J. Math. Cryptol. 4 (2010), 271-315
DOI' 10.1515/JMC.2010.011 © de Gruyter 2010

Public key cryptosystem MSTj:
cryptanalysis and realization

Pavol Svaba and Tran van Trung

Communicated by Douglas R. Stinson

Abstract. A new type of public key cryptosystem, called MST3, has been recently in-
troduced on the basis of covers and logarithmic signatures for non-abelian finite groups.
The class of Suzuki 2-groups has been proposed for a possible realization of the generic
scheme. Due to their simple structure, the groups enable us to study the security of the
system and also provide an efficient implementation. An earlier relevant result of the
cryptanalysis has shown that the transversal logarithmic signatures are unfit for use in this
realization. In this paper we present a revised version of MST3 for the Suzuki 2-groups
and show a thorough study of its security. Using heuristic and algebraic methods we es-
tablish strong lower bounds for the workload of conceivable direct attacks on the private
key of the scheme. We then develop a powerful chosen plaintext attack which allows us to
rule out the usage of a certain class of logarithmic signatures. In addition, we show a class
of logarithmic signatures withstanding this attack and thus to our knowledge they could
be used in the realization of the scheme. Finally, we describe and discuss the implemen-
tation issues of the scheme in detail and include data of its performance obtained from an
experimental result.

Keywords. Public-key cryptosystem, cover, logarithmic signature, trapdoor one-way
function, Suzuki 2-group.

2010 Mathematics Subject Classification. 94A60.

1 Introduction

In recent times, asymmetric cryptography has become essential to many informa-
tion systems. Many public key cryptosystems have been proposed, but only few
of such systems remain unbroken. Most of these are based on the perceived in-
tractability of certain mathematical problems in very large, finite cyclic groups in
certain particular representations. Prominent hard problems are i) the problem of
factoring large integers, 1ii) the Discrete Logarithm Problem (DLP) in particular
representations of large cyclic groups, and iii) finding a short basis for a given
integral lattice £ of large dimension. Unfortunately, in view of P. Shor’s quantum
algorithms for integer factoring, and solving the DLP [13], the known public-key
systems will be insecure when quantum computers become practical. A recent re-

272 P. Svaba and T. van Trung

port edited by P. Nguyen [12] identifies these and other problems facing the field
of information security in the future.

Recently, a new type of public key cryptosystem, called MST3 [7], has been
developed on the basis of logarithmic signatures and covers of finite non-abelian
groups. For a possible realization of the generic version of this system, the Suzuki
2-groups have been suggested. Due to their simple structure, these groups make
it possible for studying the security of the scheme. As shown in previous results,
a lower bound for the work effort required in terms of the size of the underlying
groups is obtained [7]. By exploiting the distinguishing feature of the group opera-
tion in the Suzuki 2-groups, a further analysis in [11] has shown that the transversal
logarithmic signatures are unfit to use in this realization. Recently, several authors
have dealt with the cryptanalysis of the MST3 scheme, for example [2], [15].

In this paper we present an approach to re-designing MST3 for the Suzuki 2-
groups. The method makes use of the characteristics of the group operation as
well as the structure of these groups. We present a thorough study of the security
of the scheme by using heuristic and algebraic methods. We first determine the
complexity for the lower bounds of conceivable direct attacks to recover the private
key in terms of the size of the groups. These bounds give a hint of the strength of
the system. We further develop a powerful method for a chosen plaintext attack
showing that a certain class of transversal logarithmic signatures cannot be used.
Moreover, there are classes of logarithmic signatures that withstand this attack
when used in MST3. We examine the usage of one such class in the realization
of the scheme for which we are able to determine the complexity of this type of
attack.

The paper is organized as follows: In Section 2 we summarize some basic
facts about covers and logarithmic signatures for finite groups and their related
induced mappings; a description of the Suzuki 2-groups is included. In Section 3
we present a revised version of the cryptosystem MST3 and show its encryption,
decryption. In Section 4 we study various direct attacks on the scheme, namely
determining the private key from the public key, and show the lower bounds on
the complexity of such attacks. In Section 5 we describe algorithms for generating
logarithmic signatures for use in a possible implementation of the scheme. Also
methods for factorization with respect to these logarithmic signatures are shown.
Section 6 deals with the development of a powerful chosen plaintext attack on the
scheme utilizing transversal logarithmic signatures. It is shown that the class of
fused transversal logarithmic signatures withstands this type of attack. In Sec-
tion 7 we present data of performance (including the attack complexity) of the
scheme for various parameter sets from an experimental implementation. In addi-
tion, a method of reducing the key storage is described. We provide a conclusion
in Section 8.

Public key cryptosystem MSTj: cryptanalysis and realization 273

2 Preliminaries

In this section we briefly present notation, definitions and some basic facts about
logarithmic signatures, covers for finite groups and their induced mappings. For
more details the reader is refered to [9], [10]. The group theoretic notation used is
standard and may be found in [5] or in any textbook of group theory.

Let ¥ be a finite abstract group, we define the width of § to be the positive
integer w = [log|g|]. Denote by § [Z] the collection of all finite sequences of
elements in & and view the elements of 2] as single-row matrices with entries
ing. LetX = [x1,x2,...,xs]and Y = [y1, y2,..., ys] be two elements in ﬁ[Z].
We define

XY =[x1y1,X1y2, ..., X1)s,
x2y1,x2)’23--~,x2)7S7---,Xr)’lyxry2,---axrys]-

Instead of X - Y we will also write X ® Y as ordinary tensor product of matrices,

or for short we will write XY . If X = [x1,...,x;] € ﬁ[z], we denote by X the
element Y /_, x; in the group ring Z§.
[Z]

Suppose that @« = [A1, A2, ..., As] is a sequence of A; € &', such that
>-7_1|A4;| is bounded by a polynomial in log [§]. Let
Ay Ay Ag =) agg. ag €. 2.1)

ge§

Let § be a subset of §, then we say that « is
(i) acoverfor§ (or §),ifag > 0forall g € § (g € ¥).
(ii) alogarithmic signature for § (or §),ifagz = 1 forevery g € § (g € §).

Thus, a covera = [A1, ..., Ag] for a subset & of a finite group § can be viewed
as an ordered collection of subsets A; of § with |A;| = r; such that each element
h € & can be expressed in at least one way as a product of the form

h=g1-82"8s—1"8s (2.2)

for g; € A;.

If every h € & can be expressed in exactly one way by equation (2.2), then «
is called a logarithmic signature for . Thus, logarithmic signatures are a special
class of covers.

The A; are called the blocks, and the vector (rq,...,rs) with r; = |A;| the type
of o. We say that « is nontrivial if s > 2 and r; > 2 for 1 < i < s; otherwise «

274 P. Svaba and T. van Trung

is said to be trivial. Cover « is called tame (or factorizable) if the factorization in
equation (2.2) can be achieved in time polynomial in the width w of &, it is called
wild if it is not tame. Lety : lg = §9 < §; < --- < G5 = ¢ be a chain
of subgroups of &, and let A; be an ordered, complete set of right (or left) coset
representatives of §;_; in §;. It is clear that [Aq,..., As] forms a logarithmic
signature for g, called transversal logarithmic signature. Transversal logarithmic
signatures are an important example of tame logarithmic signatures [10].

In general, the problem of finding a factorization in equation (2.2) with respect
to a randomly generated cover is presumedly intractable. There is strong evidence
in support of the hardness of the problem. For example, let § be a cyclic group
and g be a generator of §. Letow = [A1, Ay, ..., Ag] be any cover for &, for which
the elements of A; are written as powers of g. Then the factorization with respect
to o amounts to solving the Discrete Logarithm Problem (DLP) in §.

Remark 2.1. It is worth noting that the problem of how to generate random covers
for finite groups of large order is treated in [14]. A probabilistic method shows
that generation of random covers for groups of large order can be done with high
efficiency and at minimum cost.

The crucial point that makes covers useful for group based cryptography is that
if the above factorization problem is intractable, then the covers essentially induce

one-way functions. This can be described as follows. Let @ = [A1, A2, ..., As]
be a cover of type (r1,r2, ...,rs) for § with A; = [a;1,aip,....ai,] and let
m = [Ij_; ri. Letmy = landm; = [];Z} rj fori =2.....s. Let 7 denote the

canonical bijection from Z,, @ Z;, ® -+ @ Z, on Zy; i.e.
T:Zrl EBZQGB"'@ZrS —>Zm
S
Gt o) = 3 i,
i=1
Using t we now define the surjective mapping & induced by «.
&Ly — 8
a(x) = aij, - az,j, - ds,j.

where (j1, ja2,...,js) = v 1(x). Since v and ! are efficiently computable, the
mapping &(x) is efficiently computable.

Conversely, given a cover @ and an element y € §, to determine any ele-
ment x € ¢~ !(y) it is necessary to obtain any one of the possible factorizations
of type (2.2) for y and determine indices ji, j2,....js such that y = aq j, -

Public key cryptosystem MSTj: cryptanalysis and realization 275

as,j, - ds, j,. This is possible if and only if « is tame. Once a vector (j1, j2, ...,
Jjs) has been determined, @' (y) = t(j1. ja..... js) can be computed efficiently.

There are different types of transformations that can apply to covers. Here, we
consider just one type, which is used in the next sections.

Assume that « = [Ay, Aa, ..., Ag] is a cover for §. Let go,g1,...,8s € 9,
and consider § = [B1, Ba, ..., Bg] with B; = gi__llAigi. We say that f is a two
sided transform of « by go, g1,...,gs; in the special case, where gg = 1 and
gs = 1, B is called a sandwich of a. Note that § is a cover for §.

Two covers (logarithmic signatures) «, B are said to be equivalent if @ = ,5 .
For example, if B is a sandwich of «, then o and B are obviously equivalent.

We make use of following cryptographic hypothesis that if « = [A1, 42, ...,
Ag] is a random cover for a “large” subset § of a group ¢, then finding a factor-
ization in (2.2) is an intractable problem. In other words, the mapping

a:Zm— 38

induced by o with m = [];_, |4i| is a one-way function.

2.1 Suzuki 2-groups

In [7] a generic version of the public-key cryptosystem MST3 is described for an
arbitrarily abstract non-abelian group ¢. The group § should only satisfy the fol-
lowing property: & has a nontrivial center Z such that § does not split over Z, i.e.
there is no subgroup # < § with # NZ = 1 suchthat § = Z- H. Moreover, we
assume that the order of Z is sufficiently large so that exhaustive search problems
are computationally infeasible in Z.

The Suzuki 2-groups have been suggested for use in a possible realization of the
generic version of MST3. On one hand, due to their structure, the Suzuki 2-groups
allow one to study the security of the system, and on the other hand they possess
a simple presentation allowing an efficient implementation of the scheme. Before
we present a new version of MST3 using the Suzuki 2-groups in the next section,
we describe for the sake of completeness this special class of 2-groups.

To begin with, we recall some basic facts about finite p-groups, where p de-
notes a prime number. A finite group § of order a power of p is called a p-group,
i.e. |[§| = p" for a certain positive integer n. The least common multiple of the
orders of the elements of § is called the exponent of §. An abelian (commu-
tative) p-group § of exponent p is called elementary abelian p-group. The set
72(8)={z€8: zg =gz, Vg € §}is called the center of §. It is well known
that Z(§) is a subgroup of order at least p for any p-group §. The subgroup &’
generated by all the elements of the form x~!y~!xy with x,y € § is called the
commutator subgroup of §. The so-called Frattini subgroup of § denoted ®(§)

276 P. Svaba and T. van Trung

is by definition the intersection of all the maximal subgroups of §. If § is a p-
group, the factor group §/®(9) is elementary abelian. In particular, if § is a
2-group, ®(§) = (g?|g €). Finally, an element of order 2 in a group is called
an involution.

Formally a Suzuki 2-group is defined as a non-abelian 2-group with more than
one involution, having a cyclic group of automorphisms which permutes its in-
volutions transitively. This class of 2-groups was studied and characterized by
G. Higman [4]. In particular, in any Suzuki 2-group § we have Z(§) = ®(9) =
g =Qi(8),where Q1(9) = (ge§:g>=1)and |Z(§)| =q =27, m > 1.
It is shown in [4] that the order of § is either g2 or ¢3. Thus all the involutions
of § are in the center of &, therefore Z(¥) and the factor group §/P(9) are ele-
mentary abelian. Consequently, all elements not in Z (%) have order 4, i.e. § is of
exponent 4. It is known that § has an automorphism & of order ¢ — 1 cyclically
permuting the involutions of § (see [4] and [6]).

In our realization of MST3 we only consider the class of Suzuki 2-groups having
order ¢2. Using Higman’s notation a Suzuki 2-group of order g2 will be denoted
by A(m,0). Let g = 2" with 3 < m € N such that the field IF; has a nontrivial
automorphism 6 of odd order. This implies that m is not a power of 2. The groups
A(m, 0) can be defined as matrix groups.

In fact, if we define

g :={S(a.b)|abely,},

where
1 a b
S@by=10 1 a
00 1

is a 3 x 3 -matrix over [, then it is shown that the group ¢ is isomorphic to
A(m, 0). Thus § has order g2 and we have

Z:=7(8) = ®(§) = ¢ = Q(§) = {S(0.b) | b € F}.

As the center Z(§) is elementary abelian of order ¢, it can be identified with the
additive group of the field ;. Also the factor group §/®(¥) is an elementary
abelian group of order g. It is then easily verified that the multiplication of two
elements in § is given by the rule:

S(a1.b1)S(az.ba) = S(ay +aa . by + by + a1al). (2.3)

In this matrix form representation the Suzuki 2-groups A(m, 6) can be consid-
ered as subgroups of the general linear group GL(3, ¢) over F,.

Public key cryptosystem MSTj: cryptanalysis and realization 277

It has been shown in [4] that the groups A(m, 0) and A(m, ¢) are isomorphic
if and only if ¢ = F1.
For any 0 # A € I, the matrix

1 0 0
A=]0 A 0
0 0 AG—H

induces an automorphism of A(m, #). And A acts on A(m, 6) according to the
rule

A7'S(a, b)A = S(ar, bAPT).

If A = ¢ is a primitive element in [F;, then A has order ¢ — 1 and permutes
cyclically the ¢ — 1 involutions in the center of A(m, 6).

3 Public key cryptosystem MST3 on Suzuki 2-groups

Notation

— From now on let § := A(m,0) be a Suzuki 2-group defined on [F; with
q=2"

— As Z = Z(%) is an elementary abelian 2-group of order ¢, we may view
Z as a vector space of dimension m over F,. Therefore, the automorphism
group of Z is the general linear group GL(m, 2), (i.e. the group is formed
by all m x m invertible matrices over IF,). Denote Aut(Z) := GL(m, 2). If
z = 8§(0,b) € Z and ¢ € Aut(Z), then the action of ¢ on z is defined by
z% 1= S(0, b¥).

— Letg = S(x,y) € 9. Wedenote g, :=xand gp := y.
Remark 3.1. Let f be any homomorphism from § to Z. Let N = Ker(f). Then
N is normal subgroup of § and §/N = f(§) C Z. So, the factor group §/N

is abelian. As the commutator group §' = Z we have N > Z. It follows that
f(z) = 1forevery z € Z.

Key generation
Select a large group ¢ as described above and generate

1. a factorizable logarithmic signature 8 = [B1, Ba, ..., Bs] := (b;j) of type
(r1,...,rg) for Z;

278 P. Svaba and T. van Trung

2. arandom cover @ = [A1, A2, ..., As] := (ajj) of the same type as 8 for a
certain subset § of ¢ such that Aq,...,As € § \ Z. The elements in each
block A; = [a;,1,ai2....,a;,;] satisfy the following conditions:

() a@j).a # Aj»).a- for j1 # j2. This is equivalent to saying that a;))
and agj;,) are not in the same coset of Z.

(i) >j=1.., 4Gj).a = 0. The meaning of this condition will be obvious
when we discuss the security of the system in the subsequent section.

Further select
3. to,t1....ts € G\ Z;
4. ahomomorphism f : § — Z
and compute
5.y = (hij), hij =t} aij - f(aij) - bij - t;.

Then o = (a;;) and y = (h;;) are the public key. The items B = (b;;), to. ..., 15,
and f are the private key.

Encryption

Input: A message x € Z and the public key « and y.
QOutput: A ciphertext (y1, y2) of the message x.

1. Choose arandom R € Zl Z and compute
2. y1=a(R)-x,
v2=J(R)-x =151 - &(R)- f(@(R))- B(R) 15 - x.

Decryption

Input: A ciphertext pair (y1, y2) and the private key 8 = (b;;), to.....ts. f.
Output: The message x € Z that corresponds to the ciphertext (y;, y2).

1. Using the fact that f(y1) = f(&(R)) (from Remark 3.1) compute
BR) = f@R)™-yi 10 y2-t5t = fy) -y to - ya i

2. Recover R from E(R) which is efficiently computable as § is factorizable.
By computing @(R) we then recover x from yi.

Public key cryptosystem MSTj: cryptanalysis and realization 279

Specification of the homomorphism f

For the realization of the cryptosystem MST3; we use the following class of ho-
momorphisms. Let ¢ = S(g4,g5) € 9, and let 0 € Aut(Z) := GL(m,?2).
Define

f:8—->2Z
f(g) :==5(0.g%).

Then f is a homomorphism from § to Z.

Note that if f is the trivial homomorphism, i.e. f(g) = S(0,0) = lg¢ for all
g € §, then we obtain the realization of the “original” MST3 scheme, see [7].
The introduction of a nontrivial homomorphism f in designing the new scheme
is motivated by the attack presented in [11]. The main idea is to transform the
logarithmic signature f = (b;;) in the original MST3 into a random cover § =
(bij - f(aij)) in this new scheme. As a result the attack in [11] can no longer be
applied.

The MST3 as just described for the Suzuki 2-groups can be generalized, of
course, for many other classes of finite groups, for example, the class of special
p-groups. An interesting class of p-groups, also dubbed Suzuki p-groups, for odd
primes p, see [1], may be viewed as a natural candidate for the underlying groups
of MSTs3.

The encryption method of MST3 as described above is a randomized encryp-
tion. However, if we consider Z‘ Z) as the message space and encrypt a message
ze ZIZI by computing

(1, 32) = (a(2),7(2))

as ciphertext, we obtain a non-randomized encryption. It is worth noting that the
non-randomized encryption can be set up within the framework of the randomized
encryption method: replace R by z and take x = 1.

To make the discussion of the cryptanalysis of the scheme in the subsequent
sections simpler, we only consider the non-randomized encryption.

4 Attack on private key

In this section we investigate various types of possible direct attacks on the private
key of MST3. We aim to find lower bounds on the workload with respect to those
attacks. It turns out that those bounds have a very large size in terms of the order
of the groups used.

280 P. Svaba and T. van Trung

4.1 Logarithmic signatures for Z and their two sided transformations

First we remark that if the adversary attempts to extract information about g =
(bij), a main part of the private key, it is sufficient for him to obtain a logarithmic
signature B’ equivalent to B, i.e. any B’ which is a sandwich transform of 8. A
stronger result in [11] shows that it is even sufficient for the adversary to break the
system if he is able to determine a logarithmic signature 8* for Z such that

B*(x) = B(x)-c (4.1)

for all x € Z‘ Z where ¢ € Z is a fixed element. For example, if g* =
[Bf.....BJ]with Bf = Zl.__l1 Bjz; is a two sided transformation of 8 with zg, z1,
...,Zs € Z, then ,é*(x) = B(x) - ¢, where ¢ = zg - zg.

The result shows a fact relevant to the way of counting the number of elements
t; used in generating y. In fact, if we replace ¢; by ti* =t -z, for z; € Z,
i =0,...,s, we obtain a $* such that ,é*(x) = B(x) - [Ti=o zi. Consequently,
the adversary only needs to know the cosets of Z in § with coset representatives
t;’s. Then (s)he can use any coset representative tl-* = t; - z; in place of ¢;. Hence,
in the security analysis of the system, it suffices to determine the cosets of #; with
respect to Z and not the element #; itself.

We call a logarithmic signature 8* for Z satisfying (4.1) a translation of f.

Definition 4.1. Let X = [, f, to0,...,!s] be a private key for MST3. We say that
key K’ = [B', f.ty.....t;] is an equivalent to K if B’ is a translation of B and
t/ =t -zi forsome z; € Zandalli € {0,...,s}.

Our aim is to prove lower bounds on the work effort required for recovering
an equivalent private key. The workload is measured in terms of the size of the
involved groups and we will apply heuristic and algebraic methods to this analysis.

Now, the adversary attempts to extract information about the private key from
the public knowledge of @ = (a;;) and y = (h;j).

By this attack, as adversary, we try to construct a key XK' = [B’, fi1.....1]]
equivalent to the private key X = [B, f.to,...,ts]. We first build an equation
with unknowns involving information about the private key and then investigate
the complexity of solving this equation. For this purpose we particularly exploit
the operation (multiplication) in the underlying Suzuki 2-groups.

4.2 Building an equation

For convenience recall that

* S(a1,b1)S(az.by) = S(a1 +az , by + by + a1af).

Public key cryptosystem MSTj: cryptanalysis and realization 281

i €9, ti =StGya - ta)p)s o= (aij), aij = Sag,jya- ag,j).b)-
* §=S5(ga 8p) €Y, f(g):=S5(0,g%) where 0 € Aut(Z) = GL(m,?2).

Further recall that g¢Z = hZ in § with g = S(x1,x3) and h = S(y1, y2), if and
only if X1 =)1.
We start with

y = (hij) = (7 aij bij f(aij) t:)) = (S(hi jya » hij)p))

and focus on one block of y. W.l.o.g., let us consider the first block. The elements
in this block are A1, k12, ..., hiy . Let J € {1,..., 71} be a subset such that |J|
is even. Then, if we sum up the elements of the first block having indices in J, we
obtain the following two expressions corresponding to the “.a part” and “.b part”
of the sum.

Y haja=Y40.))a (4.2)

je€J, |J| even jeJ
Z ha,jb = Zaa,n.b + Zb(u).b + Za?l,j).a
jeJ, |J| even jeJ jeJ jeJ
6 6
+10ra*)40 jya T e D A0)ar 43)

jeJ jeJ

Adding) jeJ a@,j).b o both sides of (4.3) results in equation

Za(l,j).b + Zh(l,j).b = Zb(l,j)-b + Zagl,j)-a

jeJ JjeJ jeJ jeJ

6 6
+10).a- Z aijya T1ya Z aa,jya- 44
jeJ jeJ

Note that the left side of equation (4.4) is known.
From h(l,l).a =10)a T a1,1).a T {(1).a WE obtain

t©0).a = ha,1).a +t1).a +aa,1).a-

282 P. Svaba and T. van Trung

Replacing (o)., in (4.4) yields

> (aqye +hags) =D bajs + Za((jl,j).a

j€J, |J| even jeJ jeJ

+ (@@ .a + e+ hana) Y44) a
jeJ
0
+1lya DA
jeJ

Considering #(1) , as an unknown we end up with a trinomial of the form

Atfy) o+ Blya + X =0 (4.5)
where

A= "aqjya

jeJ

7]

B=7) a{jya

jeJ
X =Y aqjb+ Y haps+ Y baps+ Y. 4% ya

jeJ jeJ jeJ jeJ

+ (aq,n.a +ha.a) - Z “?1,;‘).(1'

jeJ

We should remark that the term (t(l).a)0 in the trinomial expresses the action of
6 on element (1) , € . Since 0 is an automorphism of IF; with ¢ = 2", it can
be written as a power of the Frobenius automorphism ¢ : a — a® = a? of F q-
Thus the term (t(l),a)e becomes (Z(l)ﬂ)zn, if 0 = ¢" forsome 1 <n < m.

Note that A and B are known, but the term X contains two unknown sums

Yjerba e and Yjc aly .

4.3 Analysis of the equation

The aim of the adversary is to extract information about 8. As in equation (4.5)
the value of X is unknown, the adversary has to guess a value for (1) ,. There are
(g — 1) possible choices for #(1) 4.

Having guessed a value for 7(1) 4, the adversary can compute a corresponding
value for X from equation (4.5). In particular, (s)he can subsequently compute

Cy .= Zb(l,j).b + Zal(rl,j).a' (4.6)
jeJ jeJ

Public key cryptosystem MSTj: cryptanalysis and realization 283

It is important to note that in (4.6) both sums Zje] ba,jy.b Zjej a‘(’1 iva TE
main unknown. For the sake of simplicity define

br:=Y b jb (4.7)
jel
a5 =2l ja
jeJ
Thus
Cy = by +a5. (4.8)

where the values of by and a§ are not determined. Note that we have to determine
o to recover values by and thus gain partial information about . On the other
hand, knowing 8 would lead to reconstructing o.

Attack on b

By this attack the adversary seeks to determine a value for by in order to get an
equation of the form a‘J’ = Cy — by for 0. Note here that a; is known. (S)he
will try constructing a system of those linearly independent equations and then
attempt to solve the system to determine o. Now, as the elements in the first block
By = [b11,...,b1y,] of B are not known, (s)he needs to guess a value for by for
a given even subset J. As each b; can take on any value from F,, where g = 2™,
and as the adversary needs at least m equations to reconstruct o, this approach
leads to a complexity of size 9(¢™). Obviously, this type of brute force attack is
not feasible as ¢ is large.

Attack on a y

We describe a more subtle and involved attack using equation (4.8) on the first
block of y. The attack is described by the following algorithm.

Algorithm 4.2 (Attack on a y).
(i) Determine subsets J C {1,...,r;} of even size such that ay; = 0 and collect
equations by = Cy.
(i) Try to solve a system of equations from (i) for a set of unknown D; C Bj.
(iii) Let Dy = {b1j,....,b1j,}. Use the byj, € Dy from step (ii) to build non-
trivial equations of the form aG.. = dy+, where dj+ := Cj+ — by~ is known
and J* C {ji1,..., ¢} is a subset of even size. Then solve the system of
these equations to determine o.

284 P. Svaba and T. van Trung

We observe that in order to apply this attack the block size of B; should satisfy:
r1 > m. If this is not the case, we have to fuse block B; and B,,..., By (i.e.
B ® B, ® --- ® By), to form a larger block satisfying the condition. So, for the
rest of the analysis of Algorithm 4.2 we implicitly assume that r; > m.

Before we go into a detailed analysis of Algorithm 4.2, it is worth mentioning
thatif a; = 0 then a§ = 0. An equation a; = 0 does not give any information
about o, however it does yield an equation for by, namely by = Cj.

We now examine the complexity of the three steps of Algorithm 4.2.

(i) Asa(yj).q’s are known, the best known efficient way of determining a; = 0
for a certain subset J is to use the birthday attack. More precisely, take two disjoint
random subsets J; and J, of {1,...,r1} such that |J; U J,| is even and check
whether ay, = ay,. If this is so, an ay = 0 has been found, where J = J1 U J.
Such a subset J gives rise to an equation by = Cy. Finding a subset J with
ay = 0 by the birthday attack has a complexity of size roughly O(q'/2). Note
that in step (i) each even subset J has size at least four, this is because all elements
in each block of & belong to distinct cosets modulo Z, i.e a1, j).qa # a(1,h).q for
h # j. Of course, the assumption Y i ey 1 4(1,/).a = 0 is taken into account.
We discuss this condition in the remark below.

(i) Let » = {Jo =@, Jq,...,Jw} where J; C {1,...,r1} is a subset of even
size with |J;| > 4 such thatay, = 0 fori > 1. Let UjZo /i = {j1,---, e}
Each subsum aj = 0 from step (i) corresponds to an equation by = Cy. The
unknowns of these equations are elements by, , ..., by, of By. Let

E?:{b]:C]:JEe{/)}.

Since there are ¢ unknowns, we can view the coefficients of each equation in Ep
as a vector in [z, viewed as a vector space of dimension ¢ over F5. Each such
0-1 vector has an even Hamming weight of size at least 4. Any linear combination
of two such vectors gives rise to a vector corresponding to a subsum ay = 0 with
J € & and hence to an equation in E». In other words, the coefficient vectors of
the equations in £ » span a linear subspace V' of [F,:, where each non-zero vector
of V has a weight at least 4. And therefore, the dimension of V' is at most 7 — 3.
This is equivalent to saying that by using elementary row operations the coefficient
matrix, say M, of any system of equations from Ep will be transformed into a
matrix of row echelon form, for which each row necessarily has weight at least 4.
Hence, such a system of equations gives rise to at least 3 parameters that can be
freely chosen, i.e. the rank of M, denoted by rank(M), is at most ¢ — 3. Since each
parameter can take on any value from I, solving equations for b1; € D in this
step requires a complexity of size at least @ (g>). Having an accurate estimate of

Public key cryptosystem MSTj: cryptanalysis and realization 285

rank(M) appears to be a difficult problem. This is because the rank of M depends
on the set &, which in turn depends on the random values of a(y j,).q» - - -+ 4(1,i,).a-

Note that ¢t > 4. If t = 4, we have rank(M) = t — 3 = 1. This fact is easy
to see, since J* = {1, j2, J3, ja} is the only one non-empty subset with ay = 0.
Consequently by j, + b1,j, + b1,j; + b1,j, = Cy is the only possible equation
with 4 unknowns we can obtain.

If ¢t > 4, we can prove an even stronger bound that rank(M) < ¢t — 4. As above
we denote by V' the linear subspace of IF,: spanned by the coefficient vectors of
the equations in Ep. If any vector of IV has weight at least 6, the dimension of
V is at most t — 5. And therefore rank(M) <t — 5 < t — 4. So, we assume
that V' contains a vector v of weight 4. Without loss of generality, we can as-
sume that v is of the form v = 111100...0 (just by renaming the unknowns).
Consider wg = 111110...0 € F,. Let w; = 1000...0, wp, = 0100...0,
ws = 0010...0. Then wy,wz, w3, ws ¢ V. Let W be the subspace of IF,:
spanned by wj, wz, w3, ws. Then W has dimension 4. It can be checked that
X + v has weight at most 3 for 14 non-zero vectors x € W, ie. x ¢ V, ex-
cept for x = y = 000110...0 € W. Buty ¢ V, as its weight is 2. So we
have W NV = {0}. Hence the dimension of V' is at most t — 4. Consequently,
rank(M) <t — 4. In order to continue the attack we need to guess the values for
at least 4 unknowns by € . Therefore the complexity of step (ii) in this case is
at least 9(q%).

(iii) Let D1 = {byj,....,b1,,} be the subset determined after step (ii). In order
to be able to recover 0 € GL(m,2) it is necessary that ¢ > m. Using elements
in D the adversary can construct non-zero subsum a5 = Cy — by # 0 from
equation (4.6) and try to solve such a system of equations to recover o. This can
be done in polynomial time.

Note that t > m > 4. We record the result of this attack in the following proposi-
tion.
Proposition 4.3. The complexity required to recover a key equivalent to the private
key [B. f.to. 1s] by using Algorithm 4.2 amounts to a size at least O(q° - g/?).
This complexity is composed by
* the complexity O (q) of selecting a correct value for f(;) 4 in trinomial (4.5),

« the complexity O (g'/?) of the birthday attack in step (i) and the complexity
of size at least ©(¢*) of solving equations for by_;’s in step (ii).

It is a challenging open problem to determine a better lower bound on the work-
load to recover the private key of the system. The task appears to be difficult.

286 P. Svaba and T. van Trung

Remark 4.4. We observe that the upper bound for the rank of the matrix M ob-
tained in step (ii) above is far from its actual value, since, to simplify of the dis-
cussion, we did not impose any restriction on ay;’s, i.e. in the argumentation we
freely use all possible values for a1;’s, when we estimate the dimension of V. Ev-
idently, the dimension of V' depends on the choice of aj;’s. One can expect that
the dimension of V' is much smaller and so is the rank of M. Therefore the com-
plexity of the attack on a is much higher than O (g° - ¢'/?). We conjecture that
the values ¢ — rank(M) — 1 increase in proportion to the growth of ¢ (i.e. rank(M)
becomes proportionally smaller, when ¢ becomes larger).

Remark 4.5. In step (i) of Algorithm 4.2 the assumption Y ey 1 4(1,/).a =
0 is taken into account. If this condition is removed, we shall in general
have > ey pda.jya # 0. Suppose that we guess a value for u =
> jeq1,..r} b(1,j).0- This can be done with complexity @ (q). Consequently, each
subsum @y = 0 obtained from the birthday attack likely yields Cx — (u — by) =
ag = ZjeK aa,jya 7 0, where K = {1,...,r1}\ J. Eachag # 0 corresponds
to a non-trivial linear equation for o. So, if the adversary would collect m lin-
early independent equations, (s)he could reconstruct o, as in step (iii). In this case
the complexity of recovering a key equivalent to the private key [B, f, fo, ..., ts]
would reduce to 9(g2 - ¢'/?).

Combined attack on by and a y

We can envisage a further method of reconstructing o from equation a + by =
Cy. Two main steps of the following algorithm describe this attack.

Algorithm 4.6 (Attack on by and ay).

(a) Construct 2m linearly independent vectors of size 2m over F, to form an
2m x 2m regular binary matrix A. Each row of A is of the form ay|by,
(|| denotes concatenation), where ay and by are considered as vectors of
length m over .

(b) Let M denote the 2m x m matrix, whose rows are C ;. Observe that M is
known after 7(1), has been chosen. Compute a 2m x m binary matrix X such
that A-X = M,ie. X = A1 M.

Let us take a closer look at Algorithm 4.6. We write

=

Public key cryptosystem MSTj: cryptanalysis and realization 287

and 0* and Y are m x m binary matrices. First observe that any matrix A con-
structed in step (a) yields a matrix X = A~!. M, as M is known. Each row of
A takes on a value ay||by corresponding to an index subset J of even size. The
first part a; can be computed, because a(y).,’s are known, but we have to guess
a value for by (an m bit vector) from the unknowns b(; j)’s, since they are part of
the private key. So, there are g possible choices for each row of A corresponding
to g possible values for by. If all 2m rows of A are correctly selected (i.e. each
value of by is guessed correctly), the matrix X will have the form

X (1)

where [is the m x m identity matrix. This implies that the complexity of a suc-
cessful reconstruction of o (i.e. 6* = o), after all 2m rows of A are determined is
O (g?™). In this case we have Y = I.

Remark 4.7. A pertinent implication of the combined attack is the following fact.
If logarithmic signature § = (b;;) is of the form B = (b;;) = (e;;)°', where
(e;j) are known and o7 is an unknown m x m regular matrix over IF5, this attack
will enable to reconstruct o and o as well. The reason can be seen as follows.
Equation (4.8) can now be written as a§ + by = a5 + egl = Cy. If in step (a)
we can construct a regular 2m x 2m matrix A with rows of the form ay|les, the
matrix X = A~! . M obtained from step (b) will have the form

()

i.e. we are able to recover o and 0. We see that this is only possible because both
aijy.a’ss €(1j)’s are completely known.

We close the discussion of the security analysis of the direct attacks with a
record of the obtained results.

Proposition 4.8. Comparing the three attacks presented in this section, the strong-
est one, the attack on aj, provides an actual estimate of workload required for
recovering a key equivalent to the private key. The workload is bounded below by
O(q® - q'?), where ¢ = \/|9|.

Remark 4.9. Let o := (S(a(, j).q-a(,j).»)) be a cover used in a set-up of MST;
such thata; jy, € H < Z, where H is a subgroup of Z of order go = 2¢. Then
the lower bound given by Proposition 4.8 becomes 9 (g* - qg/ 2). The bound is

288 P. Svaba and T. van Trung

obtained because in the previous analysis the number of possible choices for 7(1) 4
and the workload required for the birthday attack in step (i) of Algorithm 4.2 will
be reduced according to the order of H.

5 Generation of logarithmic signature 8 and its factorization

In this section we describe a method of generating logarithmic signature 8 for the
realization of MST3 and show methods of factorization with respect to B. As the
center Z of § is an elementary abelian group, we will use the following possible
transformations in generating logarithmic signature f.

5.1 Transformations of logarithmic signatures

Lete = [Eyq, ..., Ey] := (eij) be a logarithmic signature of type (¢1,....f) for
an abelian group H. We define the following transformations on &:

T transform each element of ¢ with an automorphism ¢ of H,

T, fuse j blocks Ekl,...,Ekj, i.e. replace blocks Ekl,...,Ekj with a new
block of the form (((E, « Ex,) - Eks) -+ Eg;), where E; - Ej := E; Q Ej =
lei1€j1, ..., €i1€)1;,€i2€j1, ..., €i2€jt; ..., ¢€ir; €],

T3 permute the elements within each block E; with a permutation 7; in Sy,,

Ty permute the blocks E;’s with a permutation £ € S, (where S, is symmetric
group on v symbols).

It is obvious that B obtained from ¢ by using transformations 77, 7>, T3 and T4
is a logarithmic signature for H. If ¢ is tame, we can factorize with § using the
knowledge of the transformations 7; in polynomial time (as shown by an algorithm
presented in a subsequent section).

5.2 Algorithm for generating 8

We will describe an algorithm for generating a logarithmic signature B for use in
MSTj3;. For the sake of completeness we first include a description of canonical
signatures for elementary abelian 2-groups, which are defined in [11]. We will
identify the center Z of § with a vector space V' of dimension m over [F .

Definition 5.1. (i) Let V be a vector space of dimension m over F,. Let =
Ky U---U Ky, |Ki| = ki, Zleki = m, be a random partition of the
set {1,...,m}. A logarithmic signature § = [D1,..., Dy] := (dj;) for V
is called canonical if for each i € {1,...,v}, block D; has all possible 2

Public key cryptosystem MSTj: cryptanalysis and realization 289

vectors corresponding to the power set of K; with bits set on the positions
defined by the subset K; and zeros elsewhere.

(ii) A canonical logarithmic signature is said in standard form, if K1 = {1,...,
ki}, Ko =4{k1+1,.... k1 +ka},.... Ky =4{k1+- -+ ky—1+1,...,m},
and for all i and j; < j» it holds int(d;j,) < int(d;;,), where int(d;;) is the
integer representation of the vector d;; (i.e. the vectors within D; are sorted
by their integer values).

A canonical signature § for V of type (t1,12,...,ty), t; = 2ki | can be generated
by using the following algorithm.

Algorithm 5.2 (Generation of a canonical logarithmic signature).

(i) Select a random partition » = K; U --- U K, of the set {l,...,m} with
|Ki| = ki.

(ii) For each i € {l,...,v}, construct a block D; by taking all possible 2ki
vectors in V' having bits equal to 0 at positions with indices not in K;.

The following statement is not difficult to prove, see, for instance, [11].

Proposition 5.3. Let § := (d;;) be a canonical logarithmic signature for an ele-
mentary abelian 2-group V of order 2™. Let 9 € GL(m, 2) be an m X m matrix
and define §* .= (dl-‘j). Then 8* is a tame logarithmic signature.

It is clear that the signature §* obtained from Proposition 5.3 is a transversal
signature for a certain chain of subgroups ly = Vo < V) <--- < Vg =V of V.

Moreover, it is shown in [11] that the factorization with respect to a canonical
logarithmic signature will have time complexity @ (1).

We now describe an algorithm for generating logarithmic signature S.

Algorithm 5.4 (Generation of logarithmic signature f).

(i) Lete = [Eq, Ea, ..., Ey] := (e;,j) be the canonical logarithmic signature
in standard form of type (¢1,1%2,...,ty) for Z (viewed as an m dimensional
vector space over [F») corresponding to the partition {K;, K5, ..., Ky} on
the set {1,...,m} with |K;| = k; and t; = 2ki (as in Definition 5.1).

Denote ¢* = (e ;) a logarithmic signature obtained from ¢ by filling the
positions Kj U ... U K;_; of each block E; with random bits, i = 2,...,v.
We call ¢* a randomized canonical logarithmic signature.

290

P. Svaba and T. van Trung

(ii)

(iii)

(iv)

v)

[transformation 77]
Select a random matrix ¢ € GL(m,2) and compute

8 =[Di..... Dyl = (di.;) := (€] ;)°)-

[transformation 73]

Select a partition » = {Py,..., Pg}, 0 < |Pj|, of the set {1,..., v}, such
that for each P; = {iy.....iy}, i.e. |Pj| = u, we have i, # iy + 1 for
h,t e {l,...,u}. Fuseblocks D;,,..., D;,, i.e. construct the product C; :=
(((Dj, - Diy) - Diy---Dj,). Let w = [Cq, ..., Cs] := (ci,j) be the resulting
logarithmic signature of type (rq, ..., rs) obtained after this step.

[transformation 73]
Select random permutations 7; € Sy, i = 1,...,s, where S, is the sym-
metric group of degree r;. Define

* TP
Ci = Ci b= [Ci’lﬂ[,Ci’zﬂ,‘, . 7ci,ti”i]’

i.e. C;* is obtained from C; by permuting the positions of its elements with
permutation ;. Denote y = [C[", ..., C].

[transformation 74]
Select a random permutation £ € S and define

B=I[Bi.....BJ:=[C},....CE]

i.e. B is obtained from y by permuting the positions of its blocks with &.

It should be noted that in order to have an efficient factorization with respect
to B created using Algorithm 5.4, we keep track of the information about matrix
0, logarithmic signature ¢*, partition &, and all permutations used in steps (4)
and (5).

Definition 5.5. We call 8 a fused transversal (FT) logarithmic signature, if B is
generated by Algorithm 5.4. If step (3) (i.e. fusion of blocks) of the algorithm is
not applied, B is called a non-fused transversal (NFT) logarithmic signature.

5.3

Factorization with

In this section we present algorithms for the factorization with 8 generated by
Algorithm 5.4. We begin by proving the following useful proposition.

Public key cryptosystem MSTj: cryptanalysis and realization 2901

Proposition 5.6. Let B := [B1, ..., By] be a transversal logarithmic signature for
an abelian group H. Let ' := B, ..., B{] be a fused logarithmic signature of H
obtained by fusion of blocks of 8 [transformation T»]. Then B’ is equivalent to a
non-fused logarithmic signature B obtained from B by using certain permutation
i € Sy on blocks B; [transformation T4]. In other words 8’ and B" induce the
same function, i.e. ,é’ = ﬂu” .

Proof. We observe that B’ is obtained from f by using the following two opera-
tions:

(a) select an appropriate permutation u € S, and compute
ﬂ// = [BH, ey Bll)/] = [Blu, ey Bvu];

(b) select a partition R = {Ry,..., Rg}ontheset{l,...,v} with Ry ={1,...,
i1}, Ro = {i1 +1,...,i2},..., Ry = {is—1 + 1,....i5} with |Rj| = uj
for j € {1,...,s}. Fusing the blocks of 8” according to this partition yields

the logarithmic signature 8’ := [By, ..., B{] of type (r1,...,rs) with B]/. =
((Bl{;_1+1 'Bz{;_1+2)"'Bi/;)’ where r; = |Bz{;_1+1|) |Bi/;_1+2|"' |Bz{,/-| for
j =1,....,sand ip = 0. (i.e. each block B/ is obtained by fusing certain

consecutive blocks of 8”.)

It is clear that B’ is equivalent to 8. O

Remark 5.7. Let = { Py, ..., Py} be a partition on the set {1, ..., v} with P; =
{11 vitu) P2 = {i21, - vi2un s e oo Ps = {is,1. .- ., isu,) from the step
(iii) of Algorithm 5.4. The permutation u € S, from Proposition 5.6 is given by

(1 2 ce U ur+1 -+ ur+uy --- (u1+u2+...+us))

1,1 l1,2 - dtuy i21 ot lau, ttv Isug
and the corresponding partition is

R = {Rl ={1,2,...,u1},Ro ={uy +1,...,u; +usz},...,
Ry ={ur + - +us—1+1,....u1 + -+ ugh}.

An important consequence of Proposition 5.6 is the construction of the Algo-
rithm 5.8 which allows efficient factorization with respect to the FT logarithmic
signature f.

Let ¢* be the randomized canonical signature created after step (i) of Algo-
rithm 5.4. Also let 4 be the permutation with corresponding partition R from
Remark 5.7. Then we may efficiently factorize B (x) using the following algo-
rithm

292 P. Svaba and T. van Trung

Algorithm 5.8 (Factorization with FT signature f).
Input: y, e*, u, R = {R1,..., Rs}, &, Ty s, O-

Output: x = xq||x2] - ||xs, where y = B(x).
(i) Compute z = (ygfl) and write z = zy||z2]| - - - ||zy. Each z; is of bit length
ki.
(ii) Factorize z with respect to £* by using Algorithm 5.9. Let denote j;. ..., j,
the indices obtained by this factorization.
(iii)) Compute j; = JZ yford=1,...,v
(iv) According to Ry = {i1,i2, ..., iy} set x, = jilljirll--- Il ji, for £ =

1,...,s.

(v) Compute x/ (xe)”f and finally x; = x forl =1,.

In the following we present an algorithm for factorization with respect to an
NFT logarithmic signature. To make the description clearer we start with an algo-
rithm for factorization with respect to a randomized canonical logarithmic signa-
ture ¢* generated in step (1) of Algorithm 5.4.

Let x = x1||x2|| - - [|xv be a binary vector of length m, where x; is of length k;
fori =1,...,vandf; = 2K Let y = ¢*(x). Write y = y1||y2] -+ | yv, where
each y; is of b1t length k;.

In order to factorize y with respect to ¢* we have to determine indices x;, for
i =1,...,v. This can be done with the following algorithm.

Algorithm 5.9 (Factorization with £*).
Input: y = yi|y2]---[lyv, & §
Output: x = x1||x2] - ||xy, where y = e*(x).
(F) Starting with y, we find an element e v.j in block E;; such that the last k,
bits of e* v, are equal to y,. Such e} v.j is uniquely determlned since the last
ky bits of elements in E;; form a vector space of dimension k,. The index j

of ev J in block E determmes the index x,.

(R) Compute y’ = y * (e} j)_1 and write y’ = y{[|y5|l -+ ||y, _; where each y;
is of bit length k;. Repeat step (F) with y; _, for block E;_, to find xy_1.
Continue this process until x; is found.

Now we describe an algorithm for factorization with respect to an NFT loga-
rithmic signature *.

Again, let x = xq||x2| -- - ||xy be a binary vector of length m where x; is of bit
length k; fori = 1,...,vands; = 2k Letz = ,Bv*(x). Write z = zq||z2| -+« ||zv
where each z; is of bit length k;.

Public key cryptosystem MSTj: cryptanalysis and realization 293

Algorithm 5.10 (Factorization with NFT signature).
Input: z = zy|z2| -+ |2, B, &, 71, ..., 700, 0
Output: x = xq||x2] - ||xy, where z = B*(x).

1

(i) Using &1, ', ... ;" and 07! construct * from B*.

(ii) Compute y = (ZQ_I) and write y = y1||y2| --- ||yv. Each y; is of bit length
ki.

(iii) Factorize y with respect to ¢* by using Algorithm 5.9. Let denote x|, ..., x
the indices obtained by this factorization.

/
v
(iv) Compute x" = (xlf)”i_l and finally x; = xf’g_l fori =1,...,v.

1

6 Attack on ciphertexts

This section deals with an elaborate chosen plaintext attack on MST3, when trans-
versal logarithmic signatures are used. This is the case when B is generated by
Algorithm 5.4 without applying the fusion step (iii). In fact, those logarithmic
signatures may essentially be viewed as those from a chain of subgroups of Z.
However, the structure of 8 will be changed if the fusion step (iii) is applied.

The Matrix-permutation attack developed in this section appears to be powerful,
as it provides a proof of the fact that the class of non-fused transversal logarithmic
signatures cannot be used in a realization of MST3. The class of fused transver-
sal logarithmic signatures, however, withstands the Matrix-permutation attack, as
shown below.

Before we present the Matrix-permutation attack, we would like to mention two
simple attacks which emerge naturally from the representation of the elements in
the Suzuki 2-groups.

6.1 The Basis attack

Based on the description of the scheme, the .a part of « and y, are merely random
covers for the center Z. Note that Z is a vector space of dimension m over F,
and we also identify Z with F;. So we call elements of Z vectors as well. Let
us denote by o, the cover of Z whose blocks are formed by the .a part of «.
Define ¢ := &-a(Z\ZQ' Thus ¢ is a subset of Z and the ratio p := |Z|/|$| may
be viewed as the average number of representations for each element of ¢ with
respect to « 4. More precisely, due to the connection between the generation of
random covers and the occupancy problem, see for instance [14], we can derive an

294 P. Svaba and T. van Trung

approximation for the ratio p given by the following formula

A
e
~ A

where A = IfZIQ_IH’LI ri,and (rq,...,rs) is the type of oz 4, and Z is the smallest
1

subgroup of Z containing §. As a matter of linear algebra we may find a maximal
subset of linearly independent vectors which come from all the blocks of « ;. By
using the two sided transformation on « , we may assume that the first s — 1 blocks
contain the zero vector. The linearly independent vectors together with the zero
vectors form a cover which allows an efficient factorization of a certain number of
ciphertexts created by & ,. This amount is approximately % [172; (ki + 1), where
ki = [log, ri]. Therefore the probability that a given ciphertext could be correctly
decrypted is given by

Nlli[(kiJrl)
p ri '

i=1

As aresult, if p or/and r; are increased, this probability will be decreased. So, if
we select the elements of « ; from a subspace Z; of Z such that p = |Z|/|Z,] is
large, then this simple attack becomes infeasible.

6.2 The Meet-in-the-middle attack

There exists a trivial brute force attack on any random cover 8, which for a given
y = §(x), attempts to determine x by using a time and memory trade-off method.
This type of attack is in general called the Meet-in-the-middle attack.

For MSTj it is described as follows. The .a part of , i.e. o4 := (ajj.q), can
be viewed as a random cover of type (rq, ..., rs) for the center Z. Assume that
Y.a = (q(x) is given for some x < (j1,..., Jjs).

So we write y 4, = §1(x1) - 82(x2) where

xl =(j17'~~v.j|_S/2J)’ x2=(j|_s/2J+17---’jS) and

] Ls/2]] s
81(x1) = Z dij.a, 82(x2) = Z dij.a-
i=1 i=[s/2]+1

Here we have §1 := (aijq), i = 1,....[s/2]; j = 1....,r; and 63 := (aijq),
i=1s/2]+1,...,8; j=1,...,r1i.

First construct a table 7" of all possible pairs (u, v) withu = (u1,...,u[5/2)),
u; € Fyri,andv = Sl(u). The size of T is roughly O(,/q).

Public key cryptosystem MSTj: cryptanalysis and realization 295

The attack works as follows: For each chosen w = (u|s/2)41,...,Us), Ui €
[Fyr;, compute a product g = y.4 - (Sz(w))_l. If there is a pair (u,v) in 7" such
that g = v, then we have x = u|w,i.e. x <> (U1, ..., U|s/2] U|s/2]+1:- -+ Us).
On the average we need to construct @ (,/q) of values for g until we obtain g = v.

In summary this attack requires @ (,/q) memory and O(,/q) time.

Note that if « 4 is constructed from subspace Z; of Z such that p = |Z|/|Z;]
is large, the Meet-in-the-middle attack cannot be applied.

6.3 The Matrix-permutation attack on NFT-MST3

We now present the Matrix-permutation attack on a realization of MST3 that uses
a non-fused transversal logarithmic signature B (for short we call NFT-MST3).
This strong attack is a chosen plaintext attack type, which attempts to reverse the
encryption function of the system. The main idea of the Matrix-permutation attack
is to construct a series of matrices and to recover permutations used in generating
B that would eventually allow the adversary to decrypt any given ciphertext.

Used notation:

Let w := (wj, ;) be acover of type (r1,...,7s) for g, andlet x € ZIZI correspond

to (j1,....Js) € Zr, ®-+-® Zy, [see preliminaries]. Let § € Sy and vy := £¢ for
L e{l,...,s}. Define

k
Bpeg(x) = [| wos. g, - (6.1)

i=1

We consider an NFT-MST3 scheme. Let [, y] be the public key with the cor-
responding private key [B, f,to,...,ts]. Recall that o := (a;,j;), B := (b;,;;) and
y = (h; j;) are of type (ry,...,rs) and that § is a permutation used in step (v)
and 71, ..., g are permutations used in step (iv) of Algorithm 5.4.

Proposition 6.1. Let o, B, y be the covers of type (r1, . .., rs) as described above.
Let x € Z,z, correspond to Jtsevenjs) €Ly, &+ ® Zy, and vy := ¢ for

e {l,....s}. Further let ay g(x), ,ég,g(x), Ye,£(x) be the values computed by
equation (6.1). Let ky := [log, ry|. Then there exists a binary 2m + 1) X ky,
matrix My, such that

(g g(x)allog e (x)p + Ve e(X) p 1D My, = 70, (jv,)- (6.2)

where “1" is the bit set to one.

296 P. Svaba and T. van Trung

Proof. First we show that there exists a binary (2m 4 1) x m matrix Ny, such that

(g g(x).allog e (x)p + Vee(xX) p 11Ny, = (5e,g(x).b)~ (6.3)
We begin with
¢ ¢
Qg e(X)p + Vee(x)p = Zb(vi,jvi).b +10).a Za?vi,jvi),a
i=1 i=1
¢ ¢
9
 oa 2 niva + 200 0+ Ce
i=1 i=1

where Cy =). + 1(00;_.111 +we).b T+ Z(O).at(ew).a- As the elements L0).as L(vy).a €
[F, are constants, the products #(gy.4) a(evi,jvi).a and t(eve).a > A(v;,jy;).a Present
linear mappings. Therefore there exist binary m x m matrices Ty and Ty, such that

L L
0
(00 D Aoy, joyra = 2 40iina To

i=1 i=1
14 14
0
t(vg).a Za(viajvi)ﬂ = Za(viajvi)ﬂ Tvé‘
i=1 i=1
Set
To + Tvg + o
sz = Im
Ce

where I, is the m x m identity matrix. Now it is not difficult to check that the
(2m + 1) x m matrix N,, satisfies equation (6.3). Define ¢’ := (elf,j) with el’.’j =

Q—l
b; ; . Clearly

o —1 o
Bre(x)p)? = (¢e(x)p).
Consider the linear mapping ¢, defined by

l
- " e .
€ra(X)p = Ze(i,ji)-b Je

i=1

Public key cryptosystem MSTj: cryptanalysis and realization 297

where id is identity permutation.This mapping is well defined for the class of
transversal logarithmic signatures, in particular for £* created in Algorithm 5.4
after step (i). Note that jy is the binary representation of the index for ey ;, and
is identical with the k, bit vector of ey_j, at the positions K. Let &” := (el’.;) be
obtained from &¢* by applying step (iv) of Algorithm 5.4. Now observe that ¢ acts
on é’é,id(x)_b as follows

¢
o @¢ .
El b =D el ivp — me(o)-

i=1
Applying step (v) of Algorithm 5.4 on &” we get &’. Therefore ¢, acts on 5l£ ()b

according to

L
y e .
gz’g(x)_b = Zezvi,jvi)-b —> 1y, (Juy)-

i=1

Let Py, be the m x ky, binary matrix representation of the mapping ¢;. Then we
can write

(6'£,6(0).) Po, = 70, (Ju,)-
Define the matrix My, as
My, := Ny, -0~ "' - Py,.
Then M), is the binary matrix that satisfies equation (6.2). O

Let My, denote the p-th column of the matrix My, where p = 1,...,k;. We
observe that 74 (j¢) is a binary vector of length k. Similarly, we denote 7y ,(j¢)
the p-th bit of 7y (jy).

By using this notation and Proposition 6.1, where £ is defined, we obtain the
following

Proposition 6.2. Let vy = (¢ and My, p be the p-th column of My, and
e, p(Juv,) be the p-th bit of wy,(jv,) from Proposition 6.1. Then we have

(Gg,e(x).alldge(x)p + Ve, e(xX) D) My, p = 7y, p(Ju,)- (6.4)

Proposition 6.3. Let ., B, y be the covers of type (r1, . . ., rs) as described above.
Let x € ZlZI correspond to (j1,...,js) € Ly, ® -+ B ZLy,. Further let vy := &

298 P. Svaba and T. van Trung

fort e{l,... s} and kg := [log, r¢|. Then there exists a binary 2m + 1) X ky,
matrix Ly, such that

(@(x).qa + Agllax)p + y(x)p + BellD) Ly, = 7v,(Jv,) (6.5)
where
S
A=) Ay j)a
i={+1

N

S
Bri= Y (A jo)b + hwrjo)s) + Za?v,»,j,,[).a (t©0).a + lw;_1).a)
i={+1 i={+1

S
+ Za(vi,jvi).a(t(vi).a + t(s).a)e
i={+1
forle{l,....,s — 1}, As =Bs:=(0,...,0), and “1” is the bit set to one.

Proof. For { = s equation (6.5) is obtained from Proposition 6.1.
So, from now on we assume that £ € {1,...,s — 1}.
Note that

s 14
&(X),a + Z a(vi,jvi).a = Za(vi,jvi)-d

i=(+1 i=1
s {
B)s+ D b, ju)b = Zb(vi,jvi).b-
i=(+1 i=1
First we show that there exists a (2m + 1) x m binary matrix N,, such that
14 L
(D" a0 o all @0 + 7005 + Bell 1) Noy = Y b juyn (66)

i=1 i=1

Here we have

a(x)p +y(x)p + By

s
=a(x)p +y(x)p + Z(a(v,-,jvi).b + N, jo;)b)
i=0+1

S S
+ Za(evi,jvi).a(t(o)-ll i a) T alna + is).a)
i=f+1 i=l+1

Public key cryptosystem MSTj: cryptanalysis and realization 299

N S
_ 6+1 [’
= Z b(”isfvi)'b + Z a?vf,jui).a T L0 Tlg)q T U)b T LH0).al(5).a

i=1 i=1

N s s
0 0
+ 10) 4y, joa T ls)a D awigpat D by
i=1 i=1 i={+1

s s
0 0
+ Z a((Tvi,jvl.).a + Z ([(Ui—l)-aa(vi,jvl.).a + A(v;,jv;).a t(vi).a

i={+1 i={+1
S
0 6+1 0
+twimal(ya e b e T w)b) T 10).a > (v, ju;)-a
i=L+1

s s s
0 0 0
+ Z a(vi,jvi).a t(vi—l)-a + Z a(v,',jvi)‘a Z(vi).a + Z(s).a Z a(v,-,jvi).a

i=l+1 i=l+1 i=0+1
4 l L
— . [6
= Zb(”i’lvi)-b + Za(vi,ju,-)-a T0)a Za(vi,jv,-)-a

L
+ t(es).a Z Av;,ju).a T Ce

i=1
where the term

S
Co=Y (wiyatioyya + iwinb + 1) a + lwb)
i=L+1

+ to).p t+ t(eo—)i—.[ll +t5p + t(O).aZf,a

is viewed as a constant in [F . Therefore, equation (6.6) becomes

12 {
‘ D=1 bv,,jo;)b + D=1 at(rv,-,jvl.).a
L
D Awigira ||+ 0 izt 9y,)a] Vo
=1 12
' +1d, Yo A(v;,jo)-a T Ct

{
= bjub (67

i=1

300 P. Svaba and T. van Trung

Because the elements #(g) , and Z(5) , are constants, and ¢ is a linear mapping,
there exist m x m matrices Ty, T; such that

L 4
0
a2y juya = D2 nina To

i=1 i=1
L 4

0
t(s).a Za(viajvi)ﬂ = Za(viajvi)ﬂ TZ

i=1 i=1

Now set
To+T)+ o0
Ny, = Iy
Cy

where I, is the m xm identity matrix. Then it is easy to check that the (2m+1)xm
matrix Ny, satisfies equation (6.7). Similar to the proof of Proposition 6.1, by
using

14

14
(X bens)e = Y ctunspn = ot
i=1

i=1

and
(&, (x).5) Py, = 70, (juy)
we define
Ly, =Ny, -0 ' Py,.
Then L, is the binary matrix that satisfies equation (6.5).]

We are now in a position to describe an algorithm for recovering permutations
71, ..., 7Ts by using Proposition 6.2. The algorithm delivers the permutation ¢ as
well.

Algorithm 6.4 (Matrix-permutation attack on NFT-MST3: Permutation recovery).

Input: Public key [«, y].
Output: Permutations [7q, ..., g, £].

Public key cryptosystem MSTj: cryptanalysis and realization 301

For { < s downto 1 do)) .
(A) Choose random plaintexts x® > (jl(l), e js(l)), and construct vectors

y@ = (o“t(g,id(x).(;) ||5t1g,id(x).(2) +}7g,id(x)FZ) [[1), as in Proposition 6.2. Define
ng to be the maximum number of linearly independent vectors y(i), where
ng =n,+1+ an=l km. Here n, is the maximum number of linearly

independent columns of the matrix formed by vectors (¢ iq (x),(,?).
(B) Setv <« 1.
(C) For p < 1toky do

(C.1) Selecta set Jy of ky randomly chosen vectors in [F 5, .

(C.2) Choose a random binary vector w = (wy, ..., Wk,) € F,x,, and set
my,p(ji) = w; foreach j; € Jy.

(C.3) Choose random plaintexts x® (jl(i), e ,jl(,i), .. .,js(i)), where
jg) € J, and construct vectors y@ := (&g,id(x)%)||&e,id(x).(ll)) +

?Z,id(x).(;i,) 1), as in Proposition 6.2.

Repeat this step for an appropriate number of choices of x@ and form
a matrix Y, with rows being the linearly independent vectors y(’). If
rank(Yy) < ng then return to (C.1).

(C4) Let x® > (O i i), for (i) = 1.....ny, be the plain-
text used to construct row (i) of the ny x (2m 4+ 1) binary matrix Y5, in
the previous step. Form the ny x 1 matrix Z,_ , with value nv,p(j,f'))
as entry in row (7).

(C.5) Construct a (2m + 1) x ny binary encoding matrix E,, such that
rank(Yy.Ey) = ny.

(C.6) Compute matrix My , = Ey - (Yy - Ey) ™1 Zy p

(C.7) Foreach j, € Fyk, \ Jy choose a random plaintext x +— (j1,..., jv.

.., Js) and compute the value for my ,(ju) by my p(ju) =
(@g,ia(X).allog ia(x) b + Ve,ia(x) pl11). My, p

(C.8) Choose a random plaintext x +— (ji,..., jv,..., js) and compute the
value y = (g ia(X).allotg ia(x) p + Ve,ia(x) (1) - My, p.

If y # 1y, p(jy) then return to (C.2) and try another choice for w €

F,k, (this can be done in at most 2kv times). If no choice for w in
(C.2) is possible, then set v <— (v + 1) and return to (C).

If y = 7y, p(jv), repeat (C.8) for an appropriate number of times.

done

302 P. Svaba and T. van Trung

(D) Set transposition &; := (v, £). Permute the blocks of @ and y with transposi-
tion £ to get @’ and y’. Seta <— o’ and y < y’.

(E) For each j, € F,k,, by using my ,(jy) for p = 1,...,ky, one obtains
7y (Jv), and thus determines permutation 7y .

done

Return [7y,..., s, €], where § = &5 0...0&;.

We now clarify the steps of the Algorithm 6.4

(A) To determine the maximum value for the parameter ny we have to run this
step for a sufficient number of random inputs x@,

(B) This step initializes the parameter v to start the subsequent steps of the algo-
rithm to determine v = ££,

(C) The inner loop is used to determine each bit my, ,(jy) of 7y (jy) for p =
1,..., ky, separately, for which 7y (jy) := (my,1(ju)ll - .. |7y k, (Jv)) for all
jU S szv .

(C.1) The choice of the parameter ky, i.e. size of the set J,, has an effect
on the behaviour of the algorithm. If |Jy| < ky, step (C.3) cannot
be finished (i.e. we always get rank(Yy) < ny). If |Jy| > ky, the
workload required in step (C.2) will be increased comparing with the
case |Jy| = ky.

(C.2) In this step we guess the p-th bit 7y, (jy) of 7y (jy) for all j, € Jy.

(C.3) In this step a plaintext x@ (jl(i), e ,jg), e ,js(i)) is chosen in
such a way that the component jf,l) belongs to Jy, (chosen in step (C.1)).
The other components j, with u # v are arbitrarily chosen. We repeat
this step until we get a matrix Y3 with rank(Yy) = ny.

If the elements of J,, |Jy| = ky, are chosen in such a way that the set
{my(jv) | jv € Jou} has less than k, linearly independent vectors (of
size ky), the rank(Yy) will be smaller than ny. In this case the algorithm
returns to step (C.1), and generates a new set Jy.

(The other possibility could be to extend the size of set Jy, i.e. |Jy| >
ky.)

(C.4) We construct the ny x 1 matrix Z,,, with values nv,p(jlfl)) using (C.2)
and (C.3).

(C.5) In this step we construct a binary (2m + 1) x ny matrix E, such that
rank(Yy.Ey) = ng. This is done in the following way: Let O =
{l,...,2m + 1} be the index set of columns of Y;. Find a subset

Public key cryptosystem MSTj: cryptanalysis and realization 303

0y C Q with |Qy| = ny, such that the columns with indices in Q, are
all linearly independent. Consider the identity (2m + 1) X (2m + 1) ma-
trix /(2,,+1). Remove all columns with indices in Q \ Qy from (3, 41)
to form a (2m + 1) x ny matrix Ey.

(C.6) Using E, from step (C.5) we determine the p-th column My , of the
matrix M,.

(C.7) This step computes the p-th bit my_p(jy) of my(jy) for all remaining
Jv € Foky.

(C.8) This step verifies whether the bit 7y, , () guessed in step (C.2) or com-
puted in step (C.7) for all j, € F,«, is correct, and whether the value
v satisfies v = £5. Running this step in an appropriately sufficient
number of times allows us to check these requirements.

(D) In this step we use v = (¢ determined in the previous loop to construct a
transposition &. We update o and y, permuting their blocks with & and
continue the main loop with the new value £ < (£ — 1).

(E) From the p-th bit my ,(jy) forall p = 1,...,k, we construct 7, (jy). By
collecting all 7wy (jy), jv € F,ky, we are able to recover the permutation 7.

Proposition 6.5. Let o, y be the covers of type (1, . . .,) used as the public key in
NFT-MST3. Let kg := [log, r¢|. The workload required to recover permutations
[71, ..., 75, &] using Algorithm 6.4 is bounded by O (> y_, £ k¢ 2ke=1y,

Proof. In step (C.2) of Algorithm 6.4 we have to guess vector w of k, bits to set
the p-th bit y ,(jy) of my(jy) for all j, € J,. The complexity of the algorithm
includes the times required to run through all bits p € {1,..., k,} with an average
of £/2 times until step (C.8) successfully terminates by finding v := ¢, and also
those for the steps in the main loop for £ € {1,...,s}. Summing up these together
yields the workload as shown in the bound stated. o

Note that for any j,, € {1,...,rm}

£-1 -1
(t0).a T te=1).a) = Z @in,jp).a + Pm, jm).a) = Z (@m,1).a + hom,1).a)
m=1 m=1

s
(t(f).a + Z(s).a)a = Z (a(m,jm).a + h(m,jm).a)e
m={+1

s
Z (a(m,l).a + h(m,l).a)e‘
m=L{+1

304 P. Svaba and T. van Trung

We use Proposition 6.3 to design the following algorithm.

Algorithm 6.6 (Matrix-permutation attack on NFT-MST3: Matrix recovery).
Input: Public key [«, y], permutations [r1, ..., 7y, &].
Output: Matrices [L1, ..., Ls].

Set As < (0, ...,0), an m-bit zero vector.

For { < s downto 1 do

(A) Setv < (5.

(B) Select random plaintexts x@ (jl(i), cees js(i)), and construct vectors
y@) = (&g,g(x).(é)||5¢(x).(ll;)+)7(x).(2)+¢\>2i)||1), as in Proposition 6.3. Define
ny to be the maximum number of linearly independent vectors y(i), where
ny = n!, + 1+ Y8 _ k. Here n/, is the maximum number of linearly
independent columns of the matrix formed by vectors (dg g (x).(f,)). Repeat

this step for an appropriate number of choices of x¥ and form a matrix Y,
with n, rows being the linearly independent vectors y(’).

(C) Let x® (jl(i), .. .,js(i)), for (i) = 1,...,ny, be the plaintext used to
construct row (i) of the n, x (2m + 1) binary matrix Y3 in the previous step.
Form the n, x k, matrix Z, with value m,(j,) as entry in row (7).

(D) Construct a (2m + 1) X ny binary encoding matrix E,, such that
rank(Yy.Ey) = ny

(E) Compute matrix L, = Ey - (Yy - Ey)™! - Zy.
If £ = 1 thenreturn [Ly,..., Lg].

(F) Set

-1
7]
Apy < A+ aw b+ hwinb + 8y a2 @t e + e 1).a)
m=1
S
0
+aw,j,).a Z (a(mf,l).a + h(mf,l).a) .
m={+1
done

By making use of the information computed by Algorithms 6.4 and 6.6 we now
present an algorithm for the decryption of a given ciphertext y = (y1, ¥2).

Public key cryptosystem MSTj: cryptanalysis and realization 305

Algorithm 6.7 (Matrix-permutation attack on NFT-MSTj3: Factorization).
Input: [71,..., 75, &, L1,..., L] for the public key [, y], ciphertext y = (y1, y2).
Output: Plaintext x — (ji,..., js), such that y; = a(x), y2 = y(x).

Set Ag < (0,...,0).

For { <— s downto 1 do
(1) Setv < ¢5.
(2) Construct a vector w = (y1.ally1.6 D y2.6 ® Agll1).
(3) Compute my(jy) = w - Ly.

(4) Recover j, using my(jy) and permutation m,. If £ = 1 then return
(J1:eooJs)

(5) Set Yia < Y1.a @ Av,jv).a

-1
i1 < Ag+ A j)b b T A e D @meny.a T e 1).a)

m=1

S
T aw,jy).a Z (@me 1.0 + h(mé‘,n.a)g-
m={+1

done

As presented above, the Matrix-permutation attack on NFT-MST3; makes
use of Algorithm 6.4 to recover permutations [rq,..., s, &] and then Algo-
rithm 6.6 to construct matrices [L1,..., Ls]. The knowledge of [L1,..., Lg]
and [71, ..., 7y, &] allows the adversary to decrypt any ciphertext by using Algo-
rithm 6.7. The usage of non-fused transversal signatures permits the construction
of such matrix L; for any block i = {1,...,s} and to compute the image 7; (j;)
of j; under permutation 7; as shown in Proposition 6.3. This fact is used in step
(iii) of Algorithm 6.7. As m; is a bijection, the preimage j; can be recovered if
i (ji) is known, as shown in step (iv) of the same algorithm.

Remark 6.8. The determination of permutations [r1,. .., s,] and the construc-
tion of matrices [L1,..., Lg] could be designed in a single algorithm. However,
such an algorithm would become very involved. Therefore, for the sake of clarity
regarding the description of the Matrix-permutation attack we have presented two
separated algorithms, namely Algorithm 6.4 and Algorithm 6.6.

306 P. Svaba and T. van Trung

As the workload required for Algorithm 6.6 is negligible, the complexity of
the Matrix-permutation attack is reduced to the complexity of the determination
of permutations [r1,..., 7,] by Algorithm 6.4. Thus we have the following
proposition.

Proposition 6.9. By using the same notation as in Proposition 6.5, the work-
load required to recover the cleartext for a given ciphertext by using the Matrix-
permutation attack on NFT-MST3 scheme is roughly of the same amount as re-
quired to recover permutations [y, ..., s, &), and is bounded by

(9(22;6@ 2’%‘1).

The complexity as given in Proposition 6.9 shows in particular that for relatively
small values k;, which are usually used in a real version of the MST3 scheme, say
ki < 15, the non-fused transversal logarithmic signatures cannot be used for a
secure realization of MST3.

6.4 The Matrix-permutation attack on FT-MST3

In this section we attempt to determine the complexity of the Matrix-permutation
attack on FT-MST3.

As shown in the previous section, the Matrix-permutation attack exploits fully
the way of factorizing with respect to a non-fused transversal logarithmic signa-
ture B (Algorithm 5.10), even though the adversary does not know . Thus, the
knowledge provided by a factorization with respect to 8 by Algorithm 5.10 will
be the crucial information for the estimation of the complexity of recovering the
cleartext when the Matrix-permutation attack is applied.

To simplify the description of the Matrix-permutation attack on FI-MST3 we
confine ourselves to using only step (i) and step (iii) of Algorithm 5.4 to create
logarithmic signature f.

Let {K1, K>, ..., Ky} be a partition on the set {1,...,m} with |K;| = k; and
t; = 2ki as described in Algorithm 5.4. Let ¢* := (ei*’ j) be a signature of type
(t1,...,ty) created after step (i) of the Algorithm 5.4.

W.l.o.g. we consider 8 := (b;, ;) to be a logarithmic signature created by fusion
of blocks (£, £ 4 2) and (£ + 1,£ + 3) of £*. (Note that no consecutive blocks are
fused.) Then 8 = [Bi,..., Bs] is of type (r1,...,rs), where ry = t; - tg4, and
Fg+1 = toy1 - te+3. We now consider one fused block, say By, of 8.

Let ul["]]l (resp. el[:’J].i) be a vector of length k,, consisting of the bits of ; ;; on
the positions corresponding to K.

Public key cryptosystem MSTj: cryptanalysis and realization 307

Let X > (j1,....jv), also let x" = (j{...., jg), where j; = j¢llje41 and
Jow1 = Jesalljets-

Then
e, =C+ o0 @ 0 0 0)
ey, o =Gl 0 [0 [0 l 0)
[- - -
eqy, =Gl 0 0 0)
* _ (4] [e+1] A A
et jprn= Ol gy oy ey, |l 0 [0)
* _ [£€] [£+1] [£+2] =
€2, joy1— G £+2, jet1 I Net2, jog I €42, joq I 0)
* _ [€] [£+1] [£+2] [£+3]
TN A Gl R NN I S NI A S N RERDE
—————— S—— [— [——
K, Kot Koyo Koys
Then 5
PO = b1y @ @by j; @by & @by,
where
_ [€] [e+1] [€+2] =
b =Gl e 1wl 0)
Heta, Je+1
_ (4] [e+1] [£+2] [€+3]
be"'l’ e G- o, je+2® ”el+l, J}urz69 I Ueys, Je43 I €43, Je+3 I+
[¢ [¢+1]
£+3, jei3 43, jot3
and therefore
K, Kot Keqo Ket3
¢ (€] [e+1] [£+2] [£+3]
+1 _
Zi=1 bi’ji/ = (-l 65’{[69 I Wet2, et @ | €t2, jot @ | €043, jots Il
u[i ® e[Z—H] ® u[€+2]
{42, jl+1 L+1, j[+2 {43, j({+3
u £ . (&3} u[£+1]
fa—l,JeJrz 43, jot3

u .
L+3, je+3

Assume we use the factorization scheme as given by Algorithm 5.10. As the bits
[m] [m]
i,Jji’ L,Ji

. . .
i.e. to recover the index j, , for

of u are randomly chosen, only the bits of e; - can be used for factoring with

respect to . Therefore, to factorize Zfi 11 b;
[£+3]
£43, joy3
However, as By has length rpy{ = 2ker1tkets there are 2K¢+1 elements of

-
5Ji?

block Byt 1, we may only use bits of e , i.e. the bits on positions Ky 3.

308 P. Svaba and T. van Trung

[£+3]
£+3, jets
k¢4 3 bits from index j Kl 41 can be determined.

Having obtained this information, we now return to the Matrix-permutation at-
tack when a fused signature § is used in an FI-MSTj3. Similar to Proposition 6.3
we may show that there exists a matrix Ly such that

By, having the same value e on positions Ky 3. In other words, only

o o o {43
(@(0).a + A1 |8() 5+ F() 5+ BepalDLegr = 55

Using such a matrix we can recover only kg3 from (kg1 + kgy3) bits of jé+1
for By .

This shows that the Matrix-permutation attack applied to FT-MST3 can recover
only a portion of bits of the index in each fused block of 8. Thus we have the
following proposition.

Proposition 6.10. Let By be a block of a fused transversal logarithmic signature
B used in FT-MST3. Let By = ((D;, - Dj,) -+ Diue) as defined Algorithm 5.4,
where iy < iy <--- <liy,. Letk; = [log, D;]. By using the Matrix-permutation
attack on FT-MST3 one can determine kiuz Sfrom Z;”: L ki; bits for the index in
block By.

The complexity of factoring a ciphertext by using the Matrix-permutation attack
on FT-MST3 is thus given as the product of the complexities for factoring with
respect to each block By, £ = 1,...,s. Moreover, as the factorization has to be
proceeded implicitly according to the permutation & of Algorithm 5.4, it turns out
that the last attacked block can be carried out by a table search, and therefore has
a negligible complexity. To summarize, we record the complexity of the Matrix-
permutation attack on FT-MSTj3 in the following proposition.

Proposition 6.11. Let m be an input length of an FT-MST3 scheme with a fused
transversal logarithmic signature B created by Algorithm 5.4. Let P = {P1,...,
Ps} be a partition used in step (iii) of this algorithm where Py = {ig 1,igy,}
forl =1,...,s. Letky = [log, D], where Dy is defined by the same algorithm.
Then the workload still needed after the Matrix-permutation attack to recover the
plaintext for a given ciphertext is of O (2°) where

K Ul
¢ = (I’I’l - Zki&u[- Zkil.j)'
{=2 j=1

Remark 6.12. We can envisage a further method of using the Matrix-permutation
attack on the FI-MST3 scheme. Suppose that the adversary attempts to keep

Public key cryptosystem MSTj: cryptanalysis and realization 309

fusing the blocks of @ and y to eventually obtain a new & and y, in which the
corresponding logarithmic signature B (inside y) has a block B; which forms a
subspace of dimension m; in Z. Note that the adversary actually does not know
B; and therefore cannot verify whether B;isa subspace or not. Assuming that
B;isa subspace (s)he may attempt to apply the Matrix-permutation attack to &
and y to compute the index in B; for the plaintext from a given ciphertext. It is
fairly easy to prevent this type of attack by selecting a partition P in step (iii) of
Algorithm 5.4 in a way that such a block B; necessarily has a large dimension m; .
This makes the Matrix-permutation attack impossible because of its complexity,
as given in Proposition 6.9.

7 Implementation aspects of MST3

In this section we consider practical implementation issues of FI-MST3 with the
underlying Suzuki 2-groups. The Algorithm 5.4 as described in Section 5 will be
used for generating logarithmic signatures . As observed, if we keep track of the
information at each step of Algorithm 5.4, in particular, the knowledge of parti-
tion = {Py,..., Ps} used in step (iii), we have a highly efficient factorization
method with respect to 8 as shown in Algorithm 5.8. By taking the discussion of
Subsection 6.1 into account we may, if necessary, select the elements of « 4 in a
subspace Z1 such that p = |Z|/|Z1]| is sufficiently large.

7.1 Computing with the Suzuki 2-groups

Let ¢ = 2™, where m > 3 is not a power of 2 and let 8 be a non trivial odd-
order automorphism of F,. Let § = A(m, 0) be the Suzuki 2-group of order g2
described in Section 2. Recall that the multiplication of two elements in § is given
by the rule:

S(a1.b1)S(az.bs) = S(ay + az. by + by + a1al). (7.1)

We could store the group elements S(a, b) as pairs (a, b), but this would require
that we compute some a? each time we compute a product of group elements. In
turn, each computation a? requires at most 2[log, m| multiplications in [F,. It
is therefore more time efficient to store the group elements as triples (a, b, a?).
Thus, the product S(a1,b1) - S(az, by) is identified with the triple

(a1 +az, by + by +a1a§, a‘f +a§)

and computation of the product requires just a single multiplication and four addi-
tions in [F .

310 P. Svaba and T. van Trung

7.2 Public key size and cipher expansion

Let o = ((agjy.qa-agj)p) and y = ((hjy.a-hij).p))- For a given i we have
hijy.a = A@jya + ti—1).a + L@).q forall j = 1,...,r;. This means that for
eachi,if a;),’s and the sum #; _y) 4 + (3).q are known, h;;y ,’s can be derived.
Therefore, for the public key we need to store [a, (h(;j).5)] (i.e. the “.b part” of y)
and the s values 7;_1) 4 + I(j).q, fOri =1,...,s.

However, for a practical implementation of MST3 we describe a more efficient
method of dealing with the key storage. The idea is that we generate the key by
using a publicly known Algorithm +, which generates a random cover « satisfying
the conditions in Section 3. Essentially, Algorithm # utilizes a pseudo-random
number generator R. To simplify the description we assume that a logarithmic
signature 8 has been generated by Algorithm 5.4 separately.

Algorithm 7.1 (Reduced key storage).

External: Algorithm #A, a pseudo-random number generator R
Imput: [, f, to, ..., 5], aseed S for R

Output: [o, Y]

(a) Using +, R and S to generate @ = ((a(;j).q- a(ij).b))-
(b) Create y = ((h(ij).a- h(ij).»)) from o as described in Section 3.

From Algorithm 7.1 it is clear that, for the public key, one has to publish
(h(ij).p) together with 7;_1y 4 + 1)q fori = 1,...,5, and S only. To obtain
the complete public key, i.e. [, y], one first generates « from step (a) using R and
seed S, then computes (%)) from a;jy 4 and 1G_1).4 + £(;).q. This approach
will reduce the key size of the system roughly to only one third of [a, (hj).p)]
(i.e. one fourth of the size of public-key [e, y]). In fact, this key size appears to be
the minimum key storage that can be realized for MST3.

The cipher expansion of MST3 is of a factor three. For, suppose (y1, y2) is a
ciphertext pair with y1 = (y(1).4. Y(1).6) and y2 = (¥(2).4- Y(2).5)- then, it suffices
to send y1 and y(2) p as the ciphertext. This is because y(2) 4 can be obtained from
the equation y(2).4 = Y(1).a + {(0).a T I(s).a Dy using the private key 79 and ;.

7.3 Examples of generating

We need to introduce some notation. We say a logarithmic signature (cover) f is
of type (v}' - vy?---v{") if B has the first u; blocks of size vy, the next uz blocks
of size v, etc.

Let ¢ = [Ey, Ea,..., Es] be a transversal logarithmic signature created by
Algorithm 5.4 by steps (i) and (ii). Then, there exists a chain of subgroups l¢ =

Public key cryptosystem MSTj: cryptanalysis and realization 311

0 <91 <--- < §g =8, such that each block E; consists of a complete set of
coset representatives of §;,_1 in g;.

We also write [ry, X ry, X - X 1y,] to denote the fusion of £ blocks Ey,,, Ey,,
..., Ey,, where |Ey;| = ry; and u; < up < --- < uy. Specially, [r,] denotes
a non-fused block E, with |Ey| = r,. We say a block B; of § is of fusion type
[Fuy X1y, X oo Xy, Jif Bi = Eyy @ Ey, @ -+ ® Ey,. We write

el er ey
F{' - Fy? - F,

to denote the fusion type of B for which the first e; blocks are of fusion type Fi,
the next e, blocks of fusion type F», etc. For example, the notation [256] - [32 x
4]° - [32 x 8 x 4]0 denotes a set-up for B with the first two non-fused blocks of
length 256, the next five created by the fusion of two blocks of size 32 and 4,
and the remaining ten blocks obtained by fusing three blocks of size 32, 8 and 4
respectively.

Let 8 be a fused logarithmic signature of fusion type, say, [v1]¢! - - [vj—1]¢—1 -
[vi xu;] - [vj—1 xu;—1]% ' - [v; xuj x w;i]® .- [vg X uy X wy]®, generated
by Algorithm 5.4. If § is used for a set-up of FT-MST3, the workload of the
Matrix-permutation attack required to recover the plaintext is roughly bounded by
(9(1)5" v;"’__ll “(vj.uj)® - (vg.ug)t) (see Proposition 6.11).

Example 1. Here we show an example of the set-up for FI-MST3 as given in the
Table 2 below. Let m = 224 and s = 32. The following steps are required to
successfully set-up the scheme.

Set-up:

(1) Using Algorithm 5.4 generate a logarithmic signature 8 for Z starting from
e of type (1282 -3239.43%) ie. v = 62. In particular, for step (iii) of the
algorithm take a partition > = { Py, ..., P33} with P; = {1}, P, = {2}, and
P ={i,v—i+3}fori =3,...,30,and P3; = {31,33}, P3» = {32,34}.
After finishing Algorithm 5.4 the logarithmic signature B is of type (12832),
and of fusion type [128]? - [32 x 4]3°.

(2) Using B and Algorithm 7.1 create public key [, y].

Example 2. Let m = 255 and s = 26.
Set-up:

(1) Using Algorithm 5.4 generate 8 for Z starting from & of type (256 - 322> -
824.425) i.e. v = 75. For the step (iii) of this algorithm take a partition P =
(P1..... Py} with Py = {1}, P, = {2,75},and P; = {i, i + 24, i + 48}
fori = 3,...,26. Therefore B is of type (256 - 128 - 10244), and of fusion
type [256] - [32 x 4] - [32 x 8 x 4]4.

(2) Using B and Algorithm 7.1 create public key [«, y].

312 P. Svaba and T. van Trung

7.4 Performance of the system

In this section we show the data of the performance of MST3 acquired from a
concrete implementation of the scheme.

The Table 1 shows the number of operations required for one encryption or
decryption of the FT-M 7'S3. Namely, the addition (ADD), the multiplication
(MULT), the exponentiation with 6 (EXP(6)), the generation of m-bit random R
(PRNG), and the factorization of £(R) € Z with respect to a transversal logarith-
mic signature ¢ using the Algorithm 5.9 (FACTOR).

Fym ADD | Fom MULT | Fom EXP(0) | F2m PRNG | FACTOR
encryption 7s — 7 2s =2 — 1 -
decryption | m + 4s + 8 s+3 2 - 1

Table 1. Number of basic operations for one encryption/decryption of FT-MST3.

We note that an intrinsic property of MSTj3 is that there is a trade-off between
the key storage and the speed of the scheme. For example, if F,320 is the un-
derlying field for the Suzuki 2-group &, then the corresponding FT-MST3 has
an input of 320 bit length; if & and y have type (4 - 64°3), the public key size
is of 135kBytes, whereas if « and y have the type (256%°), we have a public
key of 402kBytes. This implementation shows that for the first case we have
an encryption/decryption speed of 287/471kB/s, whereas for the second case
377/581kB/s.

The Table 2 presents data related to the public key size, type and fusion type for
B, the speed of the encryption and decryption together with the workload (W) of
the Matrix-permutation attack required to recover the plaintext. The performance
tests were implemented by using the library NTL! and measured on a 64-bit ma-
chine of 1.8 GHz.

8 Conclusions

We have presented a revised version of the MST3 public-key cryptosystem on the
basis of the Suzuki 2-groups. An elaborate investigation of recovering the private
key by using heuristic and algebraic arguments has produced strong bounds for
the workload required. We have developed a powerful chosen plaintext attack on

I NTL C++ Library, written by Victor Shoup, www . shoup .net/nt1.

www.shoup.net/ntl

Public key cryptosystem MSTj: cryptanalysis and realization

313

pk . E D
m | s type of B [KB] fusion type of B w [kB/s] | [kB/s]
160]26| (2562 - 6424) 43 | [256]-[16 x 4 x 4] -[16 x 4124 [2102| 607 | 859
16023 (64 - 12822) 57 [64] - [128] - [32 x 4]3! 21051 604 | 852
160 | 20 (25629) 100 [256] - [16 x 4 x 4]1° 21141 671 | 895
160] 18| (2562 -51216) 170 | [256] - [16 x 4 x 4] - [32 x 4 x 4]16 | 2118 | 689 | 904
160 16 (102416) 320 [1024] - [32 x 8 x 4]'° 21201 758 | 941
192132 (6432) 49 [64]3 - [16 x 4]%° 2116 571 | 854
19228 (8-1282%7) 82 [8] - [128]? - [32 x 4]*° 21251 529 | 783
19224 (2562%) 145 [256] - [16 x 4 x 4]%3 21381 609 | 851
19222 (8-51221) 253 [8] - [512] - [32 x 4 x 4]?° 21401 679 | 914
19220 (4-102419) 457 [4] - [1024] - [32 x 8 x 4]18 21441 720 | 924
224 |38 (4-6437) 66 [4] - [64]* - [16 x 4]33 21321 511 | 772
22432 (12832) 113 [128]2 - [32 x 4]30 21501 565 | 827
224 |28 (2562%) 197 [256] - [16 x 4 x 4]%7 21621 595 | 845
224125| (256-512%%) 344 [256] - [32 x 4 x 4]*4 21681 637 | 875
224123 | (256-64-102421) | 597 | [256]-[16 x 4] -[32 x 8 x 4121 [2172| 678 | 894
255 (43 (8- 644?) 85 [8] - [64]* - [16 x 4]38 21521 532 | 808
25537 (8- 12836) 145 [8] - [128]2 - [32 x 434 21701 576 | 852
255|132 (25631 .128) 252 | [256]-[16 x 4 x 4130 . [32x 4] [2'85] 602 | 865
25529 (8-5122%) 447 [8] - [512] - [32 x 4 x 4]%7 21891 637 | 887
25526 | (256-128 - 10242%) | 778 | [256]-[32 x 4] -[32 x 8 x 424 [2197| 708 | 932
288 | 48 (64*%) 110 [64]° - [16 x 4]*3 21721 306 | 502
288 | 41 (256 - 12840) 190 [256] - [128] - [32 x 4]3° 21951 325 | 523
288 | 36 (25630) 325 [256]% - [16 x 4 x 4]34 22041 381 | 593
28832 (51232) 577 [512] - [32 x 4 x 4]3! 22171 407 | 595
288(29| (5122-1024%7) 1009 |[512]-[32 x 4 x 4] - [32 x 8 x 4]27 | 2223 | 457 | 668
320 | 54 (4-64°3) 135 [4] - [64]° - [16 x 4]*8 21921 287 | 471
32046 (8-512-128%) | 242 [8]-[512] - [32 x 4]*4 22201 305 | 490
320 |40 (256%9) 402 [256] - [16 x 4 x 4]38 2228 | 377 | 581
32036 (32-5123%) 703 [32] - [512] - [32 x 4 x 4]3* 2238 403 | 604
32032 (102432) 1281 [1024] - [32 x 8 x 4]3! 22481 450 | 650
352159 (16 - 64°8) 163 [16] - [64]° - [16 x 4]°2 22081 246 | 408
352151 (4-128°9) 277 [4] - [128]3 - [32 x 4]*7 22351 202 | 475
352 | 44 (256*%) 486 [256]2 - [16 x 4 x 4]*2 2252 304 | 481
352140 (2-51239) 860 [2]-[512] - [32 x 4 x 4]38 2266 | 353 | 537
352136 (8-512-102434) | 1431 [8]-[512] - [32 x 8 x 4]34 2272 378 | 566
384 | 64 (64%%) 195 [64] - [16 x 4]°8 2232 252 | 421
384 |55 (64 - 128°%) 330 [64] - [128]3 - [32 x 4]°1 2255 | 287 | 466
384 |48 (256%%) 578 [256]2 - [16 x 4 x 4]*6 2276 | 303 | 485
384143 (64 -51242) 1013 [64] - [512] - [32 x 4 x 4]*1 22871 352 | 535
384139 | (16-102438) 1827 [16] - [1024] - [32 x 8 x 4]37 2296 | 364 | 554

Table 2. Various data for parameters, performance and security of FT-MSTj;.

314 P. Svaba and T. van Trung

the scheme, called Matrix-permutation attack, which, in particular, shows that the
class of non-fused transversal logarithmic signatures for the center of the underly-
ing groups are unfit for use in the realization of MST3. The class of fused transver-
sal logarithmic signatures, however, withstands the Matrix-permutation attack. We
have determined the complexity of this attack on the scheme using fused transver-
sal logarithmic signatures. This result enables us to choose the right parameters
for the scheme, which we have discussed in the last section. Data of key storage
and of speed performance of a concrete implementation of the scheme have been
included. A further challenging problem regarding the realization of the scheme
is the question of how to use the class of non-transversal logarithmic signatures or
random covers for 8. We will deal with this problem in a future work.

Bibliography

[1] Y. Berkovich, Z. Janko, Groups of Prime Power Order, Volume 2 Walter de Gruyter,
Berlin, New York 2008.

[2] S.R. Blackburn, C. Cid, C. Mullan, Cryptanalysis of the MST3 Public Key Cryp-
tosystem J. Math. Crypt. 3 (2009), 321-338.

[3] T. El Gamal, A public key cryptosystem and a signature scheme based on discrete
logarithms, IEEE Transactions on Information Theory, 31 (1985), 469-472.

[4] G. Higman, Suzuki 2-groups, Illinois J. Math., 7 (1963), 79-96.
[5] B. Huppert, Endliche Gruppen I Springer-Verlag Berlin Heidelberg New York 1967.

[6] B. Huppert, N. Blackburn, Finite Groups II Springer-Verlag Berlin Heidelberg New
York 1982.

[7] W. Lempken, S.S. Magliveras, Tran van Trung, W. Wei, A public key cryptosystem
based on non-abelian finite groups, J. Cryptology 22 (2009), 62-74.

[8] S.S. Magliveras, A cryptosystem from logarithmic signatures of finite groups, In
Proceedings of the 29th Midwest Symposium on Circuits and Systems, Elsevier Pub-
lishing Company, (1986), 972-975.

[9] S.S. Magliveras, N. D. Memon, The Algebraic Properties of Cryptosystem PGM, J.
of Cryptology, 5 (1992), 167-183.

[10] S.S. Magliveras, D.R. Stinson, Tran van Trung, New approaches to designing pub-
lic key cryptosystems using one-way functions and trapdoors in finite groups, J.
Cryptology, 15 (2002), 285-297.

[11] S.S. Magliveras, P. Svaba, Tran van Trung, P. Zajac, On the security of a realization
of cryptosystem MST3, Tatra Mt. Math. Publ. 41 (2008), 1-13.

Public key cryptosystem MSTj: cryptanalysis and realization 315

[12] P. Nguyen, Editor, New Trends in Cryptology, European project “STORK -
Strategic Roadmap for Crypto” — IST-2002-38273. www.di.ens.fr/~pnguyen
/pub.html#Ng03

[13] P. Shor, Polynomial time algorithms for prime factorization and discrete logarithms
on quantum computers. SIAM Journal on Computing, 26(5) (1997), 1484—1509.

[14] P. Svaba, Tran van Trung, On generation of random covers for finite groups Tatra
Mzt. Math. Publ. 37 (2007), 105-112.

[15] M.I.G. Vasco, A.L.P. del Pozo, P. T. Duarte, A note on the security of MST3 Des.
Codes Cryptogr. 55 (2010), 189-200.

Received 8 February, 2010; revised 13 October, 2010.

Author information

Pavol Svaba, Institut fiir Experimentelle Mathematik, Universitidt Duisburg-Essen,
Ellernstrasse 29, 45326 Essen, Germany.
E-mail: svaba@iem.uni-due.de

Tran van Trung, Institut fiir Experimentelle Mathematik, Universitit Duisburg-Essen,
Ellernstrasse 29, 45326 Essen, Germany.
E-mail: trung@iem.uni-due.de

file:www.di.ens.fr/~pnguyen/pub.html#Ng03
file:www.di.ens.fr/~pnguyen/pub.html#Ng03

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00417
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002d00730062006d002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

