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Abstract: We discuss spatio-temporal pattern formation in two separate thermal convective systems. In the
first system, hydrothermal waves (HTW) are modeled numerically in an annular channel. A temperature dif-
ference is imposed across the channel, which induces a surface tension gradient on the free surface of the
fluid, leading to a surface flow towards the cold side. The flow pattern is axially symmetric along the tempera-
ture gradient with an internal circulation for a small temperature difference. This axially symmetric flow (ASF)
becomes unstable beyond a given temperature difference threshold, and subsequently, symmetry-breaking
flow, i. e., rotational oscillating waves or HTW appear. For the second system, Rayleigh—Bénard convection
(RBC) is experimentally studied in the non-turbulent regime. When a thin film of liquid is heated, the com-
peting forces of viscosity and buoyancy give rise to convective instabilities. This convective instability creates
a spatio-temporal non-uniform temperature distribution on the surface of the fluid film. The surface temper-
ature statistics are studied in both these systems as “order” and “disorder” phase separates. Although the
mechanisms that give rise to convective instabilities are different in both cases, we find an agreement on the
macroscopic nature of the thermal distributions in these emergent structures.

Keywords: entropy production, hydrothermal waves, local equilibrium, non-equilibrium thermodynamics,
pattern formation, Rayleigh-Bénard convection

1 Introduction

Pattern formation during thermal convection is a well-studied phenomenon. The complex structures that
emerge as a result of thermally driving the system out-of-equilibrium break spatio-temporal homogeneity.
Generally, studies on pattern formation during thermal convection can be broadly grouped into two classes,
namely, (i) when the system is close enough to equilibrium and (ii) when the system is driven far from equilib-
rium. While close-to-equilibrium phenomena offer exciting opportunities to study stable but complex struc-
tures and their slow relaxation to steady states, far-from-equilibrium processes open up a plethora of ques-
tions regarding turbulence, dissipation, fast time scales, and large-scale order [1-7].

In this article, we focus on the near-equilibrium dynamics of two thermally driven systems: the Rayleigh—
Bénard convection (RBC) system and the hydrothermal wave (HTW) system. We confine ourselves to a pure
thermodynamic study of these two systems; thus, the temperature is our key variable of interest. While the
RBC system is experimentally studied in the non-turbulent regime (low Rayleigh number), the HTW sys-
tem is explored over a broader domain, i.e., from axis-symmetric flows to complex rotational oscillating
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waves [8-12]. In the RBC system, thermal data of the top layer of the fluid film are obtained through infrared
imaging; the HTW system, on the other hand, is simulated numerically based on the Navier—Stokes equations
with appropriate boundary conditions. As these systems are driven out-of-equilibrium, the spatial symmetry
is broken with the emergence of stable spatio-temporal complex patterns. While these complex patterns are
recorded in-plane due to the global thermal driving, a thermodynamic flux orthogonal to the global driving
force emerges due to the emergent complex thermal patterns [13]. The thermal patterns and the emergent
flux exist as long as the system is being driven. In the near-equilibrium regime, it is shown in this paper that
the thermal statistics at the microscopic scale obtained from these two systems show similar behavior. Also,
as a numerical model, the HTW system allows us to explore a larger parameter space than the RBC system,
thus providing additional insights regarding possible far-from-equilibrium steady states that may behave as
attractors for these dissipative systems to asymptotically converge.

2 Methodology

It has been recently shown that RBC and HTW systems satisfy a linear force—flux relationship when close
enough to equilibrium [11-13]. Thus, under non-equilibrium conditions, the entropy production is maximized
by the emergent thermodynamic flux, orthogonal to the global driving, in agreement with the maximum en-
tropy production principle [14-17]. While the linearity in the force—flux relationship concerns the bulk evo-
lution of the system, it is imperative to ask if the underlying distribution of the local variables bears any key
role in the nature of the macroscopic evolution of the system. The local variable of interest in the following
two systems is temperature and its spatial distribution for our study.

2.1 Rayleigh—-Bénard convection

In the RBC system, the temperature of the top fluid film is recorded using an infrared camera. A thin layer
of high-viscosity silicone oil is placed between a rigid-free boundary. It is driven from a room temperature
equilibrium state to an out-of-equilibrium steady state. As the system reaches a non-equilibrium steady
state, a fixed temperature difference is maintained between the free top layer and the rigid bottom layer,
Tiop < Thottom- As the goal is to have convection cells over as wide an area as possible for the thermal imaging
to yield significant temperature statistics, a large pan diameter to fluid-film thickness is chosen. A thermal
dataset consisting of high-resolution gray-scale images is thus obtained by taking snapshots of the top layer
of the fluid-film at regular intervals of 15 seconds, capturing the moderate to slow dynamics of the emergence
of the convection cell patterns as the system is being driven out-of-equilibrium. The thermal dataset allows us
to obtain pixel-by-pixel temperature values, T;, from the thermal scale present in each gray-scale image. The
circular symmetry of the system is taken into account, and circular regions of interest are chosen. In Figure 1,
a snapshot of a thermal image from the RBC experiment is shown with the region of interest highlighted in
red. First-order thermal statistics, such as mean, (T), and standard deviation, j3, are then obtained over the
pixels in the chosen region of interest as follows:

=LY T and p- \jﬁ Y (T - (D)) 1)
k k

In an RBC system, the convective cells that emerge as a consequence of thermal driving are known to
be three-dimensional. Since the image snapshots capture only the top layer of the fluid film, our statistics
are strictly restricted to the orthogonal plane that describes the top surface of the convective cells. Thus, the
collection of in-plane hot ({T},,)) and cold ({T},,;)) domains gives rise to an emergent flux that is perpendicular
to the global thermal driving force. The emergent flux is absent when there are no thermal patterns, even
though an active thermal driving force is present. The mean separation between these domains as the system
quenches to a non-equilibrium steady state is given by (l). With k as the thermal conductivity of the working
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Figure 1: A steady-state RBC thermal image with striped patterns with a circular region of interest highlighted in red. Note that
bright pixels are hotter than dark ones.

fluid, the emergent flux can be written as follows:

j=—kVT = k (—<T’wf> (‘l><TC°’d> ). )

The emergent flux denotes the onset of surface thermal gradients. It saturates once the system transitions
to a steady state. The growth and saturation of the emergent flux can be empirically described by the following
differential equation:

dj(t)

D240 =Joo Where g, = k(
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Here, j,, denotes the steady-state value of the emergent heat-flux; therefore, j(t) can also be expressed as
jt) = k(AT/D (1 - e /™). The steady-state AT is the width of the steady-state bi-modal surface temperature
distribution reported previously [8-10]. The exponent 7 is the time constant of this lumped system and has
been used to quantify the Deborah number in the recent work [13].

2.2 Hydrothermal wave system

In contrast, the HTW system is numerically solved in a three-dimensional setting (v, = 50 mm, ryper =
15mm, and h = 3 mm) that involves an annular pool of silicon melt subjected to a fixed temperature difference
between them, Tjuer < Touer- Specifically, the temperature of the inner wall is set at Tjyper = T, = 1683K
(T,,: melting point of silicon), and the temperature of the outer wall is varied in the range of T,,, = AT +
Timer = 1684 — 1697 K. Adiabatic conditions were used for the upper surface and bottom surface, and the
initial velocity of the fluid within the container was set to 0 while the temperature was homogeneous at a
value of 1683 K. The governing equations are discretized using the finite volume method, and the numerical
calculations are performed using OpenFOAM, which uses the PISO algorithm. The number of grid points in
the radial direction is chosen to be 81, whereas it is 180 in the circumferential direction and 21 in the vertical
direction. These numbers for the grid are based on the conditions used by Li et al. and the resolution was
sufficient to handle HTW for a fluid with a low Prandtl number [18, 19]. For the inner wall, the outer wall, and
the bottom surface of the container, rigid boundaries were used along with no-slip criteria for the velocity
vector. At the free surface, the thermal Marangoni effect gives rise to convective flow. As the strength of natural
convection relative to Marangoni convection is much weaker, the effect of gravity is ignored when solving the
Navier—Stokes equation.

The temperature differential across the cell causes a surface tension gradient on the fluid’s free surface,
causing a surface flow to the cold side. As a result of the heat convection, numerous flow patterns with inter-
nal circulation emerge. The flow pattern in an annular channel is axially symmetric along the temperature
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Figure 2: In the left panel, a steady-state HTW thermal image with rotating oscillatory waves is shown. The region of interest for
the statistical analysis is denoted by the annular solid lines, and r' ~ 20 — 30 mm is radially projected from the center of the
setup. In the right panel, velocity flow fields of the HTW simulation are shown from the top att = 0 and ¢ = 100 seconds for
AT =10 K. A cross-sectional view of the flow lines is also shown at t = 100 seconds.

gradient and includes internal circulation. Beyond a certain temperature difference threshold, this axially
symmetric flow (ASF) becomes unstable, and symmetry-breaking flow, i. e., rotational oscillating waves, oc-
curs (shown in Figure 2). The oscillating waves propagate perpendicular to the temperature gradient applied
to the system, i. e., the circumferential direction, and the temperature varies periodically. This circular oscil-
lating flow is referred to as a hydrothermal wave (HTW).

In the HTW system, surface temperature statistics are obtained over a well-defined region of interest, as
shown in Figure 2. To account for the oscillatory waves, thermal statistics are also obtained along the angular
coordinates such that

1 1 1 2
Mo =5 J T(6),-pdf and fy= \jﬁ ; (T(9k)r:r' =5 J T(9)r:r'd9) : %)

Similarly, the emergent fluxes are obtained along both circumferential and radial directions. The emer-
gent flux along the 6-direction is obtained by taking the angular gradient of the temperature scalar,

10T
o6

The angular heat flux represents the magnitude of the interference effect between the heat conduction
and viscous dissipation and is an energy source that produces emergent convection. The resulting emergent
convection widens the angular temperature distribution. Thus, the angular standard deviation increases as
the emergent convection grows. Therefore, the relationship between the normal standard deviation and the
angular standard deviation may give the relationship between the applied energy and the energy required
to form emergent convection. The HTW system is different from the RBC system because the emergent order
in RBC quenches at a non-equilibrium steady state. In the HTW system, the emergent order has a periodic
behavior. Being a numerical simulation also allows us a wider parameter space to explore the various aspects
of the stability of the oscillatory phenomena as a function of the input parameters and time.

jo = —kV,T = —k )

3 Results

In Figures 3a and 3c, we plot the temperature standard deviation and the emergent flux as a function of time
for the RBC system. The different regions of the standard deviation time-series plot, growth, decline, and sub-
sequent rise, have been discussed in great detail in previous works. Especially, plots discussing the stages of
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Figure 3: Time-series plot of the standard deviation, 8, and emergent heat-flux, j, for the RBC system for two separate samples
at Ra = 1080 and 1410 are shown in (a) and (c). In panel (c) the two solid lines show fits to the scatter data from equation (3),
where T denotes the two time constants. Note that the time axis is shifted by t', which denotes the onset of surface thermal
gradients (also denoted by the dashed vertical green line). Panels (b) and (d) portray the linear relationship between j and 8
once complex patterns emerge, i. e., for all the data points recorded at time t > t'.

the emergent order as a function of the standard deviation or emergent flux for the RBC are not considered
here as they have been previously reported [10]. The solid lines in Figure 3c denote the fits described in equa-
tion (3). In Figures 3b and 3d, the linear relationship between emergent flux and surface temperature standard
deviation are discussed for the two samples. The slopes of the linear fits (kﬁ) are also shown in the respective
plots.

In this paper, we want to draw attention to the fact that in the HTW system as well, this trend in the sur-
face temperature standard deviation time series is preserved. In Figure 4, we present standard deviation and
emergent flux plots calculated for the HTW system when the sample is subjected to a temperature difference,
AT, maintained at 7.5 K. It is important to note that the two time-series plots in Figure 4a, namely, the plots for
the surface temperature standard deviation, oscillate out-of-phase with respect to each other. In Figure 4b,
snapshots of different stages of the emergent order are also shown at times, t = 40, 80, and 160 seconds.
Along the 6-direction, it can be seen that the emergent flux and surface temperature standard deviation are
in-phase. This may indicate a strong linear relationship between the two.

In Figure 5, standard deviation and emergent flux along the 0-direction are shown for the HTW simula-
tions at AT = 7.5 K. The relationship is observed to be linear after the onset of emergent order. It is interesting
to note that before the onset of emergent order, the magnitude of j, remains very low, similar to the behav-
ior observed in the RBC system (see Figures 3b and 3d), and has no correlation with the surface temperature
standard deviation, f. It is too early to comment whether there exists any connection between the two slopes
obtained from the linear fits, kﬁ, in the RBC system and the slope obtained from the linear fit for the HTW sys-
tem.
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Finally, in Figure 6, we plot the two surface temperature standard deviation variables with respect to
each other as the HTW system exhibits steady-state oscillations. We already discussed in Figure 4a how these
two variables oscillate out-of-phase with respect to each other. Therefore, in the § - B, phase-space these two
variables give rise to limit cycles. As the system is dissipative and out-of-equilibrium, the arrows (dBq/dB < 0)
point to an attractor in phase-space that the system asymptotically evolves towards.

4 Discussion

In this paper, we discuss pattern formation in two thermally driven convective fluid systems. We consider
temperature as our thermodynamic variable of choice and use it to quantify spatio-temporal pattern forma-
tion and, in general, the macroscopic dynamics of the two systems under consideration. In the RBC system,
the temperature is explicitly measured through infrared thermography. In the HTW system, the temperature
at every lattice grid point is obtained by solving the Navier-Stokes equation. From the obtained tempera-
ture time-series data, first-order statistics are computed. While the time evolution of the mean temperature
captures the macroscopic dynamics of the system as it relaxes to a non-equilibrium steady state, the time evo-
lution of the standard deviation is of particular interest as it allows us to identify the regimes in time when
complex spatio-temporal patterns emerge.

The peculiarity in the standard deviation time series — steady rise followed by a steep drop and then
a gradual rise — as patterns emerge has been discussed before, both in the context of the RBC system and
during pattern formation in other dissipative systems [20-22]. In this paper, we consider the HTW system
numerically and observe similar peculiarity in the surface temperature standard deviation time-series plots,
shown in Figure 4. This further strengthens the argument against the observed unusual trend as an experi-
mental artifact. Also, one can observe the similarity between the time evolution of the emergent flux and the
surface temperature standard deviation, in both RBC and HTW systems, from Figures 3 and 5. Further, from
Figures 3b, 3d, and 5 it can be established that in both systems, a linear relationship exists between emergent
flux and surface temperature standard deviation after the onset of emergent order. In contrast, no correlation
exists before order emerges.

This may not be just a coincidence but may instead have deeper implications. For a low energy flux ap-
plied to the system (small temperature difference), the systems’ response to the energy flux is symmetric,
producing a uniform temperature distribution. In this case, ASF occurs in the (HTW) system, and the angu-

— 400
3
0.7 -0.014 o
< «Q 350
oy e i t =80 sec
Q06+ ~00128 g
g T = 300
S s =
= =
® 05+ 00108 .=
s g 2 250
< 0.72360 0.015 %’ 3 t=160 sec
4 L =
204 0.72355 - f\ ~0.014 0.008 & +w 200 -
8 VoW oV W & ©
< 0.72350 - / ~0.013 %) g
Il 4 L [ N
ks 03 0.72345 ~0.012 0.006 § g 150 9 t =40 sec
g 0.72340 1 . . 0.011 S O
~
2 02+ 0 500 1000 ~0004 8 & 100
5 E 5
Q 3 <
€ 0.1 ~-0.002 < 50
(] o
= 3
0.0 a) 0.000 g 0 bl
. A < i
T T T T T T T T T T T T T T
0 200 400 600 800 1000 1200 0 50 100 150 200 250 300
Time, t [sec] Time, t [sec]

Figure 4: (a) Time-series plots of the surface temperature standard deviation, B¢ and 3, for the HTW system are shown for a
sample at AT = 7.5K. The inset plot shows the magnified view of the out-of-phase oscillations of 8 and 4. (b) Time-series plot
of the angular emergent flux, jg, as a function of time with snapshots of the top layer of the fluid at t = 40, 80, and 160 seconds.
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Figure 5: A linear relationship is observed between the standard deviation and emergent heat flux for the HTW system for
asample at AT =7.5K.
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Figure 6: Limit cycle plots between the surface temperature standard deviation, B, and the angular surface temperature stan-
dard deviation, By, for different AT for the HTW system.

lar heat flux remains almost zero. The width of the temperature distribution increases with increasing energy
flux. Therefore, the standard deviation of the temperature distribution corresponds to the applied energy flux.
Beyond the temperature difference threshold (or critical Rayleigh number, Ra,), the symmetry of the temper-
ature distribution is broken, and the heat flux that occurs perpendicular to the applied energy flux creates
an emergent convection phenomenon in both HTW and RBC systems. The threshold is determined from the
maximum entropy production principle [11, 12]. The intersection of the entropy production curves of ASF and
the HTW provides the transition point of the states.

Recently, it has also been shown in the context of the local equilibrium hypothesis in RBC that the emer-
gent flux and the thermodynamic force, calculated as the gradient of the inverse temperature, i.e., X = V(1/T),
are linearly related [13, 23-25]. For stability reasons, it has also been shown that at the near-equilibrium
regime, the microscopic evolution of the patterns and the macroscopic evolution of the system are separated
by time scales that are at least an order of magnitude apart [16, 26, 27]. Therefore, a linear relationship be-
tween surface temperature standard deviation and emergent flux also implies a linear relationship between
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surface temperature standard deviation and thermodynamic force. We believe that this observation is non-
trivial as this emergent thermodynamic force should comply with the second law of thermodynamics and
decrease the potential of the system, as indicated by the largest decline during the time evolution of the sur-
face temperature standard deviation, or equivalently lead to an increase in the entropy production during the
dissipative process of pattern formation [5, 17, 28-30].
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