Home Nonlinear dynamics of optical solitons to the (2 + 1)-dimensional stochastic coupled nonlinear Schrödinger system with multiplicative white noise
Article
Licensed
Unlicensed Requires Authentication

Nonlinear dynamics of optical solitons to the (2 + 1)-dimensional stochastic coupled nonlinear Schrödinger system with multiplicative white noise

  • Emad H.M. Zahran and Ahmet Bekir ORCID logo EMAIL logo
Published/Copyright: August 11, 2025
Become an author with De Gruyter Brill

Abstract

The (2 + 1)-dimensional stochastic coupled nonlinear Schrödinger system with multiplicative white noise has significant effect in several fields as statistical mechanics, ecological systems, nonlinear optics, plasma physics, optical-fiber communications, and so forth. Through this article we will extract variety forms of the analytical solutions that represent the dynamical behaviors of the optical soliton solutions and the other rational solutions as well as the soliton velocity emerged by each method to the suggested model. For this purpose, we will utilize four various techniques namely the generalized Kudryashov schema, the Paul–Painleve approach schema, extended simple equation schema and Ricatti–Bernoulli sub order schema that will be applied individually to explore these various types of these optical soliton solutions. The suggested methods will be implemented independently and parallel. Multiple types of optical soliton solutions are detected in forms like the bright-dark, periodic solitons, W-like soliton, some other traveling wave solutions in forms trigonometric, hyperbolic, Jacobi elliptic rational function and solitary wave solutions are also explored. The 2-D and 3D Figure simulations of the dynamical soliton behaviors of all obtained solutions have been documented. All achieved solutions as well as 2D and 3D plots have been established by Mathematica program.


Corresponding author: Ahmet Bekir, Neighbourhood of Akcaglan, Imarli Street, Number: 28/4, 26030, Eskisehir, Türkiye, E-mail:

  1. Research ethics: Not available.

  2. Informed consent: Not available.

  3. Author contributions: Emad Zahran: Methodology, Software, visualization, analysis of the outcomes, resources, validation, review and editing. Ahmet Bekir: Formal analysis and investigation, conceptualization, Supervision, project administration, writing original draft.

  4. Use of Large Language Models, AI and Machine Learning Tools: Not available.

  5. Conflict of interest: The authors declare no conflict of interest.

  6. Research funding: None declared.

  7. Data availability: Not available.

References

[1] B. A. Malomed, “New findings for the old problem: Exact solutions for domain walls in coupled real Ginzburg–landau equations,” Phys. Lett. A, vol. 422, 2022, Art. no. 127802.10.1016/j.physleta.2021.127802Search in Google Scholar

[2] M. S. M. Shehata, H. Rezazadeh, E. H. M. Zahran, E. Tala-Tebue, and A. Bekir, “New optical soliton solutions of the perturbed Fokas-Lenells equation,” Commun. Theor. Phys., vol. 71, pp. 1275–1280, 2019.10.1088/0253-6102/71/11/1275Search in Google Scholar

[3] E. H. M. Zahran, A. Bekir, and R. A. Ibrahim, “New impressive analytical optical soliton solutions to the Schrödinger-Poisson dynamical system against its numerical solutions,” Opt. Quantum Electron., vol. 55, p. 212, 2023.10.1007/s11082-022-04486-xSearch in Google Scholar

[4] H. Esen, A. Secer, M. Ozisik, and M. Bayram, “Analytical soliton solutions of the higher order cubic-quintic nonlinear Schrödinger equation and the influence of the model’s parameters,” J. Appl. Phys., vol. 132, 2022, Art. no. 053103.10.1063/5.0100433Search in Google Scholar

[5] A. Bekir, E. M. H. Zahran, and M. S. M. Shehata, “Comparison between the new exact and numerical solutions of the Mikhailov-Novikov-Wang equation,” Numer. Methods Partial Differ. Equ., vol. 40, 2024, Art. no. e22775.10.1002/num.22775Search in Google Scholar

[6] E. H. M. Zahran and A. Bekir, “New private types for the cubic-quartic optical solitons in birefringent fibers in its four forms of nonlinear refractive index,” Opt. Quantum Electron., vol. 53, p. 680, 2021.10.1007/s11082-021-03330-ySearch in Google Scholar

[7] Q. Zhou, “Influence of parameters of optical fibers on optical soliton interactions,” Chin. Phys. Lett., vol. 39, 2022, Art. no. 010501.10.1088/0256-307X/39/1/010501Search in Google Scholar

[8] E. H. M. Zahran and A. Bekir, “Accurate impressive optical solitons for nonlinear refractive index cubic-quartic through birefringent fibers,” Opt. Quantum Electron., vol. 54, p. 253, 2022.10.1007/s11082-022-03630-xSearch in Google Scholar

[9] Q. Zhou, M. Xu, Y. Sun, Y. Zhong, and M. Mirzazadeh, “Generation and transformation of dark solitons, anti-dark solitons and dark double-hump solitons,” Nonlinear Dyn., vol. 110, pp. 1747–1752, 2022.10.1007/s11071-022-07673-3Search in Google Scholar

[10] E. H. M. Zahran and A. Bekir, “New unexpected soliton solutions to the generalized (2 + 1) nonlinear Schrödinger equation with its four mixing waves,” Int. J. Mod. Phys. B, vol. 36, no. 25, 2022, Art. no. 2250166.10.1142/S0217979222501661Search in Google Scholar

[11] M. Y. Wang, “Highly dispersive optical solitons of perturbed nonlinear Schrödinger equation with Kudryashov’s sextic-power law nonlinear,” Optik, vol. 267, 2022, Art. no. 169631.10.1016/j.ijleo.2022.169631Search in Google Scholar

[12] E. H. M. Zahran and A. Bekir, “New unexpected variety of solitons arising from spatio-temporal dispersion (1 + 1) dimensional Ito-equation,” Mod. Phys. Lett. B, vol. 38, no. 2, 2024, Art. no. 2350258.10.1142/S0217984923502585Search in Google Scholar

[13] N. A. Kudryashov, “Method for finding highly dispersive optical solitons of nonlinear differential equations,” Optik, vol. 206, 2020, Art. no. 163550.10.1016/j.ijleo.2019.163550Search in Google Scholar

[14] E. H. M. Zahran and A. Bekir, “Unexpected configurations for the optical solitons propagation in lossy fiber system with dispersion terms effect,” Math. Methods Appl. Sci., vol. 46, pp. 4055–4069, 2023.10.1002/mma.8738Search in Google Scholar

[15] L. Tang, A. Biswas, Y. Yildirim, and A. A. Alghamdi, “Bifurcation analysis and optical solitons for the concatenation model,” Phys. Lett. A, vol. 480, 2023, Art. no. 128943.10.1016/j.physleta.2023.128943Search in Google Scholar

[16] M. E. Zayed, M. A. Shohib, and E. M. Alngar, “Dispersive optical solitons in birefringent fibers for (2 + 1)-dimensional NLSE with Kerr law nonlinearity and spatiotemporal dispersion having multiplicative white noise via Itô calculus,” Optik, vol. 267, 2022, Art. no. 169667.10.1016/j.ijleo.2022.169667Search in Google Scholar

[17] M. E. Zayed, et al.., “Optical solitons with (2 + 1)-dimensional nonlinear Schrödinger equation having spatio-temporal dispersion and multiplicative white noise via Itô calculus,” Optik, vol. 261, 2022, Art. no. 169204.10.1016/j.ijleo.2022.169204Search in Google Scholar

[18] Y. Xu, et al.., “Optical solitons in multi-dimensions with spatio-temporal dispersion and non-Kerr law nonlinearity,” J. Nonlinear Opt. Phys. Mater., vol. 22, 2013, Art. no. 1350035.10.1142/S0218863513500355Search in Google Scholar

[19] L. Tang, “Bifurcation studies, chaotic pattern, phase diagrams and multiple optical solitons for the (2 + 1)-dimensional stochastic coupled nonlinear Schrödinger system with multiplicative white noise via Itô calculus,” Results Phys., vol. 52, 2023, Art. no. 106765.10.21203/rs.3.rs-2990528/v1Search in Google Scholar

[20] T. Mathanaranjan, “Optical solitons and stability analysis for the new (3 + 1) (3 + 1)-dimensional nonlinear Schrödinger equation,” J. Nonlinear Opt. Phys. Mater., vol. 32, no. 02, 2023, Art. no. 2350016.10.1142/S0218863523500169Search in Google Scholar

[21] T. Mathanaranjan, “New Jacobi elliptic solutions and other solutions in optical metamaterials having higher-order dispersion and its stability analysis,” Int. J. Appl. Comput. Math., vol. 9, no. 5, p. 66, 2023.10.1007/s40819-023-01547-xSearch in Google Scholar

[22] T. Mathanaranjan, “Optical soliton, linear stability analysis and conservation laws via multipliers to the integrable Kuralay equation,” Optik, vol. 290, 2023, Art. no. 171266.10.1016/j.ijleo.2023.171266Search in Google Scholar

[23] T. Mathanaranjan and R. Myrzakulov, “Integrable Akbota equation: Conservation laws, optical soliton solutions and stability analysis,” Opt. Quantum Electron., vol. 56, no. 4, p. 564, 2024.10.1007/s11082-023-06227-0Search in Google Scholar

[24] T. Mathanaranjan, M. S. Mani Rajan, S. S. Veni, and Y. Yildirim, “Cnoidal waves and solitons to three-coupled nonlinear Schrodinger’s equation with spatially-dependent,” Ukr. J. Phys. Opt., vol. 25, no. 5, pp. S1003–S1016, 2024.10.3116/16091833/Ukr.J.Phys.Opt.2024.S1003Search in Google Scholar

[25] T. Mathanaranjan, K. Yesmakhanova, R. Myrzakulov, and A. Naizagarayeva, “Optical wave structures and stability analysis of integrable Zhanbota equation,” Mod. Phys. Lett. B, vol. 39, no. 22, 2024, Art. no. 2550071.10.1142/S021798492550071XSearch in Google Scholar

[26] S. Kumar and D. Kumar, “Generalized exponential rational function method for obtaining numerous exact soliton solutions to a (3 + 1)-dimensional Jimbo–Miwa equation,” Pramana, vol. 95, p. 152, 2021.10.1007/s12043-021-02174-1Search in Google Scholar

[27] S. Kumar and D. Kumar, “Analytical soliton solutions to the generalized (3 + 1)-dimensional shallow water wave equation,” Mod. Phys. Lett. B, vol. 36, no. 02, 2022, Art. no. 2150540.10.1142/S0217984921505400Search in Google Scholar

[28] S. Kumar and S. K. Dhiman, “Dynamics of various solitonic formations and other solitons of a (4 + 1)-dimensional Davey–Stewartson–Kadomtsev–Petviashvili equation using a newly designed analytical method,” Mod. Phys. Lett. B, vol. 39, no. 26, p. 2550126, 2025.10.1142/S021798492550126XSearch in Google Scholar

[29] N. Mann and S. Kumar, “In-depth analysis and exploration of rogue wave, lump wave, and different solitonic patterns to the Painlevé-integrable (3 + 1)D nonlinear evolution equations using a new extended methodology,” Mod. Phys. Lett. B, vol. 39, no. 25, 2025.10.1142/S0217984925500939Search in Google Scholar

[30] I. Hamid and S. Kumar, “Newly formed solitary wave solutions and other solitons to the (3 + 1)-dimensional mKdV–ZK equation utilizing a new modified Sardar sub-equation approach,” Mod. Phys. Lett. B, vol. 39, no. 18, 2024.10.1142/S0217984925500277Search in Google Scholar

[31] S. Kumar and N. Mann, “Dynamic study of qualitative analysis, traveling waves, solitons, bifurcation, quasi-periodic, and chaotic behavior of integrable kuralay equations,” Opt. Quantum Electron., vol. 56, no. 5, 2024.10.1007/s11082-024-06701-3Search in Google Scholar

[32] S. Kumar and I. Hamid, “New interactions between various soliton solutions, including bell, kink, and multiple soliton profiles, for the (2 + 1)-dimensional nonlinear electrical transmission line equation,” Opt. Quantum Electron., vol. 56, no. 7, 2024.10.1007/s11082-024-06960-0Search in Google Scholar

[33] S. K. Dhiman and S. Kumar, “Analyzing specific waves and various dynamics of multi-peakons in (3 + 1)-dimensional p-type equation using a newly created methodology,” Nonlinear Dyn., vol. 112, no. 12, pp. 1–14, 2024.10.1007/s11071-024-09588-7Search in Google Scholar

[34] S. Kumar and S. K. Dhiman, “Exploring cone-shaped solitons, breather, and lump-forms solutions using the lie symmetry method and unified approach to a coupled breaking soliton model,” Phys. Scr., vol. 99, no. 2, p. 025243, 2024.10.1088/1402-4896/ad1d9eSearch in Google Scholar

[35] M. A. Akbar, et al.., “Dynamical behavior of solitons of the perturbed nonlinear Schrödinger equation and microtubules through the generalized Kudryashov scheme,” Results Phys., vol. 43, 2022, Art. no. 106079.10.1016/j.rinp.2022.106079Search in Google Scholar

[36] L. Ouahid, S. Owyed, M. A. Abdou, N. A. Alshehri, and S. K. Elagan, “New optical soliton solutions via generalized Kudryashov’s scheme for Ginzburg–Landau equation in fractal order,” Alexandria Eng. J., vol. 60, no. 6, pp. 5495–5510, 2021.10.1016/j.aej.2021.04.030Search in Google Scholar

[37] D. Kumar, A. R. Seadawy, and A. K. Joardar, “Modified Kudryashov method via new exact solutions for some conformable fractional differential equations arising in mathematical biology,” Chin. J. Phys., vol. 56, no. 1, pp. 75–85, 2018.10.1016/j.cjph.2017.11.020Search in Google Scholar

[38] E. H. M. Zahran, A. Bekir, M. F. Alotaibi, M. Omri, and H. Ahmed, “New impressive behavior of the exact solutions to the Benjamin-Bona-Mahony-Burgers equation with dual power-law nonlinearity against its numerical solution,” Results Phys., vol. 29, 2021, Art. no. 104730.10.1016/j.rinp.2021.104730Search in Google Scholar

[39] A. Bekir and E. H. M. Zahran, “Optical soliton solutions of the thin-film ferro-electric materials equation according to the Painlevé approach,” Opt. Quantum Electron., vol. 53, p. 118, 2021.10.1007/s11082-021-02754-wSearch in Google Scholar

[40] A. Bekir and E. H. M. Zahran, “New visions of the soliton solutions to the modified nonlinear Schrödinger equation,” Optik, vol. 232, 2021, Art. no. 166539.10.1016/j.ijleo.2021.166539Search in Google Scholar

[41] E. H. M. Zahran, A. Bekir, and A. Hijaz, “A variety of exact solutions of the (2 + 1)-dimensional modified Zakharov-Kuznetsov equation,” Mod. Phys. Lett. B, vol. 35, no. 33, 2021, Art. no. 2150509.10.1142/S0217984921505096Search in Google Scholar

[42] E. H. M. Zahran and A. Bekir, “Multiple accurate-cubic optical solitons to the kerr-law and power-law nonlinear Schrödinger equation without the chromatic dispersion,” Opt. Quantum Electron., vol. 54, p. 14, 2022.10.1007/s11082-021-03389-7Search in Google Scholar

[43] A. Bekir and E. H. M. Zahran, “New multiple-different impressive perceptions for the solitary solution to the magneto-optic waveguides with anti-cubic nonlinearity,” Optik Int. J. Light Electron Opt., vol. 240, 2021, Art. no. 166939.10.1016/j.ijleo.2021.166939Search in Google Scholar

[44] A. Bekir and E. H. M. Zahran, “New vision for the soliton solutions to the complex Hirota-dynamical model,” Phys. Scr., vol. 96, 2021, Art. no. 055212.10.1088/1402-4896/abe889Search in Google Scholar

Received: 2024-09-28
Accepted: 2025-07-28
Published Online: 2025-08-11

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/jncds-2024-0111/html
Scroll to top button