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Abstract. A new type of public key cryptosystem, called MST3, has been recently in-
troduced on the basis of covers and logarithmic signatures for non-abelian finite groups.
The class of Suzuki 2-groups has been proposed for a possible realization of the generic
scheme. Due to their simple structure, the groups enable us to study the security of the
system and also provide an efficient implementation. An earlier relevant result of the
cryptanalysis has shown that the transversal logarithmic signatures are unfit for use in this
realization. In this paper we present a revised version of MST3 for the Suzuki 2-groups
and show a thorough study of its security. Using heuristic and algebraic methods we es-
tablish strong lower bounds for the workload of conceivable direct attacks on the private
key of the scheme. We then develop a powerful chosen plaintext attack which allows us to
rule out the usage of a certain class of logarithmic signatures. In addition, we show a class
of logarithmic signatures withstanding this attack and thus to our knowledge they could
be used in the realization of the scheme. Finally, we describe and discuss the implemen-
tation issues of the scheme in detail and include data of its performance obtained from an
experimental result.
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1 Introduction

In recent times, asymmetric cryptography has become essential to many informa-
tion systems. Many public key cryptosystems have been proposed, but only few
of such systems remain unbroken. Most of these are based on the perceived in-
tractability of certain mathematical problems in very large, finite cyclic groups in
certain particular representations. Prominent hard problems are i) the problem of
factoring large integers, ii) the Discrete Logarithm Problem (DLP) in particular
representations of large cyclic groups, and iii) finding a short basis for a given
integral lattice L of large dimension. Unfortunately, in view of P. Shor’s quantum
algorithms for integer factoring, and solving the DLP [13], the known public-key
systems will be insecure when quantum computers become practical. A recent re-
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port edited by P. Nguyen [12] identifies these and other problems facing the field
of information security in the future.

Recently, a new type of public key cryptosystem, called MST3 [7], has been
developed on the basis of logarithmic signatures and covers of finite non-abelian
groups. For a possible realization of the generic version of this system, the Suzuki
2-groups have been suggested. Due to their simple structure, these groups make
it possible for studying the security of the scheme. As shown in previous results,
a lower bound for the work effort required in terms of the size of the underlying
groups is obtained [7]. By exploiting the distinguishing feature of the group opera-
tion in the Suzuki 2-groups, a further analysis in [11] has shown that the transversal
logarithmic signatures are unfit to use in this realization. Recently, several authors
have dealt with the cryptanalysis of the MST3 scheme, for example [2], [15].

In this paper we present an approach to re-designing MST3 for the Suzuki 2-
groups. The method makes use of the characteristics of the group operation as
well as the structure of these groups. We present a thorough study of the security
of the scheme by using heuristic and algebraic methods. We first determine the
complexity for the lower bounds of conceivable direct attacks to recover the private
key in terms of the size of the groups. These bounds give a hint of the strength of
the system. We further develop a powerful method for a chosen plaintext attack
showing that a certain class of transversal logarithmic signatures cannot be used.
Moreover, there are classes of logarithmic signatures that withstand this attack
when used in MST3. We examine the usage of one such class in the realization
of the scheme for which we are able to determine the complexity of this type of
attack.

The paper is organized as follows: In Section 2 we summarize some basic
facts about covers and logarithmic signatures for finite groups and their related
induced mappings; a description of the Suzuki 2-groups is included. In Section 3
we present a revised version of the cryptosystem MST3 and show its encryption,
decryption. In Section 4 we study various direct attacks on the scheme, namely
determining the private key from the public key, and show the lower bounds on
the complexity of such attacks. In Section 5 we describe algorithms for generating
logarithmic signatures for use in a possible implementation of the scheme. Also
methods for factorization with respect to these logarithmic signatures are shown.
Section 6 deals with the development of a powerful chosen plaintext attack on the
scheme utilizing transversal logarithmic signatures. It is shown that the class of
fused transversal logarithmic signatures withstands this type of attack. In Sec-
tion 7 we present data of performance (including the attack complexity) of the
scheme for various parameter sets from an experimental implementation. In addi-
tion, a method of reducing the key storage is described. We provide a conclusion
in Section 8.



Public key cryptosystem MST3: cryptanalysis and realization 273

2 Preliminaries

In this section we briefly present notation, definitions and some basic facts about
logarithmic signatures, covers for finite groups and their induced mappings. For
more details the reader is refered to [9], [10]. The group theoretic notation used is
standard and may be found in [5] or in any textbook of group theory.

Let G be a finite abstract group, we define the width of G to be the positive

integer w D dlog jG je. Denote by G ŒZ� the collection of all finite sequences of

elements in G and view the elements of G ŒZ� as single-row matrices with entries

in G . LetX D Œx1; x2; : : : ; xr � and Y D Œy1; y2; : : : ; ys� be two elements in G ŒZ�.
We define

X � Y D Œx1y1; x1y2; : : : ; x1ys;

x2y1; x2y2; : : : ; x2ys; : : : ; xry1; xry2; : : : ; xrys�:

Instead of X � Y we will also write X ˝ Y as ordinary tensor product of matrices,

or for short we will write XY . If X D Œx1; : : : ; xr � 2 G ŒZ�, we denote by X the
element

Pr
iD1 xi in the group ring ZG .

Suppose that ˛ D ŒA1; A2; : : : ; As� is a sequence of Ai 2 G ŒZ�, such thatPs
iD1 jAi j is bounded by a polynomial in log jG j. Let

A1 � A2 � � �As D
X

g2G

agg; ag 2 Z: (2.1)

Let S be a subset of G , then we say that ˛ is

(i) a cover for G (or S), if ag > 0 for all g 2 G (g 2 S).

(ii) a logarithmic signature for G (or S), if ag D 1 for every g 2 G (g 2 S).

Thus, a cover ˛ D ŒA1; : : : ; As� for a subset S of a finite group G can be viewed
as an ordered collection of subsets Ai of G with jAi j D ri such that each element
h 2 S can be expressed in at least one way as a product of the form

h D g1 � g2 � � �gs�1 � gs (2.2)

for gi 2 Ai .
If every h 2 S can be expressed in exactly one way by equation (2.2), then ˛

is called a logarithmic signature for S . Thus, logarithmic signatures are a special
class of covers.

The Ai are called the blocks, and the vector .r1; : : : ; rs/ with ri D jAi j the type
of ˛. We say that ˛ is nontrivial if s � 2 and ri � 2 for 1 � i � s; otherwise ˛
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is said to be trivial. Cover ˛ is called tame (or factorizable) if the factorization in
equation (2.2) can be achieved in time polynomial in the width w of G , it is called
wild if it is not tame. Let � W 1G D G 0 < G 1 < � � � < G s D G be a chain
of subgroups of G , and let Ai be an ordered, complete set of right (or left) coset
representatives of G i�1 in G i . It is clear that ŒA1; : : : ; As� forms a logarithmic
signature for G , called transversal logarithmic signature. Transversal logarithmic
signatures are an important example of tame logarithmic signatures [10].

In general, the problem of finding a factorization in equation (2.2) with respect
to a randomly generated cover is presumedly intractable. There is strong evidence
in support of the hardness of the problem. For example, let G be a cyclic group
and g be a generator of G . Let ˛ D ŒA1; A2; : : : ; As� be any cover for G , for which
the elements of Ai are written as powers of g. Then the factorization with respect
to ˛ amounts to solving the Discrete Logarithm Problem (DLP) in G .

Remark 2.1. It is worth noting that the problem of how to generate random covers
for finite groups of large order is treated in [14]. A probabilistic method shows
that generation of random covers for groups of large order can be done with high
efficiency and at minimum cost.

The crucial point that makes covers useful for group based cryptography is that
if the above factorization problem is intractable, then the covers essentially induce
one-way functions. This can be described as follows. Let ˛ D ŒA1; A2; : : : ; As�

be a cover of type .r1; r2; : : : ; rs/ for G with Ai D Œai;1; ai;2; : : : ; ai;ri � and let
m D

Qs
iD1 ri . Let m1 D 1 and mi D

Qi�1
jD1 rj for i D 2; : : : ; s. Let � denote the

canonical bijection from Zr1 ˚ Zr2 ˚ � � � ˚ Zrs on Zm; i.e.

� W Zr1 ˚ Zr2 ˚ � � � ˚ Zrs ! Zm

�.j1; j2; : : : ; js/ WD

sX

iD1

jimi :

Using � we now define the surjective mapping M̨ induced by ˛.

M̨ W Zm ! G

M̨ .x/ WD a1;j1 � a2;j2 � � � as;js ;

where .j1; j2; : : : ; js/ D ��1.x/. Since � and ��1 are efficiently computable, the
mapping M̨ .x/ is efficiently computable.

Conversely, given a cover ˛ and an element y 2 G , to determine any ele-
ment x 2 M̨�1.y/ it is necessary to obtain any one of the possible factorizations
of type (2.2) for y and determine indices j1; j2; : : : ; js such that y D a1;j1 �
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a2;j2 � � � as;js . This is possible if and only if ˛ is tame. Once a vector .j1; j2; : : : ;
js/ has been determined, M̨�1.y/ D �.j1; j2; : : : ; js/ can be computed efficiently.

There are different types of transformations that can apply to covers. Here, we
consider just one type, which is used in the next sections.

Assume that ˛ D ŒA1; A2; : : : ; As� is a cover for G . Let g0; g1; : : : ; gs 2 G ,
and consider ˇ D ŒB1; B2; : : : ; Bs� with Bi D g�1i�1Aigi . We say that ˇ is a two
sided transform of ˛ by g0; g1; : : : ; gs; in the special case, where g0 D 1 and
gs D 1, ˇ is called a sandwich of ˛. Note that ˇ is a cover for G .

Two covers (logarithmic signatures) ˛, ˇ are said to be equivalent if M̨ D M̌.
For example, if ˇ is a sandwich of ˛, then ˛ and ˇ are obviously equivalent.

We make use of following cryptographic hypothesis that if ˛ D ŒA1; A2; : : : ;

As� is a random cover for a “large” subset S of a group G , then finding a factor-
ization in (2.2) is an intractable problem. In other words, the mapping

M̨ W Zm ! S

induced by ˛ with m D
Qs
iD1 jAi j is a one-way function.

2.1 Suzuki 2-groups

In [7] a generic version of the public-key cryptosystem MST3 is described for an
arbitrarily abstract non-abelian group G . The group G should only satisfy the fol-
lowing property: G has a nontrivial center Z such that G does not split over Z, i.e.
there is no subgroup H < G with H \Z D 1 such that G D Z �H . Moreover, we
assume that the order of Z is sufficiently large so that exhaustive search problems
are computationally infeasible in Z.

The Suzuki 2-groups have been suggested for use in a possible realization of the
generic version of MST3. On one hand, due to their structure, the Suzuki 2-groups
allow one to study the security of the system, and on the other hand they possess
a simple presentation allowing an efficient implementation of the scheme. Before
we present a new version of MST3 using the Suzuki 2-groups in the next section,
we describe for the sake of completeness this special class of 2-groups.

To begin with, we recall some basic facts about finite p-groups, where p de-
notes a prime number. A finite group G of order a power of p is called a p-group,
i.e. jG j D pn for a certain positive integer n. The least common multiple of the
orders of the elements of G is called the exponent of G . An abelian (commu-
tative) p-group G of exponent p is called elementary abelian p-group. The set
Z.G / D ¹z 2 G W zg D gz; 8g 2 G º is called the center of G . It is well known
that Z.G / is a subgroup of order at least p for any p-group G . The subgroup G 0

generated by all the elements of the form x�1y�1xy with x; y 2 G is called the
commutator subgroup of G . The so-called Frattini subgroup of G denoted ˆ.G /
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is by definition the intersection of all the maximal subgroups of G . If G is a p-
group, the factor group G=ˆ.G / is elementary abelian. In particular, if G is a
2-group, ˆ.G / D hg2jg 2 G i. Finally, an element of order 2 in a group is called
an involution.

Formally a Suzuki 2-group is defined as a non-abelian 2-group with more than
one involution, having a cyclic group of automorphisms which permutes its in-
volutions transitively. This class of 2-groups was studied and characterized by
G. Higman [4]. In particular, in any Suzuki 2-group G we have Z.G / D ˆ.G / D
G 0 D �1.G /, where �1.G / D hg 2 G W g2 D 1i and jZ.G /j D q D 2m; m > 1.
It is shown in [4] that the order of G is either q2 or q3. Thus all the involutions
of G are in the center of G , therefore Z.G / and the factor group G=ˆ.G / are ele-
mentary abelian. Consequently, all elements not in Z.G / have order 4, i.e. G is of
exponent 4. It is known that G has an automorphism � of order q � 1 cyclically
permuting the involutions of G (see [4] and [6]).

In our realization of MST3 we only consider the class of Suzuki 2-groups having
order q2. Using Higman’s notation a Suzuki 2-group of order q2 will be denoted
by A.m; �/. Let q D 2m with 3 � m 2 N such that the field Fq has a nontrivial
automorphism � of odd order. This implies thatm is not a power of 2. The groups
A.m; �/ can be defined as matrix groups.

In fact, if we define

G WD ¹S.a; b/ j a; b 2 Fqº;

where

S.a; b/ D

0

B
@

1 a b

0 1 a�

0 0 1

1

C
A

is a 3 � 3 -matrix over Fq , then it is shown that the group G is isomorphic to
A.m; �/. Thus G has order q2 and we have

Z WD Z.G / D ˆ.G / D G 0 D �1.G / D ¹S.0; b/ j b 2 Fqº:

As the center Z.G / is elementary abelian of order q, it can be identified with the
additive group of the field Fq . Also the factor group G=ˆ.G / is an elementary
abelian group of order q. It is then easily verified that the multiplication of two
elements in G is given by the rule:

S.a1; b1/S.a2; b2/ D S.a1 C a2 ; b1 C b2 C a1a
�
2/: (2.3)

In this matrix form representation the Suzuki 2-groups A.m; �/ can be consid-
ered as subgroups of the general linear group GL.3; q/ over Fq .
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It has been shown in [4] that the groups A.m; �/ and A.m; �/ are isomorphic
if and only if � D �˙1.

For any 0 6D 	 2 Fq the matrix

ƒ D

0

B
@

1 0 0

0 	 0

0 0 	�C1

1

C
A

induces an automorphism of A.m; �/. And ƒ acts on A.m; �/ according to the
rule

ƒ�1S.a; b/ƒ D S.a	; b	�C1/:

If 	 D � is a primitive element in Fq , then ƒ has order q � 1 and permutes
cyclically the q � 1 involutions in the center of A.m; �/.

3 Public key cryptosystem MST3 on Suzuki 2-groups

Notation

– From now on let G WD A.m; �/ be a Suzuki 2-group defined on Fq with
q D 2m.

– As Z D Z.G / is an elementary abelian 2-group of order q, we may view
Z as a vector space of dimension m over F2. Therefore, the automorphism
group of Z is the general linear group GL.m; 2/, (i.e. the group is formed
by all m � m invertible matrices over F2). Denote Aut.Z/ WD GL.m; 2/. If
z D S.0; b/ 2 Z and ' 2 Aut.Z/, then the action of ' on z is defined by
z' WD S.0; b'/.

– Let g D S.x; y/ 2 G . We denote g:a WD x and g:b WD y.

Remark 3.1. Let f be any homomorphism from G to Z. Let N D Ker.f /. Then
N is normal subgroup of G and G=N Š f .G / � Z. So, the factor group G=N

is abelian. As the commutator group G 0 D Z we have N � Z. It follows that
f .z/ D 1 for every z 2 Z.

Key generation

Select a large group G as described above and generate

1. a factorizable logarithmic signature ˇ D ŒB1; B2; : : : ; Bs� WD .bij / of type
.r1; : : : ; rs/ for Z;
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2. a random cover ˛ D ŒA1; A2; : : : ; As� WD .aij / of the same type as ˇ for a
certain subset J of G such that A1; : : : ; As � G n Z. The elements in each
block Ai D Œai;1; ai;2; : : : ; ai;ri � satisfy the following conditions:

(i) a.ij1/:a ¤ a.ij2/:a, for j1 6D j2. This is equivalent to saying that a.ij1/
and a.ij2/ are not in the same coset of Z.

(ii)
P
jD1;:::;ri

a.ij /:a D 0. The meaning of this condition will be obvious
when we discuss the security of the system in the subsequent section.

Further select

3. t0; t1 : : : ; ts 2 G nZ;

4. a homomorphism f W G ! Z

and compute

5. � D .hij /; hij D t�1i�1 � aij � f .aij / � bij � ti .

Then ˛ D .aij / and � D .hij / are the public key. The items ˇ D .bij /, t0; : : : ; ts ,
and f are the private key.

Encryption

Input: A message x 2 Z and the public key ˛ and � .
Output: A ciphertext .y1; y2/ of the message x.

1. Choose a random R 2 ZjZj and compute

2. y1 D M̨ .R/ � x,

y2 D M�.R/ � x D t
�1
0 � M̨ .R/ � f . M̨ .R// �

M̌.R/ � ts � x.

Decryption

Input: A ciphertext pair .y1; y2/ and the private key ˇ D .bij /; t0; : : : ; ts; f .
Output: The message x 2 Z that corresponds to the ciphertext .y1; y2/.

1. Using the fact that f .y1/ D f . M̨ .R// (from Remark 3.1) compute
M̌.R/ D f . M̨ .R//�1 � y�11 � t0 � y2 � t

�1
s D f .y1/

�1 � y�11 � t0 � y2 � t
�1
s .

2. Recover R from M̌.R/ which is efficiently computable as ˇ is factorizable.
By computing M̨ .R/ we then recover x from y1.
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Specification of the homomorphism f

For the realization of the cryptosystem MST3 we use the following class of ho-
momorphisms. Let g D S.g:a; g:b/ 2 G , and let 
 2 Aut.Z/ WD GL.m; 2/.
Define

f W G ! Z

f .g/ WD S.0; g�:a/:

Then f is a homomorphism from G to Z.
Note that if f is the trivial homomorphism, i.e. f .g/ D S.0; 0/ D 1G for all

g 2 G , then we obtain the realization of the “original” MST3 scheme, see [7].
The introduction of a nontrivial homomorphism f in designing the new scheme
is motivated by the attack presented in [11]. The main idea is to transform the
logarithmic signature ˇ D .bij / in the original MST3 into a random cover ı D
.bij � f .aij // in this new scheme. As a result the attack in [11] can no longer be
applied.

The MST3 as just described for the Suzuki 2-groups can be generalized, of
course, for many other classes of finite groups, for example, the class of special
p-groups. An interesting class of p-groups, also dubbed Suzuki p-groups, for odd
primes p, see [1], may be viewed as a natural candidate for the underlying groups
of MST3.

The encryption method of MST3 as described above is a randomized encryp-
tion. However, if we consider ZjZj as the message space and encrypt a message
z 2 ZjZj by computing

.y1; y2/ D . M̨ .z/; M�.z//

as ciphertext, we obtain a non-randomized encryption. It is worth noting that the
non-randomized encryption can be set up within the framework of the randomized
encryption method: replace R by z and take x D 1Z.

To make the discussion of the cryptanalysis of the scheme in the subsequent
sections simpler, we only consider the non-randomized encryption.

4 Attack on private key

In this section we investigate various types of possible direct attacks on the private
key of MST3. We aim to find lower bounds on the workload with respect to those
attacks. It turns out that those bounds have a very large size in terms of the order
of the groups used.
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4.1 Logarithmic signatures for Z and their two sided transformations

First we remark that if the adversary attempts to extract information about ˇ D
.bij /, a main part of the private key, it is sufficient for him to obtain a logarithmic
signature ˇ0 equivalent to ˇ, i.e. any ˇ0 which is a sandwich transform of ˇ. A
stronger result in [11] shows that it is even sufficient for the adversary to break the
system if he is able to determine a logarithmic signature ˇ� for Z such that

M̌�.x/ D M̌.x/ � c (4.1)

for all x 2 ZjZj, where c 2 Z is a fixed element. For example, if ˇ� D

ŒB�1 ; : : : ; B
�
s � with B�i D z

�1
i�1Bizi is a two sided transformation of ˇ with z0; z1;

: : : ; zs 2 Z, then M̌�.x/ D M̌.x/ � c, where c D z0 � zs .
The result shows a fact relevant to the way of counting the number of elements

ti used in generating � . In fact, if we replace ti by t�i D ti � zi , for zi 2 Z,

i D 0; : : : ; s, we obtain a ˇ� such that M̌�.x/ D M̌.x/ �
Qs
iD0 zi . Consequently,

the adversary only needs to know the cosets of Z in G with coset representatives
ti ’s. Then (s)he can use any coset representative t�i D ti � zi in place of ti . Hence,
in the security analysis of the system, it suffices to determine the cosets of ti with
respect to Z and not the element ti itself.

We call a logarithmic signature ˇ� for Z satisfying (4.1) a translation of ˇ.

Definition 4.1. Let K D Œˇ; f; t0; : : : ; ts� be a private key for MST3. We say that
key K 0 D Œˇ0; f; t 00; : : : ; t

0
s� is an equivalent to K if ˇ0 is a translation of ˇ and

t 0i D ti � zi for some zi 2 Z and all i 2 ¹0; : : : ; sº.

Our aim is to prove lower bounds on the work effort required for recovering
an equivalent private key. The workload is measured in terms of the size of the
involved groups and we will apply heuristic and algebraic methods to this analysis.

Now, the adversary attempts to extract information about the private key from
the public knowledge of ˛ D .aij / and � D .hij /.

By this attack, as adversary, we try to construct a key K 0 D Œˇ0; f; t 00; : : : ; t
0
s�

equivalent to the private key K D Œˇ; f; t0; : : : ; ts�. We first build an equation
with unknowns involving information about the private key and then investigate
the complexity of solving this equation. For this purpose we particularly exploit
the operation (multiplication) in the underlying Suzuki 2-groups.

4.2 Building an equation

For convenience recall that

� S.a1; b1/S.a2; b2/ D S.a1 C a2 ; b1 C b2 C a1a
�
2/.
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� ti 2 G ; ti D S.t.i/:a ; t.i/:b/, ˛ WD .aij /; aij D S.a.i;j /:a ; a.i;j /:b/.

� g D S.g:a; g:b/ 2 G ; f .g/ WD S.0; g�:a/ where 
 2 Aut.Z/ D GL.m; 2/.

Further recall that gZ D hZ in G with g D S.x1; x2/ and h D S.y1; y2/, if and
only if x1 D y1.

We start with

� D .hij / D .t
�1
i�1 aij bij f .aij / ti / D .S.h.i;j /:a ; h.i;j /:b//

and focus on one block of � . W.l.o.g., let us consider the first block. The elements
in this block are h11; h12; : : : ; h1r1 . Let J � ¹1; : : : ; r1º be a subset such that jJ j
is even. Then, if we sum up the elements of the first block having indices in J , we
obtain the following two expressions corresponding to the “:a part” and “:b part”
of the sum.

X

j2J; jJ j even

h.1;j /:a D
X

j2J

a.1;j /:a (4.2)

X

j2J; jJ j even

h.1;j /:b D
X

j2J

a.1;j /:b C
X

j2J

b.1;j /:b C
X

j2J

a�.1;j /:a

C t.0/:a �
X

j2J

a�.1;j /:a C t
�
.1/:a �

X

j2J

a.1;j /:a: (4.3)

Adding
P
j2J a.1;j /:b to both sides of (4.3) results in equation

X

j2J

a.1;j /:b C
X

j2J

h.1;j /:b D
X

j2J

b.1;j /:b C
X

j2J

a�.1;j /:a

C t.0/:a �
X

j2J

a�.1;j /:a C t
�
.1/:a �

X

j2J

a.1;j /:a: (4.4)

Note that the left side of equation (4.4) is known.

From h.1;1/:a D t.0/:a C a.1;1/:a C t.1/:a we obtain

t.0/:a D h.1;1/:a C t.1/:a C a.1;1/:a:
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Replacing t.0/:a in (4.4) yields

X

j2J; jJ j even

.a.1;j /:b C h.1;j /:b/ D
X

j2J

b.1;j /:b C
X

j2J

a�.1;j /:a

C .a.1;1/:a C t.1/:a C h.1;1/:a/ �
X

j2J

a�.1;j /:a

C t�.1/:a �
X

j2J

a.1;j /:a:

Considering t.1/:a as an unknown we end up with a trinomial of the form

At�.1/:a C Bt.1/:a CX D 0 (4.5)

where

A D
X

j2J

a.1;j /:a

B D
X

j2J

a�.1;j /:a

X D
X

j2J

a.1;j /:b C
X

j2J

h.1;j /:b C
X

j2J

b.1;j /:b C
X

j2J

a�.1;j /:a

C .a.1;1/:a C h.1;1/:a/ �
X

j2J

a�.1;j /:a:

We should remark that the term .t.1/:a/
� in the trinomial expresses the action of

� on element t.1/:a 2 Fq . Since � is an automorphism of Fq with q D 2m, it can
be written as a power of the Frobenius automorphism � W a ! a� D a2 of Fq .
Thus the term .t.1/:a/

� becomes .t.1/:a/2
n

, if � D �n for some 1 � n < m.
Note that A and B are known, but the term X contains two unknown sumsP
j2J b.1;j /:b , and

P
j2J a

�
.1;j /:a

.

4.3 Analysis of the equation

The aim of the adversary is to extract information about ˇ. As in equation (4.5)
the value of X is unknown, the adversary has to guess a value for t.1/:a. There are
.q � 1/ possible choices for t.1/:a.

Having guessed a value for t.1/:a, the adversary can compute a corresponding
value for X from equation (4.5). In particular, (s)he can subsequently compute

CJ WD
X

j2J

b.1;j /:b C
X

j2J

a�.1;j /:a: (4.6)
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It is important to note that in (4.6) both sums
P
j2J b.1;j /:b;

P
j2J a

�
.1;j /:a

re-
main unknown. For the sake of simplicity define

bJ WD
X

j2J

b.1;j /:b (4.7)

a�J WD
X

j2J

a�.1;j /:a:

Thus

CJ D bJ C a
�
J ; (4.8)

where the values of bJ and a�J are not determined. Note that we have to determine

 to recover values bJ and thus gain partial information about ˇ. On the other
hand, knowing ˇ would lead to reconstructing 
 .

Attack on bJ

By this attack the adversary seeks to determine a value for bJ in order to get an
equation of the form a�J D CJ � bJ for 
 . Note here that aJ is known. (S)he
will try constructing a system of those linearly independent equations and then
attempt to solve the system to determine 
 . Now, as the elements in the first block
B1 D Œb11; : : : ; b1r1 � of ˇ are not known, (s)he needs to guess a value for bJ for
a given even subset J . As each bJ can take on any value from Fq , where q D 2m,
and as the adversary needs at least m equations to reconstruct 
 , this approach
leads to a complexity of size O.qm/. Obviously, this type of brute force attack is
not feasible as q is large.

Attack on aJ

We describe a more subtle and involved attack using equation (4.8) on the first
block of � . The attack is described by the following algorithm.

Algorithm 4.2 (Attack on aJ ).

(i) Determine subsets J � ¹1; : : : ; r1º of even size such that aJ D 0 and collect
equations bJ D CJ .

(ii) Try to solve a system of equations from (i) for a set of unknown D1 � B1.

(iii) Let D1 D ¹b1j1 ; : : : ; b1jt º. Use the b1ji 2 D1 from step (ii) to build non-
trivial equations of the form a�J� D dJ� , where dJ� WD CJ� �bJ� is known
and J � � ¹j1; : : : ; jtº is a subset of even size. Then solve the system of
these equations to determine 
 .
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We observe that in order to apply this attack the block size of B1 should satisfy:
r1 > m. If this is not the case, we have to fuse block B1 and B2; : : : ; B` (i.e.
B1 ˝ B2 ˝ � � � ˝ B`), to form a larger block satisfying the condition. So, for the
rest of the analysis of Algorithm 4.2 we implicitly assume that r1 > m.

Before we go into a detailed analysis of Algorithm 4.2, it is worth mentioning
that if aJ D 0 then a�J D 0. An equation aJ D 0 does not give any information
about 
 , however it does yield an equation for bJ , namely bJ D CJ .

We now examine the complexity of the three steps of Algorithm 4.2.

(i) As a.1j /:a’s are known, the best known efficient way of determining aJ D 0

for a certain subset J is to use the birthday attack. More precisely, take two disjoint
random subsets J1 and J2 of ¹1; : : : ; r1º such that jJ1 [ J2j is even and check
whether aJ1 D aJ2 . If this is so, an aJ D 0 has been found, where J D J1 [ J2.
Such a subset J gives rise to an equation bJ D CJ . Finding a subset J with
aJ D 0 by the birthday attack has a complexity of size roughly O.q1=2/. Note
that in step (i) each even subset J has size at least four, this is because all elements
in each block of ˛ belong to distinct cosets modulo Z, i.e a.1;j /:a 6D a.1;h/:a for
h 6D j . Of course, the assumption

P
j2¹1;:::;r1º

a.1;j /:a D 0 is taken into account.
We discuss this condition in the remark below.

(ii) Let P D ¹J0 D ;; J1; : : : ; Jwº where Ji � ¹1; : : : ; r1º is a subset of even
size with jJi j � 4 such that aJi D 0 for i � 1. Let

Sw
iD0 Ji D ¹j1; : : : ; jtº.

Each subsum aJ D 0 from step (i) corresponds to an equation bJ D CJ . The
unknowns of these equations are elements b1j1 ; : : : ; b1jt of B1. Let

EP D ¹bJ D CJ W J 2 P º:

Since there are t unknowns, we can view the coefficients of each equation in EP

as a vector in F2t , viewed as a vector space of dimension t over F2. Each such
0-1 vector has an even Hamming weight of size at least 4. Any linear combination
of two such vectors gives rise to a vector corresponding to a subsum aJ D 0 with
J 2 P and hence to an equation in EP . In other words, the coefficient vectors of
the equations in EP span a linear subspace V of F2t , where each non-zero vector
of V has a weight at least 4. And therefore, the dimension of V is at most t � 3.
This is equivalent to saying that by using elementary row operations the coefficient
matrix, say M , of any system of equations from EP will be transformed into a
matrix of row echelon form, for which each row necessarily has weight at least 4.
Hence, such a system of equations gives rise to at least 3 parameters that can be
freely chosen, i.e. the rank ofM , denoted by rank.M/, is at most t �3. Since each
parameter can take on any value from Fq , solving equations for b1j 2 D1 in this
step requires a complexity of size at least O.q3/. Having an accurate estimate of
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rank.M/ appears to be a difficult problem. This is because the rank ofM depends
on the set P , which in turn depends on the random values of a.1;i1/:a; : : : ; a.1;it /:a.

Note that t � 4. If t D 4, we have rank.M/ D t � 3 D 1. This fact is easy
to see, since J � D ¹j1; j2; j3; j4º is the only one non-empty subset with aJ D 0.
Consequently b1;j1 C b1;j2 C b1;j3 C b1;j4 D CJ is the only possible equation
with 4 unknowns we can obtain.

If t > 4, we can prove an even stronger bound that rank.M/ � t � 4. As above
we denote by V the linear subspace of F2t spanned by the coefficient vectors of
the equations in EP . If any vector of V has weight at least 6, the dimension of
V is at most t � 5. And therefore rank.M/ � t � 5 < t � 4. So, we assume
that V contains a vector v of weight 4. Without loss of generality, we can as-
sume that v is of the form v D 111100 : : : 0 (just by renaming the unknowns).
Consider w4 D 111110 : : : 0 2 F2t . Let w1 D 1000 : : : 0, w2 D 0100 : : : 0,
w3 D 0010 : : : 0. Then w1; w2; w3; w4 … V . Let W be the subspace of F2t
spanned by w1; w2; w3; w4. Then W has dimension 4. It can be checked that
x C v has weight at most 3 for 14 non-zero vectors x 2 W , i.e. x … V , ex-
cept for x D y D 000110 : : : 0 2 W . But y … V , as its weight is 2. So we
have W \ V D ¹0º. Hence the dimension of V is at most t � 4. Consequently,
rank.M/ � t � 4. In order to continue the attack we need to guess the values for
at least 4 unknowns b1j 2 Fq . Therefore the complexity of step (ii) in this case is
at least O.q4/.

(iii) Let D1 D ¹b1j1 ; : : : ; b1jt º be the subset determined after step (ii). In order
to be able to recover 
 2 GL.m; 2/ it is necessary that t � m. Using elements
in D1 the adversary can construct non-zero subsum a�J D CJ � bJ 6D 0 from
equation (4.6) and try to solve such a system of equations to recover 
 . This can
be done in polynomial time.

Note that t � m > 4. We record the result of this attack in the following proposi-
tion.

Proposition 4.3. The complexity required to recover a key equivalent to the private
key Œˇ; f; t0; : : : ; ts� by using Algorithm 4.2 amounts to a size at least O.q5 �q1=2/.

This complexity is composed by

� the complexity O.q/ of selecting a correct value for t.1/:a in trinomial (4.5),

� the complexity O.q1=2/ of the birthday attack in step (i) and the complexity
of size at least O.q4/ of solving equations for b1;j ’s in step (ii).

It is a challenging open problem to determine a better lower bound on the work-
load to recover the private key of the system. The task appears to be difficult.
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Remark 4.4. We observe that the upper bound for the rank of the matrix M ob-
tained in step (ii) above is far from its actual value, since, to simplify of the dis-
cussion, we did not impose any restriction on a1j ’s, i.e. in the argumentation we
freely use all possible values for a1j ’s, when we estimate the dimension of V . Ev-
idently, the dimension of V depends on the choice of a1j ’s. One can expect that
the dimension of V is much smaller and so is the rank of M . Therefore the com-
plexity of the attack on aJ is much higher than O.q5 � q1=2/. We conjecture that
the values t � rank.M/� 1 increase in proportion to the growth of t (i.e. rank.M/

becomes proportionally smaller, when t becomes larger).

Remark 4.5. In step (ii) of Algorithm 4.2 the assumption
P
j2¹1;:::;r1º

a.1;j /:a D

0 is taken into account. If this condition is removed, we shall in general
have

P
j2¹1;:::;r1º

a.1;j /:a ¤ 0. Suppose that we guess a value for u DP
j2¹1;:::;r1º

b.1;j /:b . This can be done with complexity O.q/. Consequently, each
subsum aJ D 0 obtained from the birthday attack likely yields CK � .u � bJ / D
aK D

P
j2K a.1;j /:a ¤ 0, whereK D ¹1; : : : ; r1º nJ . Each aK ¤ 0 corresponds

to a non-trivial linear equation for 
 . So, if the adversary would collect m lin-
early independent equations, (s)he could reconstruct 
 , as in step (iii). In this case
the complexity of recovering a key equivalent to the private key Œˇ; f; t0; : : : ; ts�
would reduce to O.q2 � q1=2/.

Combined attack on bJ and aJ

We can envisage a further method of reconstructing 
 from equation a�J C bJ D
CJ . Two main steps of the following algorithm describe this attack.

Algorithm 4.6 (Attack on bJ and aJ ).

(a) Construct 2m linearly independent vectors of size 2m over F2 to form an
2m � 2m regular binary matrix A. Each row of A is of the form aJ kbJ ,
(k denotes concatenation), where aJ and bJ are considered as vectors of
length m over F2.

(b) Let M denote the 2m � m matrix, whose rows are CJ . Observe that M is
known after t.1/:a has been chosen. Compute a 2m�m binary matrixX such
that A �X DM , i.e. X D A�1 �M .

Let us take a closer look at Algorithm 4.6. We write

X WD

 

�

Y

!
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and 
� and Y are m � m binary matrices. First observe that any matrix A con-
structed in step (a) yields a matrix X D A�1 �M , as M is known. Each row of
A takes on a value aJ kbJ corresponding to an index subset J of even size. The
first part aJ can be computed, because a.1j /:a’s are known, but we have to guess
a value for bJ (an m bit vector) from the unknowns b.1j /’s, since they are part of
the private key. So, there are q possible choices for each row of A corresponding
to q possible values for bJ . If all 2m rows of A are correctly selected (i.e. each
value of bJ is guessed correctly), the matrix X will have the form

X WD

 



I

!

;

where I is the m � m identity matrix. This implies that the complexity of a suc-
cessful reconstruction of 
 (i.e. 
� D 
), after all 2m rows of A are determined is
O.q2m/. In this case we have Y D I .

Remark 4.7. A pertinent implication of the combined attack is the following fact.
If logarithmic signature ˇ D .bij / is of the form ˇ D .bij / D .eij /

�1 , where
.eij / are known and 
1 is an unknown m � m regular matrix over F2, this attack
will enable to reconstruct 
 and 
1 as well. The reason can be seen as follows.
Equation (4.8) can now be written as a�J C bJ D a�J C e

�1
J D CJ . If in step (a)

we can construct a regular 2m � 2m matrix A with rows of the form aJ keJ , the
matrix X D A�1 �M obtained from step (b) will have the form

X D

 




1

!

;

i.e. we are able to recover 
 and 
1. We see that this is only possible because both
a.1j /:a’s, e.1j /’s are completely known.

We close the discussion of the security analysis of the direct attacks with a
record of the obtained results.

Proposition 4.8. Comparing the three attacks presented in this section, the strong-
est one, the attack on aJ , provides an actual estimate of workload required for
recovering a key equivalent to the private key. The workload is bounded below by
O.q5 � q1=2/, where q D

p
jG j.

Remark 4.9. Let ˛ WD .S.a.i;j /:a; a.i;j /:b// be a cover used in a set-up of MST3
such that a.i;j /:a 2 H < Z, where H is a subgroup of Z of order q0 D 2`. Then

the lower bound given by Proposition 4.8 becomes O.q4 � q
3=2
0 /. The bound is
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obtained because in the previous analysis the number of possible choices for t.1/:a
and the workload required for the birthday attack in step (i) of Algorithm 4.2 will
be reduced according to the order of H .

5 Generation of logarithmic signature ˇ and its factorization

In this section we describe a method of generating logarithmic signature ˇ for the
realization of MST3 and show methods of factorization with respect to ˇ. As the
center Z of G is an elementary abelian group, we will use the following possible
transformations in generating logarithmic signature ˇ.

5.1 Transformations of logarithmic signatures

Let " D ŒE1; : : : ; Ev� WD .eij / be a logarithmic signature of type .t1; : : : ; tv/ for
an abelian group H . We define the following transformations on ":

T1 transform each element of " with an automorphism ' of H ,

T2 fuse j blocks Ek1 ; : : : ; Ekj , i.e. replace blocks Ek1 ; : : : ; Ekj with a new
block of the form ...Ek1 �Ek2/ �Ek3/ � � �Ekj /, where Ei �Ej WD Ei ˝Ej D
Œei1ej1; : : : ; ei1ejtj ; ei2ej1; : : : ; ei2ejtj ; : : : ; eiti ejtj �,

T3 permute the elements within each block Ei with a permutation �i in Sti ,

T4 permute the blocks Ei ’s with a permutation � 2 Sv (where Sv is symmetric
group on v symbols).

It is obvious that ˇ obtained from " by using transformations T1; T2; T3 and T4
is a logarithmic signature for H . If " is tame, we can factorize with ˇ using the
knowledge of the transformations Ti in polynomial time (as shown by an algorithm
presented in a subsequent section).

5.2 Algorithm for generating ˇ

We will describe an algorithm for generating a logarithmic signature ˇ for use in
MST3. For the sake of completeness we first include a description of canonical
signatures for elementary abelian 2-groups, which are defined in [11]. We will
identify the center Z of G with a vector space V of dimension m over F2.

Definition 5.1. (i) Let V be a vector space of dimension m over F2. Let P D

K1 [ � � � [ Kv, jKi j D ki ,
Ps
iD1 ki D m, be a random partition of the

set ¹1; : : : ; mº. A logarithmic signature ı D ŒD1; : : : ;Dv� WD .dij / for V
is called canonical if for each i 2 ¹1; : : : ; vº, block Di has all possible 2ki
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vectors corresponding to the power set of Ki with bits set on the positions
defined by the subset Ki and zeros elsewhere.

(ii) A canonical logarithmic signature is said in standard form, if K1 D ¹1; : : : ;
k1º, K2 D ¹k1C 1; : : : ; k1C k2º; : : : ; Kv D ¹k1C � � �C kv�1C 1; : : : ; mº,
and for all i and j1 < j2 it holds int.dij1/ < int.dij2/, where int.dij / is the
integer representation of the vector dij (i.e. the vectors within Di are sorted
by their integer values).

A canonical signature ı for V of type .t1; t2; : : : ; tv/, ti D 2ki , can be generated
by using the following algorithm.

Algorithm 5.2 (Generation of a canonical logarithmic signature).

(i) Select a random partition P D K1 [ � � � [ Kv of the set ¹1; : : : ; mº with
jKi j D ki .

(ii) For each i 2 ¹1; : : : ; vº, construct a block Di by taking all possible 2ki

vectors in V having bits equal to 0 at positions with indices not in Ki .

The following statement is not difficult to prove, see, for instance, [11].

Proposition 5.3. Let ı WD .dij / be a canonical logarithmic signature for an ele-
mentary abelian 2-group V of order 2m. Let % 2 GL.m; 2/ be an m � m matrix
and define ı� WD .d%ij /. Then ı� is a tame logarithmic signature.

It is clear that the signature ı� obtained from Proposition 5.3 is a transversal
signature for a certain chain of subgroups 1V D V0 < V1 < � � � < Vs D V of V .

Moreover, it is shown in [11] that the factorization with respect to a canonical
logarithmic signature will have time complexity O.1/.

We now describe an algorithm for generating logarithmic signature ˇ.

Algorithm 5.4 (Generation of logarithmic signature ˇ).

(i) Let " D ŒE1; E2; : : : ; Ev� WD .ei;j / be the canonical logarithmic signature
in standard form of type .t1; t2; : : : ; tv/ for Z (viewed as an m dimensional
vector space over F2) corresponding to the partition ¹K1; K2; : : : ; Kvº on
the set ¹1; : : : ; mº with jKi j D ki and ti D 2ki (as in Definition 5.1).

Denote "� D .e�i;j / a logarithmic signature obtained from " by filling the
positions K1 [ : : :[Ki�1 of each block Ei with random bits, i D 2; : : : ; v.
We call "� a randomized canonical logarithmic signature.
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(ii) [transformation T1]
Select a random matrix % 2 GL.m; 2/ and compute

ı D ŒD1; : : : ;Dv� D .di;j / WD ..e
�
i;j /

%/:

(iii) [transformation T2]
Select a partition P D ¹P1; : : : ; Psº; 0 < jPj j, of the set ¹1; : : : ; vº, such
that for each Pj D ¹i1; : : : ; iuº; i.e. jPj j D u, we have ih ¤ i` C 1 for
h; ` 2 ¹1; : : : ; uº. Fuse blocksDi1 ; : : : ;Diu , i.e. construct the product Cj WD
...Di1 �Di2/ �Di3 � � �Diu/. Let ! D ŒC1; : : : ; Cs� WD .ci;j / be the resulting
logarithmic signature of type .r1; : : : ; rs/ obtained after this step.

(iv) [transformation T3]
Select random permutations �i 2 Sri , i D 1; : : : ; s, where Sri is the sym-
metric group of degree ri . Define

C �i WD C
�i
i D Œci;1�i ; ci;2�i ; : : : ; ci;ti�i �;

i.e. C �i is obtained from Ci by permuting the positions of its elements with
permutation �i . Denote � D ŒC �1 ; : : : ; C

�
s �.

(v) [transformation T4]
Select a random permutation � 2 Ss and define

ˇ D ŒB1; : : : ; Bs� WD ŒC
�
1�
; : : : ; C �

s�
�;

i.e. ˇ is obtained from � by permuting the positions of its blocks with � .

It should be noted that in order to have an efficient factorization with respect
to ˇ created using Algorithm 5.4, we keep track of the information about matrix
%, logarithmic signature "�, partition P , and all permutations used in steps (4)
and (5).

Definition 5.5. We call ˇ a fused transversal (FT) logarithmic signature, if ˇ is
generated by Algorithm 5.4. If step (3) (i.e. fusion of blocks) of the algorithm is
not applied, ˇ is called a non-fused transversal (NFT) logarithmic signature.

5.3 Factorization with ˇ

In this section we present algorithms for the factorization with ˇ generated by
Algorithm 5.4. We begin by proving the following useful proposition.
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Proposition 5.6. Let ˇ WD ŒB1; : : : ; Bv� be a transversal logarithmic signature for
an abelian groupH . Let ˇ0 WD ŒB 01; : : : ; B

0
s� be a fused logarithmic signature ofH

obtained by fusion of blocks of ˇ [transformation T2]. Then ˇ0 is equivalent to a
non-fused logarithmic signature ˇ00 obtained from ˇ by using certain permutation

 2 Sv on blocks Bi [transformation T4]. In other words ˇ0 and ˇ00 induce the
same function, i.e. M̌0 D M̌00.

Proof. We observe that ˇ0 is obtained from ˇ by using the following two opera-
tions:

(a) select an appropriate permutation 
 2 Sv and compute

ˇ00 WD ŒB 001 ; : : : ; B
00
v � WD ŒB1� ; : : : ; Bv� �I

(b) select a partition R D ¹R1; : : : ; Rsº on the set ¹1; : : : ; vº with R1 D ¹1; : : : ;
i1º, R2 D ¹i1 C 1; : : : ; i2º; : : : ; Rs D ¹is�1 C 1; : : : ; isº with jRj j D uj
for j 2 ¹1; : : : ; sº. Fusing the blocks of ˇ00 according to this partition yields
the logarithmic signature ˇ0 WD ŒB 01; : : : ; B

0
s� of type .r1; : : : ; rs/ with B 0j D

..B 00ij�1C1 � B
00
ij�1C2

/ � � �B 00ij /, where rj D jB 00ij�1C1j � jB
00
ij�1C2

j � � � jB 00ij j for

j D 1; : : : ; s and i0 D 0. (i.e. each block B 0i is obtained by fusing certain
consecutive blocks of ˇ00.)

It is clear that ˇ0 is equivalent to ˇ00.

Remark 5.7. Let P D ¹P1; : : : ; Psº be a partition on the set ¹1; : : : ; vºwith P1 D
¹i1;1; : : : ; i1;u1º; P2 D ¹i2;1; : : : ; i2;u2º; : : : ; Ps D ¹is;1; : : : ; is;usº from the step
(iii) of Algorithm 5.4. The permutation 
 2 Sv from Proposition 5.6 is given by
 
1 2 � � � u1 u1 C 1 � � � u1 C u2 � � � .u1 C u2 C � � � C us/

i1;1 i1;2 � � � i1;u1 i2;1 � � � i2;u2 � � � is;us

!

and the corresponding partition is

R WD
®
R1 D ¹1; 2; : : : ; u1º; R2 D ¹u1 C 1; : : : ; u1 C u2º; : : : ;

Rs D ¹u1 C � � � C us�1 C 1; : : : ; u1 C � � � C usº
¯
:

An important consequence of Proposition 5.6 is the construction of the Algo-
rithm 5.8 which allows efficient factorization with respect to the FT logarithmic
signature ˇ.

Let "� be the randomized canonical signature created after step (i) of Algo-
rithm 5.4. Also let 
 be the permutation with corresponding partition R from
Remark 5.7. Then we may efficiently factorize M̌.x/ using the following algo-
rithm
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Algorithm 5.8 (Factorization with FT signature ˇ).
Input: y, "�, 
, R D ¹R1; : : : ; Rsº, � , �1; : : : ; �s; %.
Output: x D x1kx2k � � � kxs , where y D M̌.x/.

(i) Compute z D .y%
�1

/ and write z D z1kz2k � � � kzv . Each zi is of bit length
ki .

(ii) Factorize z with respect to "� by using Algorithm 5.9. Let denote j 01; : : : ; j
0
v

the indices obtained by this factorization.

(iii) Compute j` D j
0

`�
�1 for ` D 1; : : : ; v.

(iv) According to R` D ¹i1; i2; : : : ; iu`º set x0
`
D ji1kji2k � � � kjiu` for ` D

1; : : : ; s.

(v) Compute x00
`
D .x0

`
/�
�1
` and finally x` D x

00

`�
�1 for ` D 1; : : : ; s.

In the following we present an algorithm for factorization with respect to an
NFT logarithmic signature. To make the description clearer we start with an algo-
rithm for factorization with respect to a randomized canonical logarithmic signa-
ture "� generated in step (1) of Algorithm 5.4.

Let x D x1kx2k � � � kxv be a binary vector of lengthm, where xi is of length ki
for i D 1; : : : ; v and ti D 2ki . Let y D M"�.x/. Write y D y1ky2k � � � kyv , where
each yi is of bit length ki .

In order to factorize y with respect to "� we have to determine indices xi , for
i D 1; : : : ; v. This can be done with the following algorithm.

Algorithm 5.9 (Factorization with "�).
Input: y D y1ky2k � � � kyv, "�.
Output: x D x1kx2k � � � kxv, where y D M"�.x/.

(F) Starting with yv we find an element e�v;j in block E�v such that the last kv
bits of e�v;j are equal to yv . Such e�v;j is uniquely determined since the last
kv bits of elements in E�v form a vector space of dimension kv. The index j
of e�v;j in block E�v determines the index xv.

(R) Compute y0 D y � .e�v;j /
�1 and write y0 D y01ky

0
2k � � � ky

0
v�1 where each y0i

is of bit length ki . Repeat step (F) with y0v�1 for block E�v�1 to find xv�1.
Continue this process until x1 is found.

Now we describe an algorithm for factorization with respect to an NFT loga-
rithmic signature ˇ�.

Again, let x D x1kx2k � � � kxv be a binary vector of length m where xi is of bit
length ki for i D 1; : : : ; v and ti D 2ki . Let z D M̌�.x/. Write z D z1kz2k � � � kzv
where each zi is of bit length ki .
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Algorithm 5.10 (Factorization with NFT signature ˇ�).
Input: z D z1kz2k � � � kzv , ˇ�, � , �1; : : : ; �v, %.
Output: x D x1kx2k � � � kxv, where z D M̌�.x/.

(i) Using ��1, ��11 ; : : : ; ��1v and %�1 construct "� from ˇ�.

(ii) Compute y D .z%
�1

/ and write y D y1ky2k � � � kyv. Each yi is of bit length
ki .

(iii) Factorize y with respect to "� by using Algorithm 5.9. Let denote x01; : : : ; x
0
v

the indices obtained by this factorization.

(iv) Compute x00i D .x
0
i /
��1
i and finally xi D x00

i�
�1 for i D 1; : : : ; v.

6 Attack on ciphertexts

This section deals with an elaborate chosen plaintext attack on MST3, when trans-
versal logarithmic signatures are used. This is the case when ˇ is generated by
Algorithm 5.4 without applying the fusion step (iii). In fact, those logarithmic
signatures may essentially be viewed as those from a chain of subgroups of Z.
However, the structure of ˇ will be changed if the fusion step (iii) is applied.

The Matrix-permutation attack developed in this section appears to be powerful,
as it provides a proof of the fact that the class of non-fused transversal logarithmic
signatures cannot be used in a realization of MST3. The class of fused transver-
sal logarithmic signatures, however, withstands the Matrix-permutation attack, as
shown below.

Before we present the Matrix-permutation attack, we would like to mention two
simple attacks which emerge naturally from the representation of the elements in
the Suzuki 2-groups.

6.1 The Basis attack

Based on the description of the scheme, the :a part of ˛ and � , are merely random
covers for the center Z. Note that Z is a vector space of dimension m over F2
and we also identify Z with Fq . So we call elements of Z vectors as well. Let
us denote by ˛:a the cover of Z whose blocks are formed by the :a part of ˛.
Define J WD M̨ :a.ZjZj/. Thus J is a subset of Z and the ratio � WD jZj=jJj may
be viewed as the average number of representations for each element of J with
respect to ˛:a. More precisely, due to the connection between the generation of
random covers and the occupancy problem, see for instance [14], we can derive an
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approximation for the ratio � given by the following formula

� 	 	

 
e�

e� � 1

!

where 	 D 1

jZ1j

Qs
iD1 ri , and .r1; : : : ; rs/ is the type of ˛:a, and Z1 is the smallest

subgroup of Z containing J. As a matter of linear algebra we may find a maximal
subset of linearly independent vectors which come from all the blocks of ˛:a. By
using the two sided transformation on ˛:a we may assume that the first s�1 blocks
contain the zero vector. The linearly independent vectors together with the zero
vectors form a cover which allows an efficient factorization of a certain number of
ciphertexts created by M̨ :a. This amount is approximately 1

�

Qs
iD1.ki C 1/, where

ki D dlog2 rie. Therefore the probability that a given ciphertext could be correctly
decrypted is given by

	
1

�

sY

iD1

.ki C 1/

ri
:

As a result, if � or/and ri are increased, this probability will be decreased. So, if
we select the elements of ˛:a from a subspace Z1 of Z such that � D jZj=jZ1j is
large, then this simple attack becomes infeasible.

6.2 The Meet-in-the-middle attack

There exists a trivial brute force attack on any random cover ı, which for a given
y D Mı.x/, attempts to determine x by using a time and memory trade-off method.
This type of attack is in general called the Meet-in-the-middle attack.

For MST3 it is described as follows. The :a part of ˛, i.e. ˛:a WD .aij:a/, can
be viewed as a random cover of type .r1; : : : ; rs/ for the center Z. Assume that
y:a D M̨ :a.x/ is given for some x $ .j1; : : : ; js/.

So we write y:a D Mı1.x1/ � Mı2.x2/ where

x1 D .j1; : : : ; jbs=2c/; x2 D .jbs=2cC1; : : : ; js/ and

Mı1.x1/ D

bs=2cX

iD1

aij:a; Mı2.x2/ D

sX

iDbs=2cC1

aij:a:

Here we have ı1 WD .aij:a/, i D 1; : : : ; bs=2c; j D 1; : : : ; ri and ı2 WD .aij:a/,
i D bs=2c C 1; : : : ; s; j D 1; : : : ; ri .

First construct a table T of all possible pairs .u; v/ with u D .u1; : : : ; ubs=2c/,

ui 2 F2ri , and v D Mı1.u/. The size of T is roughly O.
p
q/.
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The attack works as follows: For each chosen w D .ubs=2cC1; : : : ; us/, ui 2

F2ri , compute a product g D y:a � . Mı2.w//
�1. If there is a pair .u; v/ in T such

that g D v, then we have x D ukw, i.e. x $ .u1; : : : ; ubs=2c; ubs=2cC1; : : : ; us/.
On the average we need to construct O.

p
q/ of values for g until we obtain g D v.

In summary this attack requires O.
p
q/ memory and O.

p
q/ time.

Note that if ˛:a is constructed from subspace Z1 of Z such that � D jZj=jZ1j
is large, the Meet-in-the-middle attack cannot be applied.

6.3 The Matrix-permutation attack on NFT-MST3

We now present the Matrix-permutation attack on a realization of MST3 that uses
a non-fused transversal logarithmic signature ˇ (for short we call NFT-MST3).
This strong attack is a chosen plaintext attack type, which attempts to reverse the
encryption function of the system. The main idea of the Matrix-permutation attack
is to construct a series of matrices and to recover permutations used in generating
ˇ that would eventually allow the adversary to decrypt any given ciphertext.

Used notation:

Let ! WD .wi;j / be a cover of type .r1; : : : ; rs/ for G , and let x 2 ZjZj correspond

to .j1; : : : ; js/ 2 Zr1 ˚ � � �˚Zrs [see preliminaries]. Let � 2 Ss and v` WD `	 for
` 2 ¹1; : : : ; sº. Define

M!k;	.x/ WD

kY

iD1

wvi ;jvi : (6.1)

We consider an NFT-MST3 scheme. Let Œ˛; �� be the public key with the cor-
responding private key Œˇ; f; t0; : : : ; ts�. Recall that ˛ WD .ai;ji /; ˇ WD .bi;ji / and
� WD .hi;ji / are of type .r1; : : : ; rs/ and that � is a permutation used in step (v)
and �1; : : : ; �s are permutations used in step (iv) of Algorithm 5.4.

Proposition 6.1. Let ˛; ˇ; � be the covers of type .r1; : : : ; rs/ as described above.
Let x 2 ZjZj correspond to .j1; : : : ; js/ 2 Zr1 ˚ � � � ˚ Zrs and v` WD `	 for

` 2 ¹1; : : : ; sº. Further let M̨`;	.x/, M̌`;	.x/, M�`;	.x/ be the values computed by
equation (6.1). Let k` WD dlog2 r`e. Then there exists a binary .2m C 1/ � kv`
matrix Mv` such that

. M̨`;	.x/:ak M̨`;	.x/:b C M�`;	.x/:bk1/Mv` D �v`.jv`/: (6.2)

where “1" is the bit set to one.
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Proof. First we show that there exists a binary .2mC 1/�mmatrix Nv` such that

. M̨`;	.x/:ak M̨`;	.x/:b C M�`;	.x/:bk1/Nv` D .
M̌
`;	.x/:b/: (6.3)

We begin with

M̨`;	.x/:b C M�`;	.x/:b D
X̀

iD1

b.vi ;jvi /:b
C t.0/:a

X̀

iD1

a�.vi ;jvi /:a

C t�.v`/:a

X̀

iD1

a.vi ;jvi /:a
C
X̀

iD1

a�.vi ;jvi /:a
C C`

where C` D t.0/:b C t
�C1
.0/:a
C t.v`/:b C t.0/:at

�
.v`/:a

. As the elements t.0/:a; t.v`/:a 2

Fq are constants, the products t.0/:a
P
a�
.vi ;jvi /:a

and t�
.v`/:a

P
a.vi ;jvi /:a

present

linear mappings. Therefore there exist binarym�mmatrices T0 and Tv` such that

t.0/:a
X̀

iD1

a�.vi ;jvi /:a
D
X̀

iD1

a.vi ;jvi /:a
T0

t�.v`/:a

X̀

iD1

a.vi ;jvi /:a
D
X̀

iD1

a.vi ;jvi /:a
Tv` :

Set

Nv` D

0

B
@

T0 C Tv` C 


Im

C`

1

C
A

where Im is the m � m identity matrix. Now it is not difficult to check that the
.2mC 1/ �m matrix Nv` satisfies equation (6.3). Define "0 WD .e0i;j / with e0i;j D

b
%�1

i;j . Clearly

. M̌`;	.x/:b/
%�1 D . M"0`;	.x/:b/:

Consider the linear mapping '` defined by

M"�`;id.x/:b D
X̀

iD1

e�.i;ji /:b
'`
7�! j`
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where id is identity permutation.This mapping is well defined for the class of
transversal logarithmic signatures, in particular for "� created in Algorithm 5.4
after step (i). Note that j` is the binary representation of the index for e`;j` and
is identical with the k` bit vector of e`;j` at the positions K`. Let "00 WD .e00ij / be
obtained from "� by applying step (iv) of Algorithm 5.4. Now observe that '` acts
on M"00

`;id.x/:b as follows

M"00`;id.x/:b D
X̀

iD1

e00.i;ji /:b
'`
7�! �`.j`/:

Applying step (v) of Algorithm 5.4 on "00 we get "0. Therefore '` acts on M"0
`;	
.x/:b

according to

M"0`;	.x/:b D
X̀

iD1

e0.vi ;jvi /:b
'`
7�! �v`.jv`/:

Let Pv` be the m � kv` binary matrix representation of the mapping '`. Then we
can write

. M"0`;	.x/:b/Pv` D �v`.jv`/:

Define the matrix Mv` as

Mv` WD Nv` � %
�1 � Pv` :

Then Mv` is the binary matrix that satisfies equation (6.2).

Let M`;p denote the p-th column of the matrix M`, where p D 1; : : : ; k`. We
observe that �`.j`/ is a binary vector of length k`. Similarly, we denote �`;p.j`/
the p-th bit of �`.j`/.

By using this notation and Proposition 6.1, where � is defined, we obtain the
following

Proposition 6.2. Let v` WD `	 and Mv`;p be the p-th column of Mv` and
�v`;p.jv`/ be the p-th bit of �v`.jv`/ from Proposition 6.1. Then we have

. M̨`;	.x/:ak M̨`;	.x/:b C M�`;	.x/:bk1/Mv`;p D �v`;p.jv`/: (6.4)

Proposition 6.3. Let ˛; ˇ; � be the covers of type .r1; : : : ; rs/ as described above.
Let x 2 ZjZj correspond to .j1; : : : ; js/ 2 Zr1 ˚ � � � ˚ Zrs . Further let v` WD `
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for ` 2 ¹1; : : : ; sº and k` WD dlog2 r`e. Then there exists a binary .2mC 1/� kv`
matrix Lv` such that

. M̨ .x/:a CA`k M̨ .x/:b C M�.x/:b CB`k1/Lv` D �v`.jv`/ (6.5)

where

A` WD

sX

iD`C1

a.vi ;jvi /:a

B` WD

sX

iD`C1

.a.vi ;jvi /:b
C h.vi ;jvi /:b

/C

sX

iD`C1

a�.vi ;jvi /:a
.t.0/:a C t.vi�1/:a/

C

sX

iD`C1

a.vi ;jvi /:a
.t.vi /:a C t.s/:a/

�

for ` 2 ¹1; : : : ; s � 1º, As D Bs WD .0; : : : ; 0/, and “1” is the bit set to one.

Proof. For ` D s equation (6.5) is obtained from Proposition 6.1.
So, from now on we assume that ` 2 ¹1; : : : ; s � 1º.
Note that

M̨ .x/:a C

sX

iD`C1

a.vi ;jvi /:a
D
X̀

iD1

a.vi ;jvi /:a

M̌.x/:b C

sX

iD`C1

b.vi ;jvi /:b
D
X̀

iD1

b.vi ;jvi /:b
:

First we show that there exists a .2mC 1/ �m binary matrix Nv` such that

�X̀

iD1

a.vi ;jvi /:a
k M̨ .x/:b C M�.x/:b CB`k1

�
Nv` D

X̀

iD1

b.vi ;jvi /:b
: (6.6)

Here we have

M̨ .x/:b C M�.x/:b CB`

D M̨ .x/:b C M�.x/:b C

sX

iD`C1

.a.vi ;jvi /:b
C h.vi ;jvi /:b

/

C

sX

iD`C1

a�.vi ;jvi /:a
.t.0/:a C t.vi�1/:a/C

sX

iD`C1

a.vi ;jvi /:a
.t.vi /:a C t.s/:a/

�
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D

sX

iD1

b.vi ;jvi /:b
C

sX

iD1

a�.vi ;jvi /:a
C t.0/:b C t

�C1
.0/:a
C t.s/:b C t.0/:at

�
.s/:a

C t.0/:a

sX

iD1

a�.vi ;jvi /:a
C t�.s/:a

sX

iD1

a.vi ;jvi /:a
C

sX

iD`C1

b.vi ;jvi /:b

C

sX

iD`C1

a�.vi ;jvi /:a
C

sX

iD`C1

�
t.vi�1/:aa

�
.vi ;jvi /:a

C a.vi ;jvi /:a
t�.vi /:a

C t.vi�1/:at
�
.vi /:a

C t.vi�1/:b C t
�C1
.vi�1/:a

C t.vi /:b
�
C t.0/:a

sX

iD`C1

a�.vi ;jvi /:a

C

sX

iD`C1

a�.vi ;jvi /:a
t.vi�1/:a C

sX

iD`C1

a.vi ;jvi /:a
t�.vi /:a C t

�
.s/:a

sX

iD`C1

a.vi ;jvi /:a

D
X̀

iD1

b.vi ;jvi /:b
C
X̀

iD1

a�.vi ;jvi /:a
C t.0/:a

X̀

iD1

a�.vi ;jvi /:a

C t�.s/:a

X̀

iD1

a.vi ;jvi /:a
C C`

where the term

C` D

sX

iD`C1

.t.vi�1/:at
�
.vi /:a

C t.vi�1/:b C t
�C1
.vi�1/:a

C t.vi /:b/

C t.0/:b C t
�C1
.0/:a
C ts:b C t.0/:at

�
s:a

is viewed as a constant in F2m . Therefore, equation (6.6) becomes

0

B
B
@

X̀

iD1

a.vi ;jvi /:a

P`
iD1 b.vi ;jvi /:b

C
P`
iD1 a

�
.vi ;jvi /:a

C t.0/:a
P`
iD1 a

�
.vi ;jvi /:a

C t�s:a
P`
iD1 a.vi ;jvi /:a

C C`

1

1

C
C
ANv`

D
X̀

iD1

b.vi ;jvi /:b
: (6.7)
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Because the elements t.0/:a and t.s/:a are constants, and � is a linear mapping,
there exist m �m matrices T0; T` such that

t.0/:a
X̀

iD1

a�.vi ;jvi /:a
D
X̀

iD1

a.vi ;jvi /:a
T0

t�.s/:a

X̀

iD1

a.vi ;jvi /:a
D
X̀

iD1

a.vi ;jvi /:a
T`:

Now set

Nv` D

0

B
@

T0 C T` C 


Im

C`

1

C
A

where Im is them�m identity matrix. Then it is easy to check that the .2mC1/�m
matrix Nv` satisfies equation (6.7). Similar to the proof of Proposition 6.1, by
using

�X̀

iD1

b.vi ;jvi /:b

�

%�1 D
X̀

iD1

e0.vi ;jvi /:b
WD M"0`;	.x/:b

and

.M"0`;	.x/:b/Pv` D �v`.jv`/

we define

Lv` WD Nv` � %
�1 � Pv` :

Then Lv` is the binary matrix that satisfies equation (6.5).

We are now in a position to describe an algorithm for recovering permutations
�1; : : : ; �s by using Proposition 6.2. The algorithm delivers the permutation � as
well.

Algorithm 6.4 (Matrix-permutation attack on NFT-MST3: Permutation recovery).

Input: Public key Œ˛; ��.
Output: Permutations Œ�1; : : : ; �s; ��.
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For ` s downto 1 do
(A) Choose random plaintexts x.i/ 7! .j

.i/
1 ; : : : ; j

.i/
s /, and construct vectors

y.i/ WD . M̨`;id.x/
.i/
:a k M̨`;id.x/

.i/

:b
C M�`;id.x/

.i/

:b
k1/, as in Proposition 6.2. Define

n` to be the maximum number of linearly independent vectors y.i/, where
n` D n0

`
C 1 C

P`
mD1 km. Here n0

`
is the maximum number of linearly

independent columns of the matrix formed by vectors . M̨`;id.x/
.i/
:a /.

(B) Set v  1.

(C) For p  1 to kv do

(C.1) Select a set Jv of kv randomly chosen vectors in F2kv .

(C.2) Choose a random binary vector w D .w1; : : : ; wkv / 2 F2kv , and set
�v;p.ji / D wi for each ji 2 Jv.

(C.3) Choose random plaintexts x.i/ 7! .j
.i/
1 ; : : : ; j.i/v ; : : : ; j

.i/
s /, where

j.i/v 2 Jv and construct vectors y.i/ WD . M̨`;id.x/
.i/
:a k M̨`;id.x/

.i/

:b
C

M�`;id.x/
.i/

:b
k1/; as in Proposition 6.2.

Repeat this step for an appropriate number of choices of x.i/ and form
a matrix Yv with rows being the linearly independent vectors y.i/. If
rank.Yv/ < n` then return to (C.1).

(C.4) Let x.i/ 7! .j
.i/
1 ; : : : ; j

.i/
v ; : : : ; j

.i/
s /, for .i/ D 1; : : : ; n`, be the plain-

text used to construct row .i/ of the n` � .2mC 1/ binary matrix Yv in
the previous step. Form the n` � 1 matrix Zv;p with value �v;p.j

.i/
v /

as entry in row .i/.

(C.5) Construct a .2m C 1/ � n` binary encoding matrix Ev, such that
rank.Yv:Ev/ D n`.

(C.6) Compute matrix Mv;p D Ev � .Yv �Ev/
�1 �Zv;p

(C.7) For each jv 2 F2kv n Jv choose a random plaintext x 7! .j1; : : : ; jv;

: : : ; js/ and compute the value for �v;p.jv/ by �v;p.jv/ WD

. M̨`;id.x/:ak M̨`;id.x/:b C M�`;id.x/:bk1/:Mv;p

(C.8) Choose a random plaintext x 7! .j1; : : : ; jv; : : : ; js/ and compute the
value y D . M̨`;id.x/:ak M̨`;id.x/:b C M�`;id.x/:bk1/ �Mv;p.

If y ¤ �v;p.jv/ then return to (C.2) and try another choice for w 2
F2kv (this can be done in at most 2kv times). If no choice for w in
(C.2) is possible, then set v  .v C 1/ and return to (C).

If y D �v;p.jv/, repeat (C.8) for an appropriate number of times.

done
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(D) Set transposition �` WD .v; `/. Permute the blocks of ˛ and � with transposi-
tion �` to get ˛0 and � 0. Set ˛  ˛0 and �  � 0.

(E) For each jv 2 F2kv , by using �v;p.jv/ for p D 1; : : : ; kv, one obtains
�v.jv/, and thus determines permutation �v.

done
Return Œ�1; : : : ; �s; ��, where � D �s ı : : : ı �1.

We now clarify the steps of the Algorithm 6.4

(A) To determine the maximum value for the parameter n` we have to run this
step for a sufficient number of random inputs x.i/.

(B) This step initializes the parameter v to start the subsequent steps of the algo-
rithm to determine v D `	 .

(C) The inner loop is used to determine each bit �v;p.jv/ of �v.jv/ for p D
1; : : : ; kv, separately, for which �v.jv/ WD .�v;1.jv/k : : : k�v;kv .jv// for all
jv 2 F2kv .

(C.1) The choice of the parameter kv, i.e. size of the set Jv , has an effect
on the behaviour of the algorithm. If jJvj < kv , step (C.3) cannot
be finished (i.e. we always get rank.Yv/ < n`). If jJvj > kv, the
workload required in step (C.2) will be increased comparing with the
case jJvj D kv .

(C.2) In this step we guess the p-th bit �v;p.jv/ of �v.jv/ for all jv 2 Jv .

(C.3) In this step a plaintext x.i/ 7! .j
.i/
1 ; : : : ; j.i/v ; : : : ; j

.i/
s / is chosen in

such a way that the component j.i/v belongs to Jv (chosen in step (C.1)).
The other components ju with u ¤ v are arbitrarily chosen. We repeat
this step until we get a matrix Yv with rank.Yv/ D n`.

If the elements of Jv , jJvj D kv , are chosen in such a way that the set
¹�v.jv/ j jv 2 Jvº has less than kv linearly independent vectors (of
size kv), the rank.Yv/will be smaller than n`. In this case the algorithm
returns to step (C.1), and generates a new set Jv .

(The other possibility could be to extend the size of set Jv, i.e. jJvj >
kv.)

(C.4) We construct the n`�1matrix Zv;p with values �v;p.j
.i/
v / using (C.2)

and (C.3).

(C.5) In this step we construct a binary .2m C 1/ � n` matrix Ev such that
rank.Yv:Ev/ D n`. This is done in the following way: Let Q D
¹1; : : : ; 2m C 1º be the index set of columns of Yv. Find a subset
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Qv � Q with jQvj D n`, such that the columns with indices inQv are
all linearly independent. Consider the identity .2mC1/�.2mC1/ma-
trix I.2mC1/. Remove all columns with indices inQnQv from I.2mC1/
to form a .2mC 1/ � n` matrix Ev .

(C.6) Using Ev from step (C.5) we determine the p-th column Mv;p of the
matrix Mv.

(C.7) This step computes the p-th bit �v;p.jv/ of �v.jv/ for all remaining
jv 2 F2kv .

(C.8) This step verifies whether the bit �v;p.jv/ guessed in step (C.2) or com-
puted in step (C.7) for all jv 2 F2kv is correct, and whether the value
v satisfies v D `	 . Running this step in an appropriately sufficient
number of times allows us to check these requirements.

(D) In this step we use v D `	 determined in the previous loop to construct a
transposition �`. We update ˛ and � , permuting their blocks with �` and
continue the main loop with the new value ` .` � 1/.

(E) From the p-th bit �v;p.jv/ for all p D 1; : : : ; kv we construct �v.jv/. By
collecting all �v.jv/, jv 2 F2kv , we are able to recover the permutation �v.

Proposition 6.5. Let ˛; � be the covers of type .r1; : : : ; rs/ used as the public key in
NFT-MST3. Let k` WD dlog2 r`e. The workload required to recover permutations
Œ�1; : : : ; �s; �� using Algorithm 6.4 is bounded by O.

Ps
`D1 ` k` 2

k`�1/.

Proof. In step (C.2) of Algorithm 6.4 we have to guess vector w of kv bits to set
the p-th bit �v;p.jv/ of �v.jv/ for all jv 2 Jv . The complexity of the algorithm
includes the times required to run through all bits p 2 ¹1; : : : ; kvº with an average
of `=2 times until step (C.8) successfully terminates by finding v WD `	 , and also
those for the steps in the main loop for ` 2 ¹1; : : : ; sº. Summing up these together
yields the workload as shown in the bound stated.

Note that for any jm 2 ¹1; : : : ; rmº

.t.0/:a C t.`�1/:a/ D

`�1X

mD1

.a.m;jm/:a C h.m;jm/:a/ D

`�1X

mD1

.a.m;1/:a C h.m;1/:a/

.t.`/:a C t.s/:a/
� D

sX

mD`C1

.a.m;jm/:a C h.m;jm/:a/
�

D

sX

mD`C1

.a.m;1/:a C h.m;1/:a/
� :
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We use Proposition 6.3 to design the following algorithm.

Algorithm 6.6 (Matrix-permutation attack on NFT-MST3: Matrix recovery).
Input: Public key Œ˛; ��, permutations Œ�1; : : : ; �s; ��.
Output: Matrices ŒL1; : : : ; Ls�.

Set As  .0; : : : ; 0/, an m-bit zero vector.

For ` s downto 1 do

(A) Set v  `	 .

(B) Select random plaintexts x.i/ 7! .j
.i/
1 ; : : : ; j

.i/
s /, and construct vectors

y.i/ WD . M̨`;	.x/
.i/
:a k M̨ .x/

.i/

:b
C M�.x/

.i/

:b
CA

.i/

`
k1/, as in Proposition 6.3. Define

nv to be the maximum number of linearly independent vectors y.i/, where
nv D n0v C 1 C

P`
mD1 km� . Here n0v is the maximum number of linearly

independent columns of the matrix formed by vectors . M̨`;	.x/
.i/
:a /. Repeat

this step for an appropriate number of choices of x.i/ and form a matrix Yv
with nv rows being the linearly independent vectors y.i/.

(C) Let x.i/ 7! .j
.i/
1 ; : : : ; j

.i/
s /, for .i/ D 1; : : : ; nv, be the plaintext used to

construct row .i/ of the nv � .2mC 1/ binary matrix Yv in the previous step.
Form the nv � kv matrix Zv with value �v.jv/ as entry in row .i/.

(D) Construct a .2mC 1/ � nv binary encoding matrix Ev, such that
rank.Yv:Ev/ D nv

(E) Compute matrix Lv D Ev � .Yv �Ev/�1 �Zv .

If ` D 1 then return ŒL1; : : : ; Ls�.

(F) Set

A`�1  A` C a.v;jv/:b C h.v;jv/:b C a
�
.v;jv/:a

`�1X

mD1

.a.m� ;1/:a C h.m� ;1/:a/

C a.v;jv/:a

sX

mD`C1

.a.m� ;1/:a C h.m� ;1/:a/
� :

done

By making use of the information computed by Algorithms 6.4 and 6.6 we now
present an algorithm for the decryption of a given ciphertext y D .y1; y2/.
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Algorithm 6.7 (Matrix-permutation attack on NFT-MST3: Factorization).
Input: Œ�1; : : : ; �s; �; L1; : : : ; Ls� for the public key Œ˛; ��, ciphertext y D .y1; y2/.
Output: Plaintext x 7! .j1; : : : ; js/, such that y1 D M̨ .x/, y2 D M�.x/.

Set As  .0; : : : ; 0/.

For ` s downto 1 do

(1) Set v  `	 .

(2) Construct a vector w D .y1:aky1:b ˚ y2:b ˚A`k1/.

(3) Compute �v.jv/ D w � Lv.

(4) Recover jv using �v.jv/ and permutation �v. If ` D 1 then return
.j1; : : : ; js/.

(5) Set y1:a  y1:a ˚ a.v;jv/:a

A`�1  A` C a.v;jv/:b C h.v;jv/:b C a
�
.v;jv/:a

`�1X

mD1

.a.m� ;1/:a C h.m� ;1/:a/

C a.v;jv/:a

sX

mD`C1

.a.m� ;1/:a C h.m� ;1/:a/
� :

done

As presented above, the Matrix-permutation attack on NFT-MST3 makes
use of Algorithm 6.4 to recover permutations Œ�1; : : : ; �s; �� and then Algo-
rithm 6.6 to construct matrices ŒL1; : : : ; Ls�. The knowledge of ŒL1; : : : ; Ls�
and Œ�1; : : : ; �s; �� allows the adversary to decrypt any ciphertext by using Algo-
rithm 6.7. The usage of non-fused transversal signatures permits the construction
of such matrix Li for any block i D ¹1; : : : ; sº and to compute the image �i .ji /
of ji under permutation �i as shown in Proposition 6.3. This fact is used in step
(iii) of Algorithm 6.7. As �i is a bijection, the preimage ji can be recovered if
�i .ji / is known, as shown in step (iv) of the same algorithm.

Remark 6.8. The determination of permutations Œ�1; : : : ; �s; �� and the construc-
tion of matrices ŒL1; : : : ; Ls� could be designed in a single algorithm. However,
such an algorithm would become very involved. Therefore, for the sake of clarity
regarding the description of the Matrix-permutation attack we have presented two
separated algorithms, namely Algorithm 6.4 and Algorithm 6.6.
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As the workload required for Algorithm 6.6 is negligible, the complexity of
the Matrix-permutation attack is reduced to the complexity of the determination
of permutations Œ�1; : : : ; �s; �� by Algorithm 6.4. Thus we have the following
proposition.

Proposition 6.9. By using the same notation as in Proposition 6.5, the work-
load required to recover the cleartext for a given ciphertext by using the Matrix-
permutation attack on NFT-MST3 scheme is roughly of the same amount as re-
quired to recover permutations Œ�1; : : : ; �s; ��, and is bounded by

O
� sX

`D1

` k` 2
k`�1

�
:

The complexity as given in Proposition 6.9 shows in particular that for relatively
small values ki , which are usually used in a real version of the MST3 scheme, say
ki � 15, the non-fused transversal logarithmic signatures cannot be used for a
secure realization of MST3.

6.4 The Matrix-permutation attack on FT-MST3

In this section we attempt to determine the complexity of the Matrix-permutation
attack on FT-MST3.

As shown in the previous section, the Matrix-permutation attack exploits fully
the way of factorizing with respect to a non-fused transversal logarithmic signa-
ture ˇ (Algorithm 5.10), even though the adversary does not know ˇ. Thus, the
knowledge provided by a factorization with respect to ˇ by Algorithm 5.10 will
be the crucial information for the estimation of the complexity of recovering the
cleartext when the Matrix-permutation attack is applied.

To simplify the description of the Matrix-permutation attack on FT-MST3 we
confine ourselves to using only step (i) and step (iii) of Algorithm 5.4 to create
logarithmic signature ˇ.

Let ¹K1; K2; : : : ; Kvº be a partition on the set ¹1; : : : ; mº with jKi j D ki and
ti D 2ki as described in Algorithm 5.4. Let "� WD .e�i;j / be a signature of type
.t1; : : : ; tv/ created after step (i) of the Algorithm 5.4.

W.l.o.g. we consider ˇ WD .bi;j / to be a logarithmic signature created by fusion
of blocks .`; `C 2/ and .`C 1; `C 3/ of "�. (Note that no consecutive blocks are
fused.) Then ˇ D ŒB1; : : : ; Bs� is of type .r1; : : : ; rs/, where r` D t` � t`C2 and
r`C1 D t`C1 � t`C3. We now consider one fused block, say B`C1, of ˇ.

Let u
Œn�
i;ji

(resp. e
Œn�
i;ji

) be a vector of length kn, consisting of the bits of bi;ji on
the positions corresponding to Kn.
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Let x 7! .j1; : : : ; jv/, also let x0 7! .j 01; : : : ; j
0
s/, where j 0

`
D j`kj`C1 and

j 0
`C1
D j`C2kj`C3.

Then

e�1; j1 D .� � � k
N0 k N0 k N0 k N0 k � � � /

:::
e�
`�1; j`�1

D .� � � k N0 k N0 k N0 k N0 k � � � /

e�
`; j`

D .� � � k e
Œ`�

`; j`
k N0 k N0 k N0 k � � � /

e�
`C1; j`C2

D .� � � k u
Œ`�

`C1; j`C2
k e

Œ`C1�

`C1; j`C2
k N0 k N0 k � � � /

e�
`C2; j`C1

D .� � � k u
Œ`�

`C2; j`C1
k u

Œ`C1�

`C2; j`C1
k e

Œ`C2�

`C2; j`C1
k N0 k � � � /

e�
`C3; j`C3

D .� � � k u
Œ`�

`C3; j`C3„ ƒ‚ …
K`

k u
Œ`C1�

`C3; j`C3„ ƒ‚ …
K`C1

k u
Œ`C2�

`C3; j`C3„ ƒ‚ …
K`C2

k e
Œ`C3�

`C3; j`C3„ ƒ‚ …
K`C3

k � � � /:

Then
M̌.x0/ D b1;j 0

1
˚ � � � ˚ b`;j 0

`
˚ b`C1;j 0

`C1
˚ � � � ˚ bs;j 0s ;

where

b`;j 0
`

D .� � � k e
Œ`�

`; j`
˚

u
Œ`�

`C2; j`C1

k u
Œ`C1�

`C2; j`C1
k e

Œ`C2�

`C2; j`C1
k N0 k � � � /

b`C1; j 0
`C1
D .� � � k u

Œ`�

`C1; j`C2
˚

u
Œ`�

`C3; j`C3

ke
Œ`C1�

`C1; j`C2
˚

u
Œ`C1�

`C3; j`C3

k u
Œ`C2�

`C3; j`C3
k e

Œ`C3�

`C3; j`C3
k � � � /

and therefore

P`C1
iD1 bi;j 0i

D .� � � k

K`
‚ …„ ƒ

e
Œ`�

`; j`
˚

u
Œ`�

`C2; j`C1
˚

u
Œ`�

`C1; j`C2
˚

u
Œ`�

`C3; j`C3

k

K`C1
‚ …„ ƒ

u
Œ`C1�

`C2; j`C1
˚

e
Œ`C1�

`C1; j`C2
˚

u
Œ`C1�

`C3; j`C3

k

K`C2
‚ …„ ƒ

e
Œ`C2�

`C2; j`C1
˚

u
Œ`C2�

`C3; j`C3

k

K`C3
‚ …„ ƒ

e
Œ`C3�

`C3; j`C3
k � � � /:

Assume we use the factorization scheme as given by Algorithm 5.10. As the bits
of u

Œm�
i;ji

, are randomly chosen, only the bits of e
Œm�
i;ji

can be used for factoring with

respect to ˇ. Therefore, to factorize
P`C1
iD1 bi;j 0i

, i.e. to recover the index j 0
`C1

for

block B`C1, we may only use bits of e
Œ`C3�
`C3; j`C3

, i.e. the bits on positions K`C3.

However, as B`C1 has length r`C1 D 2k`C1Ck`C3 , there are 2k`C1 elements of
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B`C1 having the same value e
Œ`C3�
`C3; j`C3

on positions K`C3. In other words, only

k`C3 bits from index j 0
`C1

can be determined.
Having obtained this information, we now return to the Matrix-permutation at-

tack when a fused signature ˇ is used in an FT-MST3. Similar to Proposition 6.3
we may show that there exists a matrix L`C1 such that

. M̨ .x/:a CA`C1k M̨ .x/:b C M�.x/:b CB`C1k1/L`C1 D e
Œ`C3�
`C3; j`C3

:

Using such a matrix we can recover only k`C3 from .k`C1 C k`C3/ bits of j 0
`C1

for B`C1.
This shows that the Matrix-permutation attack applied to FT-MST3 can recover

only a portion of bits of the index in each fused block of ˇ. Thus we have the
following proposition.

Proposition 6.10. Let B` be a block of a fused transversal logarithmic signature
ˇ used in FT-MST3. Let B` D ..Di1 � Di2/ � � �Diu` / as defined Algorithm 5.4,
where i1 < i2 < � � � < iu` . Let ki D dlog2Die. By using the Matrix-permutation
attack on FT-MST3 one can determine kiu` from

Pu`
jD1 kij bits for the index in

block B`.

The complexity of factoring a ciphertext by using the Matrix-permutation attack
on FT-MST3 is thus given as the product of the complexities for factoring with
respect to each block B`, ` D 1; : : : ; s. Moreover, as the factorization has to be
proceeded implicitly according to the permutation � of Algorithm 5.4, it turns out
that the last attacked block can be carried out by a table search, and therefore has
a negligible complexity. To summarize, we record the complexity of the Matrix-
permutation attack on FT-MST3 in the following proposition.

Proposition 6.11. Let m be an input length of an FT-MST3 scheme with a fused
transversal logarithmic signature ˇ created by Algorithm 5.4. Let P D ¹P1; : : : ;

Psº be a partition used in step (iii) of this algorithm where P` D ¹i`;1; : : : ; i`;u`º
for ` D 1; : : : ; s. Let k` D dlog2D`e, whereD` is defined by the same algorithm.
Then the workload still needed after the Matrix-permutation attack to recover the
plaintext for a given ciphertext is of O.2c/ where

c D
�
m �

sX

`D2

ki`;u` �

u1X

jD1

ki1;j

�
:

Remark 6.12. We can envisage a further method of using the Matrix-permutation
attack on the FT-MST3 scheme. Suppose that the adversary attempts to keep
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fusing the blocks of ˛ and � to eventually obtain a new Q̨ and Q� , in which the
corresponding logarithmic signature Q̌ (inside Q�) has a block QBi which forms a
subspace of dimension mi in Z. Note that the adversary actually does not know
QBi and therefore cannot verify whether QBi is a subspace or not. Assuming that
QBi is a subspace (s)he may attempt to apply the Matrix-permutation attack to Q̨

and Q� to compute the index in QBi for the plaintext from a given ciphertext. It is
fairly easy to prevent this type of attack by selecting a partition P in step (iii) of
Algorithm 5.4 in a way that such a block QBi necessarily has a large dimensionmi .
This makes the Matrix-permutation attack impossible because of its complexity,
as given in Proposition 6.9.

7 Implementation aspects of MST3

In this section we consider practical implementation issues of FT-MST3 with the
underlying Suzuki 2-groups. The Algorithm 5.4 as described in Section 5 will be
used for generating logarithmic signatures ˇ. As observed, if we keep track of the
information at each step of Algorithm 5.4, in particular, the knowledge of parti-
tion P D ¹P1; : : : ; Psº used in step (iii), we have a highly efficient factorization
method with respect to ˇ as shown in Algorithm 5.8. By taking the discussion of
Subsection 6.1 into account we may, if necessary, select the elements of ˛:a in a
subspace Z1 such that � D jZj=jZ1j is sufficiently large.

7.1 Computing with the Suzuki 2-groups

Let q D 2m, where m � 3 is not a power of 2 and let � be a non trivial odd-
order automorphism of Fq . Let G D A.m; �/ be the Suzuki 2-group of order q2

described in Section 2. Recall that the multiplication of two elements in G is given
by the rule:

S.a1; b1/S.a2; b2/ D S.a1 C a2; b1 C b2 C a1a
�
2/: (7.1)

We could store the group elements S.a; b/ as pairs .a; b/, but this would require
that we compute some a� each time we compute a product of group elements. In
turn, each computation a� requires at most 2dlog2me multiplications in Fq . It
is therefore more time efficient to store the group elements as triples .a; b; a� /.
Thus, the product S.a1; b1/ � S.a2; b2/ is identified with the triple

.a1 C a2; b1 C b2 C a1a
�
2 ; a

�
1 C a

�
2/

and computation of the product requires just a single multiplication and four addi-
tions in Fq .



310 P. Svaba and T. van Trung

7.2 Public key size and cipher expansion

Let ˛ D ..a.ij /:a; a.ij /:b// and � D ..h.ij /:a; h.ij /:b//. For a given i we have
h.ij /:a D a.ij /:a C t.i�1/:a C t.i/:a for all j D 1; : : : ; ri . This means that for
each i , if a.ij /:a’s and the sum t.i�1/:aC t.i/:a are known, h.ij /:a’s can be derived.
Therefore, for the public key we need to store Œ˛, .h.ij /:b/� (i.e. the “:b part” of �)
and the s values t.i�1/:a C t.i/:a, for i D 1; : : : ; s.

However, for a practical implementation of MST3 we describe a more efficient
method of dealing with the key storage. The idea is that we generate the key by
using a publicly known Algorithm A, which generates a random cover ˛ satisfying
the conditions in Section 3. Essentially, Algorithm A utilizes a pseudo-random
number generator R. To simplify the description we assume that a logarithmic
signature ˇ has been generated by Algorithm 5.4 separately.

Algorithm 7.1 (Reduced key storage).
External: Algorithm A, a pseudo-random number generator R

Input: Œˇ; f; t0; : : : ; ts�, a seed S for R

Output: Œ˛; ��

(a) Using A, R and S to generate ˛ D ..a.ij /:a; a.ij /:b//.
(b) Create � D ..h.ij /:a; h.ij /:b// from ˛ as described in Section 3.

From Algorithm 7.1 it is clear that, for the public key, one has to publish
.h.ij /:b/ together with t.i�1/:a C t.i/:a for i D 1; : : : ; s, and S only. To obtain
the complete public key, i.e. Œ˛; ��, one first generates ˛ from step (a) using R and
seed S , then computes .h.ij /:a/ from a.ij /:a and t.i�1/:a C t.i/:a. This approach
will reduce the key size of the system roughly to only one third of Œ˛; .h.ij /:b/�
(i.e. one fourth of the size of public-key Œ˛; ��). In fact, this key size appears to be
the minimum key storage that can be realized for MST3.

The cipher expansion of MST3 is of a factor three. For, suppose .y1; y2/ is a
ciphertext pair with y1 D .y.1/:a; y.1/:b/ and y2 D .y.2/:a; y.2/:b/, then, it suffices
to send y1 and y.2/:b as the ciphertext. This is because y.2/:a can be obtained from
the equation y.2/:a D y.1/:a C t.0/:a C t.s/:a by using the private key t0 and ts .

7.3 Examples of generating ˇ

We need to introduce some notation. We say a logarithmic signature (cover) ˇ is
of type .vu11 � v

u2
2 � � � v

ut
t / if ˇ has the first u1 blocks of size v1, the next u2 blocks

of size v2, etc.
Let " D ŒE1; E2; : : : ; Es� be a transversal logarithmic signature created by

Algorithm 5.4 by steps (i) and (ii). Then, there exists a chain of subgroups 1G D
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G 0 < G 1 < � � � < G s D G , such that each block Ei consists of a complete set of
coset representatives of G i�1 in G i .

We also write Œru1 � ru2 � � � � � ru` � to denote the fusion of ` blocks Eu1 ; Eu2 ;
: : : ; Eu` , where jEui j D rui and u1 < u2 < � � � < u`. Specially, Œru� denotes
a non-fused block Eu with jEuj D ru. We say a block Bi of ˇ is of fusion type
Œru1 � ru2 � � � � � ru` � if Bi D Eu1 ˝Eu2 ˝ � � � ˝Eu` . We write

F
e1
1 � F

e2
2 � � �F

e`
`

to denote the fusion type of ˇ for which the first e1 blocks are of fusion type F1,
the next e2 blocks of fusion type F2, etc. For example, the notation Œ256�2 � Œ32 �
4�5 � Œ32 � 8 � 4�10 denotes a set-up for ˇ with the first two non-fused blocks of
length 256, the next five created by the fusion of two blocks of size 32 and 4,
and the remaining ten blocks obtained by fusing three blocks of size 32, 8 and 4
respectively.

Let ˇ be a fused logarithmic signature of fusion type, say, Œv1�e1 � � � Œvi�1�ei�1 �
Œvi � ui �

ei � � � Œvj�1 � uj�1�
ej�1 � Œvj � uj �wj �

ej � � � Œv` � u` �w`�
e` , generated

by Algorithm 5.4. If ˇ is used for a set-up of FT-MST3, the workload of the
Matrix-permutation attack required to recover the plaintext is roughly bounded by
O.v

ei
i � � � v

ej�1
j�1 � .vj :uj /

ej � � � .v`:u`/
e`/ (see Proposition 6.11).

Example 1. Here we show an example of the set-up for FT-MST3 as given in the
Table 2 below. Let m D 224 and s D 32. The following steps are required to
successfully set-up the scheme.
Set-up:
(1) Using Algorithm 5.4 generate a logarithmic signature ˇ for Z starting from

" of type .1282 � 3230 � 430/, i.e. v D 62. In particular, for step (iii) of the
algorithm take a partition P D ¹P1; : : : ; P32º with P1 D ¹1º; P2 D ¹2º, and
Pi D ¹i; v � i C 3º for i D 3; : : : ; 30, and P31 D ¹31; 33º; P32 D ¹32; 34º.
After finishing Algorithm 5.4 the logarithmic signature ˇ is of type .12832/,
and of fusion type Œ128�2 � Œ32 � 4�30.

(2) Using ˇ and Algorithm 7.1 create public key Œ˛; ��.

Example 2. Let m D 255 and s D 26.
Set-up:
(1) Using Algorithm 5.4 generate ˇ for Z starting from " of type .256 � 3225 �

824 �425/, i.e. v D 75. For the step (iii) of this algorithm take a partition P D

¹P1; : : : ; P32º with P1 D ¹1º; P2 D ¹2; 75º, and Pi D ¹i; i C 24; i C 48º
for i D 3; : : : ; 26. Therefore ˇ is of type .256 � 128 � 102424/, and of fusion
type Œ256� � Œ32 � 4� � Œ32 � 8 � 4�24.

(2) Using ˇ and Algorithm 7.1 create public key Œ˛; ��.
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7.4 Performance of the system

In this section we show the data of the performance of MST3 acquired from a
concrete implementation of the scheme.

The Table 1 shows the number of operations required for one encryption or
decryption of the FT-MTS3. Namely, the addition (ADD), the multiplication
(MULT), the exponentiation with � (EXP.� )), the generation of m-bit random R

(PRNG), and the factorization of M".R/ 2 Z with respect to a transversal logarith-
mic signature " using the Algorithm 5.9 (FACTOR).

F2m ADD F2m MULT F2m EXP.�/ F2m PRNG FACTOR

encryption 7s � 7 2s � 2 – 1 –

decryption mC 4s C 8 s C 3 2 – 1

Table 1. Number of basic operations for one encryption/decryption of FT-MST3.

We note that an intrinsic property of MST3 is that there is a trade-off between
the key storage and the speed of the scheme. For example, if F2320 is the un-
derlying field for the Suzuki 2-group G , then the corresponding FT-MST3 has
an input of 320 bit length; if ˛ and � have type .4 � 6453/, the public key size
is of 135 kBytes, whereas if ˛ and � have the type .25640/, we have a public
key of 402 kBytes. This implementation shows that for the first case we have
an encryption/decryption speed of 287=471 kB=s, whereas for the second case
377=581 kB=s.

The Table 2 presents data related to the public key size, type and fusion type for
ˇ, the speed of the encryption and decryption together with the workload (W ) of
the Matrix-permutation attack required to recover the plaintext. The performance
tests were implemented by using the library NTL1 and measured on a 64-bit ma-
chine of 1.8 GHz.

8 Conclusions

We have presented a revised version of the MST3 public-key cryptosystem on the
basis of the Suzuki 2-groups. An elaborate investigation of recovering the private
key by using heuristic and algebraic arguments has produced strong bounds for
the workload required. We have developed a powerful chosen plaintext attack on

1 NTL C++ Library, written by Victor Shoup, www.shoup.net/ntl.

www.shoup.net/ntl
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m s type of ˇ
pk

fusion type of ˇ W
E D

[kB] [kB=s] [kB=s]

160 26 .2562 � 6424/ 43 Œ256� � Œ16 � 4 � 4� � Œ16 � 4�24 2102 607 859
160 23 .64 � 12822/ 57 Œ64� � Œ128� � Œ32 � 4�21 2105 604 852
160 20 .25620/ 100 Œ256� � Œ16 � 4 � 4�19 2114 671 895
160 18 .2562 � 51216/ 170 Œ256� � Œ16 � 4 � 4� � Œ32 � 4 � 4�16 2118 689 904
160 16 .102416/ 320 Œ1024� � Œ32 � 8 � 4�15 2120 758 941
192 32 .6432/ 49 Œ64�3 � Œ16 � 4�29 2116 571 854
192 28 .8 � 12827/ 82 Œ8� � Œ128�2 � Œ32 � 4�25 2125 529 783
192 24 .25624/ 145 Œ256� � Œ16 � 4 � 4�23 2138 609 851
192 22 .8 � 51221/ 253 Œ8� � Œ512� � Œ32 � 4 � 4�20 2140 679 914
192 20 .4 � 102419/ 457 Œ4� � Œ1024� � Œ32 � 8 � 4�18 2144 720 924
224 38 .4 � 6437/ 66 Œ4� � Œ64�4 � Œ16 � 4�33 2132 511 772
224 32 .12832/ 113 Œ128�2 � Œ32 � 4�30 2150 565 827
224 28 .25628/ 197 Œ256� � Œ16 � 4 � 4�27 2162 595 845
224 25 .256 � 51224/ 344 Œ256� � Œ32 � 4 � 4�24 2168 637 875
224 23 .256 � 64 � 102421/ 597 Œ256� � Œ16 � 4� � Œ32 � 8 � 4�21 2172 678 894
255 43 .8 � 6442/ 85 Œ8� � Œ64�4 � Œ16 � 4�38 2152 532 808
255 37 .8 � 12836/ 145 Œ8� � Œ128�2 � Œ32 � 4�34 2170 576 852
255 32 .25631 � 128/ 252 Œ256� � Œ16 � 4 � 4�30 � Œ32 � 4� 2185 602 865
255 29 .8 � 51228/ 447 Œ8� � Œ512� � Œ32 � 4 � 4�27 2189 637 887
255 26 .256 � 128 � 102424/ 778 Œ256� � Œ32 � 4� � Œ32 � 8 � 4�24 2197 708 932
288 48 .6448/ 110 Œ64�5 � Œ16 � 4�43 2172 306 502
288 41 .256 � 12840/ 190 Œ256� � Œ128� � Œ32 � 4�39 2195 325 523
288 36 .25636/ 325 Œ256�2 � Œ16 � 4 � 4�34 2204 381 593
288 32 .51232/ 577 Œ512� � Œ32 � 4 � 4�31 2217 407 595
288 29 .5122 � 102427/ 1009 Œ512� � Œ32 � 4 � 4� � Œ32 � 8 � 4�27 2223 457 668
320 54 .4 � 6453/ 135 Œ4� � Œ64�5 � Œ16 � 4�48 2192 287 471
320 46 .8 � 512 � 12844/ 242 Œ8� � Œ512� � Œ32 � 4�44 2220 305 490
320 40 .25640/ 402 Œ256�2 � Œ16 � 4 � 4�38 2228 377 581
320 36 .32 � 51235/ 703 Œ32� � Œ512� � Œ32 � 4 � 4�34 2238 403 604
320 32 .102432/ 1281 Œ1024� � Œ32 � 8 � 4�31 2248 450 650
352 59 .16 � 6458/ 163 Œ16� � Œ64�6 � Œ16 � 4�52 2208 246 408
352 51 .4 � 12850/ 277 Œ4� � Œ128�3 � Œ32 � 4�47 2235 292 475
352 44 .25644/ 486 Œ256�2 � Œ16 � 4 � 4�42 2252 304 481
352 40 .2 � 51239/ 860 Œ2� � Œ512� � Œ32 � 4 � 4�38 2266 352 537
352 36 .8 � 512 � 102434/ 1431 Œ8� � Œ512� � Œ32 � 8 � 4�34 2272 378 566
384 64 .6464/ 195 Œ64�6 � Œ16 � 4�58 2232 252 421
384 55 .64 � 12854/ 330 Œ64� � Œ128�3 � Œ32 � 4�51 2255 287 466
384 48 .25648/ 578 Œ256�2 � Œ16 � 4 � 4�46 2276 303 485
384 43 .64 � 51242/ 1013 Œ64� � Œ512� � Œ32 � 4 � 4�41 2287 352 535
384 39 .16 � 102438/ 1827 Œ16� � Œ1024� � Œ32 � 8 � 4�37 2296 364 554

Table 2. Various data for parameters, performance and security of FT-MST3.
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the scheme, called Matrix-permutation attack, which, in particular, shows that the
class of non-fused transversal logarithmic signatures for the center of the underly-
ing groups are unfit for use in the realization of MST3. The class of fused transver-
sal logarithmic signatures, however, withstands the Matrix-permutation attack. We
have determined the complexity of this attack on the scheme using fused transver-
sal logarithmic signatures. This result enables us to choose the right parameters
for the scheme, which we have discussed in the last section. Data of key storage
and of speed performance of a concrete implementation of the scheme have been
included. A further challenging problem regarding the realization of the scheme
is the question of how to use the class of non-transversal logarithmic signatures or
random covers for ˇ. We will deal with this problem in a future work.
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