Home Shock Wave in van der Waals Gas
Article
Licensed
Unlicensed Requires Authentication

Shock Wave in van der Waals Gas

  • Andriy A. Avramenko , Igor V. Shevchuk EMAIL logo and Nataliya P. Dmitrenko
Published/Copyright: February 15, 2022

Abstract

In this work, an analytical analysis of the dynamics of a van der Waals gas flow passing through a direct shock wave was performed. For this purpose, modified Rankine-Hugoniot conditions were used. The influence of parameters α and β of the van der Waals model and the pressure jump in the shock adiabat was analyzed. Relations for the velocity jump in flow were obtained, and the influence of parameters α and β on the velocity jump was revealed. Calculations made it possible to estimate the limits of applicability of the van der Waals model, within which it adequately describes the physics of the process under consideration.

Nomenclature

a

speed of sound, m/s

c p

isobaric heat capacity, J/K

c v

isochoric heat capacity, J/K

h

specific enthalpy, J/kg

k

isentropic expansion exponent

p

pressure, Pa

R

individual (specific) gas constant, J/kg · K

S

entropy J/K

T

temperature, K

u

internal energy, J/kg

V

flow velocity, m/s

v

specific volume, m3/kg

λ

velocity coefficient

ρ

density, kg/m3

Greek symbols

α

constant of the van der Waals model

β

constant of the van der Waals model

Dimensionless numbers

M = V / a

Mach number

Subscripts

1

parameters before the shock wave

2

parameters after the shock wave

References

[1] P. M. Ligrani, E. S. McNabb, H. Collopy, M. Anderson and S. M. Marko, Recent investigations of shock wave effects and interactions, Adv. Aerodyn. 2 (2020), 4.10.1186/s42774-020-0028-1Search in Google Scholar

[2] Ya. B. Zel’dovich and Yu. P. Reizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena, Dover, New York, 2002.Search in Google Scholar

[3] Y. A. Çengel and M. A. Boles, Thermodynamics: An Engineering Approach, 5th ed., McGraw-Hill Education, New York, NY, USA, 2004.Search in Google Scholar

[4] B. Weigand, J. Köhler and J. von Wolfersdorf, Thermodynamik kompakt, 4., Aktualisierte Auflage, Springer-Verlag, Berlin Heidelberg, 2016.10.1007/978-3-662-49703-6Search in Google Scholar

[5] G. Zhang and H. D. Kim, Numerical simulation of shock wave and contact surface propagation in micro shock tubes, J. Mech. Sci. Technol. 29 (2015), 1689–1696.10.1007/s12206-015-0341-5Search in Google Scholar

[6] H.-K. Kang, M. Tsutahara, K.-D. Ro and Y.-H. Lee, Numerical simulation of shock wave propagation using the finite difference lattice Boltzmann method, KSME Int. J. 16 (2002), no. 10, 1327–1335.10.1007/BF02983840Search in Google Scholar

[7] H. Li, G. Ben-Dor and Z. Y. Han, Analytical prediction of the reflected-diffracted shock wave shape in the interaction of a regular reflection with an expansive corner, Fluid Dyn. Res. 14 (1994), no. 5, 229–239.10.1016/0169-5983(94)90033-7Search in Google Scholar

[8] S. W. Yuan and A. M. Bloom, An analytical approach to hypervelocity impact, AIAA J. 2 (1964), no. 9, 1667–1669.10.2514/6.1963-192Search in Google Scholar

[9] P. Valentini, P. A. Tump, C. Zhang and T. E. Schwartzentruber, Molecular dynamics simulations of shock waves in mixtures of noble gases, J. Thermophys. Heat Transf. 27 (2013), no. 2, 226–234.10.2514/1.T3903Search in Google Scholar

[10] C. Tomkins, S. Kumar, G. Orlicz and K. Prestridge, An experimental investigation of mixing mechanisms in shock-accelerated flow, J. Fluid Mech. 611 (2008), 131–150.10.1017/S0022112008002723Search in Google Scholar

[11] T. Ruggeri, A. Mentrelli and M. Sugiyama, Admissible shock waves and shock-induced phase transition in a van der waals fluid (Part II – Rankine-Hugoniot conditions and shock admissibility), in: Waves and Stability in Continuous Media (2010), 279–288.10.1142/9789814317429_0038Search in Google Scholar

[12] A. Mentrelli, T. Ruggeri, M. Sugiyama and N. Zhao, Shock wave admissibility and shock-induced phase transitions in a van der Waals fluid, in: Hyperbolic Problems, Series in Contemporary Appl. Math. (2012), 559–567.10.1142/9789814417099_0057Search in Google Scholar

[13] N. Zhao, A. Mentrelli, T. Ruggeri and M. Sugiyama, Admissible shock waves and shock-induced phase transition in a van der Waals fluid, Phys. Fluids 23 (2011), 086101.10.1063/1.3622772Search in Google Scholar

[14] S. Taniguchi, A. Mentrelli, T. Ruggeri, M. Sugiyama and N. Zhao, Prediction and simulation of compressive shocks with lower perturbed density for increasing shock strength in real gases, Phys. Rev. E, Stat. Nonlinear Soft Matter Phys. 82 (2010), no. 3, 036324.10.1103/PhysRevE.82.036324Search in Google Scholar PubMed

[15] J. W. Bates and D. C. Montgomery, Some numerical studies of exotic shock wave behavior, Phys. Fluids 11 (1999), no. 2, 462–475.10.1063/1.869862Search in Google Scholar

[16] S. P. D’yakov, On the stability of shock waves, Zh. Eksp. Teor. Fiz. 27 (1954), 288. (Translation into English: Air Force Office of Scientific Research Report AFOSR-TN-56-406, 1956).Search in Google Scholar

[17] A. V. Konyukhov, A. P. Likhachev, V. E. Fortov, K. V. Khishchenko, S. I. Anisimov, A. M. Oparin, et al., On the neutral stability of a shock wave in real media, JETP Lett. 90 (2009), no. 1, 18–24.10.1134/S0021364009130050Search in Google Scholar

[18] N. M. Kuznetsov, Contribution to shock-wave stability theory, J. Exp. Theor. Phys. 61 (1985), no. 2, 275.Search in Google Scholar

[19] Z. Somogyi and P. H. Roberts, Stability of an imploding spherical shock wave in a van der Waals Gas II, Q. J. Mech. Appl. Math. 60 (2007), no. 3, 289–309.10.1093/qjmam/hbm006Search in Google Scholar

[20] T. Nath, R. K. Gupta and L. P. Singh, Evolution of weak shock waves in non-ideal magnetogasdynamics, Acta Astronaut. 133 (2017), 397–402.10.1016/j.actaastro.2016.10.029Search in Google Scholar

[21] J. P. Vishwakarma and G. Nath, A self-similar solution of a shock propagation in a mixture of a non-ideal gas and small solid particles, Meccanica 44 (2009), no. 3, 239–254.10.1007/s11012-008-9166-ySearch in Google Scholar

[22] A. A. Avramenko, N. P. Dmitrenko, A. B. Kravchuk, Yu. Yu. Kovetskaya and A. I. Tyrinov, Hydrodynamics of a Nonstationary Flow in a Microcylinder Beginning Sudden Rotation, J. Eng. Phys. Thermophys. 91 (2018), no. 6, 1452–1462.10.1007/s10891-018-1880-2Search in Google Scholar

[23] A. A. Avramenko, A. I. Tyrinov, I. V. Shevchuk and N. P. Dmitrenko, Centrifugal instability of nanofluids with radial temperature and concentration non-uniformity between co-axial rotating cylinders, Eur. J. Mech. B, Fluids 60 (2016), 90–98.10.1016/j.euromechflu.2016.08.001Search in Google Scholar

[24] A. A. Avrameko, A. I. Tyrinov, I. V. Shevchuk and N. P. Dmitrenko, Dean instability of nanofluids with radial temperature and concentration non-uniformity, Phys. Fluids 28 (2016), no. 3, 034104.10.1063/1.4942896Search in Google Scholar

[25] W. J. M. Rankine, On the thermodynamic theory of waves of finite longitudinal disturbance, Philos. Trans. R. Soc. Lond. 160 (1870), 277–288.10.1007/978-1-4612-2218-7_5Search in Google Scholar

[26] H. Hugoniot, Mémoire sur la propagation des mouvement dans les corps et spécialement dans les gaz parfaits (première partie) [Memoir on the propagation of movements in bodies, especially perfect gases (first part)], J. Éc. Polytech. 57 (1887), 3–97. See also.Search in Google Scholar

[27] H. Hugoniot, Mémoire sur la propagation des mouvements dans les corps et spécialement dans les gaz parfaits (deuxième partie) [Memoir on the propagation of movements in bodies, especially perfect gases (second part)], J. Éc. Polytech. 58 (1889), 1–125.Search in Google Scholar

[28] J. D. Anderson, Modern Compressible Flow: With Historical Perspective, McGraw-Hill, New York, 1990.Search in Google Scholar

[29] A. A. Avramenko, I. V. Shevchuk, Y. Yu. Kovetskaya and N. P. Dmitrenko, An integral method for natural convection of van der waals gases over a vertical plate, Energies 14 (2021), no. 15, 4537.10.3390/en14154537Search in Google Scholar

[30] A. A. Avramenko, I. V. Shevchuk and M. M. Kovetskaya, An analytical investigation of natural convection of a van der Waals gas over a vertical plate, 6 (2021), no. 3, 121.10.3390/fluids6030121Search in Google Scholar

[31] L. G. Loitsyanskii, Mechanics of Liquids and Gases, International Series of Monographs in Aeronautics and Astronautics, 2nd ed., Elsevier Ltd, 1966.Search in Google Scholar

Received: 2021-12-27
Accepted: 2022-01-23
Published Online: 2022-02-15
Published in Print: 2022-07-31

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 24.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jnet-2021-0099/html?lang=en
Scroll to top button