Home Non-equilibrium Thermodynamical Description of Superfluid Transition in Liquid Helium
Article
Licensed
Unlicensed Requires Authentication

Non-equilibrium Thermodynamical Description of Superfluid Transition in Liquid Helium

  • Lucia Ardizzone , Maria Stella Mongiovì and Lidia Saluto EMAIL logo
Published/Copyright: August 29, 2017

Abstract

In previous papers a phase field model for λ–transition in 4He was proposed, which is able to describe the influence of the heat flux on the temperature transition. The model presented here generalizes previous results taking into account of a homogeneous presence of quantized vortices below the λ–transition. As parameter that controls the transition, a dimensionless field f linked to the modulus of the condensate wave function is used. In addition to the field f, the resulting model chooses the following field variables: density, velocity, temperature and heat flux. Nonlocal terms to describe inhomogeneities in the field variables and dissipative effects of mechanical and thermal origin are also taken into account. Under the hypothesis that the liquid is at rest, the second sound propagation near the superfluid transition is studied. It is seen that the order parameter modifies the speed and the attenuation of the second sound, as well as the presence of a small tangle of vortices. This shows that the influence of the order parameter is not restricted to the description of the lambda transition, but its presence influences also other features, as the second sound speed and attenuation. In addition to the second sound a new mode is present, corresponding to a perturbation in the order parameter f, which is attenuated within a short number of wavelengths.

Acknowledgements:

The authors acknowledge the financial support of the Università di Palermo (under Grant Fondi 60% 2012) and the support of “National Group of Mathematical Physics, GNFM-INdAM”.

References

[1] Khalatnikov I. M., An Introduction to the Theory of Superfluidity. Addison-Wesley, Redwood City, California, 1989.Search in Google Scholar

[2] London F., Superfluid Helium II. Wiley, New York, 1954.Search in Google Scholar

[3] Tisza L., Transport phenomena in helium II. Nature141 (1938), 913.10.1038/141913a0Search in Google Scholar

[4] Landau L. D.. The theory of superfluidity of helium II. J. Phys. 5 (1941), 71–90.Search in Google Scholar

[5] Tilley D. R. and Tilley J., Superfluidity and Superconductivity. IOP Publishing Ltd., Bristol, 1990.Search in Google Scholar

[6] Ginzburg V. L. and Landau L. D., On the theory of superconductivity. Zh. Eksp. Teor. Fiz. 20 (1950), 1064–1082.10.1007/978-3-540-68008-6_4Search in Google Scholar

[7] Liu Y., Larson M. and Israelsson U. E., Tλ depression in 4He by a heat current along the λ-line. Physica B284–288 (2000), 55–56.10.1016/S0921-4526(99)02017-7Search in Google Scholar

[8] Harter A. W., Lee R. A. M., Chatto A., Wu X., Chui T. C. P. and Goodstein D. L., Enhanced heat capacity and a new temperature instability in superfluid 4He in the presence of a constant heat flux near Tλ. Phys. Rev. Lett. 84 (2000), no. 10, 2195–2198.10.1103/PhysRevLett.84.2195Search in Google Scholar PubMed

[9] Weichman P. B., A. Harter W. and Goodstein D. L., Criticality and superfluidity in liquid 4He under nonequilibrium conditions. Rev. Mod. Phys. 73 (2001), 1–15.10.1103/RevModPhys.73.1Search in Google Scholar

[10] Haussmann R., Liquid 4He near the superfluid transition in the presence of a heat current and gravity. Phys. Rev. B. 60 (1999), no. 17, 12349–12372.10.1103/PhysRevB.60.12349Search in Google Scholar

[11] Goodstein D. and Chatto A. R., A dynamic new look at the lambda transition. Am. J. Phys. 71 (2003), no. 9, 850–858.10.1119/1.1586263Search in Google Scholar

[12] Yabunaka S. and Onuki A., Self-organization in 4He near the superfluid transition in heat flow and gravity. Phys. Rev. B82 (2010), 024501.10.1103/PhysRevB.82.024501Search in Google Scholar

[13] Fabrizio M. and Mongiovì M. S., Phase transition in liquid 4He by a mean field model. J. Thermal Stresses36 (2013), 135–151.10.1080/01495739.2012.720477Search in Google Scholar

[14] Fabrizio M. and Mongiovì M. S., Phase transition and line in liquid helium. J. Non-Equil.Thermodyn. 38 (2013), 185–200.10.1515/jnetdy-2013-0004Search in Google Scholar

[15] Mongiovì M. S., and Saluto L., A model of λ transition in liquid 4He. Meccanica49 (2014), 2125–2137.10.1007/s11012-014-9922-0Search in Google Scholar

[16] Landau L. D. and Lishitz E. M., Mechanics of Fluids. Pergamon, Oxford, 1985.Search in Google Scholar

[17] Mongiovì M. S., Extended irreversible thermodynamics of liquid helium II. Phys. Rev. B. 48 (1993), 6276–6283.10.1103/PhysRevB.48.6276Search in Google Scholar

[18] Mongiovì M. S., Nonlinear extended thermodynamics of a non-viscous fluid in the presence of heat flux. J. Non-Equilib. Thermodyn. 25 (2000), no. 1, 31–47.10.1515/JNETDY.2000.003Search in Google Scholar

[19] Saluto L., Mongiovì M. S., and Jou D., Longitudinal counterflow in turbulent liquid helium: velocity profile of the normal component. Z. Angew. Math. Phys. 65 (2014), 531–548.10.1007/s00033-013-0372-7Search in Google Scholar

[20] Jou D. and Restuccia L., Mesoscopic transport equations and contemporary thermodynamics: an introduction. Contemp. Phys. 52 (2011), no. 5, 465–474.10.1080/00107514.2011.595596Search in Google Scholar

[21] Jou D., Casas-Vázquez J. and Lebon G., Extended Irreversible Thermodynamics, 4th ed. Springer-Verlag, Berlin, 2010.10.1007/978-90-481-3074-0Search in Google Scholar

[22] Jou D., Casas-Vázquez J. and Criado-Sancho M., Thermodynamics of Fluids Under Flow, 2nd ed. Springer, Berlin, 2011.10.1007/978-94-007-0199-1Search in Google Scholar

[23] Müller I. and Ruggeri T., Rational Extanded Thermodynamics. Springer-Verlag, New York, 1998.10.1007/978-1-4612-2210-1Search in Google Scholar

[24] Cattaneo C., Sulla conduzione del calore. Atti Seminario Mat. Fis. Università Modena3 (1948), 83–101.10.1007/978-3-642-11051-1_5Search in Google Scholar

[25] B. Straughan, Heat Waves. Springer, Heidelberg, 2011.10.1007/978-1-4614-0493-4Search in Google Scholar

[26] Jou D. and Pérez-García C., On a Ginzburg-Landau constitutive equation for the evolution and fluctuations of the heat flux. Physica A104 (1980), 320.10.1016/0378-4371(80)90091-6Search in Google Scholar

[27] Lebon G. and Dauby P. C., Heat transport in dielectric crystals at low temperature: a variational formulation based on extended irreversible thermodynamics. Phys. Rev. A42 (1990), 4710.10.1103/PhysRevA.42.4710Search in Google Scholar

[28] Lebon G., M. Torrisi and Valenti A., A non-local thermodynamics analysis of second sound propagation in crystalline dielectrics. J. Phys .Condens. Matter7 (1995), 1441.10.1088/0953-8984/7/7/025Search in Google Scholar

[29] Valenti A., M. Torrisi and Lebon G., Heat pulse propagation by second sound in dielectric crystals. J. Phys. Condens. Matter9 (1997), no. 15, 3117.10.1088/0953-8984/9/15/005Search in Google Scholar

[30] Guyer R. A. and Krumhansl J. A., Solution of the linearized phonon boltzmann equation. Phys. Rev. 148 (1966), 766–778.10.1103/PhysRev.148.766Search in Google Scholar

[31] Guyer R. A. and Krumhansl J. A., Thermal conductivity, second sound and phonon hydrodynamic phenomena in nonmetallic crystals. Phys. Rev. 148 (1966), 778–788.10.1103/PhysRev.148.778Search in Google Scholar

[32] Ardizzone L., Gaeta G. and Mongiovì M. S., A continuum theory of superfluid turbulence based on extended thermodynamics. J. Non-Equilib. Thermodyn. 34 (2009), 277–297.10.1515/JNETDY.2009.015Search in Google Scholar

[33] Ardizzone L., G. Gaeta and Mongiovì M. S., Wave propagation in anisotropic turbulent superfluids. Z. Angew. Math. Phys. 64 (2013), 1571–1586.10.1007/s00033-013-0308-2Search in Google Scholar

[34] Mongiovì M. S., Extended irreversible thermodynamics of liquid helium II: boundary condition and propagation of fourth sound. Physica A292 (2001), no. 1, 55–74.10.1016/S0378-4371(00)00537-9Search in Google Scholar

[35] R. J. Donnelly, Quantized Vortices in Helium II. Cambridge University Press, Cambridge, UK, 1991.Search in Google Scholar

[36] Barenghi C. F., Donnelly R. J. and Vinen W. F., Quantized Vortex Dynamics and Superfluid Turbulence. Springer, Berlin, 2001.10.1007/3-540-45542-6Search in Google Scholar

[37] Nemirovskii S. K., Quantum turbulence: theoretical and numerical problems. Phys. Rep. 524 (2013), 85–202.10.1016/j.physrep.2012.10.005Search in Google Scholar

[38] Hall H. E. and Vinen W. F., The rotation of liquid helium II. I. Experiments on the propagation of second sound in uniformly rotating helium II. Proc. Royal Soc. London A. Math. Phys. Sci. 238 (1956), no. 1213, 204–214.10.1098/rspa.1956.0214Search in Google Scholar

[39] Hendry P. C., Lawson N. S., Lee R. A. M., McClintock P. V. E. and Williams C. D. H., Creation of quantized vortices at the lambda transition in liquid helium-4. J. Low Temp. Phys. 93 (1993), 1059–1067.10.1007/BF00692048Search in Google Scholar

[40] Vinen W. F., Mutual friction in a heat current in liquid helium II. I. Theory of the mutual friction. Proc. Roy. Soc. London A 240 (1957), 493–515.Search in Google Scholar

[41] Fabrizio M., Giorgi C. and Morro A., A thermodynamic approach to non-isothermal phase-field evolution in continuum physics. Phys. D: Nonlinear Phenom. 214 (2006), no. 2, 144–156.10.1016/j.physd.2006.01.002Search in Google Scholar

[42] Morro A., A phase-field approach to non-isothermal transitions. Math. Comput. Modell. 48 (2008), no. 3–4, 621–633.10.1016/j.mcm.2007.11.001Search in Google Scholar

[43] Ginzburg V. L. and Pitaevskii L. P., On the theory of superfluidity. Zh. Eksp. Teor. Fiz. 34 (1958), 1240–1247.Search in Google Scholar

[44] Saluto L., D. Jou and Mongiovì M. S., Contribution of the normal component to the thermal resistance of turbulent liquid helium. Z. Angew. Math. Phys. 66 (2015), 1853–1870.10.1007/s00033-015-0493-2Search in Google Scholar

[45] Lipa J. A., J. Nissen A., D. Stricker A., D. Swanson R. and Chui T. C. P., Specific heat of liquid helium in zero gravity very near the lambda point. Phys. Rev. B68 (2003), 174518.10.1103/PhysRevB.68.174518Search in Google Scholar

[46] Adriaans M. J., Swanson D. R. and Lipa J. A., The velocity of second sound near the lambda transition in superfluid 4He. Phys. B: Condens. Matter194–196 (1994), no. 1, 733–734.10.1016/0921-4526(94)90696-3Search in Google Scholar

[47] Marek D., Lipa J. A. and Philips D., High-resolution second-sound velocity measurements near the point of helium. Phys. Rev. B38 (1988), 4465–4468.10.1103/PhysRevB.38.4465Search in Google Scholar PubMed

[48] Winterling G., Holmes F. S. and Greytak T. J., Light scattering from first and second sound near the transition in liquid He. Phys. Rev. Lett. 30 (1973), no. 10, 427–430.10.1103/PhysRevLett.30.427Search in Google Scholar

[49] Onuki A., Instability of second sound under heat flow near the superfluid transition. J. Low Temp. Phys. 97 (1994), no. 1, 91–103.10.1007/BF00752980Search in Google Scholar

[50] Maynard J., Determination of the thermodynamics of He II from sound-velocity data. Phys. Rev. B14 (1976), no. 9, 3869–3891.10.1103/PhysRevB.14.3868Search in Google Scholar

[51] Saluto L., Mongiovì M. S., and Ardizzone L., Thermodynamical description of vortex formation at the superfluid transition in 4He. Accademia Peloritana dei Pericolanti, in press.Search in Google Scholar

[52] Kondaurova L. and Nemirovskii S. K., Numerical study of decay of vortex tangles in superfluid helium at zero temperature. Phys. Rev. B86 (2012), 134506–134518.10.1103/PhysRevB.86.134506Search in Google Scholar

[53] Saluto L., Jou D. and Mongiovì M. S., Thermodynamic approach to vortex production and diffusion in inhomogeneous superfluid turbulence. Phys. A: Stat. Mech. Appl. 406 (2014), 272–280.10.1016/j.physa.2014.03.062Search in Google Scholar

Received: 2017-3-8
Revised: 2017-6-26
Accepted: 2017-7-28
Published Online: 2017-8-29
Published in Print: 2017-10-26

© 2017 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jnet-2017-0012/html?lang=en
Scroll to top button