friction coefficient, and w?(r;)
being a weighting function with the same properties as the other functions in Egs. (69) and (70), vanishing for
r;; > R?  where R? is the cut-off range for this property. Finally, according to Ref. [24],

Jj = "cut’ cut
Spf; = \/ks(0; + 0))y;; Qley;5t'? (80)

is the random contribution to the particle momentum, and Qf is a normalised Gaussian number with analo-
gous properties to those defined in Egs. (42) and (43). It is very important to realize that, according to Refs. [12],
[24], Eq. (80) explicitly depends upon the dressed temperature. The latter can be written in terms of the bare
temperature, using Eq. (15).

2.5 Particle thermodynamic model

As a representative example, we aim at describing a macroscopic system whose thermodynamics is given by
the vdW mixture model, based on the vdW EoS [31], and the one-fluid (1f) conformational solution theory [32],
which treats a mixture as a pseudo-fluid with composition-dependent parameters.

Specifically, the vdW EoS g; and b; parameters of the mesoparticle i are given by the combining rules [32],

(33]
a; = ZZX?X? a,as 8D
@ p
b; = )'x¢b, ®2)

where a, and b, are the vdW EoS parameters of the embedded physical species a, and x = N* /N is its molar
fraction.

Then, for the particle pressure needed for evaluation of the conservative force, Eq. (78), we propose a cor-
rected vdW EoS by the subtraction of the ideal gas contribution due to the mesoparticle agitation, namely,

Ninkgt; -~
;= L2l —a.nt — kglin,
T pn, T (83)
= 7[?08 —_ kBglnl
where [25],
@ = Nig (84)
b; = Nib; (85)

We have chosen to express the mesoparticle thermodynamics in terms of dressed variables, although the
physically relevant properties of the model can equally be expressed in terms of bare variables. Effectively, if
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Eq. (15) is taken into account, together with the fact that the bare pressure is related to the dressed one through
the relation,
zi

61' 0

% +kBa InJ (86)

A
w,m;

then the equilibrium probability distributions remain invariant.
Equation (83) can be derived from the appropriate particle Helmholtz free-energy f, as found in Appendix A
of Ref. [25]. The expression reads

J\f"’ 6; n;

where Cy,; = ZaJ\fi"C;i is the composition-dependent heat capacity of the mesoparticle, with C{‘j,l. the constant-
volume heat capacity per molecule belonging to the embedded physical species a, and @, together with b; are
given in Eqs. (84) and (85), respectively. Notice that, we have not subtracted in Eq. (87) the contribution due to
the mesoparticle agitation, as we did in the right-hand side of Eq. (A3) of Ref. [25]. The parameters n, and 6, are
included for dimensional consistency, and will be considered as constants.

Therefore, to obtain the expression of the internal energy u;, from which the temperature ; can be calcu-
lated, we have to first derive the particle entropy, from the usual relation s; = —df;/ 901, (me)s ie,

a

@ ./\f n,- 9 0/00 ni
‘_—kBZJ\/ 1n<(1_bn)0> CV1+CVlln<1+90> +ch1+0/90 + kg 1n(no> (88)

Equation (A4) in Ref. [25] corresponds to the high-temperature limit ;/6, > 1 of this expression. We will
also take such limit in this work, to make our expressions in more accordance with real gases. However, before
we simplify our expressions, we can calculate the form of the internal energy u; from Eq. (87) usingu; = f; + 0;s;,
which reads,

0/0,
—a;n
'1+6,/6, ot

Finally, the chemical potential of species « is obtained from Eq. (87) through differentiation with respect to

m:’ where one obtains,
N%n; N:n: 9.
«— ke (In( ——1—" ) +1+ =i p | —2n, Y N7 +C® In(1+ 2L 90
. ma{ ’ [n<(1_bini)n0> 1=bn a] nl; PV n< 90>]} 0

From a practical point of view, we are using the simplified expressions for the internal energy as well as
the chemical potentials in the high temperature limit 8;/6, > 1, thus obtaining our final expressions required
for the simulations, i.e.,

U = CV 10 (89)

u; = Cyi0; — an 91D

for the internal energy, and

a

a _ 1 a ‘A/.iani kBHNn o ei
e = m[(kB+Cv,i>9i+kB¢9i 1“((1—13,-ni)n0 + S~ o ZJ\/ Vasay = C0n( gt )| ©2
for the chemical potential.

2.5.1 Barevariables

Since the thermodynamic forces in Eqs. (32) and (33) are expressed in terms of bare variables, the explicit expres-
sions for the bare temperature as well as the bare chemical potentials are required. To this end, let us first
consider the form of the Jacobian of the transformation, given in Eq. (14), already in the high temperature limit,
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_0s;
~ ou,

_0s;
n, {m*} 001

26,
n, {ms} ou;

-1 ©93)

n, {me} 0;

1

where use hasheen made of Eqs. (88) and (91) to calculate the derivatives. Therefore, from Eq. (91), using Eq. (15),

1 1 k
A, 0i< cv,i> oY

In the same way, from Eq. (17), using again Eq. (91), one finds,

th‘};é

_PL B
=% CV” lZnZJ\/ Vg, — C 1 (95)

The vdW EoS, and in fact all properties derived from Eq. (87), is not defined for b;n; > 1. Thus, we employed
an extension to avoid numerical problems, whose details are given in Refs. [11], [25].

3 Computational details

As in the decoupled GenDPDE-M method [24], [25], the EoM in Eqgs. (73)-(77) were integrated by the extended
Shardlow splitting algorithm, which separately discretizes the reversible and irreversible parts of the dynamics
[34], [35].

We consider an embedded binary mixture of an atomic and a diatomic fluid, taking the equimolar
Ar(A)/CL,(B) binary mixture as a representative example. Values of the vdW EoS parameters were determined
from the critical temperature, T, and critical pressure, P, of Ar and Cl,, according to [32]

_27 (ksT?)"

“ 64 PO
b _ 1kgT?
“ 8 p

where T4" = 150.69 K and P4" = 48.63 bar, and TCClz = 417K and p?z = 79.91 bar. GenDPDE-M simulations for the
mixture were carried out at state points such that both substances would be under supercritical conditions if
pure. Thus, the simulated mixture behavior is far from ideal gas conditions.

The simulations were performed using Lennard-Jones reduced units, where my; = My, €. = a5 /by,
Opef = {/ﬁ were taken as the units of mass, energy, and length, respectively, thus fixing the time unit to

ter = \/arzef Myt / €rer- Hence, in reduced units, mf* = m{ /myq, nf =1, oref, 0 = kp0;/€rep, W = Ui/ Erepy 7] =
7 afef /€ep, AN t* = t/t,.¢. In the following, we will use only reduced variables and drop the * where confusion
cannot occur. From the molecular masses of Ar and Cl,, for simplicity we further set m; = 2m,, CA (3/2)kg,
CB = (5/2)kg, and the level of CGing ® = 10. Hence, since we chose an initial equimolar mixture, the initial
composition of mesoparticle i corresponds to J\/' A= ./\/ B=5 (m =5, m = 10), with m; = 15 = const.

We used the Lucy weighting function [36] for w(r) and the quadratlc weighting function [11] for w?(r),
w"(r) and w™(r), with cut-off distances R, = R}, = RY = R™ . Equilibrium simulations were performed in
a cubic simulation box with periodic boundary conditions (PBC) in all three directions, and with N = 5,000
mesoparticles. Non-equilibrium simulations were carried out in an orthorhombic simulation box of volume V =
L,L,L, withPBCandL, = L, = L, /3, containing N = 9,000 mesoparticles. Finally, we employed 5t = 0.005, and
varied y, x, b, k,, and k,,, to consider different simulation scenarios.
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3.1 Simulations under temperature gradient

To simulate the dependence of the Ludwig—Soret effect (thermodiffusion) with the dynamic coupling between
energy and mass within the GenDPDE-M method, we modified the reverse PeX non-equilibrium method by
Miiller—Plathe [37], [38], often used in molecular dynamics to generate a temperature gradient while conserving
the total energy and momentum. The method sets hot (h) and cold (c) regions (slabs) at prefixed x-positions in
an orthorhombic simulation box, such that they are at the same distance within the box as well as across the
PBC in the x-direction. Relative to L, the slab thickness was set small enough to have a sufficiently long section
for the temperature gradient to develop and occupy most of the box, but at the same time, sufficiently large
to contain enough mesoparticles so that the estimated mean temperatures minimally fluctuate. Unlike the PeX
method described in Refs. [37], [38], where fast particles in the cold slab virtually collide with slow particles in
the hot slab to create a net energy flux from cold to hot, here, at a given frequency f,,. during the simulations, the
mesoparticle with the highest particle temperature in the cold slab is selected to exchange a prescribed amount
of heat, 6q > 0, with the mesoparticle with the lowest temperature in the hot slab. This procedure ensures that
the total momentum and energy of the system remain invariant, despite the temperature gradient that develops
as a consequence of the forced heat flux across the sample, which is externally controlled by the values of 6q
and f,.. Therefore, the internal energy of the mesoparticles involved in the exchange is updated as

h

u' =ut + 6q

u“=u‘—oq

In our simulations, the virtual heat transfer between the cold and hot slabs was performed every timestep,
i.e., foxe =1, and the value of 6q was adjusted to produce a small, linear temperature gradient profile between
the hot and cold slabs. The linearity of the obtained temperature profile allows us to use linear response theory,
and evaluate the macroscopic thermal conductivity together with the Soret coefficient [26].

Once the system has reached steady state, the heat-flux density is calculated as

Q
Jx AAt (%)
where A = L, L, is the cross-sectional area of the slab, At is the time between the initial measuring time ¢, and

the final time ¢,, during which the exchanged energy is accumulated into Q = Zgéq. Since 6q is a constant,

Eq. (96) becomes
_14q

The macroscopic thermal conductivity A is then defined from the relation,
A=—lim 98)

%T_,O dT/dX

where it is assumed that the material flux is zero at steady state. Here, T(x) = (8(x)) and dT/dx is the average
particle temperature gradient in the x-direction, taken over measures at different times while in steady state. In
Eq. (98), the dT/dx — 0 formally expresses the necessity of a very small gradient to achieve the linearity of the
response [26]. To determine the local values of the temperature, we divided the space between the slabs into sev-
eral narrow bins and evaluated the local average of the dressed temperature, (8;), over the particles within each
bin. Notice that we use the dressed temperature here because it is an estimator of the equilibrium temperature,
in view of Eq. (18). After taking different snapshots of the temperature distribution along the sample, we aver-
aged them and evaluated the temperature gradient from the mean profile, using a linear regression over most
of the central section between the slabs. Then, the thermal conductivity A is obtained from Eq. (98). Notice that
while the heat flux is externally imposed and has no variability, the determination of the temperature gradient
is affected by numerical uncertainty, which propagates to the reported value of A.

Equation (98) follows the criterion of Refs. [30], [38] in which, in a multicomponent system, A is defined with
the material fluxes set to zero, as it agrees with a simple experimental setup. Hence, the relationship between
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the heat transported and the temperature gradient follows from Fourier’s law, but also includes the effects of
the coupling between the energy and mass transport through the concentration gradient. Other criteria could
be invoked [26], in which the thermal conductivity is defined also from Eq. (98), but under the assumption that
either Vji = 0 or V(jii/T) = 0. Although the values for the thermal conductivity may differ, depending on the
conditions chosen, the physical phenomena is invariant if the implications of these definitions are properly
taken into consideration.

Finally, the Soret coefficient for embedded species B in a binary mixture is also obtained from the condition
of zero material flux at steady state, and can be computed as [26]

1 dx®/dx

XAXB dT /dx (99)

B—_
Sp =

where x* and x® are the overall average molar fractions of the embedded species A and B, respectively, and
dxB /dx is the average molar fraction gradient of embedded species B in the x-direction. The Soret coefficient for
embedded species A can be analogously defined. Moreover, in a binary mixture, s; = —s‘}. Similarly as with 4,
s‘} and s‘; in our model are affected by the strength of the coupling between energy and mass at the mesoscale.

4 Results

In this section, we present and discuss the results of equilibrium and non-equilibrium GenDPDE-M simulations
with different values for the parameters that govern the dynamic coupling between energy and mass trans-
fer at the mesoscale. Equilibrium simulations provide numerical proof of the independence of the probability
distributions from the mesoscopic transport coefficients. Non-equilibrium simulations, on the other hand, are
used to explore the effects of the coupling on heat transport and thermodiffusion. Finally, the dependence of the
system’s properties on the level of CGing is also analyzed.

4.1 Equilibrium simulations

Three GenDPDE-M simulations of the CG equimolar Ar/Cl, binary mixture were performed for an initial temper-
ature T = 1.081 and an overall system number density ¢ = 0.3152, which correspond to supercritical conditions
for the pure substances. In these simulations, we varied the mesoscopic dynamic coefficients y, k¥ and b, as well
as the coupling constants, k, and k,,, as reported in Table 1. For each of these sets of parameters, we evaluated
the equilibrium distributions for 8; (dressed temperature), mf‘ and m?, as shown in Figure 1. Here, test Dec-E
corresponds to the decoupled case in which the values of the coupling constants were chosen to simulate the
same algorithm as in Refs. [24], [25], namely, k,, = k,,, = 2k, in view of Eqgs. (58) and (59). Tests C1-E and C2-E, on
the other hand, correspond to coupled energy-mass dynamics scenarios.

From Figure 1, we can see that P(6,) as well as P(m?) and P(m?) perfectly overlap for all cases, thus provid-
ing a numerical proof of consistency of the FD theorem. Effectively, since the particle thermodynamic model is
the same in all tests, the system dynamics is expected to sample the same equilibrium distributions regardless
of the chosen values of the mesoscopic transport coefficients and coupling constants.

Table 1: Parameters employed in equilibrium GenDPDE-M simulations. The mesoscopic transport coefficients y, k and b represent the
friction, thermal conductivity and Maxwell-Stefan coefficients, respectively. The coupling constants k, and k,, are energy and mass

prefactors with the dimensions of kg. n,, is the selected number of simulation timesteps.

Test Y K b k, kn, Neyn
Dec-E 4.5 1.0 0.01 2.0 2.0 1108
C1-E 4.5 1.0 0.01 1.0 1.5 1108

C2-E 0.9 5.0 0.05 1.0 1.5 1108
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Figure 1: The equilibrium probability distributions of the particle temperature (top) and embedded species masses (bottom) for the CG
equimolar Ar/Cl, binary mixture at an initial temperature T = 1.081 and system number density ¢ = 0.3152, as obtained from the
decoupled GenDPDE-M simulation, Dec-E, and coupled GenDPDE-M simulations C1-E and C2-E. All the distributions consistently overlap.

4.2 Non-equilibrium simulations

Non-equilibrium simulations of the CG equimolar Ar/Cl, binary mixture were carried out for an initial state
T = 0.885 and ¢ = 0.5775, corresponding again to supercritical conditions for the pure substances. Six GenDPDE-
M tests were performed, in which we set y = 4.5, k = 1and P = 5, and varied L*™ according to the values of k,
and k,, given in Table 2. Notice that the mesoscopic Maxwell-Stefan coefficient b was increased with respect
to the equilibrium simulations to allow the system to quickly relax to steady-state conditions, thus reducing the
computational cost of the tests. A short equilibration run of neg,; =1 X 10° timesteps was performed before
imposing heat transfer between the hot and cold slabs. A relaxation period of n,,, =4 X 10° timesteps was
subsequently considered, after which no variation in the average temperature and concentration profiles was
observed.

Similarly to the equilibrium cases, here test Dec-NE refers to a decoupled system simulating the same
algorithm as in Refs. [24], [25]. As shown in Table 2, tests C1-NE, C2-NE and C3-NE consider coupled configurations
with different strengths of the dynamic energy-mass coupling effect, controlled by the value of the coefficient
L"™. Furthermore, with the aim of assessing the independence of the results from the choice of k, and k,, pro-
vided that L“™ is kept constant, simulations C1b-NE and C2b-NE were performed, testing identical conditions to
the cases C1-NE and C2-NE, respectively, but using different values of the coupling constants.

Figure 2 shows the steady-state profiles of the local average particle dressed temperature, T(x) = (6(x)),
which is a possible estimator of the local temperature. Notice that, if the bare temperature & were used as the

Table 2: Parameters employed in non-equilibrium GenDPDE-M simulations. The coupling constants k, and k,, are energy and mass
prefactors with the dimensions of k. L“" is the mesoscopic Onsager’s cross-coefficient defined in Eq. (72). n,, is the selected number of
simulation timesteps.

Test k, Kn Lem L
Dec-NE 2.0000 2.0000 0.0 1.5 x 108
C1-NE 1.5000 0.6072 -1.0 1.5 % 108
C2-NE 1.8000 0.4830 -1.5 1.5 % 108
C3-NE 0.5000 1.3929 1.0 1.5 x 108
C1b-NE 0.9000 0.1440 -1.0 1.5 x 108

C2b-NE 1.1000 0.0200 -1.5 1.5 x 100
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Figure 2: The x-profiles of the particle temperature (top),
and the number concentration (middle) and molar fraction
(bottom) of Cl, for the CG equimolar Ar/Cl, binary mixture at
aninitial temperature T =0.885 and system number density ¢
= 0.5775, as obtained from the decoupled GenDPDE-M simu-
047 ‘ ‘ ) ) ) ) ‘ ‘ lation, Dec-NE, and coupled GenDPDE-M simulations C1-NE,
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estimator instead, the correct temperature profile would be obtained from the relation T(x) = (1/6(x))". In
addition, Figure 2 shows the average profiles for the number concentration, c(x), and the molar fraction, x2(x),
of Cl,. Here, only the decoupled case Dec-NE and the coupled cases C1-NE, C2-NE and C3-NE have been consid-
ered. These profiles were obtained by dividing the x-domain between the hot and cold slabs into nine bins,
and calculating averages of the quantities of interest within each bin, after reaching steady state, at a fixed fre-
quency of f,n, = 25,000 timesteps, for a total of 41 snapshots. These instantaneous profiles were subsequently
further averaged to obtain the diagrams shown in Figure 2. From this figure, we can observe that the heat flux J,
imposed on the system via the modified PeX algorithm, not only produces a temperature gradient between the
slabs, but also causes a concentration gradient to develop, in agreement with the experimental findings within
the context of the Ludwig-Soret effect [26]. Furthermore, notice that the heavier species Cl, accumulates in the
cold region of the simulation box, as expected, even for case Dec-NE. Although no dynamic coupling between
mass and energy is present at the mesoscopic level, the observed material gradient for this decoupled case is due
to the dependence of the particle exchange chemical potential on the space-dependent temperature, plus addi-
tional contributions due to the thermal motion of the mesoparticles. As such, the observed thermodiffusion has
a purely thermodynamic origin. However, when the dynamic coupling between energy and matter is included
in the model, as in cases C1-NE, C2-NE, and C3-NE, such a composition gradient is modified by the interspecific
friction [27], gathered in the value of the cross-coefficient L*™.

In Figure 3 we analyze the results of the aforementioned pairs of analogous cases, namely C1-NE and C1b-
NE, as well as C2-NE and C2b-NE. The temperature, concentration and molar fraction profiles observed for cases
C1b-NE and C2b-NE are practically indiscernable when compared to tests C1-NE and C2-NE, respectively: this
result proves that the overall macroscopic behavior of our model is indeed insensitive to the specific values of
the coupling constants k, and k,,,, and depends only on the parameters x and D and on the coupling coefficient
m,

From the profiles T(x) and xB(x), we evaluated the corresponding gradients, dT /dx and dx® /dx, using linear
regressions, and computed the thermal conductivity, 4, as well as the Soret coefficient, sglz, as defined by Eqs. (98)
and (99). The measured values of A and s?z, together with the heat flux density, J,, and the gradients dT/dx, and
dx® /dx, are provided in Table 3. We can see that the value of A decreases with an increase in the absolute strength
of the energy and mass coupling, as is to be expected, since from Eqs. (34) and (35) one could estimate that
A=J./IVT| =~ (x — (L¥™?/ -D)/T? + kinetic contributions [30]. As far as the Ludwig—Soret effect is concerned,
the value of s(;lz decreases upon increasing the mesoscopic cross-coefficient L“™. However, this should not be
considered as a general trend, but as a result of the particular model we are considering, in which the dynamic
coupling counters the thermodynamic effect caused by the temperature gradient when L*™ > 0.

We observe that the measured errors in the determination of both A and s?z, shown in Table 3, apprecia-
bly depend on the chosen values of k, and k,, for the cases considered in Figure 3. A complete analysis of the
influence of the coupling constants on the system properties will be addressed elsewhere.

4.3 Scale-dependence of the mesoscopic model

To conclude this section, we briefly consider the analysis of the system properties as a function of the degree
of CGing, ®. Although this issue will be examined more thoroughly elsewhere, let us introduce here a minimal
model, satisfying the GenDPDE-M dynamics discussed in this manuscript, in which the scale factor ® =1 and
its number of mesoparticles N is of the order of the total number of physical particles in the system, A"°. More-
over, for the minimal model we have arbitrarily chosen a cutoff distance R, = 3. Next, under the CGing process
considered here, we group together @ > 1 particles into one coarser mesoparticle, so that the new number
of mesoparticles is given by N = N° /®. However, we impose that the intensive variables, P, T and u* should
remain invariant under this process. In addition, we also keep the total energy U and volume V unchanged,
which implies that the system Helmholtz free energy F should remain invariant under this type of transforma-
tion. Notice that, in this decimation process, ¢ = N° /V = ®N/V is constant, by construction. Next, as a simple
example, let us take the pressure of the system as approximately given by its mean field expression [13]
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Figure 3: The x-profiles of the particle temperature (top),
and the number concentration (middle) and molar fraction
(bottom) of Cl, for the CG equimolar Ar/Cl, binary mixture at
an initial temperature T = 0.885 and system number density
¢ = 0.577, as obtained from the coupled GenDPDE-M sim-
ulations C1-NE and C2-NE and their analogous C1b-NE and
C2b-NE. The circles represent simulation results, while the
solid lines represent linear regressions. The results referring
to identical sets of mesoscopic dynamic coefficients are in
excellent agreement.
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Table 3: Values of the thermal conductivity, 4, and the Soret coefficient for Cl,, s
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c,
;

, together with the heat flux density, /,, the average

temperature gradient, d7/dx, and the average molar fraction gradient of Cl,, dx%2 /dx, as obtained from non-equilibrium GenDPDE-M

simulations.
Test J, X103 (dT/dx) x 103 (dx®: /dx) x 103 2 s
Dec-NE 6.46 —2.54 4+ 0.05 1.67 + 0.03 2.55 + 0.05 2.64+0.07
C1-NE 6.46 —2.89 + 0.09 212+ 0.04 2.23+0.07 2.9440.10
C2-NE 6.46 —3.60+0.10 2.84 +0.05 1.80 + 0.05 315+0.10
C3-NE 6.46 —312+0.10 1.77 +0.06 2.07 + 0.07 2.27 +0.11
C1b-NE 6.46 —2.95 +0.06 2.21+0.02 219+ 0.05 2.99 +0.07
C2b-NE 6.46 —3.47 +0.07 2.80 + 0.06 1.86 + 0.04 3.22+0.10
c
P = kyTn+ 7((®) = kyT o + 7 (@) (100)

where {(®) is proportional to the integration of the product of the weight function w with the pair distribution
function g over the cutoff radius R, { = /drw(r)g(r). This parameter measures the local inhomogeneities in
the particle distribution due to the presence of the interparticle pair potential interaction at the present degree
of CGing. Hence, from Eq. (83), we can write Eq. (100) as

c

P=k,T
B o

(1 = ¢(®)) + 75T, ©) { (D) 101)

In addition, we consider that R, (®) = oY/ BRgut to maintain the same number of neighbors within the
interaction range, independently of ®. It is important to realize that #£° is invariant under this type of transfor-
mation, as it depends only on ¢, according to Eqs. (83)—(85), and the fact that n = ¢/®. We can thus conclude that
Eq. (101) depends on the degree of CGing, and the invariance of P under the decimation transformation depends
on how far {(®) deviates from 1. The effect of such deviations at a given degree of CGing can be absorbed into
the renormalization of the parameters of the model. Unfortunately, this analysis requires a separate treatment
as ¢(P) is a complex quantity that depends on the overall behavior of the system, notably on z£° itself as well
as on the thermodynamic conditions of the system.

To numerically illustrate these facts, we have conducted simulations at different degrees of CGing. Figure 4
shows the variation of the system pressure P and the internal energy per particle u = U/N° as a function of ®
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Figure 4: The system internal energy per physical particle (top) and the system pressure (bottom) as functions of the level of CGing, for
an equimolar Ar/Cl, mixture at an initial temperature T = 0.885 and system number density ¢ = 0.5775. The thermodynamic u = 0.56,
and the thermodynamic P = 1.44.
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for an equimolar Ar/Cl, mixture at a temperature T = 0.885 and number density ¢ = 0.5775, as obtained from
GenDPDE-M simulations. The figure also illustrates the effect of the number of neighbors, which depends on the
chosen value of the cutoff radius. In our analysis, two different nominal cutoff radii were used, namely, R(c’ut =3
and 5. It can be observed that the scale invariance is attained if we increase the number of CG particles, but
also if we increase the number of neighbors. The latter is an effect of the density-dependent potentials, as the

fluctuations in the particle density An within R, decrease as An ~ 1/n/R3 . Therefore, the scale-invariant
mean field behavior observed at a higher degree of CGing and with a larger number of neighbors, is lost at a
lower degree of CGing, which should be properly accounted for in the interparticle potential.

5 Conclusions

The Generalized Energy-Conserving Dissipative Particle Dynamics with Mass Transfer method (GenDPDE-M)
was introduced in Refs. [24], [25] as an extension of the GenDPDE algorithm to simulate mesoparticles with
variable composition. These original publications, being a proof of concept, only dealt with the particular case
in which energy and mass transport between particles were dynamically decoupled. In real systems, however,
it is well known that the energy fluxes entrain mass transport, and vice versa, leading to the Ludwig—Soret
and Dufour effects [26]. In this article, we have developed the theoretical framework required to describe such
coupled energy and material transport at the mesoscale. With this addition, GenDPDE-M can simulate general
complex physicochemical scenarios in which the simultaneous transport of energy and matter takes place at the
mesoscale; the method is therefore complete.

The extension presented in this article is formulated through the introduction of novel forms for the heat
and diffusive fluxes between the mesoparticles. Here, these fluxes depend on both temperature and chemical
potential differences, following Onsager’s formulation of non-equilibrium thermodynamics. Since the GenDPDE-
M method is formulated as Langevin-like equations, with random contributions simulating the effect of the
hydrodynamic fluctuations [3], expressions for the amplitudes of these random terms need to be derived. Start-
ing from Detailed Balance as the physical link between the mesoscopic model and the underlying physical
system, we obtained the necessary Fluctuation-Dissipation theorems providing these amplitudes as functions
of particle state variables, such as temperature, and also on the dynamic coefficients, which include the cou-
pling. Interestingly, Detailed Balance is sufficient to also demonstrate that Onsager’s reciprocal relations are
valid at the mesoscale.

The consistency of the algorithm is demonstrated by showing that the simulated dynamics effectively sam-
ples the equilibrium probability distributions indicated in Eq. (67). We have checked that the distributions are
independent of the values of the mesoscopic transport coefficients as well as the dynamic coupling between
energy and mass. For completeness, a non-equilibrium simulation scheme, analogous to the setup of a real exper-
iment, was conceived with the aim of reproducing the Ludwig—Soret effect for a specific two-component system.
The mesoscopic thermodynamic model employed was the van der Waals one-fluid model describing an Ar/Cl,
mixture. It is shown that GenDPDE-M not only properly reproduces this phenomenon, but crucially also allows
us to control the strength of the Ludwig—Soret effect through the appropriate choice of the mesoscopic Onsager’s
cross-coefficient L;‘j’", coupling energy and material fluxes between particles i and j.

The framework developed in this article aims at the simulation of multicomponent systems, including mov-
ing interfaces, which are particularly relevant in areas such as chemical engineering, heat transport, materials
engineering, among many others. The most natural step forward is to extend the algorithm to include chemical
reactions within the mesoparticles, coupled to energy and matter transport, which will permit the simulation
of reactive systems with moving interfaces, e.g., detonation and combustion, interfacial growth, among many
other situations in which complex fluid processes may take place. Such an extension will be done elsewhere. Fur-
thermore, the use of more complex EoS for the particle thermodynamic description, such as the Lennard-]Jones
[31], [39], Exponential-6 [40]-[42] or Statistical Associated Fluid Theory [43] EoS, enables the application of the
method to a panoply of different materials and processes.
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Appendix A: Alternative formulation of the heat and diffusive
fluxes

With the purpose of exploring the possible definition of alternative expressions for the heat and diffusive fluxes,
defined in Eqgs. (34) and (35), let us introduce the following definitions:

1 _1(1 1
== =+ = Al
T 2<9i 9}-) (A1
1 = =
1_1(1 1
Az= = — = A3
0 2\ 6, 9]-) 43
= 1 = =
AR =5 (Ri— i) (A9)

In view of these equations, the condition F <0in Eq. (31) can be rewritten as

{T(—ZA%)(JU +T(M+AR) (2 + A%) — (M- Af) (7 - A%)]]ﬁ} <0 (45)
After some algebra, Eq. (A5) becomes
[—zA%qﬁ + <2MA% + Z%Aﬁ)];;] <0 (A6)

We recall that the bare chemical potential is a function of the bare temperature, according to Egs. (94) and
(95). Hence, the quantities M and A are functions of the particle bare temperature as well and, therefore, an
expansion around the central temperature T can be invoked. It is thus possible to express the term M in Eq. (A6)
as
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(A7)

>A1 n (9(A%)2 ~ M|y + OA)

where O(A)? here represents general second order differences in particle properties. Here, the subscript 7 indi-
cates that the function should be evaluated at 7 rather than at the actual particle bare temperature 6. Moreover,
the term 2A z in Eq. (A6) can be written as,

wieil5)-(5)
[ )]+ 7(3) -3, )

= ofi; ol 1
~ AR, +| 2| ALy 2 Az
Art|or| 25 %o1| 3
0 |1 9]~ T
— 2afi|, — 72( O YS! +(9(A1>2 (A8)
4 00;|, 06;| )6 0

According to our formulation of the particle dynamics, the mass and energy transfer occur at constant
local density, as the kinematic move takes place separately from thermodynamic property exchange moves.
Hence, we must consider that the transfer occurs at constant volume (or local density n). Therefore, rather than
proceeding by introducing 0 /90|, = —s, asis usually done, we have instead du /00|, = —s — (n/kp)ou/ox|y,
as the processes are not at constant pressure.

At this point, it is rather obvious that the analogy with the macroscopic definition of the measurable heat
flux cannot be continued further. From one perspective, the expansion of the thermodynamic properties around
the central temperature precludes the possibility of having large particle temperature differences, which may
be present in some situations of interest for the application of our model. Notice that, even in equilibrium, the
temperature differences between particles are of the order of A(1/6) ~ (1/kz/Cy)/T, which may be not negli-
gible if the particle heat capacity C, ~ k. From another perspective, even if the linearization approximation
holds, the function S|, defined as,

| = = al’ll
= 29|,

cannot be related to the particle entropies, a ggi

+
a0; |,

)t

, + §i|T. For the sake of completeness, let us introduce S|, as

defined in Egs. (A9), into (A6). Therefore, the condition F<0 becomes,
1, 1 .1 ,= 1\ A
[—mgqij + <2M|TA§ + 2 A, + 2TS|TA§>]U] <0 (A10)
where again we have retained terms up to the first order only. Further, manipulating Eq. (A10) by introducing
H|, =M|; +TS|, (A11)
we can write,
1, 1 .1,= 1\ a
[-mgqﬁ + (2M|TA5 + 22 A1, + ZTS|TA5)]U.]

= |28z a0y + (2(Mir +751,) A5 +22 A, ) 3]
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= [-285 a5+ (2r1r a5 +22 87|, ) )]
= [—2(‘71‘;’ _H|T]$>A% * Z%Afthﬁ;]
- [y eabaii] <

where we have defined what would be the analogous expression of the measurable heat flux at the mesoscale,
ie.,

) — A

qiquij_H|T]i]' (A13)

Although we show that, under specific thermodynamic conditions the measurable heat flux can be defined,
we stress that the quantity S cannot be interpreted as any given form of particle entropy, in view of Eq. (A9). As
a consequence, H cannot be calculated in terms of particle enthalpies, which are forcibly defined ash = u + 6s,
either. All in all, using this transformation at the mesoscopic level results in the loss of any intuitive benefit.

Appendix B: Fluctuation-Dissipation theorem

The relation between the matrices containing the mesoscopic transport coefficients, Ly, and the amplitudes of

the random terms, o, as defined in Eq. (48) follows from the evaluation of the second moment of the system

distribution [11], [12] and use of DB. We remind the reader that the validity of DB is only based on the form

of the Hamiltonian of the underlying microscopic physical system, together with the time-reversibility of the

trajectories of the latter [44]. Therefore, as GenDPDE-M aims at simulating physical systems, the assumption of

DB is the most basic assumption that connects its structure to the physical nature of the processes of the system.
Thus, the second moment of the fluctuating mesoscopic state vector x;, defined in Eq. (47) is given by

(xx!) = / dlal P, (Dxx/" W - I")st (B1)
where W(I" - I”) represents the transition probability per unit time with the property
/ di'w@ - Mst =1 (B2)

due to causality. Here, I represents the full state of the mesoparticles, i.e., = (%4, Xy, ..., Xy). The tilde indicates
that we are using bare variables to define the state of the system. By construction, the random terms are not
correlated with any other variables at the same instant of time. Then, using the compact EoM Eq. (46) to evaluate
xl’.xl’.T and retaining terms up to order O (6t) only, we obtain

X" = xx] +x,(L; - Y;)T6t + (L;; - Y, )x] 6t + (0 - Q)0 - Q)7 6t

Here, we have only considered a given pair of mesoparticles i and j as the FD theorem has to be satisfied by
any given number of pairs, which ultimately implies it should be satisfied individually for every pair. In view of
this, we have restricted our demonstration to a given pair for simplicity of notation and clarity, but with no loss
of generality. Hence,

(xx!) = / dlP, (D) [xx] + x,(Ly; - Y, )T6t+ (Ly; - Y, x5t + (6 - Q)04 - Q)T )61 (B3)

Note that the first term on the right-hand side of Eq. (B3) is exactly (xixiT), which cancels the left-hand side.
Then, using the properties of the transposed matrix, we get

0= / df“Peq(f“){ [y YxT])" + @y - YixT+ (03 - @0y - @) hg ) (B4)

1
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Next, let us focus on individual terms on the right-hand side of Eq. (B4) separately. We start with rewriting
the second term as

/ dlP, (D)L - Y;)x!
— i 0Peq _ OPeq\ 1
_/dFLij[kB( ox, axj>xi

= - / AP, (kgL (B5)

where partial integration and independence of L;; from u; and mf‘ (the EoOM Eq. (46) are linear in Onsager’s sense)
have been used to arrive to the last equality. The first term is simply the transpose of the second term, i.e.,

/dfpeq(f“) @ 'Yij)XiT]T = —/dFPeq(f)kBLiTj (B6)
Finally, the third term can be rewritten as
/ drP, (Do) - Qo - Q) g
_ ~ ~ T T
= / dl'P,,(O)((o; - QU)(QU%)M
_ / APy, (Do (Q,Q 00T,
- / P, (Do - o7, ®7

where use has been made of the properties of the normalized random numbers, Eqs. (43) and (44), together with
Eq. (47). Inserting Eqgs. (B5)—(B7) into (B4), we get

0= / dfPeq(f)[—kB<Lij + LiTj> +oy- aiTj] (BS)

As we demand that the dynamic coefficients of the model be independent of the reservoir characteristics
contained in Peq(f), to satisfy Eq. (B8) we further impose that

Equation (B9) represents the general FD theorem relating the mesoscopic transport coefficients to the
amplitudes of the thermal fluctuations.

Appendix C: Onsager’s reciprocal relations

Demonstration of Onsager’s reciprocal relations for the mesoscopic transport coefficients follows from the
evaluation of the autocorrelation of the state vectors at different times, i.e.,

(xxT) = / df*df’peq(f)W(F_) I:’)étxixl’.T (1
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Using the compact form of the EoM Eg. (46), together with the property of the transition probability Eq. (B2)
and the fact that the random terms are not correlated to other state variables at the same instant of time, we
can rewrite Eq. (C1) as

(xxTy = / AlPe (D) [xx] + x,(Ly; - ;)51 (C2)

Analogously to Appendix B, in this demonstration we only consider a pair of mesoparticles, namely i and j,
as the validity of ORR should be independent of the number of pairs. Next, using DB [44],

Peq(f)W(f STst= peq(f*)w(f—* Pt

it follows that
(xxT) = / APl P (OWT - ') 6t x,x)"
- / dldl P, W™ — Tt xx]"
= / dl*dl™ P (W™ - T*) 6t x;'x; "
= (xx)
where
(x/xT) = / dlP, (D) [x;x] + (Ly; - Y;)x] 6] (3

Equating the right-hand sides of Eqgs. (C2) and (C3), and using the properties of the transposed matrix, we
get

/ AP (D)X - YxT] = / AP, (DL, - Y;)x" (C4)

The above integrals were already solved in Eqs. (B5) and (B6). Invoking again the independence of L; from
the reservoir properties, Eq. (C4) is satisfied if we further demand that

Li/‘ — LiTj (C5)

Therefore, we conclude that, for a binary mixture, the condition L;‘j’" = Lg?“ corresponds to the sought ORR
for the system at the mesoscopic level and for every pair of particles.
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