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Abstract: Density gradient theory describes the evolution of diffuse interfaces in both mixtures and pure sub-
stances by minimization of the total free energy, which consists of a non-convex bulk part and an interfacial
part. Minimization of the bulk free energy causes phase separation while building up the interfacial free en-
ergy (proportional to the square of gradients of the species’ densities) and it results in the equilibrium shape
of the interface. However, direct minimization of the free energy is numerically unstable and the coefficients
in the interfacial part of the free energy are often estimated from experimental data (not determined from the
underlying physics). In this paper we develop a robust physics-based numerical approach that leads to the
interface density profiles for both pure substances and mixtures. The model is free of fitting parameters and
validated by available experimental data.
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1 Introduction

Understanding the mechanism of particle organization at phase boundaries and surfaces is vital for many
branches of industry, medicine, engineering, and science, ranging from separation processes (e. g., liquid—
liquid extraction, distillation), bubble flow reactors, shale gas extraction, and production of hetero-phase
materials with tailored morphology [1-5] to the study of age-related human diseases [6].

Probably the first rigorous formulation of diffuse interface dynamics was created by Van der Waals [7],
whose theory was later revisited and refined by Landau and Lifshitz [8], Mitsui and Furuichi [9], and many
others [10]. Cahn and Hilliard [11] applied the theory to investigate evolution of phase boundary in vapor—
liquid and liquid-liquid systems. The objective is to find the equilibrium profiles of densities of particular
species p;(r) by minimizing the total free energy, which consists of non-convex bulk terms and non-local
interfacial terms. But what does the total free energy of a system look like?

A classical way is to take an equation of state (EoS), for instance the Van der Waals EoS, and add the
squares of the gradients of the densities of particular species multiplied by some constants (influence pa-
rameters) which are estimated from experimental data [12-14], recently even for ternary [15] and quaternary
systems [16]. In order to make the theory more predictive, the influence parameters can also be obtained from
the first principles. Indeed, the EoS itself comes from a bulk free energy obtained by a local approximation
of an interaction potential [17]. When a more precise approximation involving expansion of the interaction
potential in space is carried out, the influence parameters can be calculated [18]. In other words, both the
bulk and interfacial parts of the free energy can be obtained from the underlying physics. Here we extend
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this approach to the Peng-Robinson-Stryjek-Vera (PRSV) EoS, improving the predictions for non-polar sub-
stances. It should be noted that although the interfacial influence parameters can be rigorously derived from
the direct correlation function of the homogeneous fluids [19-21], mathematically simpler and more practical
expressions are usually used.

Minimization of the free energy results in profiles of densities of the species across the phase boundary. In
the spatially one-dimensional case both density functional theory (DFT) and density gradient theory (DGT)
typically arrive at formulation of a boundary value problem (BVP) with second-order ordinary differential
equations accompanied by fixed boundary values (pre-calculated values of density in the bulk of the two
distinct phases) [12, 22-24]. The equations are then discretized, which leads to a set of non-linear algebraic
equations [25]. However, the high non-linearity of the problem, unknown length of the phase boundary (and
thus of the proper computational domain), stability issues, and non-uniqueness of the desired solution make
the problem computationally challenging.

Therefore, iterative schemes [23] adding a time derivative (relaxation) term to the equations have been
proposed [26, 27], and the vapor-liquid interface profile is then calculated by solving a one-dimensional
Cahn-Hilliard equation. Here, we apply this method to non-polar and polar substances and compare the
results with experimental data. Although the relaxation terms come from the mutual friction between the
components in the case of mixtures, such reasoning does not apply in the case of pure substances (no fric-
tion) because then there is no other component to have friction with. In this paper we provide physical and
mathematical reasoning for the relaxation terms in pure substances based on reduction of evolution equa-
tions for Korteweg fluids.

Section 2 contains the PRSV EoS and the corresponding free energy, its physics-based non-local exten-
sion due to the gradients of densities, the general form of the Cahn-Hilliard equation, and a description of the
numerical technique. Section 3 then contains particular results of the simulations and their interpretation.
The developed model is validated using available experimental data, most importantly by means of the val-
ues of surface/interfacial tension predicted for various systems. The numerical method gives the equilibrium
density profiles for non-polar and polar pure substances and mixtures in a robust and physically motivated
way.

2 Methodology

2.1 Peng-Robinson-Stryjek-Vera equation of state

The expression for free energy of the vapor-liquid interface is in our work built upon the Peng—Robinson
(PR) EoS [28]. This equation predicts liquid densities, vapor pressures, and vapor-liquid equilibrium ratios for
pure non-polar chemicals. It is actually a model with three parameters that depend on the critical temperature
and pressure, T, and p., and an acentric factor, w. The EoS reads

2
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Polar compounds need a modification to the PR EoS, the PRSV EoS [29, 30], where k is redefined as
K =Ko+ [Ky + K (ks — T,)(1 — \T)](1+ yT)(07 - T), 3)
Ky = 0.378893 + 1.4897153 w — 0.17131848 W+ 0.0196544 w3,

with x;, x,, and k3 being tabulated adjustable parameters for pure compounds satisfying x = x, for T, > 0.7
while x =k for T, > 1.0 for water and alcohols.
The Helmholtz free energy density corresponding to the PR and PRSV EoSs is

& ap 1+(1-V2)bp
=RT c1In(p; - 1) —p In(1 - 1 ,
f (;p’ n(pi~1)-pIn bp)>+2f2b n<1+(1+\/§)bp> )

where p = Zic p; is the total molar density and a = ¥; ;x;x;a; and b = }; x; b; represent the mixing rules
[31, 32]. Note that x; = p;/p stands for molar fraction of the ith component and the cross term ay(i # j) follows
the conventional one-binary-parameter mixing rule from pure-component parameters, defined by equations

2,

a; = \/Ta](l - kl]) (5)
The binary parameters, k,-]- and kji, which do not depend on the mixture composition, can be obtained from
the equality of fugacities on both sides of the interface for each mixture component [30]. Although the EoS
describes the bulk thermodynamic properties of the system, it can be used also to estimate the energy stored

in the interface, as shown in the following section.

2.2 Weakly non-local free energy and surface tension

Surface tension expresses how free energy is stored in the interface between the phases. The interface is char-
acterized by steep changes in densities while far from the interface the densities approach their bulk values.
Assuming a spatially one-dimensional interface of length L along the spatial coordinate z, the total free en-
ergy then consists of the bulk contribution and weakly non-local terms (dependent on the first gradients)
[17]

L

F(p(z,t)) = j(f(z, H+y %Vpi(z, t) - Vpj(z, t))dz. 6
0 i

The chemical potential of component i is the variational derivative of the free energy with respect to p; and
has thus also a bulk part and a gradient part,

of
op;
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The influence parameter c;; is a key parameter in the calculation of equilibrium profiles. Physically, it mea-
sures the interfacial tension at a given density gradient and affects the steepness of the interfacial density
profile. It stems from the DGT developed by Van der Waals and its theoretical expression for pure compo-
nents (i = j) reads
Cii
a; bf/ ?

= d;, (8)

where d; = 0.305 according to the original DGT formulation [33], or

di :Ai ti +Bi, (9)

o O g , (10)
1.2326 + 1.3757 w; 0.9051 + 1.5410 w;




146 —— L.Satura etal., A Robust Physics-Based Calculation of Evolving Gas—Liquid Interfaces DE GRUYTER

where t; = 1 - T,;, see Miqueu and co-workers [34] for non-polar pure fluids when described by the PR EoS.
The cross terms c;; (i # j) follow the conventional mixing rule,

¢j=(1-By\GiG; for i#]. )
The binary parameter $; and the values of the pure-component influence parameters c; may be correlated
with experimental values of surface/interfacial tension, y, of a pertinent system of spatial length L via

L ¢ ¢ L do2
y=IZZciiji-ijdz or y=Jc<d—Z> dz (12)
o 1 0

for a single component. This can be seen by transformation of free energy (6) to the grand potential and by
subsequent differentiation with respect to the surface area [17]. Solutions to these equations provide bound-
ary conditions for the evolution equations minimizing the free energy, which are discussed in the following
section. Nevertheless, the parameter ﬁ,-]- might not be needed in the model at all, provided that the chosen
EoS models the mixture properties well [35, 36].

2.3 Cahn-Hilliard equation

Densities of the mixture components are governed by their conservation laws, which lead to the BVPs

%(z, t) =-V. (pi(zr t) ui(Z) t))’ z ¢ (O’L))t > O) (13a)
%(2’02%(2,0:0, z=0,z=L, t>0, (13b)
PO =p™,  zeOL), t=0. 13

In order to close this system of equations, velocities u; need to be defined as products of mobilities M;(z, t)
and gradients of generalized chemical potentials, which in vector notation reads

Vu(z, t)
RT ~
where M(z, t) denotes the mobility tensor [37]. In a single-component system, mobility is equivalent to self-
diffusivity, M(z, t) = D [11, 38].
For a single-component system with the PR EoS, we obtain the Cahn-Hilliard equation
op D of ) p 1 d[.0 (of p.o*p
a—tzR—TV[pV(%—ch)] or $=R_T£[p$<$_cl7£>] (15)
in the non-dimensional form with p = %’ T= tL—?, zZ= %, and with p. denoting the molar density of the species
in the critical state. Note that the characteristic dimensionless time 7 actually encodes the self-diffusivity D.
However, this scaling is not feasible in multi-component mixtures because it may lead to disproportion among
the magnitudes of densities of the components, reducing the stability of the numerical scheme.

The evolution equations for mixtures (13a) can be derived by reduction of the hydrodynamic equations
with momenta of the species among the state variables and the mobilities related to the friction between the
species [39]. But what is the physical motivation for a diffusion equation in the case of pure species? The free
energy contains a non-local contribution even in the case of pure substances because such contribution is
caused by the long-range part of interaction potential among molecules of the substance [17]. Evolution of
density and momentum density of the fluid is then described by the Korteweg equations,

op = - V- (pu), (16a)

u(z,t) = M(z,t) (14)

o/(pu) = -V (pueu)-Vp(p) + V<%C(Vp)2 +pV- (ch)) -V-(cVp®Vp)
=-pVF,

+V- (vp(Va + (va)T)), (16b)
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where u denotes the fluid velocity, c is the influence parameter, F, o is the functional derivative of the total free
energy with respect to the density, and v is the kinematic viscosity [39]. In the high Mach number regime,
where variations of density are typically observed [40], density in the Korteweg equations satisfies a fast
diffusion equation,

9,p = 2vAAp, 17)

which can be shown by analysis of convergence of weak solutions [41, 42]. This diffusion equation is called fast
because it represents the initial stage of the evolution (flattening the density profile). After the fast diffusion
equation has relaxed to its equilibrium, the fluid behaves according to the incompressible Navier—Stokes
equations. In other words, the fast diffusion equation can be seen as a consequence of the Korteweg equations
in the high Mach number regime.

Instead of the rigorous mathematical analysis, we can also employ a heuristical approach of dynamic
maximum entropy reduction or asymptotic analysis [39]. First, however, we need to replace the viscous term
in the Korteweg equations with a friction term —{u. To motivate such simplification, imagine a tube with no-
slip boundary conditions with a viscous fluid passing through. In the stationary state the Hagen—Poiseuille
flow is present, where the viscous term is proportional to the average velocity of the fluid. Asymptotic analysis
of the momentum Korteweg equation with ¢ being large then leads to

- pVF, = —{u. (18)

When this equation is plugged into the equation for density, we obtain a Cahn—-Hilliard-type equation for
pure substances.

2.4 Numerical solution procedure

Integration of the Cahn-Hilliard equation as an initial value problem was employed numerically via the ex-
plicit Euler method. The profile of each component’s molar density field was discretized into N spatial steps
within one dimension of length L. In each jth iteration step, the right-hand side term of equation (15) was
calculated gradually from the inner terms to the outside, i. e., applying only first and second derivatives nu-
merically, in the form of finite differences. Formulae of these derivatives — the gradient and the Laplace op-
erator — were chosen of the fourth-order accuracy (using four- and five-point formulae, resp.), to account for

a possibly coarse grid.

With respect to the boundary conditions, the model was implemented following two alternative methods.

In the non-periodic formulation, Dirichlet boundary conditions with fixed bulk densities of individual species

pre-calculated from conditions of thermodynamic equilibrium were applied to the boundary grid points, ac-

companied by fixing the second derivative in the boundary grid points to zero, as this setting enhanced the

stability of the calculation dramatically when compared to the use of the standard Neumann conditions (i. e.,

first derivative equal to zero), cf. equation (13b). In the periodic formulation of the model, periodic boundary

conditions were applied. An advantage of using periodic boundary conditions is the necessity of using only
the initial conditions to start the simulation from. Remarkably, the thermodynamically consistent system
should then naturally converge into domains with densities as calculated in a non-periodic model formula-
tion.

The overall simulation procedure can be summarized in the following points:

1. In the case of a non-periodic model, the bulk molar densities of individual species need to be pre-
calculated for the subsequent use as Dirichlet boundary conditions. Conditions of thermodynamic equi-
librium, i. e., equality of pressure and chemical potential of each component in both phases, need to be
solved in this context, while in two-component systems, pressure needs to be specified as an additional
degree of freedom. The solution was performed in MATLAB R2021a, using the Levenberg—Marquardt
algorithm of the non-linear least-squares constrained 1sgnonlin solver from the Optimization Toolbox.
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2. The length of the computational domain was in all simulations set to L = 10 nm. In the non-periodic
model case, the pre-calculated Dirichlet boundary conditions were combined with fixing the second
derivative of the state variables equal to zero at both domain boundaries. As an initial condition in the
non-periodic formulation, a linear density profile between the equilibrium boundary points was used,
while in the periodic formulation, a noise-like initial profile was imposed, using pseudo-random num-
bers to generate perturbations in the homogeneous system:

) ®
piMt = ’% 1+ rand(0,1) x sin(%)}, i=1,...N. (19)

3. Numerical integration of the dimensionless equation (15) for single-component systems, or egs. (13a) in
the case of two-component systems, was carried out using an explicit Euler scheme.

4, From the steady-state density profiles, interfacial tension was finally estimated using equation (12) by
employing the trapezoidal rule. The binary parameters f; in equation (11) are set to zero in our model;
therefore no parameter estimation from experimental data is done, rendering the predictions free of any
fitting parameters. Apart from the first step, the whole solution procedure is implemented in FORTRAN
language to achieve the highest possible computational performance.

3 Results and discussion

The PRSV EoS leads to the equilibrium densities, vapor pressures, and equilibrium compositions of vapors
and liquids. Figure 1 shows how calculated densities of three aliphatic alkanes, benzene, water, and ethanol
depend on temperature. Table 1 summarizes critical properties of the compounds together with other input
parameters of the PRSV EoS. While for non-polar compounds the predicted and measured densities are in
excellent agreement, the predictive power of the PRSV EoS is lower for less symmetric (n-decane) or polar
(water, ethanol) compounds, as expected [30]. On the other hand, prediction of vapor pressure is accurate
for all calculated compounds across the whole temperature range, including the polar molecules.

The equilibrium densities serve as boundary conditions for the determination of the equilibrium density
profiles. Dynamic simulations of the interface density profile evolution according to the scaled Cahn—-Hilliard
equation (15) were run at several temperatures for seven different compounds. Figure 3 shows an example of
the interface evolution for n-hexane. In the lower part of the figure we can see equalization of the chemical
potential.

Because the linear initial profile does not reflect a realistic event occurring at the interface, but rather
a starting point for the numerical method, next we impose periodic boundary conditions. Figure 2 shows the
results with the initial profile given by the average of the two bulk densities biased by a random perturbation
(in the order of one tenth of the reduced density throughout the domain). We observe Ostwald ripening, where
smaller domains disappear and larger domains (droplets) are formed.

Stability and the convergence rate of the numerical scheme with periodic boundary conditions are sig-
nificantly lower when compared to the non-periodic model implementation, as noted also by Nauman and
He [43]. However, both non-periodic and periodic versions of the model arrive at quantitatively equal shapes
of the interface.

Once the equilibrium density profiles are obtained, the value of surface tension can be extracted from
them using equation (12). Table 2 summarizes the numerically obtained values of surface tension together
with the pertinent temperature ranges T,,, (intersections of the temperature ranges for interfacial tension
from the literature and ranges recommended for use of the PRSV EoS [29]). Figure 4 then illustrates the ac-
curacy of the prediction of surface tension. For the selected non-polar organic substances, the prediction is
in agreement with the experimental data. On the other hand, both PR and PRSV EoSs fail to predict surface
tension in polar compounds (except for the nearly critical region). Therefore, another theoretical framework
should be used in the case of polar compounds; for instance, the statistical association fluid theory (SAFT)
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Figure 1: Experimental data (discrete points) and prediction by the PRSV EoS (curves) for: (@) and (b) bulk liquid densities of
three aliphatic alkanes, benzene, water, and ethanol and (c) equilibrium vapor pressure, all as a function of temperature.
Measured data for densities are sourced as follows: n-hexane [44], n-octane [45], n-decane [46], benzene [47], water [48],
ethanol [49]. Vapor pressures were taken from [46]. The displayed quantities are scaled by their critical values, listed in Table 1
together with other parameters of the PRSV EoS.

Table 1: Parameters of the Peng—Robinson-Stryjek-Vera EoS with temperature range T, of applicability of the values [29, 30].

Compound T, (K) p. (Pa) @ Kq Ky K3 Tran (K)
nitrogen (N,) 126.20 3,400,000 0.03726 0.01996 0.3162 0.535 64-126
water 647.29 22,089,750 0.34380 -0.06635 0.0199 0.443 274-623
n-hexane 507.30 3,012,360 0.30075 0.05104 0.8634 0.460 232-503
n-octane 568.76 2,4864,90 0.39822 0.04460 0.6214 0.509 258-563
n-decane 617.50 2,103,490 0.49052 0.04510 0.8549 0.527 310-563
cyclohexane 553.64 4,075,000 0.20877 0.07023 0.6146 0.530 280-553
benzene 562.16 4,898,000 0.20929 0.07019 0.7939 0.523 279-543
ethanol 513.92 6,148,000 0.64439 -0.03374 —2.6846 0.592 293-485

[50] and the extended perturbed-chain SAFT (PC-SAFT) give accurate predictions in polar fluids [51]. How-
ever, it is unclear how to derive the influence parameters in the weakly non-local part of free energy from the
EoS in the case of the SAFT model.

Similarly as in the case of pure substances, we will now analyze binary mixtures, predicting also gas
solubility in liquids. We use the non-dimensional Cahn-Hilliard system of equations with mobilities (14) for
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Figure 2: Evolution of the scaled density p/p. and scaled chemical potential /(R T) profile of n-hexane in scaled time, 7, at

T = 286.15 K with periodic boundary conditions. The domain of one dimension, z, scaled by the length of L = 1078 m, was dis-
cretized into N = 300 points. The scaled time is computed as t = Y k, where Y is the number of iterations. Here, dimensionless
time step k = 107°.
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Figure 3: Evolution of the scaled density p/p. and scaled chemical potential y/(R T) profile of n-hexane in scaled time, 7, at

T = 286.15 K with fixed boundary conditions — equilibrium bulk densities. The domain of one dimension, z, scaled by the length
of L = 1078 m, was discretized into N = 500 points. The scaled time is computed as T = Y k, where Y is the number of iterations.
Here, dimensionless time step k = 1072°,

Table 2: Interfacial tension prediction — evaluation. Values predicted at the selected temperature T are compared with those ex-
perimentally measured [46, 52]. The temperature range of experimental data T, is provided, as well as the statistical measure
R? of agreement between predictions and experimental data over a wide range of temperatures.

Compound T (K) yee (mNm™?) ¥e® (mN mY) Tran (K) R?
n-hexane 313 15.23 16.28 233-502 0.98
n-octane 339 16.70 17.24 258-528 0.98
n-decane 364 17.20 17.31 310-580 0.99
cyclohexane 388 12.07 14.08 282-553 0.96
benzene 279 29.87 30.77 279-549 0.96
water 355 81.60 62.28 276-544 0.67

ethanol 293 40.04 22.36 293-503 0.64
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Figure 4: Interfacial tension of the liquid—vapor systems versus temperature — model predictions (curves) versus experimental
data (discrete points). Each solid line connects 11 values obtained by integration of the equilibrium density profile predicted
via the PR EoS for each compound. Compared data points from literature: n-hexane [52], n-octane, n-decane, water, and ben-
zene [46].

unitary relative sizes of the molecules and estimated self-diffusivity constants [53]. Figure 5 shows the den-
sity profiles of nitrogen and n-hexane with fixed boundary conditions. Although the prediction of the liquid
composition via the PR EoS description is not accurate (error up to 20 % in the composition), the dynamic
simulation reveals interesting features predicted by the model (Figure 5). The density of n-hexane looks sim-
ilar as in the case of pure n-hexane in Figure 3, but the density of nitrogen has a peak at the interface. This
corresponds to the adsorption of gaseous molecules at the gas—liquid interface, which decreases the surface
tension. Similar profiles have already been theoretically analyzed [54-56] and later obtained from numerical
simulations, for instance by Kou and Sun [32] or Mu and co-workers [27], obtaining the adsorption of methane
or a surfactant at the interface. For more detailed information about this interesting phenomenon, we refer
the reader to the comprehensive review by Stephan and Hasse [57]. Table 3 shows the trend of decreasing
surface tension with increasing pressure.
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Figure 5: Binary vapor-liquid system of nitrogen and n-hexane at T = 298.15Kand p = 20 bar, according to the PRSV EoS.
Evolution of density profiles at time step k = 1072% s, i. e., with total Y = 6 x 10 iteration steps. The degree of discretization was
N =100.
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Table 3: Interfacial tension in the vapor-liquid equilibrium in a mixture of n-hexane and nitrogen at constant temperature T =
298.15 K and different pressures p. Values of bulk nitrogen densities calculated for both the liquid and the vapor phase are
provided as well.

p (kPa) p;'v’:al‘ (molm™3) px’z““ (molm~3) yele (mNm™)
303.975 44.16 114.54 16.43
506.625 75.69 196.51 16.27
810.600 122.97 319.72 16.03

2026.500 312.41 815.11 15.13

4 Conclusions

The DGT model for evolving vapor-liquid interfaces is based on the Cahn-Hilliard equations for both mix-
tures and pure substances and it allows for non-stationary simulation of phase boundary in a computation-
ally robust and effective way.

To obtain expressions for the free (Helmholtz) energy of the evolving vapor-liquid system, we used the
Stryjek-Vera modification of the PR EoS (PRSV EoS). Values of the influence parameters, which express how
energy is stored in the presence of gradients of densities, were not fitted, but determined from the physics
behind the EoS. The PRSV EoS provides good estimates for the bulk density values of non-polar substances,
while for the selected polar species its predictive power is significantly weaker. This can also be seen when
estimating the surface tension, which was carried out for seven distinct substances (five non-polar) at 11
different temperatures. In a two-component simulation of an n-hexane—nitrogen system, the model predicts
adsorption of gaseous molecules on the gas-liquid interface as well as the reduction of the interfacial tension
with increasing pressure.

The evolution equations were solved by the finite difference method with fixed and periodic boundary
conditions. The periodic implementation does not require pre-calculated values of the bulk densities, but
it is less numerically stable and more computationally demanding. Therefore, we carried out most of the
simulations with fixed boundary conditions, which led to fast and reliable predictions of the values of surface
tension (approximately 30 seconds on a common laptop).

In the future we would like to employ more advanced EoSs (for instance PC-SAFT), focus on the descrip-
tion of polymer-solvent systems, and develop a parallelized version of the model to enhance the compu-
tational efficiency. Moreover, we would like to attract attention to a more rigorous derivation of the Cahn-
Hilliard equation from the equations for Korteweg fluids in the case of pure substances. Our conjecture is
that the results could be refined by having a fast Cahn—Hilliard equation instead of the fast diffusion equa-
tion.

Funding: The authors acknowledge financial support from the Czech Science Foundation (GACR), project
19-22834S.
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