Home Optimal Configuration of Finite Source Heat Engine Cycle for Maximum Output Work with Complex Heat Transfer Law
Article
Licensed
Unlicensed Requires Authentication

Optimal Configuration of Finite Source Heat Engine Cycle for Maximum Output Work with Complex Heat Transfer Law

  • Jun Li and Lingen Chen EMAIL logo
Published/Copyright: July 20, 2022

Abstract

A finite source heat engine’s optimal configuration is studied. The model includes thermal resistance, heat leakage, a complex heat transfer law, and a heat source with variable temperature. The optimization objective is that the output work is the largest. The influences of factors such as the heat transfer law and heat leakage are analyzed. The results of this paper are universal and inclusive, and provide certain theoretical support for the performance improvement of actual heat engines.

Acknowledgment

The authors wish to thank the reviewers for their careful, unbiased, and constructive suggestions, which led to this revised manuscript.

Nomenclature

C

heat capacity, J / K

C i

heat conductivity of heat leakage, W / ( m 2 · K )

g

heat conductivity, W / ( m 2 · K )

HTHS

high temperature heat source

L

Lagrangian function

LTHS

low temperature heat source

m

heat transfer index

n

heat transfer index

Q

heat flux, J

q

heat leakage, J

S

entropy, J / K

T

temperature, K

T

derivative of temperature

t

time, s

W

output work, J

Greek symbols

λ

Lagrangian constant

τ

cycle period, s

ξ

control variable

ξ

derivative of control variable

Subscripts

C

conversion point of working substance

H

high temperature

H C

working substance absorbed heat

i

heat leakage

L

low temperature

L C

working substance released heat

x

heat source

References

[1] B. Andresen, Finite-Time Thermodynamics, University of Copenhagen, 1983.Search in Google Scholar

[2] S. Sieniutycz and J. S. Shiner, Thermodynamics of irreversible processes and its relation to chemical engineering: Second law analyses and finite time thermodynamics, J. Non-Equilib. Thermodyn. 19 (1994), no. 4, 303–348.Search in Google Scholar

[3] K. H. Hoffmann, J. M. Burzler and S. Schubert, Endoreversible thermodynamics. J. Non-Equilib. Thermodyn. 22 (1997), no. 4, 311–355.Search in Google Scholar

[4] L. G. Chen, C. Wu and F. R. Sun, Finite time thermodynamic optimization or entropy generation minimization of energy systems, J. Non-Equilib. Thermodyn. 24 (1999), no. 4, 327–359.10.1515/JNETDY.1999.020Search in Google Scholar

[5] K. H. Hoffman, J. Burzler, A. Fischer, M. Schaller and S. Schubert, Optimal process paths for endoreversible systems, J. Non-Equilib. Thermodyn. 28 (2003), no. 3, 233–268.10.1515/JNETDY.2003.015Search in Google Scholar

[6] B. Andresen, Current trends in finite-time thermodynamics, Angew. Chem., Int. Ed. 50 (2011), no. 12, 2690–2704.10.1002/anie.201001411Search in Google Scholar

[7] R. S. Berry, P. Salamon and B. Andresen, How it all began. Entropy 22 (2020), no. 8, 908.10.3390/e22080908Search in Google Scholar

[8] L. G. Chen and J. Li, Thermodynamic Optimization Theory for Two-Heat-Reservoir Cycles, Science Press, Beijing, 2021 (in Chinese).Search in Google Scholar

[9] F. L. Curzon and B. Ahlborn, Efficiency of Carnot engine at maximum power output, J. Phys. 43 (1975), no. 1, 22–24.10.1119/1.10023Search in Google Scholar

[10] A. Bejan, Theory of heat transfer-irreversible power plant, Int. J. Heat Mass Transf. 31 (1988), no. 6, 1211–1219.10.1016/0017-9310(88)90064-6Search in Google Scholar

[11] O. M. Ibrahim and R. I. Bourisli, The maximum power cycle operating between a heat source and heat sink with finite heat capacities, J. Non-Equilib. Thermodyn. 46 (2021), no. 4, 383–402.10.1515/jnet-2020-0086Search in Google Scholar

[12] H. J. Feng, Z. X. Wu, L. G. Chen and Y. L. Ge, Constructal thermodynamic optimization for dual-pressure organic Rankine cycle in waste heat utilization system, Energy Convers. Manage. 227 (2021), 113585.10.1016/j.enconman.2020.113585Search in Google Scholar

[13] J. Lin, S. Xie, C. X. Jiang, Y. F. Sun, J. C. Chen and Y. R. Zhao, Maximum power and corresponding efficiency of an irreversible blue heat engine for harnessing waste heat and salinity gradient energy. Sci. China, Technol. Sci. 65 (2022), no. 3, 646–656.10.1007/s11431-021-1954-9Search in Google Scholar

[14] F. Angulo-Brown, An ecological optimization criterion for finite-time heat engines, J. Appl. Phys. 69 (1991), no. 11, 7465–7469.10.1063/1.347562Search in Google Scholar

[15] N. Sánchez-Salas, J. C. Chimal-Eguía and M. A. Ramírez-Moreno, Optimum performance for energy transfer in a chemical reaction system, Physica A 446 (2016), 224–233.10.1016/j.physa.2015.11.030Search in Google Scholar

[16] M. A. Ramírez-Moreno and F. Angulo-Brown, Ecological optimization of a family of n-Müser motors for an arbitrary value of the solar concentration factor, Physica A 469 (2017), 250–255.10.1016/j.physa.2016.10.097Search in Google Scholar

[17] M. A. Ramírez-Moreno, S. González-Hernández and F. Angulo-Brown, The role of the Stefan-Boltzmann law in the thermodynamic optimization of an n-Müser engine, Physica A 444 (2016), 914–921.10.1016/j.physa.2015.10.094Search in Google Scholar

[18] P. R. Chauhan, K. Kumar, R. Kumar, M. Rahimi-Gorji and R. S. Bharj, Effect of thermophysical property variation on entropy generation towards micro-scale, J. Non-Equilib. Thermodyn. 45 (2020), no. 1, 1–17.10.1515/jnet-2019-0033Search in Google Scholar

[19] Z. M. Ding, Y. L. Ge, L. G. Chen, H. J. Feng and S. J. Xia, Optimal performance regions of Feynman’s ratchet engine with different optimization criteria, J. Non-Equilib. Thermodyn. 45 (2020), no. 2, 191–207.10.1515/jnet-2019-0102Search in Google Scholar

[20] W. X. Liu, L. G. Chen, Y. L. Ge, H. J. Feng, F. Wu and G. Lorenzini, Exergy-based ecological optimization of an irreversible quantum Carnot heat pump with spin-1/2 systems, J. Non-Equilib. Thermodyn. 46 (2021), no. 1, 61–76.10.1515/jnet-2020-0028Search in Google Scholar

[21] Y. L. Ge, L. G. Chen and H. J. Feng, Ecological optimization of an irreversible Diesel cycle. Eur. Phys. J. Plus 136 (2021), no. 2, 198.10.1140/epjp/s13360-021-01162-zSearch in Google Scholar

[22] C. Q. Tang, L. G. Chen, H. J. Feng and Y. L. Ge, Four-objective optimization for an improved irreversible closed modified simple Brayton cycle, Entropy 23 (2021), no. 3, 282.10.3390/e23030282Search in Google Scholar PubMed PubMed Central

[23] Y. L. Ge, S. S. Shi, L. G. Chen, D. F. Zhang and H. J. Feng, Power density analysis and multi-objective optimization for an irreversible Dual cycle, J. Non-Equilib. Thermodyn. 47 (2022), no. 3, 289–309.10.1515/jnet-2021-0083Search in Google Scholar

[24] T. Yilmaz, A new performance criterion for thermal engines: efficient power, J. Energy Inst. 79 (2006), no. 1, 38–41.10.1179/174602206X90931Search in Google Scholar

[25] A. Calvo-Hernández, A. Medina, J. M. M. Roco, J. A. White and S. Velasco, Unified optimization criteria for power converters, Phys. Rev. E 63 (2001), no. 3, 037102.10.1103/PhysRevE.63.037102Search in Google Scholar

[26] L. G. Chen, F. K. Meng, Y. L. Ge, H. J. Feng and S. J. Xia, Performance optimization of a class of combined thermoelectric heating devices. Sci. China, Technol. Sci. 63 (2020), no. 12, 2640–2648.10.1007/s11431-019-1518-xSearch in Google Scholar

[27] L. G. Chen, F. K. Meng, Y. L. Ge and H. J. Feng, Performance optimization for a multielement thermoelectric refrigerator with another linear heat transfer law, J. Non-Equilib. Thermodyn. 46 (2021), no. 2, 149–162.10.1515/jnet-2020-0050Search in Google Scholar

[28] S. S. Qiu, Z. M. Ding, L. G. Chen and Y. L. Ge, Performance optimization of thermionic refrigerators based on van der Waals heterostructures. Sci. China, Technol. Sci. 64 (2021), no. 5, 1007–1016.10.1007/s11431-020-1749-9Search in Google Scholar

[29] S. S. Qiu, Z. M. Ding, L. G. Chen and Y. L. Ge, Performance optimization of three-terminal energy selective electron generators. Sci. China, Technol. Sci. 64 (2021), no. 8, 1641–1652.10.1007/s11431-020-1828-5Search in Google Scholar

[30] Z. M. Ding, S. S. Qiu, L. G. Chen and W. H. Wang, Modeling and performance optimization of double-resonance electronic cooling device with three electron reservoirs, J. Non-Equilib. Thermodyn. 46 (2021), no. 3, 273–289.10.1515/jnet-2020-0105Search in Google Scholar

[31] C. Z. Qi, Z. M. Ding, L. G. Chen, Y. L. Ge and H. J. Feng, Modelling of irreversible two-stage combined thermal Brownian refrigerators and their optimal performance, J. Non-Equilib. Thermodyn. 46 (2021), no. 2, 175–189.10.1515/jnet-2020-0084Search in Google Scholar

[32] L. G. Chen, P. L. Li, S. J. Xia, R. Kong and Y. L. Ge, Multi-objective optimization for membrane reactor for steam methane reforming heated by molten salt. Sci. China, Technol. Sci. 65 (2022), no. 6, 1396–1414.10.1007/s11431-021-2003-0Search in Google Scholar

[33] D. Gutowicz-Krusin, J. Procaccia and J. Ross, On the efficiency of rate processes: Power and efficiency of heat engines, J. Chem. Phys. 69 (1978), no. 9, 3898–3906.10.1063/1.437127Search in Google Scholar

[34] M. H. Rubin, Optimal configuration of a class of irreversible heat engines, Phys. Rev. A 19 (1979), no. 3, 1272–1287.10.1103/PhysRevA.19.1272Search in Google Scholar

[35] M. H. Rubin, Optimal configuration of an irreversible heat engine with fixed compression ratio, Phys. Rev. A 22 (1980), no. 4, 1741–1752.10.1103/PhysRevA.22.1741Search in Google Scholar

[36] R. Paul, A. Khodja and K. H. Hoffmann, An endoreversible model for the regenerators of Vuilleumier refrigerators, J. Non-Equilib. Thermodyn. 46 (2021), no. 2, 184–192.10.5541/ijot.877687Search in Google Scholar

[37] R. Paul and K. H. Hoffmann, Optimizing the piston paths of Stirling cycle cryocoolers, J. Non-Equilib. Thermodyn. 47 (2022), no. 2, 195–203.10.1515/jnet-2021-0073Search in Google Scholar

[38] Badescu V. Self-driven reverse thermal engines under monotonous and oscillatory optimal operation, J. Non-Equilib. Thermodyn. 46 (2021), no. 3, 291–319.10.1515/jnet-2020-0103Search in Google Scholar

[39] V. Badescu, Maximum reversible work extraction from a blackbody radiation reservoir. A way to close the old controversy. Europhys. Latv. 109 (2015), no. 4, 40008.10.1209/0295-5075/109/40008Search in Google Scholar

[40] V. Badescu, Maximum work rate extractable from energy fluxes, J. Non-Equilib. Thermodyn. 47 (2022), no. 1, 77–93.10.1515/jnet-2021-0039Search in Google Scholar

[41] P. L. Li, L. G. Chen, S. J. Xia, R. Kong and Y. L. Ge, Total entropy generation rate minimization configuration of a membrane reactor of methanol synthesis via carbon dioxide hydrogenation. Sci. China, Technol. Sci. 65 (2022), no. 3, 657–678.10.1007/s11431-021-1935-4Search in Google Scholar

[42] P. L. Li, L. G. Chen, S. J. Xia, R. Kong and Y. L. Ge, Multi-objective optimal configurations of a membrane reactor for steam methane reforming. Energy Rep. 8 (2022), 527–538.10.1016/j.egyr.2021.11.288Search in Google Scholar

[43] M. J. Ondrechen, M. H. Rubin and Y. B. Band, The generalized Carnot cycles: a working fluid operating in finite time between heat sources and sinks, J. Chem. Phys. 78 (1983), no. 7, 4721–4727.10.1063/1.445318Search in Google Scholar

[44] Z. J. Yan and L. X. Chen, Optimal performance of a generalized Carnot cycles for another linear heat transfer law, J. Chem. Phys. 92 (1990), no. 3, 1994–1998.10.1063/1.458031Search in Google Scholar

[45] J. Li, L. G. Chen and F. R. Sun, Optimal configuration of a class of endoreversible heat-engines for maximum power-output with linear phenomenological heat-transfer law, Appl. Energy 84 (2007), no. 9, 944–957.10.1016/j.apenergy.2007.03.001Search in Google Scholar

[46] H. J. Song, L. G. Chen, J. Li, F. R. Sun and C. Wu, Optimal configuration of a class of endoreversible heat engines with linear phenomenological heat transfer law q ( Δ T 1 ), J. Appl. Phys. 100 (2006), no. 12, 124907.10.1063/1.2400512Search in Google Scholar

[47] H. J. Song, L. G. Chen and F. R. Sun, Endoreversible heat engines for maximum power output with fixed duration and radiative heat-transfer law, Appl. Energy 84 (2007), no. 4, 374–388.10.1016/j.apenergy.2006.09.003Search in Google Scholar

[48] H. J. Song, L. G. Chen, F. R. Sun and S. B. Wang, Configuration of heat engines for maximum power output with fixed compression ratio and generalized radiative heat transfer law, J. Non-Equilib. Thermodyn. 33 (2008), no. 3, 275–295.10.1515/JNETDY.2008.012Search in Google Scholar

[49] L. G. Chen, H. J. Song, F. R. Sun, S. B. Wang and C. Wu, Optimal configuration of heat engines for maximum power with generalized radiative heat transfer law, Int. J. Ambient Energy 30 (2009), no. 3, 137–160.10.1080/01430750.2009.9675799Search in Google Scholar

[50] L. G. Chen, H. J. Song, F. R. Sun and S. B. Wang, Optimal configuration of heat engines for maximum efficiency with generalized radiative heat transfer law, Rev. Mex. Fis. 55 (2009), no. 1, 55–67.Search in Google Scholar

[51] L. G. Chen, X. Q. Zhu, F. R. Sun and C. Wu, Optimal configuration and performance for a generalized Carnot cycle assuming the heat transfer law Q ( Δ T ) m , Appl. Energy 78 (2004), no. 3, 305–313.10.1016/j.apenergy.2003.08.006Search in Google Scholar

[52] G. H. Xiong, J. C. Chen and Z. J. Yan, The effect of heat transfer law on the performance of a generalized Carnot cycle, J. Xiamen Univ. Nat. Sci. 28 (1989), no. 5, 489–494 (in Chinese).Search in Google Scholar

[53] L. G. Chen, X. Q. Zhu, F. R. Sun and C. Wu, Effect of mixed heat resistance on the optimal configuration and performance of a heat-engine cycle, Appl. Energy 83 (2006), no. 6, 537–544.10.1016/j.apenergy.2005.05.005Search in Google Scholar

[54] J. Li, L. G. Chen and F. R. Sun, Optimal configuration for a finite high temperature source heat engine cycle with complex heat transfer law. Sci. China, Ser. G, Phys. Mech. Astron. 52 (2009), no. 4, 587–592.10.1007/s11433-009-0074-5Search in Google Scholar

[55] L. G. Chen, S. B. Zhou, F. R. Sun and C. Wu, Optimal configuration and performance of heat engines with heat leak and finite heat capacity, Open Syst. Inf. Dyn. 9 (2002), no. 1, 85–96.10.1023/A:1014235029474Search in Google Scholar

[56] L. G. Chen, F. R. Sun and C. Wu, Optimal configuration of a two-heat-reservoir heat-engine with heat leak and finite thermal capacity, Appl. Energy 83 (2006), no. 2, 71–81.10.1016/j.apenergy.2004.09.004Search in Google Scholar

[57] C. T. O’Sullivan, Newtonian law of cooling—A critical assessment, Am. J. Phys. 58 (1990), no. 12, 956–960.10.1119/1.16309Search in Google Scholar

Received: 2022-03-27
Revised: 2022-06-05
Accepted: 2022-07-04
Published Online: 2022-07-20
Published in Print: 2022-10-31

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jnet-2022-0024/html
Scroll to top button