Home Separation Performance of Nanostructured Ceramic Membranes: Analytical Model Development
Article
Licensed
Unlicensed Requires Authentication

Separation Performance of Nanostructured Ceramic Membranes: Analytical Model Development

  • Mashallah Rezakazemi and Saeed Shirazian EMAIL logo
Published/Copyright: June 14, 2018

Abstract

Nanostructured ceramic membranes have shown considerable separation performance. In this work, an analytical model is developed to evaluate the separation performance of porous ceramic membranes in gas separation applications. The model takes into account three layers, i. e., (1) active layer, (2) interlayer, and (3) support layer. For estimation of sorption at the interface of feed stream and membrane, the partition coefficient model was used and the unsteady-state conservation of mass equation coupled to molecular models of the diffusivity coefficient was used to predict the permeation of penetrant hydrogen gas through a ceramic membrane. It was observed that the model can be readily applied to other systems of interest as a predictive tool.

References

[1] M. Rezakazemi, A. Dashti, M. Asghari and S. Shirazian, H2-selective mixed matrix membranes modeling using ANFIS, PSO-ANFIS, GA-ANFIS, Int. J. Hydrog. Energy 42 (2017), 15211–15225.10.1016/j.ijhydene.2017.04.044Search in Google Scholar

[2] M. Rostamizadeh, M. Rezakazemi, K. Shahidi and T. Mohammadi, Gas permeation through H2-selective mixed matrix membranes: Experimental and neural network modeling, Int. J. Hydrog. Energy 38 (2013), 1128–1135.10.1016/j.ijhydene.2012.10.069Search in Google Scholar

[3] M. Rezakazemi and T. Mohammadi, Gas sorption in H2-selective mixed matrix membranes: Experimental and neural network modeling, Int. J. Hydrog. Energy 38 (2013), 14035–14041.10.1016/j.ijhydene.2013.08.062Search in Google Scholar

[4] M. Rezakazemi, K. Shahidi and T. Mohammadi, Sorption properties of hydrogen-selective PDMS/zeolite 4A mixed matrix membrane, Int. J. Hydrog. Energy 37 (2012), 17275–17284.10.1016/j.ijhydene.2012.08.109Search in Google Scholar

[5] M. Rezakazemi, K. Shahidi and T. Mohammadi, Hydrogen separation and purification using crosslinkable PDMS/zeolite A nanoparticles mixed matrix membranes, Int. J. Hydrog. Energy 37 (2012), 14576–14589.10.1016/j.ijhydene.2012.06.104Search in Google Scholar

[6] A. Dashti, H. R. Harami and M. Rezakazemi, Accurate prediction of solubility of gases within H2-selective nanocomposite membranes using committee machine intelligent system, Int. J. Hydrog. Energy 43 (2018), 6614–6624.10.1016/j.ijhydene.2018.02.046Search in Google Scholar

[7] M. Rezakazemi, A. Ebadi Amooghin, M. M. Montazer-Rahmati, A. F. Ismail and T. Matsuura, State-of-the-art membrane based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions, Prog. Polym. Sci. 39 (2014), 817–861.10.1016/j.progpolymsci.2014.01.003Search in Google Scholar

[8] S. Shirazian and S. N. Ashrafizadeh, Near-critical extraction of the fermentation products by membrane contactors: A mass transfer simulation, Ind. Eng. Chem. Res. 50 (2011), 2245–2253.10.1021/ie101343rSearch in Google Scholar

[9] S. M. R. Razavi, M. Rezakazemi, A. B. Albadarin and S. Shirazian, Simulation of CO2 absorption by solution of ammonium ionic liquid in hollow-fiber contactors, Chem. Eng. Process., Process. Intensif. 108 (2016), 27–34.10.1016/j.cep.2016.07.001Search in Google Scholar

[10] F. Fadaei, V. Hoshyargar, S. Shirazian and S. N. Ashrafizadeh, Mass transfer simulation of ion separation by nanofiltration considering electrical and dielectrical effects, Desalination 284 (2012), 316–323.10.1016/j.desal.2011.09.018Search in Google Scholar

[11] G. Mehdi, F. Safoora and S. Saeed, Modeling of water transport through nanopores of membranes in direct-contact membrane distillation process, Polym. Eng. Sci. 54 (2014), 660–666.10.1002/pen.23601Search in Google Scholar

[12] R. S. M. Reza, S. Saeed and N. M. Sattari, Investigations on the ability of di-isopropanol amine solution for removal of CO2 from natural gas in porous polymeric membranes, Polym. Eng. Sci. 55 (2015), 598–603.10.1002/pen.23924Search in Google Scholar

[13] M. Hemmati, N. Nazari, A. Hemmati and S. Shirazian, Phenol removal from wastewater by means of nanoporous membrane contactors, J. Ind. Eng. Chem. 21 (2015), 1410–1416.10.1016/j.jiec.2014.06.015Search in Google Scholar

[14] M. Rezakazemi, M. Sadrzadeh and T. Matsuura, Thermally stable polymers for advanced high-performance gas separation membranes, Prog. Energy Combust. Sci. 66 (2018), 1–41.10.1016/j.pecs.2017.11.002Search in Google Scholar

[15] M. Fasihi, S. Shirazian, A. Marjani and M. Rezakazemi, Computational fluid dynamics simulation of transport phenomena in ceramic membranes for SO2 separation, Math. Comput. Model. 56 (2012), 278–286.10.1016/j.mcm.2012.01.010Search in Google Scholar

[16] M. Rezakazemi, S. Mirzaei, M. Asghari and J. Ivakpour, Aluminum oxide nanoparticles for highly efficient asphaltene separation from crude oil using ceramic membrane technology, Oil Gas Sci. Technol., Rev. IFP Energies nouvelles 72 (2017), 34.10.2516/ogst/2017031Search in Google Scholar

[17] T. Mohammadi, M. Maghami and M. Rezakazemi, High loaded synthetic hazardous wastewater treatment using lab-scale submerged ceramic membrane bioreactor, Period. Polytech., Chem. Eng. (2017), 1–6.Search in Google Scholar

[18] S. Shirazian, M. Rezakazemi, A. Marjani and M. S. Rafivahid, Development of a mass transfer model for simulation of sulfur dioxide removal in ceramic membrane contactors, Asia-Pac. J. Chem. Eng. 7 (2012), 828–834.10.1002/apj.641Search in Google Scholar

[19] S. Shirazian and S. N. Ashrafizadeh, Synthesis of substrate-modified LTA zeolite membranes for dehydration of natural gas, Fuel 148 (2015), 112–119.10.1016/j.fuel.2015.01.086Search in Google Scholar

[20] S. Shirazian and S. N. Ashrafizadeh, LTA and ion-exchanged LTA zeolite membranes for dehydration of natural gas, J. Ind. Eng. Chem. 22 (2015), 132–137.10.1016/j.jiec.2014.06.034Search in Google Scholar

[21] F. Gallucci, E. Fernandez, P. Corengia and M. van Sint Annaland, Recent advances on membranes and membrane reactors for hydrogen production, Chem. Eng. Sci. 92 (2013), 40–66.10.1016/j.ces.2013.01.008Search in Google Scholar

[22] Z. D. Hendren, J. Brant and M. R. Wiesner, Surface modification of nanostructured ceramic membranes for direct contact membrane distillation, J. Membr. Sci. 331 (2009), 1–10.10.1016/j.memsci.2008.11.038Search in Google Scholar

[23] M. Asgarpour Khansary, A. Marjani and S. Shirazian, Prediction of carbon dioxide sorption in polymers for capture and storage feasibility analysis, Chem. Eng. Res. Des. 120 (2017), 254–258.10.1016/j.cherd.2017.02.024Search in Google Scholar

[24] M. Ghadiri, M. Mohammadi, M. Asadollahzadeh and S. Shirazian, Molecular separation in liquid phase: Development of mechanistic model in membrane separation of organic compounds, J. Mol. Liq. 262 (2018), 336–344.10.1016/j.molliq.2018.04.101Search in Google Scholar

[25] M. A. Khansary, A. Marjani and S. Shirazian, On the search of rigorous thermo-kinetic model for wet phase inversion technique, J. Membr. Sci. 538 (2017), 18–33.10.1016/j.memsci.2017.05.050Search in Google Scholar

[26] M. Mohammadi, M. Asadollahzadeh and S. Shirazian, Molecular-level understanding of supported ionic liquid membranes for gas separation, J. Mol. Liq. 262 (2018), 230–236.10.1016/j.molliq.2018.04.080Search in Google Scholar

[27] H. Nazem, C. Ghotbi, M. H. Zare and S. Shirazian, Experimental investigation and thermodynamic modeling of amino acids partitioning in a water/ionic liquid system, J. Mol. Liq. 260 (2018), 386–390.10.1016/j.molliq.2018.03.108Search in Google Scholar

[28] A. Sadeghi, H. Nazem, M. Rezakazemi and S. Shirazian, Predictive construction of phase diagram of ternary solutions containing polymer/solvent/nonsolvent using modified Flory-Huggins model, J. Mol. Liq. 263 (2018), 282–287.10.1016/j.molliq.2018.05.015Search in Google Scholar

[29] M. Sajjia, S. Shirazian, D. Egan, J. Iqbal, A. B. Albadarin, M. Southern et al., Mechanistic modelling of industrial-scale roller compactor ‘Freund TF-MINI model’, Comput. Chem. Eng. 104 (2017), 141–150.10.1016/j.compchemeng.2017.04.018Search in Google Scholar

[30] S. Shirazian, S. Darwish, M. Kuhs, D. M. Croker and G. M. Walker, Regime-separated approach for population balance modelling of continuous wet granulation of pharmaceutical formulations, Powder Technol. 325 (2018), 420–428.10.1016/j.powtec.2017.11.047Search in Google Scholar

[31] M. Asgarpour Khansary, A. Kazemi Nezhad Estahbanati, B. Shams, A. Marjani and S. Shirazian, Correlation of sorption-induced swelling in polymeric films with reference to attenuated total reflectance Fourier-transform infrared spectroscopy data, Eur. Polym. J. 91 (2017), 429–435.10.1016/j.eurpolymj.2017.04.008Search in Google Scholar

[32] A. Farajnezhad, O. A. Afshar, M. A. Khansary, S. Shirazian and M. Ghadiri, Correlation of interaction parameters in Wilson, NRTL and UNIQUAC models using theoretical methods, Fluid Phase Equilib. 417 (2016), 181–186.10.1016/j.fluid.2016.02.041Search in Google Scholar

[33] A. Ghasemi, M. Asgarpour Khansary, A. Marjani and S. Shirazian, Using quantum chemical modeling and calculations for evaluation of cellulose potential for estrogen micropollutants removal from water effluents, Chemosphere 178 (2017), 411–423.10.1016/j.chemosphere.2017.02.152Search in Google Scholar PubMed

[34] L. Keshavarz, M. A. Khansary and S. Shirazian, Phase diagram of ternary polymeric solutions containing nonsolvent/solvent/polymer: Theoretical calculation and experimental validation, Polymer 73 (2015), 1–8.10.1016/j.polymer.2015.07.027Search in Google Scholar

[35] M. A. Khansary, A. H. Sani and S. Shirazian, Mathematical-thermodynamic solubility model developed by the application of discrete Volterra functional series theory, Fluid Phase Equilib. 385 (2015), 205–211.10.1016/j.fluid.2014.11.001Search in Google Scholar

[36] S. Moradi, Z. Rajabi, M. Mohammadi, M. Salimi, S. S. Homami, M. K. Seydei et al., 3 dimensional hydrodynamic analysis of concentric draft tube airlift reactors with different tube diameters, Math. Comput. Model. 57 (2013), 1184–1189.10.1016/j.mcm.2012.10.021Search in Google Scholar

[37] M. Sadrzadeh, M. Rezakazemi and T. Mohammadi, Fundamentals and Measurement Techniques for Gas Transport in Polymers, in: Transport Properties of Polymeric Membranes, ed. R. Wilson, A. K. S, S. C. George, Elsevier, 2018, pp. 391–423.10.1016/B978-0-12-809884-4.00019-7Search in Google Scholar

[38] M. A. Khansary, M. Mellat, S. H. Saadat, M. Fasihi-Ramandi, M. Kamali and R. A. Taheri, An enquiry on appropriate selection of polymers for preparation of polymeric nanosorbents and nanofiltration/ultrafiltration membranes for hormone micropollutants removal from water effluents, Chemosphere 168 (2017), 91–99.10.1016/j.chemosphere.2016.10.049Search in Google Scholar PubMed

[39] M. Asgarpour Khansary, S. Shirazian and M. Asadollahzadeh, Polymer-water partition coefficients in polymeric passive samplers, Environ. Sci. Pollut. Res. Int. 24 (2017), 2627–2631.10.1007/s11356-016-8029-7Search in Google Scholar PubMed

[40] D. W. V. Krevelen and K. T. Nijenhuis, Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions 4th ed., Elsevier.Search in Google Scholar

[41] I. Sanchez and M. Stone, Statistical Thermodynamics of Polymer Solutions and Blends, John Wiley & Sons, Inc. 2000.Search in Google Scholar

[42] M. Rezakazemi, A. Marjani and S. Shirazian, Development of a group contribution method based on UNIFAC groups for the estimation of vapor pressures of pure hydrocarbon compounds, Chem. Eng. Technol. 36 (2013), 483–491.10.1002/ceat.201200422Search in Google Scholar

[43] A. Marjani, M. Rezakazemi and S. Shirazian, Vapor pressure prediction using group contribution method, Orient. J. Chem. 27 (2011), 1331–1335.Search in Google Scholar

[44] B. E. Poling, J. M. Prausnitz and J. P. O’Connell, Properties of Gases and Liquids, 4th ed., McGraw-Hill Professional, 1987.Search in Google Scholar

[45] D. Boudouris, L. Constantinou and C. Panayiotou, A group contribution estimation of the thermodynamic properties of polymers, Ind. Eng. Chem. Res. 36 (1997), 3968–3973.10.1021/ie970242gSearch in Google Scholar

[46] L. Constantinou and R. Gani, New group contribution method for estimating properties of pure compounds, AIChE J. 40 (1994), 1697–1710.10.1002/aic.690401011Search in Google Scholar

[47] I. C. Sanchez and R. H. Lacombe, Statistical thermodynamics of polymer solutions, Macromolecules 11 (1978), 1145–1156.10.1021/ma60066a017Search in Google Scholar

[48] R. Haberman, Applied Partial Differential Equations; with Fourier Series and Boundary Value Problem, 4th ed., Pearson Education, Inc., 2004.Search in Google Scholar

[49] W. E. Schiesser and G. W. Griffiths, A Compendium of Partial Differential Equation Models: Method of Lines Analysis with Matlab, Cambridge University Press, New York, 2009.10.1017/CBO9780511576270Search in Google Scholar

[50] M. Ali Aroon and M. A. Khansary, Generalized similarity transformation method applied to partial differential equations (PDEs) in falling film mass transfer, Comput. Chem. Eng. 101 (2017), 73–80.10.1016/j.compchemeng.2017.02.047Search in Google Scholar

[51] Wolfram Mathematica, Mathematica, 2014.Search in Google Scholar

[52] D. Dubin, Numerical and Analytical Methods for Scientists and Engineers Using Mathematica, John Wiley & Sons, Inc., New Jersey, 2003.10.1002/0471723657Search in Google Scholar

[53] R. S. Prabhakar, T. C. Merkel, B. D. Freeman, T. Imizu and A. Higuchi, Sorption and transport properties of propane and perfluoropropane in Poly(dimethylsiloxane) and Poly(1-trimethylsilyl-1-propyne), Macromolecules 38 (2005), 1899–1910.10.1021/ma048032kSearch in Google Scholar

[54] R. S. Prabhakar, M. G. De Angelis, G. C. Sarti, B. D. Freeman and M. C. Coughlin, Gas and vapor sorption, permeation, and diffusion in Poly(tetrafluoroethylene-co-perfluoromethyl vinyl ether), Macromolecules 38 (2005), 7043–7055.10.1021/ma050546bSearch in Google Scholar

[55] S.-U. Hong, Prediction of polymer/solvent diffusion behavior using free-volume theory, Ind. Eng. Chem. Res. 34 (1995), 2536–2544.10.1021/ie00046a040Search in Google Scholar

[56] J. L. Duda, J. S. Vrentas, S. T. Ju and H. T. Liu, Prediction of diffusion coefficients for polymer-solvent systems, AIChE J. 28 (1982), 279–285.10.1002/aic.690280217Search in Google Scholar

[57] M. A. Khansary, Vapor pressure and Flory-Huggins interaction parameters in binary polymeric solutions, Korean J. Chem. Eng. 33 (2016), 1402–1407.10.1007/s11814-015-0277-6Search in Google Scholar

[58] L. A. F. Coelho, J. V. Oliveira and F. W. Tavares, Dense fluid self-diffusion coefficient calculations using perturbation theory and molecular dynamics, Braz. J. Chem. Eng. 16 (1999), 319–329.10.1590/S0104-66321999000300010Search in Google Scholar

Received: 2018-04-13
Revised: 2018-05-17
Accepted: 2018-05-25
Published Online: 2018-06-14
Published in Print: 2018-07-26

© 2018 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 17.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jnet-2018-0013/html
Scroll to top button