Abstract
The Novikov engine is a model for heat engines that takes the irreversible character of heat fluxes into account. Using this model, the maximum power output as well as the corresponding efficiency of the heat engine can be deduced, leading to the well-known Curzon–Ahlborn efficiency. The classical model assumes constant heat bath temperatures, which is not a reasonable assumption in the case of fluctuating heat sources. Therefore, in this article the influence of stochastic fluctuations of the hot heat bath’s temperature on the optimal performance measures is investigated. For this purpose, a Novikov engine with fluctuating heat bath temperature is considered. Doing so, a generalization of the Curzon–Ahlborn efficiency is found. The results can help to quantify how the distribution of fluctuating quantities affects the performance measures of power plants.
References
[1] S. Carnot, Réflexions sur la puissance motrice du feu et sur les machines propres á développer cette puissance, Bachelier, Paris, 1824, in French; R. Fox (ed.), Libraire Philosophique J. Vrin, Paris 1978, see also On the Motive Power of Heat, American Society of Mechanical Engineers, 1943.Search in Google Scholar
[2] H. B. Reitlinger, Sur l’Utilisation de la Chaleur dans les Machines à Feu, Vaillant-Carmanne, Liége, 1929.Search in Google Scholar
[3] I. I. Novikov, The efficiency of atomic power stations, At. Energ. 3 (1957), 409, in Russian.10.1007/BF01507240Search in Google Scholar
[4] I. I. Novikov, The efficiency of atomic power stations, J. Nucl. Energ. 7 (1958), 125–128, translated from Atomnaya Energiya3 (1957), 409.10.1016/0891-3919(58)90244-4Search in Google Scholar
[5] P. Chambadal, Le choix du cycle thermique dans une usine generatrice nucleaire, Rev. Gén. Électr. 67 (1958), 332–345.Search in Google Scholar
[6] F. L. Curzon and B. Ahlborn, Efficiency of a Carnot engine at maximum power output, Am. J. Phys. 43 (1975), 22–24.10.1119/1.10023Search in Google Scholar
[7] K. H. Hoffmann, J. M. Burzler and S. Schubert, Endoreversible thermodynamics, J. Non-Equilib. Thermodyn. 22 (1997), 311–355.Search in Google Scholar
[8] K. H. Hoffmann, J. M. Burzler, A. Fischer, M. Schaller and S. Schubert, Optimal process paths for endoreversible systems, J. Non-Equilib. Thermodyn. 28 (2003), 233–268.10.1515/JNETDY.2003.015Search in Google Scholar
[9] A. De Vos, Endoreversible Thermodynamics of Solar Energy Conversion, Oxford University Press, Oxford, 1992.Search in Google Scholar
[10] M. H. Rubin, Optimal configuration of a class of irreversible heat engines. I, Phys. Rev. A 19 (1979), 1272–1276.10.1103/PhysRevA.19.1272Search in Google Scholar
[11] M. H. Rubin, Optimal configuration of a class of irreversible heat engines. II, Phys. Rev. A 19 (1979), 1277–1289.10.1103/PhysRevA.19.1277Search in Google Scholar
[12] T. Matolcsi, Ordinary Thermodynamics – Nonequilibrium Homogeneous Processes, 2nd ed., Society for the Unity of Science and Technology, Budapest, 2017; 1st ed. by Akadémiai Kiadó, Budapest, 2004, ISBN 963 05 8170 1.Search in Google Scholar
[13] A. Fischer and K. H. Hoffmann, Can a quantitative simulation of an Otto engine be accurately rendered by a simple Novikov model with heat leak?, J. Non-Equilib. Thermodyn. 29 (2004), 9–28.10.1515/JNETDY.2004.002Search in Google Scholar
[14] A. De Vos, Reflections on the power delivered by endoreversible engines, J. Phys. D: Appl. Phys. 20 (1987), 232–236.10.1088/0022-3727/20/2/014Search in Google Scholar
[15] H. Müser, Thermodynamische Behandlung von Elektronenprozessen in Halbleiterrandschichten, Z. Phys. 148 (1957), 380–390, in German.10.1007/BF01325571Search in Google Scholar
[16] M. Castañs Carmago, Bases fisicas del aprovechamiento de la energia solar, Rev. Geofis. 35 (1976), 227–239, in Spanish.Search in Google Scholar
[17] A. Bejan, D. W. Kearney and F. Kreith, Second law analysis and synthesis of solar collector systems, J. Sol. Energy Eng. 103 (1981), 23–28.10.1115/1.3266200Search in Google Scholar
[18] V. Bǎdescu, On the theoretical maximum efficiency of solar-radiation utilization, Energy 14 (1989), 571–573.10.1016/0360-5442(89)90029-7Search in Google Scholar
[19] A. De Vos, Is a solar cell an edoreversible engine?, Sol. Cells 31 (1991), 181–196.10.1016/0379-6787(91)90021-GSearch in Google Scholar
[20] A. De Vos, Endoreversible thermodynamics and chemical reactions, J. Chem. Phys. 95 (1991), 4534–4540.10.1021/j100164a065Search in Google Scholar
[21] J. M. Gordon and V. N. Orlov, Performance Characteristics of Endoreversible Chemical Engines, J. Appl. Phys. 74 (1993), 5303–5309.10.1063/1.354253Search in Google Scholar
[22] V. A. Mironova, A. M. Tsirlin, V. A. Kazakov and S. R. Berry, Finite-time thermodynamics: exergy and optimization time-constrained processes, J. Appl. Phys. 76 (1994), 629–636.10.1063/1.358425Search in Google Scholar
[23] J. M. Gordon, Generalized power versus efficiency characteristics of heat engines: the thermoelectric generator as an instructive illustration, Am. J. Phys. 59 (1991), 551–555.10.1119/1.16818Search in Google Scholar
[24] J. Chen and B. Andresen, The maximum coefficient of performance of thermoelectric heat pumps, Int. J. Power Energy Syst. 17 (1996), 22–28.10.1080/01430750.1996.9675212Search in Google Scholar
[25] J. Chen and B. Andresen, New bounds on the performance parameters of a thermoelectric generator, Int. J. Power Energy Syst. 16 (1996), 23–27.Search in Google Scholar
[26] J. Chen, Thermodynamic analysis of a solar-driven thermoelectric generator, J. Appl. Phys. 79 (1996), 2717–2721.10.1063/1.361143Search in Google Scholar
[27] C. Wu, Performance of solar-pond thermoelectric power generators, Int. J. Ambient Energy 16 (1995), 59–66.10.1080/01430750.1995.9675670Search in Google Scholar
[28] C. Wu, Analysis of waste-heat thermoelectric power generators, Appl. Thermal Eng. 16 (1996), 63–69.10.1016/1359-4311(95)00014-5Search in Google Scholar
[29] K. Schwalbe, A. Fischer, K. H. Hoffmann and J. Mehnert, Applied endoreversible thermodynamics: optimization of powertrains, in: R. Zevenhouen (ed.), Proceedings of ECOS 2014 – 27th International Conference on Efficiency, Cost, Optimization, Simulation and Environmental Impact of Energy Systems (ECOS 2014, June 15–19, 2014, Turku, Finland), Turku, Finland (2014), 45–55.Search in Google Scholar
[30] A. Bejan, Advanced Engineering Thermodynamics, John Wiley & Sons, New York, 1988.Search in Google Scholar
[31] J. L. W. V. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta Math. 30 (1906), 175–193, in French.10.1007/BF02418571Search in Google Scholar
© 2018 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Editorial
- Research Articles
- GENERIC Integrators: Structure Preserving Time Integration for Thermodynamic Systems
- Ergodicity, Maximum Entropy Production, and Steepest Entropy Ascent in the Proofs of Onsager’s Reciprocal Relations
- Entropy Generation Minimization in Dimethyl Ether Synthesis: A Case Study
- Systematic Constraint Selection Strategy for Rate-Controlled Constrained-Equilibrium Modeling of Complex Nonequilibrium Chemical Kinetics
- General Properties for an Agrawal Thermal Engine
- Novikov Engine with Fluctuating Heat Bath Temperature
- From Finite Time to Finite Physical Dimensions Thermodynamics: The Carnot Engine and Onsager’s Relations Revisited
- Non-Equilibrium Dislocation Dynamics in Semiconductor Crystals and Superlattices
- A Thermodynamical Theory with Internal Variables Describing Thermal Effects in Viscous Fluids
- A Thermodynamically Consistent Approach to Phase-Separating Viscous Fluids
Articles in the same Issue
- Frontmatter
- Editorial
- Research Articles
- GENERIC Integrators: Structure Preserving Time Integration for Thermodynamic Systems
- Ergodicity, Maximum Entropy Production, and Steepest Entropy Ascent in the Proofs of Onsager’s Reciprocal Relations
- Entropy Generation Minimization in Dimethyl Ether Synthesis: A Case Study
- Systematic Constraint Selection Strategy for Rate-Controlled Constrained-Equilibrium Modeling of Complex Nonequilibrium Chemical Kinetics
- General Properties for an Agrawal Thermal Engine
- Novikov Engine with Fluctuating Heat Bath Temperature
- From Finite Time to Finite Physical Dimensions Thermodynamics: The Carnot Engine and Onsager’s Relations Revisited
- Non-Equilibrium Dislocation Dynamics in Semiconductor Crystals and Superlattices
- A Thermodynamical Theory with Internal Variables Describing Thermal Effects in Viscous Fluids
- A Thermodynamically Consistent Approach to Phase-Separating Viscous Fluids