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Abstract. We apply combinatorics on words to develop an approach to multicollisions in
generalized iterated hash functions. Our work is based on the discoveries of A. Joux and on
generalizations provided by M. Nandi and D. Stinson as well as J. Hoch and A. Shamir. We
wish to unify the existing diverse notation in the field, bring basic facts together, reprove
some previously published results and produce some new ones. A multicollision attack
method informally described by Hoch and Shamir is laid on a sound statistical basis and
studied in detail.
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1 Introduction

Iterated hash functions have been the most successful method for constructing
fast and secure hash functions. The underlying principle proposed by Merkle and
Damgård [4, 15] is quite simple and easy to implement. However, most of the
modern hash functions built on this foundation were proved insecure in [7, 12,
17, 19, 20]. Many of these flaws come from the weaknesses in the underlying
compression functions. In recent years, more rigorous theoretical study has also
found some weaknesses in the iterative structure itself [3].

One of the most notable results on the iterative structure was Joux’s method
concerning multicollisions in iterated hash functions [10], which has been used
to disprove some of the assumptions on hash function security. Furthermore,
these achievements concerning multicollisions were generalized by Nandi and
Stinson [16] and later by Hoch and Shamir [9]. These results show that Joux’s
method can be applied to a more general class of iterated hash functions.

The theoretical results concerning hash functions and especially multicollisions
in iterated hash functions were created with a multitude of different approaches,
notation and a varying level of mathematical rigor. This has made it somewhat

Some preliminary results of this research have been published in AISC 2010 proceedings [8].
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difficult to examine the differences and similarities of the results achieved. It has
also led to the situation where we do not have a unified theoretical and notational
framework for the study of iterated hash functions in general and multicollisions
in particular.

In this paper, we show a way to formulate these problems in a well-established
mathematical system and use this structure to prove the central results related to
multicollisions. The notation and basic theory of combinatorics on words, algebra
and partial orders is extensively applied. In [9] a method of constructing multicol-
lisions in Iterated Concatenated and Expanded (ICE) hash functions is introduced.
The description of the method is informal and difficult, if not impossible, to under-
stand in detail. We wish to give a rigorous mathematical treatment to this method
and point out certain deficiencies in the original version of it. A fairly detailed
complexity analysis of the respective attack construction is provided and the prac-
tical applicability of the attack and the ICE hash functions is discussed.

The paper is organized in the following way. The second section introduces the
basic definitions of combinatorics on words and partial orders. The third section
shows how iterated hash functions and multicollisions can be depicted in this theo-
retical setting; the earlier work conducted in the field is reviewed and the structure
of the attack schema on generalized iterated hash functions is described informally.
In the fourth section, we prove the combinatorial results needed for the construc-
tion of a feasible multicollision attack on so-called bounded generalized iterated
hash functions. The fifth section contains the precise exposition of the multicolli-
sion attack and some analysis of its complexity. In the final section, we discuss our
results, draw some conclusions from our research and give possible future research
proposals.

2 Basics on words, languages and partial orders

We encourage the reader to return to the basic concepts only as the need arises.

2.1 Words and languages

Let N D ¹0; 1; 2; : : :º be the set of all natural numbers and NC D Nn¹0º. For each
l 2 NC, we define Nl to be the set of l first positive integers: Nl D ¹1; 2; : : : ; lº.
For each finite set S , let jS j be the cardinality of S , i.e., the number of elements
in S .

An alphabet is any finite nonempty set of abstract symbols called letters. Let
A be an alphabet. A word (over A) is any finite sequence of symbols in A. Thus,
assuming that w is a word over A, we can write w D a1a2 � � � an, where n 2 N
and ai 2 A for i D 1; 2; : : : ; n. Here n is the length jwj of w. Notice that
n may be equal to zero; then w is the empty word, denoted by �, that contains
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no letters. By jwja we mean the number of occurrences of the letter a in w.
Denote alph.w/ D ¹a 2 A

ˇ
ˇ jwja > 0º. Obviously alph.�/ D ;; for nonempty

w, call alph.w/ the alphabet of w. Let A� (resp. AC ) be the set of all words
(resp. nonempty words) over A. By An, n 2 NC, we mean the set of all words
of length n over A. The catenation of two words u and v in A� is the word uv
obtained by writing v after u. Clearly, catenation defines a binary operation � in
A�: u � v D uv for all u; v 2 A�. In algebraic terms .A�; � / is a free monoid
and .AC; � / is a free semigroup. The word u is a subword of w if there exist
m 2 N and x0; u1; x1; : : : ; um; xm 2 A� such that w D x0u1x1 � � �umxm where
u D u1u2 � � �um. A subword u of w is a factor of w if w D x0ux1 for some
x0; x1 2 A

�. If a word y can be written in the form y D y1y2 � � �yp for some
p 2 N and words y1; y2; : : : ; yp, we say that y1y2 � � �yp is a factorization of y
(into y1; y2; : : : ; yp).

Let A and B be alphabets. A mapping h W A� ! B� is a (monoid) morphism
if h.uv/ D h.u/h.v/ for each u; v 2 A�. Note that a morphism always maps the
empty word � to �. Moreover, the morphism h is completely determined by the
images h.a/ of all letters a 2 A. If B � A, then the projection morphism from A�

into B�, denoted by �AB (or �B , when A is understood), is defined by �AB .b/ D b
for each b 2 B and �AB .a/ D � for each a 2 A n B .

A permutation of an alphabet A is any word w 2 AC such that jwja D 1 for
each a 2 A.

A language (over the alphabet A) is any set of words L (such that L � A�). Let
L1 and L2 be languages. The catenation of L1 and L2 is the language L1L2 D
¹uv ju 2 L1; v 2 L2º. Define the powers of the L1 recursively as follows:
L11 D L1, and LiC11 D Li1L1 for i 2 NC. The positive closure of L1 is the
language LC1 D

S1
iD1L

i
1. For any word w, we write wC instead of ¹wºC.

2.2 Partial orders

A binary relation R on the nonempty setX is a partial order (inX ) if it is irreflex-
ive (8x 2 X W .x; x/ … R), antisymmetric (8x; y 2 X W .x; y/ 2 R) .y; x/ …

R) and transitive (8x; y; z 2 X W .x; y/ 2 R ^ .y; z/ 2 R) .x; z/ 2 R).
Let � be a partial order in X . Call .X;�/ a partially ordered set. The elements

x; y 2 X , x ¤ y, are incomparable (in .X;�/) if neither x � y nor y � x holds.
The nonempty finite sequence x1; x2; : : : ; xn of elements ofX is a chain of .X;�/
if xi � xiC1 for all i 2 ¹1; 2; : : : ; n�1º. Above n 2 NC is the length of the chain
x1 � x2 � � � � � xn. For each chain c of .X;�/, let jcj be the length of c.
An (indexed) set of chains ¹ciºi2I is a chain decomposition of .X;�/, if ¹Ciºi2I
is a partition of X , where Ci D ¹x 2 X

ˇ
ˇ x occurs in the chain ciº. Obviously,

a chain decomposition exists for all partially ordered sets.
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Now consider a finite partially ordered set .X;�/, i.e., a partially ordered set
such that X is finite. The maximum number of incomparable elements of .X;�/
is the cardinality of the largest set Y � X such that the elements of Y are pairwise
incomparable. The minimum chain decomposition size of .X;�/ is the smallest
number m 2 NC such that there exist chains c1; c2; : : : ; cm of .X;�/ for which
¹ciº

m
iD1 is a chain decomposition of .X;�/. Finally, let the maximum chain length

of .X;�/ be the greatest number m 2 NC such that there exists a chain of length
m in .X;�/.

An important connection between the first two concepts defined above is stated
in a famous theorem of Dilworth [6].

Theorem 2.1 (Dilworth’s Theorem). Let .X;�/ be a finite, partially ordered set.
Then the maximum number of incomparable elements of .X;�/ is equal to the
minimum chain decomposition size of .X;�/.

Let us now investigate partial orders induced by words. Let ˛ be a nonempty
word. Define the binary relation �˛ on alph.˛/ as follows. For each a; b 2
alph.˛/, let a �˛ b hold if and only if a ¤ b and all occurrences of a in ˛
lie before any occurrence of b in ˛. Certainly if a �˛ b, then there exist words ˛1
and ˛2 such that ˛ D ˛1˛2 and j˛1jb D j˛2ja D 0. Obviously, �˛ is irreflexive,
antisymmetric and transitive, so .alph.˛/;�˛/ is a partially ordered set. Call the
elements of a nonempty set A � alph.˛/ independent (with respect to �˛) if
they form a chain in .alph.˛/;�˛/. Now suppose that A consists of k 2 NC
independent elements. There then exist elements a1; a2; : : : ; ak of alph.˛/ such
that a1 �˛ a2 �˛ � � � �˛ ak and A D ¹a1; a2; : : : ; akº. Certainly �A.˛/ 2
aC1 a

C
2 � � � a

C
k

.
The partial order �˛ plays a central role in the construction of multicollisions

as well as in their combinatorial analysis. The role of partial orders applied to
combinatorics on words is extensively studied in [5].

3 Hash functions and collisions

In this section, we give the basic definitions of hash functions and multicollisions
using a fresh and rigorous notation. The principles of (iterative) hash functions
were, however, presented already in [4], and advanced ideas on multicollisions
appear in [9, 10, 16].

3.1 Fundamental concepts

By a block representation of a message, we mean the division and padding of
the message into blocks of equal size. We may certainly assume, without loss of
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generality, that all our messages are written in the binary alphabet ¹0; 1º and given
in a block representation form.

Definition 3.1. A hash function of length n (with n 2 NC) is a mapping f W
¹0; 1º� ! ¹0; 1ºn.

An ideal hash function f W ¹0; 1º� ! ¹0; 1ºn is a variable input length random
oracle (VIL-RO for short): for each x 2 ¹0; 1º�, the value f .x/ 2 ¹0; 1ºn is
chosen uniformly at random.

Let f be a hash function. A preimage of a given hash value y is any x 2 ¹0; 1º�

such that f .x/ D y. A second preimage of y D f .x/ is any x0 2 ¹0; 1º� such
that f .x0/ D y and x ¤ x0.

Let k 2 NC. A k-collision in the hash function f W ¹0; 1º� ! ¹0; 1ºn is a set
A � ¹0; 1º� such that jAj D k and f .x/ D f .y/ for all x; y 2 A. A 2-collision
(in f ) is also called a collision in f .

A k-collision attack on a hash function f can be loosely characterized as a prob-
abilistic procedure (based on the birthday paradox) that finds a k-collision in f
with some nonnegligible probability. The complexity of the attack can be mea-
sured, for instance, with respect to the expected number of messages the hash
values of which have to be determined in order to carry out the attack successfully.

According to the (generalized) birthday paradox, a k-collision can be found

(with probability approx. 0:5) by hashing .kŠ/
1
k 2

n.k�1/
k different messages [18].

In the case k D 2 this gives
p
2 � 2

n
2 hash function computations. Intuitively most

of us would expect the number to be around 2n�1. For preimages and second
preimages the complexity of an attack on an ideal hash function is in O.2n/.

In the following, we shall derive the concept of a (generalized) iterated hash
function. Remember that all messages are assumed to be in a block representation
form.

Definition 3.2. A compression function .of block size m and length n/ is a map-
ping f W ¹0; 1ºn � ¹0; 1ºm ! ¹0; 1ºn where m; n 2 NC; m > n.

Again, an ideal compression function f W ¹0; 1ºn�¹0; 1ºm ! ¹0; 1ºn is a fixed
input length random oracle (FIL-RO for short): for each h 2 ¹0; 1ºn and y 2
¹0; 1ºm, the value f .h; y/ 2 ¹0; 1ºn is chosen uniformly at random.

Let m; n 2 NC; m > n and f W ¹0; 1ºn � ¹0; 1ºm ! ¹0; 1ºn be a given
compression function.

Define the function f C W ¹0; 1ºn�.¹0; 1ºm/C ! ¹0; 1ºn inductively as follows.
Let h 2 ¹0; 1ºn, y1 2 ¹0; 1ºm, and y2 2 .¹0; 1ºm/C. Then f C.h; y1/ D f .h; y1/
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and f C.h; y1y2/ D f C.f .h; y1/; y2/. Surely for all y; y0 2 .¹0; 1ºm/C, the
equality f C.h; y y0/ D f C.f C.h; y/; y0/ holds.

Let u be a word in .¹0; 1ºm/C such that u D u1u2 � � �ul where l 2 NC and
ui 2 ¹0; 1º

m for i D 1; 2; : : : ; l . Define the morphism Nu W N�
l
! ¹0; 1º� by

Nu.i/ D ui for each i 2 Nl . Let ˛ 2 NC
l

be given. Then ˛ D i1i2 � � � is , where
s 2 NC and ij 2 Nl for j D 1; 2; : : : ; s. By definition, Nu.˛/ D ui1ui2 � � �uis .
Obviously Nu.˛/ is the word where blocks taken from u1; u2; : : : ; ul are written in
the order and multiple determined by ˛.

Example 3.3. Let u D u1u2 � � �u5 where ui 2 ¹0; 1ºm for i D 1; 2; 3; 4; 5. Then
Nu.2 � 5 � 1 � 3 � 5 � 5 � 1/ D u2u5u1u3u5u5u1.

Now define the iterated compression function f˛ W ¹0; 1ºn�¹0; 1ºml ! ¹0; 1ºn

(based on ˛ and f ) by f˛.h; u/ D f C.h; Nu.˛// for each h 2 ¹0; 1ºn and u 2
¹0; 1ºml .

It is clear from the definitions that if ˛ D ˛1˛2, where ˛1; ˛2 2 NC
l

, then

f˛.h; u/ D f
C.h; Nu.˛// D f C.h; Nu.˛1/ Nu.˛2//

D f C.f C.h; Nu.˛1//; Nu.˛2// D f˛2.f˛1.h; u/; u/

for each h 2 ¹0; 1ºn and u 2 ¹0; 1ºml . Given k 2 NC and h0 2 ¹0; 1ºm, a k-
collision .with initial value h0/ in the iterated compression function f˛ is a set
A � ¹0; 1ºml such that jAj D k and f˛.h0; u/ D f˛.h0; v/ for all u; v 2 A.
We say that the k-collision A in f˛ is nontrivial if, for each u D u1u2 � � �ul and
v D v1v2 � � � vl in A such that ui ; vi 2 ¹0; 1ºm for i D 1; 2; : : : ; l , the equality
uj D vj holds for each j 2 Nl n alph.˛/.

Example 3.4. Let l D 5 and ˛ D 3 � 1 � 5 � 4 � 4 � 3 � 1 a word over the alphabet
N5. Assume furthermore that h0 2 ¹0; 1ºn and u1; u2; u3; u4; u5; u05 2 ¹0; 1º

m,
u5 ¤ u05 are message blocks such that f C.h0; u3u1u5/ D f C.h0; u3u1u

0
5/.

Since

f˛.h0; u1u2u3u4u5/ D f
C.h0; u3u1u5u4u4u3u1/

D f C.f C.h0; u3u1u5/; u4u4u3u1/

D f C.f C.h0; u3u1u
0
5/; u4u4u3u1/

D f˛.h0; u1u2u3u4u
0
5/;

the set ¹u1u2u3u4u5; u1u2u3u4u05º is a nontrivial (2-)collision in f˛ with the
initial value h0. Since, given h 2 ¹0; 1ºn and u 2 ¹0; 1º5m, the second block of
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the message u is never used when calculating f˛.h; u/, the set ¹u1 x u3u4u5 j x 2
¹0; 1ºmº is a trivial 2m-collision in f˛ with any initial value.

Finally, we are ready to characterize a generalized iterated hash function. For
each j 2 NC, let j̨ 2 NCj be such that alph. j̨ / D Nj . Denote Ǫ D .˛1; ˛2; : : :/.

Define the generalized iterated hash function H Ǫ ;f W ¹0; 1º
n � .¹0; 1ºm/C !

¹0; 1ºn (based on Ǫ and f ) as follows: Given the initial value h0 2 ¹0; 1ºm

and the message x for which the block representation consists of j blocks, let
H Ǫ ;f .h0; x/ D f j̨

.h0; x/.

Remark 3.5. A traditional iterated hash functionH W .¹0; 1ºm/C ! ¹0; 1ºn based
on f (with initial value h0 2 ¹0; 1ºn) can of course be defined by H.u/ D
f C.h0; u/ for each u 2 .¹0; 1ºm/C. On the other hand H is a generalized it-
erated hash function H Ǫ ;f W ¹0; 1º

n � .¹0; 1ºm/C ! ¹0; 1ºn based on Ǫ and f
where Ǫ D .1; 1 � 2; 1 � 2 � 3; : : :/ and the initial value is fixed as h0.

Now, let the generalized iterated hash function H Ǫ ;f W ¹0; 1º
n � .¹0; 1ºm/C !

¹0; 1ºn based on Ǫ and f be as defined before the previous remark. Given k 2 NC
and h0 2 ¹0; 1ºm, a k-collision in the generalized iterated hash function H Ǫ ;f is
a set A � .¹0; 1ºm/C such that jAj D k and for all u; v 2 A, juj D jvj and
H Ǫ ;f .h0; u/ D H Ǫ ;f .h0; v/. Now suppose that A is a k-collision in H Ǫ ;f with
initial value h0. Let l 2 NC be such that A � ¹0; 1ºml , i.e., the length in blocks
of each message in A is l . Then, by definition, for each u; v 2 A, the equality
f˛l .h0; u/ D f˛l .h0; v/ holds. Since alph.˛l / D Nl , the set A is a nontrivial
k-collision in f˛l with initial value h0.

We assume that the attacker knows how H Ǫ ;f depends on the respective com-
pression function f (i.e., the attacker knows Ǫ ), but sees f only as a black box.
She/he does not know anything about the internal structure of f and can only
make queries (i.e., pairs .h; x/ 2 ¹0; 1ºn � ¹0; 1ºm) on f and get the respective
responses (values f .h; x/ 2 ¹0; 1ºn).

A k-collision attack onH Ǫ ;f is a probabilistic procedure (based on the birthday
paradox) that finds a k-collision in H Ǫ ;f with probability equal to one for any
initial value h0. The complexity of a k-collision attack on H Ǫ ;f is the expected
number of queries on f required to get a k-collision.

3.2 Earlier work

In [10] Joux considers iterated hash functions H W .¹0; 1ºm/C ! ¹0; 1ºn and
shows that, for each r 2 NC there exists a 2r -collision attack on H of complexity
O.r � 2n=2/. The idea of Joux is simple and ingenious: a sequence of message sets
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¹u11; u12º; ¹u21; u22º; : : : ; ¹ur1; ur2º such that ui1 ¤ ui2 and f .hi�1; ui1/ D
f .hi�1; ui2/ D hi for i D 1; 2; : : : ; r is generated with O.r2n=2/ queries on
f . Then H.y1y2 � � �yr/ D H.z1z2 � � � zr/ for all y1; z1 2 ¹u11; u12º, y2; z2 2
¹u21; u22º; : : : ; yr ; zr 2 ¹ur1; ur2º, which means that the set ¹u11; u21º�¹u21; u22º
� � � ¹ur1; ur2º is a 2r -collision in H .

In [16] Nandi and Stinson show that there exists an attack procedure of com-
plexity O.r2 � .ln r/ � .nC ln.ln 2r// � 2n=2/ which (1) takes as input the (unique
identity of) the function f W ¹0; 1ºn � ¹0; 1ºm ! ¹0; 1ºn, a number r 2 NC, and
a word ˛ such that alph.˛/ is sufficiently large and j˛ja � 2 for all a 2 alph.˛/;
(2) makes queries on f and gets the respective answers; and then (3) outputs (with
probability equal to one) a 2r -collision in f˛.

In [9] Hoch and Shamir continue the work on generalized iterated hash func-
tionsH Ǫ ;f showing the following: Let Ǫ D .˛1; ˛2; : : :/ and q 2 NC be such that
j j̨ ji � q for all j 2 NC, i 2 Nj . Then a polynomial p.n; r/ exists such that,
for each r 2 NC, a 2r -collision attack on H Ǫ ;f of complexity O.p.n; r/2

n
2 / can

be constructed. However, some proofs are written in a short form and they con-
tain a few inaccuracies being thus quite hard to follow. Our intention is to present
new proofs and a detailed analysis of multicollisions in generalized iterated hash
functions.

Multicollisions have been applied in practical attacks usually as a method for
generating second preimages for hash values [13]. Multicollisions have been found
for MD4, HAVAL, and Blender [13, 21]. The herding attack proposed by Kelsey
and Kohno is also based on multicollisions [11]. Thus, theoretical advances in
finding multicollisions have had an impact on the security of practical hash func-
tions. However, there are no practical implementations of generalized iterated
hash functions and thus theoretical advances in this field have a limited influence
in practice, but can help in devising more secure hash functions in the future.

3.3 Nested Multicollision Attack Schema (NMCAS)

Below we describe a general (and at this stage still informal) attack procedure that,
given H Ǫ ;f , h0 2 ¹0; 1ºn, and r 2 NC creates a 2r -collision in the generalized
iterated hash function H Ǫ ;f with initial value h0.

Procedure Schema NMCAS

Input: A generalized iterated hash function H Ǫ ;f , an initial value h0 2 ¹0; 1ºn,
a positive integer r .
Output: A 2r -collision in H Ǫ ;f .
Step 1: Choose (a large) l 2 NC. Consider the l th element ˛l of the sequence Ǫ .
Let ˛l D i1i2 � � � is , where s 2 NC and ij 2 Nl for j D 1; 2; : : : ; s.



Multicollision attacks and generalized iterated hash functions 247

Step 2: Fix a (large) set of active indices Act � Nl D ¹1; 2; : : : ; lº.
Step 3: Factorize the word ˛l into nonempty strings appropriately, i.e., find p 2
¹1; 2; : : : ; sº and ˇi 2 NC

l
such that ˛l D ˇ1ˇ2 � � � p̌ .

Step 4: Based upon the active indices, create a large multicollision in fˇ1 . More
exactly, find message block sets M1;M2; : : : ;Ml satisfying the following proper-
ties.

(i) If i 2 Nl n Act, then the set Mi consists of one constant message block !.

(ii) If i 2 Act, then the set Mi consists of two different message blocks mi1 and
mi2.

(iii) The set M D M1M2 � � �Ml D ¹u1u2 � � �ul
ˇ
ˇui 2 Mi ; i D 1; 2; : : : ; lº is

a 2jActj-collision in fˇ1 with initial value h0.

Step 5: Based on the set C1 DM , find message sets C2; C3; : : : ; Cp such that

(iv) Cp � Cp�1 � � � � � C1 DM .

(v) For each j 2 ¹1; 2; : : : ; pº the set Cj is a (large) multicollision in fˇ1ˇ2��� ǰ
with initial value h0.

(vi) jCpj D 2r .

Step 6: Output Cp.

It should be clear that if the above procedure is successfully carried out, then

H Ǫ ;f .h0; m/ D H Ǫ ;f .h0; m
0/

for all m;m0 2 Cp. Also one should note that NMCAS can be applied trivially to
produce a 2r -collision with initial value h0 for any generalized iterated hash func-
tion H Ǫ ;f . Namely, choosing l � n C r we know, by the pigeonhole principle,
that among the messages of length l , a 2r -collision exists. Then letting Act D Nl
and p D 1, we can, by going in the worst case through all the 2nCr possible mes-
sage values, certainly find the desired multicollision. Note that, as proved in [18],

by hashing ..2r /Š/
1
2r 2

n.2r�1/

2r messages, a 2r -collision is found with probability
approx. 0:5.

GivenH Ǫ ;f and r , does there exist a 2r -collision attack onH Ǫ ;f of complexity

O.2
n
2 /? The problem in its full generality, i.e., with no restrictions on H Ǫ ;f ,

seems to be extremely difficult and is certainly still open. Probably the answer to
the question is negative.

Call the sequence Ǫ D .˛1; ˛2; : : :/ q-bounded, q 2 NC, if j j̨ ji � q for each
j 2 NC and i 2 Nj . Now suppose that q 2 NC and in H Ǫ ;f the sequence Ǫ is
q-bounded. In the following we shall show that the procedure NMCAS with input
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H Ǫ ;f , h0 and r can be realized so that a 2r -collision in H Ǫ ;f with initial value h0
is created (with probability equal to one) and the expected number of queries on
the compression function f is O. Qp.n; r/ 2

n
2 / where Qp.n; r/ is a polynomial.

The idea behind the successful construction is the fact that since Ǫ is q-bounded,
unavoidable regularities start to appear in the word ˛l of Ǫ when l is increased.
More accurately, choosing l big enough (still so that j˛l j depends only polynomi-
ally on n and r), arbitrarily large sets A � alph.˛l/ can be found such that

(P1) ˛l D ˇ1ˇ2 � � � p̌ , where p 2 ¹1; 2; : : : ; qº, ˇi is a word such that A �
alph.ˇi / and the elements of A are independent with respect to �ˇi for i D
1; 2; : : : ; p; and

(P2) for any i 2 ¹1; 2; : : : ; p � 1º, if �A.ˇi / D z1z2 � � � znp�ik is a factoriza-
tion of �A.ˇi / such that jalph.zj /j D ni�1 for j D 1; 2; : : : ; np�ik and
�A.ˇiC1/ D u1u2 � � �unp�i�1k is a factorization of �A.ˇiC1/ such that
jalph.uj /j D ni for j D 1; 2; : : : ; np�i�1k, then for each j1 2 ¹1; 2; : : : ;
np�ikº, there exists j2 2 ¹1; 2; : : : ; np�i�1kº such that alph.zj1/ �
alph.uj2/.

The property (P1) allows us to construct a 2jAj-collision C1 in fˇ1 with any
initial value h0 so that the expected number of queries on f is O.jˇ1j2

n
2 /. The

property (P2) ensures that based on the multicollision guaranteed by (P1), we can
proceed and create the multicollision Ci in fˇ1ˇ2���ˇi so that (i) the expected num-
ber of queries on f is O.jˇ1ˇ2 � � �ˇi j2

n
2 / for all i D 2; 3; : : : ; p; and (ii) the

cardinality of Cp is 2r . Since j˛l j (and thus jˇ1ˇ2 � � �ˇi j for i D 1; 2; : : : ; p)
depend only polynomially on n and r , steps 1 to 6 in NMCAS do not consume too
much resources.

We prove the necessary combinatorial results for properties (P1) and (P2) in the
next section. The construction of the actual attack is postponed to Section 5.

Remark 3.6. In many problems of combinatorics on words (in contrast to ours),
arbitrarily long words over a fixed (finite) alphabet are considered. Then, as the
length of the word increases, unavoidable regularities start to appear and some
famous results of classical combinatorics like Ramsey’s, Shirshov’s and Van der
Waerden’s Theorems may be applied (for details, see for instance the book of de
Luca and Varricchio [5]).

4 Basic combinatorial results

Let ˛ be a (nonempty) word and A any alphabet. We wish to study how the
occurrences in ˛ of any symbol a 2 A are positioned in relation to occurrences
in ˛ of other symbols of A. In principle, for this purpose the image �A.˛/ of ˛
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under the projection morphism �A is completely sufficient. However, for the sake
of simpler notation and ability to apply some classical results of combinatorics
directly, one more concept is introduced (see also [9, 16]): define .˛/A D � if
�A.˛/ D � and .˛/A D a1a2 � � � as if �A.˛/ 2 a

C
1 a
C
2 � � � a

C
s , where s 2 NC,

a1; a2; : : : ; as 2 A, and ai ¤ aiC1 for i D 1; 2; : : : ; s � 1.
It should be obvious from the definition that the word ˛A exists and is unique.

Example 4.1. Let ˛ D a5a
3
2a
2
7a
2
5a1a

5
4a
2
3a
2
1a2a

3
6, so alph.˛/ D ¹a1; a2; : : : ; a7º.

Let us choose A D alph.˛/ n ¹a5º. Then �A.˛/ D a32a
2
7a1a

5
4a
2
3a
2
1a2a

3
6 and

.˛/A D a2a7a1a4a3a1a2a6.

Note that even though the word ˛A is unique, there certainly may be different
ways to obtain it from the original word ˛. For example, let ˛ D abbcc and
A D ¹b; cº. Now, ˛A D bc, but there are four different ways of obtaining this
word from ˛ depending on whether one chooses the first or the second occurrence
of b and c.

Remark 4.2. It is important to notice that the operation . � /A does not behave
like a morphism, i.e., given an alphabet A and words u; v, we generally have
.uv/A ¤ uAvA. The case where A D ¹aº and .aa/A D a ¤ aa D .a/A.a/A is
the simplest possible example. This certainly means that in all cases .uv/A cannot
be constructed from uA and vA (as is done in [9]).

Remark 4.3. Let ˛ be a word, ˛ ¤ �, and A � alph.˛/ nonempty. Recall that
the independence of elements in A with respect to �˛ means that these elements
form a chain in the partially ordered set .A;�˛/. Then the following conditions
are equivalent.

(a) The elements of A are independent with respect to �˛.

(b) There exists a sequence a1; a2; : : : ; ad of all d D jAj elements of A such
that �A.˛/ is in aC1 a

C
2 � � � a

C
d

.

(c) The word ˛A is a permutation of A.

Suppose that Ǫ D .˛1; ˛2; : : :/ is q-bounded, q 2 NC, i.e., for each j 2 NC
and i 2 Nj , the inequality j j̨ ji � q is satisfied. Our first task is to show that the
property (P1) holds.

We state the following (binary) matrix form of Hall’s famous matching theorem
(see, for instance [2, p. 77]).

Theorem 4.4 (Hall). Let m and n, m � n, be positive integers and A D .aij /m�n
be a m � n-dimensional binary matrix. Now there exists an injective function
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� W ¹1; 2; : : : ; mº ! ¹1; 2; : : : ; nº such that ai�.i/ D 1 for i D 1; 2; : : : ; m if and
only if for each I � ¹1; 2; : : : ; mº the number of elements aij such that i 2 I ,
j 2 ¹1; 2; : : : ; nº and aij D 1 is at least jI j.

It is a well-known fact that Dilworth’s Theorem and Hall’s Theorem are, as
many results in basic combinatorics, strongly related. The following theorem can
be found also in [9].

Theorem 4.5 (Partition Theorem). Let k 2 NC and A be a finite nonempty set
such that k divides jAj. Furthermore, let ¹BiºkiD1 and ¹Cj ºkjD1 be partitions of
A such that jBi j D jCj j for i; j D 1; 2; : : : ; k. Then for each x 2 NC such that
jAj � k3 � x, there exists a bijection � W ¹1; 2; : : : ; kº ! ¹1; 2; : : : ; kº for which
jBi \ C�.i/j � x for i D 1; 2; : : : ; k.

Proof. Let x 2 NC be such that jAj � k3 � x. Let D D .dij /k�k be the k � k-
dimensional binary matrix defined by dij D 1 if jBi \ Cj j � x and dij D 0 if
jBi \ Cj j < x for each i; j 2 ¹1; 2; : : : ; kº.

Suppose that the required bijection does not exist. By Hall’s Theorem, we can
find a set I � ¹1; 2; : : : ; nº of size r � n such that the number s of elements dij
for which i 2 I , j 2 ¹1; 2; : : : ; nº, and dij D 1 is less than r . Assume without
loss of generality, that dij D 0 for i D 1; 2; : : : ; r , j D s C 1; s C 2; : : : ; n. This
means that jBi \ Cj j < x for each i 2 ¹1; 2; : : : ; rº, j 2 ¹s C 1; s C 2; : : : ; nº.

Certainly
Ps
iD1 jCi j D s � jAj

k
. On the other hand (since jBi \ Cj j < x for each

i 2 ¹1; 2; : : : ; rº, j 2 ¹s C 1; s C 2; : : : ; nº) we have

sX

iD1

jCi j � r �
jAj

k
� r.k � s/.x � 1/:

Then s � jAj
k
� r � jAj

k
� r.k� s/.x�1/, i.e., .r � s/ � jAj

k
� r.k� s/.x�1/ � 0. We

have reached a contradiction, since .r � s/ � jAj
k
� r.k � s/.x � 1/ � .r � s/k2x �

r.k � s/.x � 1/ > 0.

Remark 4.6. In the previous theorem the power 3 of k cannot be reduced to 2.
Consider the following example. LetA be a set consisting of k2 �x elements, where
k; x 2 NC, x � k2. Suppose r 2 ¹1; 2; : : : ; k � 2º and let ¹AiºkiD1 and ¹BiºkiD1
be two partitions of A such that jAi \ B1j D x C k � r for i D 1; 2; : : : ; r C 1;
jAi \ Bj j D x for i D 1; 2; : : : ; r C 1, j D 2; 3; : : : ; r ; jAi \ Bj j D x � 1 for
i D 1; 2; : : : ; r C 1, j D r C 1; r C 2; : : : ; k; jArC2 \B1j D x � .r C 1/.k � r/;
jArC2 \ Bj j D x for j D 2; 3; : : : ; r ; jArC2 \ Bj j D x C r C 1 for j D r C 1,
rC2; : : : ; k; and jAi\Bj j D x for i D rC3; rC4; : : : ; k, j D 1; 2; : : : ; k. Then
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jAj D k2 � x and jAi j D jBi j D k � x for i D 1; 2; : : : ; k. Clearly there does not
exist a bijection � of ¹1; 2; : : : ; kº such that jAi \ B�.i/j � x for i D 1; 2; : : : ; k.

The example above generalizes neither to the case jAj � a � k2 where a � 2
nor to the case jAj � kb where b is a rational number such that 2 < b < 3.

Remark 4.7. Let A be a finite set, k 2 NC, and ¹AiºkiD1 and ¹BiºkiD1 two par-
titions of A such that jAi j D jBj j for all i; j 2 ¹1; 2; : : : ; kº . When applying

Lemma 4.5, the total number
Pk
iD1 jAi \ B�.i/j of elements in the intersections

can be guaranteed to be at least jAj
k2

. This implies that in Theorem 1 of [9] one has

to assume that l D jM j � k2q�3 � n.q�1/
2

instead of l D jM j � k3 � n3.q�3/C2

(see the proof of Theorem 4.15). Note that the assumption leads to a remarkable
increase in the complexity of the respective multicollision attack presented later.

The following lemma is a new formulation of a result in [16].

Lemma 4.8. Letm; n and q be positive integers and ˛ a word such that alph.˛/ �
m � n. Then either (i) the maximum chain length of .alph.˛/;�˛/ is at least m; or
(ii) the maximum number of pairwise incomparable elements in .alph.˛/;�˛/ is
greater than n.

Proof. Suppose that the maximum chain length in .alph.˛/;�˛/, denoted by d ,
is less than m. Let t be the minimum number of chains needed to cover .alph.˛/;
�˛/. Obviously

m � n � j alph.˛/j � d � t:

Since d < m, we have t > n. By Dilworth’s Theorem, the maximum number of
pairwise incomparable elements of .alph.˛/;�˛/ is equal to t .

Remark 4.9. Note that the limits given by the previous lemma are sharp in the
sense that for each m; n 2 NC, there exists a word ˛ such that jalph.˛/j D m �

n, the maximum chain length in .alph.˛/;�˛/ is equal to m and the maximum
number of pairwise incomparable elements in the set .alph.˛/;�˛/ is equal to n.
Clearly the word .a11a12 � � � a1n/2.a21a22 � � � a2n/2 � � � .am1am2 � � � amn/2 is an
example of such an ˛.

Theorem 4.10. For all positive integers q and m there exist positive integers rq
and sq with the following property. Let ˛ be a word such that jalph.˛/j � rq �msq

and j˛ja � q for each a 2 alph.˛/. Then there exists A � alph.˛/ with jAj � m
and p 2 ¹1; 2; : : : ; qº as well as words ˛1; ˛2; : : : ; p̨ such that ˛ D ˛1˛2 � � � p̨
and for all i 2 ¹1; 2; : : : ; pº, the word .˛i /A is a permutation of A.
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Proof. Proceed by induction on q.
Let q D 1. Choose r1 D s1 D 1 and B D alph.˛/. Then ˛ is a permutation of

all the letters in alph.˛/ and the claim is satisfied.
Assume that positive integers r1; s1; r2; s2; : : : ; rq�1; sq�1 such that ri�1 < ri

and si�1 < si for i D 2; 3; : : : ; q � 1 satisfying the claim of the lemma have been
determined.

Let rq D qsq�1r
sq�1C1
q�1 and sq D s2q�1 C 1. Suppose further that ˛ is a word

such that alph.˛/ � rq � m
sq and j˛ja � q for all a 2 alph.˛/. Let c be

the maximum chain length and d the maximum number of pairwise incompa-
rable elements in .alph.˛/;�˛/. By the previous lemma, either c � m or d �

qsq�1r
sq�1C1
q�1 ms

2
q�1 .

In the former case, let V be any largest possible set of pairwise incomparable
elements in .alph.˛/;�˛/. Certainly jV j � m; choosing A D V and p D 1 (thus
˛1 D ˛) we find that the induction is extended.

Consider the latter case and assume that d � qsq�1r
sq�1C1
q�1 ms

2
q�1 . Let U be

a set of pairwise incomparable elements in .alph.˛/;�˛/ such that jU j D d . Let
u 2 U and ˛0; ˛00 2 alph.˛/C be such that ˛ D ˛0u˛00; j˛0ju D 0 and for all
x 2 U , x ¤ u, j˛0jx > 0. Since the elements of U are pairwise incomparable,
we have 0 < j˛0ujz � q � 1 and j˛00jz � q � 1 for all z 2 U . Let ˇ D �U .˛/,
where �U is the projection morphism: alph.˛/� ! U �. Then ˇ D ˇ0ˇ00 where
ˇ0 D �U .˛

0u/ and ˇ00 D �U .˛
00/. By the facts above, alph.ˇ/ D alph.ˇ0/ D U ,

U n ¹uº � alph.ˇ00/, jˇ0jx � q � 1, and jˇ00jx � q � 1 for each x 2 U .

Apply the induction hypothesis on ˇ0. Since j alph.ˇ0/j � qsq�1r
sq�1C1
q�1 ms

2
q�1

and

qsq�1r
sq�1C1
q�1 ms

2
q�1 � rq�1.1C r1m

s1 C � � � C rq�1m
sq�1/sq�1 ;

there exists an alphabet B � alph.ˇ/, jBj � 1 C r1m
s1 C � � � C rq�1m

sq�1 ,
k1 2 ¹1; 2; : : : ; q�1º, and words ˇ1; ˇ2; : : : ; ˇk1 such that ˇ0 D ˇ1ˇ2 � � �ˇk1 and
for each i 2 ¹1; 2; : : : ; k1º, b 2 B , we have j.ˇi /B jb D 1. Now consider the word
ˇ00. Remember that jˇ00jb � q � 1 for all b 2 B . For each i 2 ¹0; 1; : : : ; q � 1º,
let Bi D ¹b 2 B j jˇ00jb D iº. Certainly the sets B1; B2; : : : ; Bq�1 are pairwise
disjoint and B D

Sq�1
iD0 Bi . Furthermore, either B0 D ; or B0 D ¹uº. Since

jBj � 1C r1m
s1 C � � � C rq�1m

sq�1 , there exists, by the pigeonhole principle, an
integer i 2 ¹1; 2; : : : ; q � 1º such that jBi j � rimsi . Let i0 be such an i . Consider
the word � D �Bi0 .ˇ

00/ where �Bi0 is the projection morphism : alph.˛/� !
B�i0 . Again, by the induction hypothesis, there exists C � Bi0 , jC j � m and
k2 2 ¹1; 2; : : : ; q � 1º, and words �1; �2; : : : ; �k2 such that � D �1�2 � � � �k2 and
for each i 2 ¹1; 2; : : : ; k2º, c 2 C , we have j.�i /C jc D 1. Since C � B , we
have j.ˇi /C jc D 1 for each i 2 ¹1; 2; : : : ; k2º and c 2 C . Certainly k1 C k2 �
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q. Choose A D C , p D k1 C k2, and words ˛1; ˛2; : : : ; ˛k1Ck2 so that ˛ D
˛1˛2 � � �˛k1Ck2 , �C .˛i / D �C .ˇi / for i D 1; 2; : : : ; k1, and �C .˛k1Ci / D �i
for i D 1; 2; : : : ; k2 where �C is the projection morphism : alph.˛/� ! C �. The
proof is now complete.

Remark 4.11. The first task just after the induction hypothesis in the proof above
is to catch the chain of the maximum length in the set .alph.˛/;�˛/. If this en-
tity is at least m, we are certainly done. If not, we concentrate on incomparable
elements in .alph.˛/;�˛/ and erase everything else. This is quite natural, since
while wishing to have more than one permutation in our subword construction,
only incomparable elements can be brought into the play. Our final task is to find
an alphabet A � alph.˛/ and a decomposition ˛ D ˛1˛2 � � � p̨, p � q, such
that, for each i 2 ¹1; 2; : : : ; pº, the elements of A form a chain in .alph.˛i /;�˛i /.
This is equivalent to saying that, for each i 2 ¹1; 2; : : : ; pº, the word .˛i /A is
a permutation of A.

Remark 4.12. The parameters rq and sq in Theorem 4.10 grow very fast with
respect to q, the parameter restricting the number of occurrences of any symbol
in ˛. For sq we have the recurrence relations

´

s1 D 1

sqC1 D s
2
q C 1; if q 2 NC:

We can roughly estimate that s2q < sqC1 < 2s2q for each q 2 N. It is easily seen

that sq is in �.22
q�1

/ and in O.22
q�1/. On the other hand

´

r1 D 1

rqC1 D .q C 1/
sqr

sqC1
q ; if q 2 NC:

Again, with a rough estimate, .q C 1/sqrsqq < rqC1 < r
2sq
q for all q 2 N, q � 2.

With a standard consideration we find that rq is in�.22
2q�1�1

/ and inO.22
2q�3

/.
This, among other things, limits the appliance of the lemma substantially. It means
that one can apply the lemma only to those words where alph.˛/ is very large
when compared with q. The sequences of numbers generated by recursions that
are similar to sq and rq have been studied for example in [1].

Recall that the infinite sequence Ǫ D .˛1; ˛2; : : :/ of words is such that for
all l 2 NC, we have alph.˛l / D Nl , i.e., ˛l is a word over the alphabet Nl D
¹1; 2; : : : ; lº, and each symbol of Nl occurs in ˛l . For any (probabilistic) algo-
rithm to be able to use Ǫ , the sequence has to be effectively encoded, i.e., it has to
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have a finite presentation from which the word ˛i can be computed in polynomial
time with respect to j˛i j for all i 2 NC.

We wish to remind that a permutation of an alphabet A is any word w 2 AC

such that jwja D 1 for each a 2 A.
The result we achieved in our previous theorem is not yet sufficient for our

purposes; inside the permutations .˛1/A; .˛2/A; : : : ; .˛k/A of A, the symbols have
to be appropriately grouped. We need an application of the following lemma.

Lemma 4.13. Let d0; d1; d2; : : : ; dr , where r 2 NC be positive integers such
that di divides di�1 for i D 1; 2; : : : ; r , A an alphabet of cardinality jAj D
d0d

2
1 d

2
2 � � � d

2
r , and w1; w2; : : : ; wrC1 permutations of A. Then there exists a sub-

set B of A of cardinality jBj D d0 such that the following conditions are satisfied.

(1) For any i 2 ¹1; 2; : : : ; rº, if �B.wi / D x1x2 � � � xdi is the factorization of
�B.wi / and �B.wiC1/ D y1y2 � � �ydi is the factorization of �B.wiC1/ into

di equal length .D d0
di
/ blocks, then for each j 2 ¹1; 2; : : : ; diº, there exists

j 0 2 ¹1; 2; : : : ; diº such that alph.xj / D alph.yj 0/; and

(2) If wr D z1z2 � � � zdr and wrC1 D u1u2 � � �udr are factorizations of wr and
wrC1, respectively, into dr equal length .D d0d21d

2
2 � � � d

2
r�1dr / blocks, then

the words

�B.wr / D �B.z1/�B.z2/ � � ��B.zdr / and

�B.wrC1/ D �B.u1/�B.u2/ � � ��B.udr /

are factorizations of �B.wr / and �B.wrC1/, respectively, into dr equal
length .D d0

dr
/ blocks.

Proof. Proceed by induction on r . Consider first the case r D 1. Let w1 D
z1z2 � � � zd1 and w2 D u1u2 � � �ud1 be factorizations of w1 and w2, respectively,

into d1 equal length (D d0d1) blocks. Then ¹alph.zi /º
d1
iD1 and ¹alph.ui /º

d1
iD1

are partitions of A into equal cardinality (D d0d1) sets. Now jAj D d0
d1
d31 , so

by the Partition Theorem, there exists a bijection from � W ¹1; 2; : : : ; d1º onto
¹1; 2; : : : ; d1º such that j¹alph.zi /º \ ¹alph.u�.i//ºj �

d0
d1

for i D 1; 2; : : : d1.

Let � be as above and Bi � ¹alph.zi /º \ ¹alph.u�.i//º such that jBi j D
d0
d1

for

i D 1; 2; : : : ; d1. Denote B D
Sd1
iD1Bi . Then certainly jBj D d0 and ¹Biº

d1
iD1 is

a partition of B . Define xi D �B.zi / and yi D �B.ui / for i D 1; 2; : : : ; d1. Then

�B.w1/ D �B.z1/�B.z2/ � � ��B.zd1/ D x1x2 � � � xd1 I and

�B.w2/ D �B.u1/�B.u2/ � � ��B.ud1/ D y1y2 � � �yd1
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where jxi j D jyi j D
d0
d1

and alph.xi / D alph.y�.i// D Bi for i D 1; 2; : : : ; d1.
Thus .1/ and .2/ hold for r D 1.

Now suppose that the lemma holds for r D k, k 2 NC. Consider the case r D
k C 1. Let wkC1 D z

0
1z
0
2 � � � z

0
dkC1

and wkC2 D u
0
1u
0
2 � � �u

0
dkC1

be factorizations

of wkC1 and wkC2, respectively, into dkC1 equal length (D d0d21 d
2
2 � � � d

2
k
dkC1)

blocks. Then again ¹alph.z0i /º
dkC1
iD1 and ¹alph.u0i /º

dkC1
iD1 are partitions of A into

equal cardinality (D d0d21d
2
2 � � � d

2
k
dkC1) sets. Again

jAj D
d0d

2
1 d

2
2 � � � d

2
k

dkC1
d3kC1

so, by the Partition Theorem, there exists a bijection � W ¹1; 2; : : : ; dkC1º !

¹1; 2; : : : ; dkC1º, with j¹alph.z0i /º\¹alph.u0
�.i/

/ºj �
d0d

2
1d

2
2 ���d

2
k

dkC1
for i D 1; 2; : : : ;

dkC1. Let � be as above and d 0 D
d0d

2
1
d2
2
���d2
k

dkC1
. LetCi � ¹alph.z0i /º\¹alph.u0

�.i/
/º

such that jCi j D d 0 for i D 1; 2; : : : ; dkC1. Denote C D
SdkC1
iD1 Ci . Then jC j D

d 0dkC1 D d0d
2
1 d

2
2 � � � d

2
k

and ¹Ciº
dkC1
iD1 is a partition of C . Define w0i D �C .wi /

for i D 1; 2; : : : ; k C 2. Obviously w0
kC1
D �C .z

0
1/�C .z

0
2/ � � ��C .z

0
dkC1

/ and

w0
kC2

D �C .u
0
1/�C .u

0
2/ � � ��C .u

0
dkC1

/ are factorizations of w0
kC1

and w0
kC2

,

respectively, into dkC1 equal length (D d 0) blocks such that jalph.�C .z0i //j D
jalph.�C .u0i //j D d

0 and alph.�C .z0i //D alph.�C .u0�.i/// for i D 1; 2; : : : ; dkC1.

Certainly C is an alphabet of cardinality jC j D d0d21 d
2
2 � � � d

2
k

andw01; w
0
2; : : : ;

w0
kC1

(as well as w0
kC2

) are permutations of C . Apply the induction hypothesis
to achieve an alphabet B � C � A so that .1/ and .2/ hold when r is replaced by
k and wi is replaced by w0i for i D 1; 2; : : : ; k. Without loss of generality we may
interpret �B to be the projection morphism: A� ! B�. Since �B.wi / D �B.w0i /
for i D 1; 2; : : : ; k C 2, the condition .1/ holds for i D 1; 2; : : : ; k. Consider
the case i D k C 1. Let w0

kC1
D z1z2 � � � zdk be the factorization of w0

kC1

into dk equal length (D d0d21 d
2
2 � � � d

2
k�1

dk) blocks. Then, by property .2/ of the
induction hypothesis, �B.w0kC1/ D �B.z1/�B.z2/ � � ��B.zdk / is the factorization

of �B.w0kC1/ into dk equal length (D d0
dk

) blocks. By our earlier considerations,
�C .w

0
kC1

/ D �C .z
0
1/�C .z

0
2/ � � ��C .z

0
dkC1

/ is a factorization of �C .w0kC1/ into

dkC1 equal length (D d 0 D
d0d

2
1d

2
2 ���d

2
k

dkC1
) blocks. Since dkC1 divides dk , the

equality

�C .z
0
i / D z.i�1/ dk

dkC1
C1
z
.i�1/

dk
dkC1

C2
� � � z

i
dk
dkC1
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holds for i D 1; 2; : : : ; dkC1. Then

�B.z
0
i / D �B

�

z
.i�1/

dk
dkC1

C1

�

�B
�

z
.i�1/

dk
dkC1

C2

�

� � � �B
�

z
i
dk
dkC1

�

and jalph.�B.z0i //j D
dk
dkC1

d0
dk
D d0

dkC1
for i D 1; 2; : : : ; dkC1. Now

�B.wkC1/ D �B.z
0
1/�B.z

0
2/ � � ��B.z

0
dkC1

/

is the factorization of �B.wkC1/ D �B.w
0
kC1

/ into dkC1 equal length (D d0
dkC1

)

blocks. Since alph.�C .z0i // D alph.�C .u0�.i/// for all i D 1; 2; : : : ; dkC1 and
�B.wkC2/ D �B.w

0
kC2

/, we have that

�B.wkC2/ D �B.u
0
1/�B.u

0
2/ � � ��B.u

0
dkC1

/

is the factorization of �B.wkC2/ into dkC1 equal length (D d0
dkC1

) blocks. More-

over, alph.�B.z0i // D alph.�B.u0�.i/// for i D 1; 2; : : : ; dkC1. Thus the condi-
tion .1/ is true also for i D k C 1.

Surely the factorizations

wkC1 D z
0
1z
0
2 � � � z

0
dkC1

; wkC2 D u
0
1u
0
2 � � �u

0
dkC1

;

�B.wkC1/ D �B.z
0
1/�B.z

0
2/ � � ��B.z

0
dkC1

/ and

�B.wkC2/ D �B.u
0
1/�B.u

0
2/ � � ��B.u

0
dkC1

/

satisfy also the condition .2/. The induction is thus extended and the proof is now
complete.

Remark 4.14. Let us apply the previous lemma; choose the parameters values
di D n

r�iC1k for i D 1; 2; : : : ; r where k; n 2 NC. Then

jAj D d0d
2
1 d

2
2 � � � d

2
r D n

rC1k.nrk/2.nr�1k/2 � � � .nk/2

D nrC1n2.rC.r�1/C���C2C1/k2rC1

D n.rC1/C2
r.rC1/
2 k2rC1 D nr

2C2rC1k2rC1

D n.rC1/
2

k2rC1:

The next theorem is of fundamental importance to our further considerations. It
combines the results of Theorem 4.10 and Lemma 4.13.
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Theorem 4.15. Let ˛ be a word and k � 2, n � 1, and q � 2 integers such that

.1/ jalph.˛/j � rqn.q�1/
2sqk.2q�3/sq ; and

(2) j˛ja � q for each a 2 alph.˛/

with rq and sq as in Theorem 4.10. Then there existB � alph.˛/, p 2 ¹1; 2; : : : ; qº
and a factorization ˛ D ˛1˛2 � � � p̨ for which

(3) jBj D np�1k;
(4) B � alph.˛i / and the elements of B are independent with respect to �˛i for

i D 1; 2; : : : ; p; and
(5) for any i 2 ¹1; 2; : : : ; p � 1º, if .˛i /B D z1z2 � � � znp�ik is the factoriza-

tion of .˛i /B into np�ik equal length .D ni�1/ blocks and .˛iC1/B D
u1u2 � � �unp�i�1k the factorization of .˛iC1/B into np�i�1 equal length
.D ni / blocks, then for each j1 2 ¹1; 2; : : : ; np�ikº, there exists j2 2
¹1; 2; : : : ; np�i�1kº such that alph.zj1/ � alph.uj2/.

Proof. Since the conditions .1/ and .2/ hold, Theorem 4.10 implies that there
exists A � alph.˛/ with jAj � n.q�1/

2

k2q�3 and p 2 ¹1; 2; : : : ; qº as well as
words ˛1; ˛2; : : : ; p̨ such that ˛ D ˛1˛2 � � � p̨ and for all i 2 ¹1; 2; : : : ; pº, the
word .˛i /A is a permutation of A.

If p D 1, any set B � A of cardinality k satisfies .3/, .4/ and .5/. Analogously,
if p D 2, any set B � A of cardinality n k satisfies the claims of our theorem.

Suppose that p � 3. Choose a subset A0 of A such that jA0j D n.p�1/
2

k2p�3.
In Lemma 4.13, choose parameters as follows: A D A0, r D p � 2, wi D ˛iC1
for i D 1; 2; : : : ; p�1, d0 D np�1k, and dj D np�1�jk for j D 1; 2; : : : ; p�2.
Then, by Lemma 4.13, there exists a subset B of A0 of cardinality jBj D d0 D

np�1k such that

.	/ for any i 2 ¹2; 3; : : : ; p � 1º, if .˛i /B D x1x2 � � � xnp�ik is the factorization
of .˛i /B and .˛iC1/B D y1y2 � � �ynp�ik is the factorization of .˛iC1/B into
np�ik equal length (D d0

di�1
D ni�1) blocks, then 8j 2 ¹1; 2; : : : ; np�ikº,

there exists j 0 2 ¹1; 2; : : : ; np�ikº such that alph.xj / D alph.yj 0/.

Since B � A, the elements of B are independent with respect to �˛i for i D
1; 2; : : : ; p. Let i 2 ¹1; 2; : : : ; p � 1º. If i D 1, then certainly the claim in .5/
holds, since the factorization of �B.˛1/ consists of np�1k one symbol blocks.

Now suppose that i 2 ¹2; 3; : : : ; p�1º. Let .˛i /B D z1z2 � � � znp�ik be the fac-
torization of .˛i /B and .˛iC1/B D y1y2 � � �ynp�ik of .˛iC1/B into np�ik equal
length blocks and .˛iC1/B D u1u2 � � �unp�i�1k be the factorization of .˛iC1/B
into np�i�1k equal length blocks. Let j1 2 ¹1; 2; : : : ; np�ikº. By the prop-
erty .	/, there exists j 0 2 ¹1; 2; : : : ; np�ikº such that alph.zj1/ D alph.yj 0/.
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Since np�i�1k divides np�ik, there exist j2 2 ¹1; 2; : : : ; np�1�ikº such that
alph.yj 0/ � alph.uj2/. Then alph.zj1/ � alph.uj2/. The proof is now com-
plete.

The previous theorem clearly implies that property (P2) statet in Section 3
holds.

5 Construction and analysis of the nested multicollision attack

In this section, we shall supplement the steps of the Nested Multicollision Attack
Schema so that a detailed description and analysis of a probabilistic multicollision
attack procedure is possible.

5.1 The attack as a statistical experiment

Suppose that f W ¹0; 1ºn � ¹0; 1ºm ! ¹0; 1ºn is a compression function and
l 2 NC. Assume furthermore that we have fixed a set Act � Nl of so-called
active indices. Let � 2 NC

l
be a word such that alph.�/ contains exactly one

element, say t , which is an active index. Finally, let ! 2 ¹0; 1ºm be a given
constant message block.

A basic birthday attack on f� with active index t and initial value h, denoted
byBBA.f� ; t; h/ is understood to be a statistical (probabilistic) experiment carried
out as follows.

.1/ Generate a set R � ¹0; 1ºm of 2
n
2 random message blocks.

.2/ Let

S D ¹u1u2 � � �ul jut 2 R and 8i 2 Nl n ¹tº W ui D ! º:

.3/ For each u 2 S , compute the value f� .h; u/ to find message blocks x; y 2 R,
x ¤ y, and the respective collision value h0 such that

f� .h; !
t�1x!l�t / D f� .h; !

t�1y!l�t / D h0:

The probability Qp that BBA.f� ; t; h/ yields a collision is approximately equal
to 0:4 (for details, see for instance [14, 16]). In an .extended/ birthday attack on
f� with active index t and initial value h, (abbreviatedEBA.f� ; t; h// one or more
basic birthday attacks are carried out one after another until a collision is found.
Thus in an extended birthday attack a collision is always found with probability
equal to one. The expected number Qa of BBAs in an EBA is obviously equal to
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1= Qp. As mentioned above, Qp 
 0:4, so we have Qa 
 2:5. Thus the expected
number of queries on f in EBA.f� ; t; h/ is equal to Qaj� j2

n
2 .

Let now ˛ be a word over the alphabet Nl and Act be the set of r 2 NC active
indices a1; a2; : : : ; ar such that a1 �˛ a2 �˛ � � � �˛ ar . Suppose furthermore
that ˛ D ˛1˛2 � � �˛r is a factorization of ˛ such that for each i 2 ¹1; 2; : : : ; rº, all
occurrences of the symbol ai in ˛ lie in ˛i . In our construction (see Lemma 5.1),
a sequence

EBA.f˛1 ; h0; a1/; EBA.f˛2 ; h1; a2/; : : : ; EBA.f˛r ; hr�1; ar/

of extended birthday attacks is executed. Above h0 is the initial value and for each
i 2 ¹1; 2; : : : ; rº, during the execution of EBA.f˛i ; hi�1; ai /, values hi 2 ¹0; 1ºn

and distinct message blocks xai ; yai 2 ¹0; 1º
m are found such that

hi D f˛i .hi�1; !
ai�1xai!

l�ai / D f˛i .hi�1; !
ai�1yai!

l�ai /:

The collision value hi of EBA.f˛i ; hi�1; ai / serves as the initial value to the
attack EBA.f˛iC1 ; hi ; aiC1/ for i D 1; 2; : : : ; r � 1. We may assume that the
EBA’s above are statistically independent, so the expected number of BBA’s in
the sequence is Qa � r . We may also deduce that the expected number of queries on
the total sequence is equal to Qaj˛1˛2 � � �˛r j2

n
2 . Obviously the set

M D
®

u1u2 � � �ul j 8i 2 ¹1; 2; : : : ; rº W uai 2 ¹xai ; yai º

^ 8i 2 Nl n Act W ui D !
¯

is a 2r -collision in f˛ with initial value h0. If we above choose ˛i D ai for
i D 1; 2; : : : ; r , we can interpret Joux’s 2r -collision attack to be a special case of
our construction: certainly the complexity of this attack is Qa r 2

n
2 .

The time is now ripe to augment the first three steps in the schema NMCAS.
Call the expanded plan of action Nested Multicollision Attack (NMCA).

Procedure NMCA

Input: A q-bounded (q 2 N, q � 2) generalized iterated hash function H Ǫ ;f ,
initial value h0 2 ¹0; 1ºn, integer r 2 NC.
Output: A 2r -collision in H Ǫ ;f .

Step 1: Let l D rqn
.q�1/2sqr.2q�3/sq where rq and sq are parameters defined in

Theorem 4.10. Let ˛ D ˛l where ˛l is the l th element of the sequence Ǫ . Write ˛
in the form ˛ D i1i2 � � � is , where s 2 NC and ij 2 Nl for j D 1; 2; : : : ; s.
Step 2: LetAct D B , jBj D np�1r , be the set of active indices, whereB � Nl D
¹1; 2; : : : ; lº and p 2 ¹1; 2; : : : ; qº are as in Theorem 4.15, when the parameter
k D r .
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Step 3: Let ˛ D ˇ1ˇ2 � � � p̌ the factorization of ˛ such that the words ˇ1; ˇ2; : : : ;
p̌ have the same properties as the words ˛1; ˛2; : : : ; p̨, respectively, in Theo-

rem 4.15, when k D r .

Note that, in Step 2 above, no algorithm to find the set B is specified. In the
trivial case, given l D rqn.q�1/

2sqr.2q�3/sq , one could check all the
�

l
np�1r

�

sub-
sets of size np�1r of ¹1; 2; : : : ; lº. This certainly can be carried out in polynomial
time with respect to n.

5.2 The two phases of the attack

Our next task is to show that Step 4 in NMCAS is feasible, i.e., the multicollision
can be constructed so that the expected number of queries on f is not too large.
The next lemma is an extended version of Theorem 5.1 in [16].

Lemma 5.1. Let ˛ be a word over the alphabet Nl , r 2 NC, and a1; a2; : : : ; ar
in alph.˛/, symbols such that a1 �˛ a2 �˛ : : : �˛ ar . Let furthermore ˛ D
˛1˛2 � � �˛r be a factorization of ˛ such that for each i 2 ¹1; 2; : : : ; rº, all occur-
rences of the symbol ai in ˛ lie in ˛i . Given an initial value h0 2 ¹0; 1ºn, we can,
with probability equal to one, find message block sets M1;M2; : : : ;Ml � ¹0; 1º

m

as well as values h1; h2; : : : ; hr 2 ¹0; 1ºn such that

.1/ Mb D ¹!º for each b 2 Nl n A, where A D ¹a1; a2; : : : ; arº;

.2/ Mai D ¹ui ; u
0
iº, where ui ¤ u0i for each i 2 ¹1; 2; : : : ; rº;

.3/ for each i 2 ¹1; 2; : : : ; rº the set M DM1 �M2 � � �Ml is a 2-collision in f˛i
with initial value hi�1 and a 2i -collision in f˛1˛2���˛i such that 8u; u0 2M

hi D f˛i .hi�1; u/ D f˛i .hi�1; u
0/ and

f˛1˛2���˛i .h0; u/ D f˛1˛2���˛i .h0; u
0/:

Moreover, the expected number of queries on f needed to carry out the task is
Qaj˛j2

n
2 .

Proof. Let initially Mi D ¹!º for i D 1; 2; : : : ; l and M D M1 � M2 � � �Ml .
Proceed by induction on r . Suppose that, given the initial value h0 2 ¹0; 1ºn

we are, with probability equal to one, able to find message block sets Mai D

¹ui ; u
0
iº, ui ¤ u

0
i , i D 1; 2; : : : ; r�1, as well as values h1; h2; : : : ; hr�1 2 ¹0; 1ºn

such that after updating M WD M1 � M2 � � �Ml the following holds: for each
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i 2 ¹1; 2; : : : ; r � 1º the set M is a 2-collision in f
j̨

with initial value hj�1 such
that

8u; u0 2M W hj D f j̨
.hj�1; u/ D f j̨

.hj�1; u
0/:

Furthermore, assume that the expected number of queries on f is equal to
Qaj˛1˛2 � � �˛r�1j � 2

n
2 . Replace in M D M1 � M2 � � �Ml the message block set

Mar D ¹!º with a set Tar of 2
n
2 random message blocks and denote the attained

set by T . Among the messages, a 2-collision in f˛i with initial value hi�1 is
searched for. Reasoning exactly as in the beginning of the previous Subsection 5.1,
we deduce that, to find a collision in f˛r , the expected number of times that the
generation of the set Tar of 2

n
2 random message blocks has to be repeated is Qa.

Thus, to find a collision in f˛r , the expected number of queries on f is Qaj˛i j2
n
2 .

Note two things in the construction of the collision in f˛i :

(i) only message blocks from those sets Mj for which j 2 alph.˛r/ are used;
and

(ii) for each a 2 alph.˛ar /, if a ¤ ar , then Ma D ¹!º.

Let x; y 2 T , x ¤ y, be such that f˛r .hr�1; x/ D f˛r .hr�1; y/. Let x D
x1x2 � � � xl and y D y1y2 � � �yl , where xi ; yi 2 ¹0; 1ºm, for all i D 1; 2; : : : ; l .
By the properties (i) and (ii) above, xar ¤ yar . Choose ur D xar and u0r D yar .
Let Mar D ¹ui ; u

0
iº and hr D f˛r .hr�1; x/. Update M D M1 �M2 � � �Ml and

deduce that 8u; u0 2M

hr D f˛r .hr�1; u/ D f˛r .hr�1; u
0/

D f˛1˛2���˛r .h0; u/ D f˛1˛2���˛r .h0; u
0/:

Obviously, M is a 2-collision in f˛r with initial value hr�1 and a 2r -collision in
f˛1˛2���˛r . The expected number of queries on f is Qaj˛1˛2 � � �˛r j2

n
2 in all. The

induction is now extended.

We can now top up the fourth step of NMCAS.

Step 4 of NMCA: Let M1;M2; : : : ;Ml be as in Lemma 5.1.

Our next result implies that in Step 5 of NMCAS for any r 2 ¹2; 3; : : : ; pº, the
set Ci can be constructed from Ci�1 feasibly, i.e., so that the expected number of
queries on f is again not too high. Recall the definition of Nu: if ˛ D a1a2 � � � as
and u D u1u2 � � �ul are words such that ai 2 Nl for i D 1; 2; : : : ; s and uj 2
¹0; 1ºm for j D 1; 2; : : : ; l , then Nu.˛/ D ua1ua2 � � �uas .
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Lemma 5.2. Let ˛ be a word over the alphabet Nl , d and r positive integers,
A � alph.˛/ a set of cardinality jAj D dnr , and ˛ D ˇ1ˇ2 � � �ˇnr�1�2 � � � �r
a factorization of ˛ with the following properties.

.1/ A � alph.ˇ/ \ alph.�/ where ˇ D ˇ1ˇ2 � � �ˇnr and � D �1�2 � � � �r ;

.2/ jalph.ˇi / \ Aj D d for i D 1; 2; : : : ; nr , and jalph.�j / \ Aj D nd for
j D 1; 2; : : : ; r; and

.3/ for each i 2 ¹1; 2; : : : ; nrº there exists j 2 ¹1; 2; : : : ; rº such that alph.ˇi /\
A � alph.�j / \ A.

Moreover, let u1; u01; u2; u
0
2; : : : ; unr ; u

0
nr 2 ¹0; 1º

ml be messages and h0; h1;
: : : ; hnr 2 ¹0; 1º

n be values such that for each i 2 ¹1; 2; : : : ; nrº:

.4/ 8b 2 Nl n A W Nui .b/ D Nu
0
i .b/ D !; and

.5/ Nui .ˇi / ¤ Nu
0
i .ˇi / and hi D fˇi .hi�1; ui / D fˇi .hi�1; u

0
i /.

Then the set S of all messages u 2 ¹0; 1ºml such that for each b 2 Nl n A:
Nu.b/ D ! and for each i 2 ¹1; 2; : : : ; nrº: Nu.ˇi / 2 ¹ Nui .ˇi /; Nu0i .ˇi /º is well-
defined and satisfies for each i 2 ¹1; 2; : : : ; nrº and u 2 S the equality hi D
fˇi .hi�1; u/. Moreover we can, with probability equal to one, find messages
v1; v

0
1; v2; v

0
2; : : : ; vr ; v

0
r in S and values h00; h

0
1; : : : h

0
r , h
0
0 D hnr , such that for

each j 2 ¹1; 2; : : : ; rº:

.6/ Nvj .�j / ¤ Nv
0
j .�j / and h0j D f�j .h

0
j�1; vj / D f�j .h

0
j�1; v

0
j /.

The expected number of queries on f needed to carry out the task is Qaj� j2
n
2 .

Finally, the set T of all messages v 2 ¹0; 1ºml such that for each b 2 Nl n A:
Nv.b/ D ! and for each j 2 ¹1; 2; : : : ; rº: Nv.�j / 2 ¹ Nvj .�j /; Nv0j .�j /º is a well-
defined subset of S and forms a nontrivial 2r -collision on f˛ with initial value h0.

Proof. Note first that since jAj D dnr , A � alph.ˇ/, and j alph.ˇi / \ Aj D d

for each i 2 ¹1; 2; : : : ; nrº, the indexed family of sets ¹alph.ˇi / \ AºnriD1 forms
a partition of A. With analogous reasoning, ¹alph.�j /\AºrjD1 is a partition of A,
too.

Let now xi 2 ¹ui ; u
0
iº for i D 1; 2; : : : ; nr . Consider the sequence Nx1.ˇ1/,

Nx2.ˇ2/, : : : ; Nxnr.ˇnr/. Define t1; t2; : : : ; tl 2 ¹0; 1ºm as follows. For each b 2
NlnA, let tb D !. For each a 2 A and i 2 ¹1; 2; : : : ; nrº, if a 2 alph.ˇi /\A, then
ta D Nxi .a/. Since ¹alph.ˇi / \ AºnriD1 is a partition of A, the message block ta is
uniquely determined. Thus the sequence Nx1.ˇ1/, Nx2.ˇ2/; : : : ; Nxnr.ˇnr/ uniquely
defines the message t1t2 � � � tl . We deduce that the set S is well-defined.
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Consider now the sets ¹ Nu.�1/ju 2 Sº, ¹ Nu.�2/ju 2 Sº; : : : ; ¹ Nu.�r /
ˇ
ˇu 2 Sº.

Since ¹alph.�j / \ AºrjD1 is a partition of A and the property .3/ holds, the car-

dinality of the set ¹ Nu.�j /
ˇ
ˇu 2 Sº is 2n for each j 2 ¹1; 2; : : : ; rº. Furthermore,

since � D �1�2 � � � �r , the equality

¹ Nu.�/ ju 2 Sº D ¹ Nu.�1/ ju 2 Sº¹ Nu.�2/ ju 2 Sº � � � ¹ Nu.�r / ju 2 Sº

holds, so the cardinality of the set ¹ Nu.�/
ˇ
ˇu 2 Sº is 2nr .

Let u 2 S . Then

fˇ .h0; u/ D f
C.h0; Nu.ˇ// D f

C.h0; Nu.ˇ1/ Nu.ˇ2/ � � � Nu.ˇnr // D hnr :

Thus S is a 2nr -collision in fˇ with initial value h0.
By assumption, h00 D hnr . Continue by induction; assume that k is in ¹1; 2;

: : : ; r � 1º and with probability equal to one, messages v1; v01; v2; v
0
2; : : : ; vk; v

0
k

in S and values h01; h
0
2; : : : ; h

0
k

in ¹0; 1ºn have been found such that for each j 2
¹1; 2; : : : ; kº

Nvj .�j / ¤ Nv
0
j .�j / and h0j D f�j .h

0
j�1; vj / D f�j .h

0
j�1; v

0
j /:

Furthermore, the expected number of queries on f is Qaj�1�2 � � � �kj2
n
2 . Since, for

each u 2 S , the equality

f�kC1.h
0
k; u/ D f

C.h0k; Nu.�kC1//

holds and the cardinality of the set ¹ Nu.�kC1/
ˇ
ˇu 2 Sº is 2n. Thus we can, choosing

randomly from the set S message sets of cardinality 2
n
2 and reasoning exactly as in

the proof of Lemma 5.1, with probability equal to one, find messages vkC1; v
0
kC1

in ¹0; 1ºml and a value h0
kC1

in ¹0; 1ºn such that NvkC1.�kC1/ ¤ Nv
0
kC1

.�kC1/ and
h0
kC1
D f�kC1.h

0
k
; vkC1/ D f�kC1.h

0
k
; v0
kC1

/. The expected number of queries

on f is certainly Qaj�kC1j2
n
2 .

The induction is now extended and messages v1; v01, v2; v02; : : : ; vr ; v
0
r in S and

values h00; h
0
1; : : : ; h

0
r in ¹0; 1ºn satisfying .6/ found with expected number Qaj� j2

n
2

of queries on f . The task is successful with probability one.
Reasoning as with the set S and noting that vj ; v0j 2 S for all j 2 ¹1; 2; : : : ; rº,

it is straightforward to see that T is a well-defined subset of S . Since Nvj .�j / ¤
Nv0j .�j / for each j 2 ¹1; 2; : : : ; rº and Nvj .b/ D Nv0j .b/ for all b 2 Nl n A, the
cardinality of T is 2r . Certainly f˛.h0; u/ D h0r for each u 2 T . The proof is now
complete.

The following theorem combines the results of the two previous lemmata; we
verify that Step 5 in NMCAS can be carried out in a feasible fashion without con-
suming too much resources.
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Theorem 5.3. Let ˛ be a word over the alphabet Nl , r and p positive integers, A
a subset of the alphabet alph.˛/ of cardinality jAj D np�1r , and ˛ D ˛1˛2 � � � p̨
a factorization of ˛ such that for each i 2 ¹1; 2; : : : ; pº, the elements of A form
a chain in the partially ordered set .alph.˛/;�˛i / .i.e., the elements of A are inde-
pendent with respect to �˛i /. Assume furthermore that for each i 2 ¹1; 2; : : : ; pº,
there exists a factorization ˛i D ˛i1˛i2 � � �˛i;np�ir of the word ˛i such that the
following conditions are satisfied.

.1/ jalph.˛ij /\Aj D ni�1 for each i 2 ¹1; 2; : : : ; pº and j 2 ¹1; 2; : : : ; np�irº;
and

.2/ for all i 2 ¹1; 2; : : : ; pº and j 2 ¹1; 2; : : : ; np�irº there exists k 2 ¹1; 2; : : : ;
np�i�1rº such that alph.˛ij / \ A is a subset of alph.˛iC1;k/ \ A.

Then, given an initial value h0 2 ¹0; 1ºn we can, with probability equal to one,
find a nontrivial 2r -collision in f˛. Moreover, the expected number of queries on
f˛ needed to carry out the task is Qaj˛j2

n
2 .

Proof. We first apply Lemma 5.1 to generate a 2n
p�1r -collision set B1 on f˛1 and

then, by using Lemma 5.2 repeatedly, show that there exists a 2n
p�ir -collision Bi

on f˛1˛2���˛i for i D 2; 3; : : : ; p such that B1 © B2 © � � � © Bp .
In Lemma 5.1, choose the parameters as follows: ˛ is equal to ˛1 and r is

equal to np�1r . Let A D ¹a1; a2; : : : ; anp�1rº and a1 �˛ a2 �˛ : : : �˛ anp�1r
i D 1; 2; : : : ; p. Certainly these assumptions can be made.

Then ˛1 D ˛11˛12 � � �˛1;np�1r is a factorization of ˛1 such that all occur-
rences of the symbol aj in ˛1 lie in ˛1j , for each j 2 ¹1; 2; : : : ; np�1rº. Let
h0 2 ¹0; 1º

n be given. Applying Lemma 5.1, one can, with probability equal to
one and with expected number Qaj˛1j2

n
2 of queries on f , find message block sets

M1;M2; : : : ;Ml � ¹0; 1º
m as well as values h1; h2; : : : ; hnp�1r such that

(a) Mb D ¹!º for each b 2 Nl n A;

(b) Mai D ¹wi ; w
0
iº, where wi ¤ w0i for each i 2 ¹1; 2; : : : ; np�1rº; and

(c) for each i 2 ¹1; 2; : : : ; np�1rº, the setM DM1M2 � � �Ml is a 2-collision in
f˛1i and a 2i -collision in f˛1˛2���˛i with initial value hi�1 such that for each
u and u0 in M :

hi D f˛1i .hi�1; u/ D f˛1i .hi�1; u
0/ and

f˛11˛12���˛1i .h0; u/ D f˛11˛12���˛1i .h0; u
0/ :

Obviously the set B1 D M is a 2n
p�1r -collision in f˛1 with initial value h0.

The creation of B1 was carried out by a statistical process which succeeds with
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probability equal to one; in the process the expected number of queries on f is
Qaj˛1j2

n
2 .

Choose the parameters of Lemma 5.2 as follows. Let ˇ be ˛1, � be ˛2 and r
be np�1r . Let d be equal to 1, ˇi equal to ˛1i for i D 1; 2; : : : ; np�1r , and �j
equal to ˛2j for j D 1; 2; : : : ; np�2r . Then the assumptions of Theorem 5.3 for
˛1 and ˛2 imply that all the assumptions of Lemma 5.2 (with parameters chosen
as above) are valid. Thus we can, with a probability equal to one and expected
number Qaj˛2j2

n
2 of queries on f , find messages v1; v01, v2; v02, : : : ; vnp�2r ; v

0
np�2r

in ¹0; 1ºml and values h00; h
0
1; : : : ; h

0
np�2r

in ¹0; 1ºn, h00 D hnp�1r , such that for
each j 2 ¹1; 2; : : : ; np�2rº, 8b 2 Nl n A W Nvj .b/ D Nv

0
j .b/ D ! and Nvj .˛2j / ¤

Nv0j .˛2j / and h0j D f˛2j .h
0
j�1; vj / D f˛2j .h

0
j�1; v

0
j /. The set S of Lemma 5.2 is

clearly our set B1 D M . Choose B2 to be the set T guaranteed by Lemma 5.2.
Then B2 ¨ B1 is a (nontrivial) 2n

p�2r -collision in f˛1˛2 with initial value h0.
Continue by induction and let k 2 ¹2; 3; : : : ; p � 1º. Let the words x1; x01,

x2; x
0
2, : : : ; xnp�kr ; x

0
np�kr

2 ¹0; 1ºml and values d0; d1; : : : ; dnp�kr 2 ¹0; 1º
n

be such that for each i 2 ¹1; 2; : : : ; np�krº, 8b 2 Nl n A W Nxi .b/ D Nx
0
i .b/ D !

and Nxi .˛ki / ¤ Nx
0
i .˛ki / and di D f˛ki .di�1; xi / D f˛ki .di�1; x

0
i /. Let Bk be

the set of all messages u 2 ¹0; 1ºml such that for each b 2 Nl n A: Nu.b/ D !

and for each j 2 ¹1; 2; : : : ; np�krº: Nu.˛kj / is in ¹ Nx.˛kj /; Nx0.˛kj /º. Suppose that

Bk is a subset of Bk�1 and that Bk is a 2n
p�kr -collision in f˛1˛2���˛k with ini-

tial value h0. Choose the parameters of Lemma 5.2 as follows. Let d be equal
to np�k�1r , ˇ be equal to ˛k , ˇi be equal to ˛ki for i D 1; 2; : : : ; np�kr , and
�j be equal to ˛kC1;j for j D 1; 2; : : : ; np�k�1r . By the assumptions of The-
orem 5.3, all the assumptions of Lemma 5.2 are valid (with the chosen param-
eter values). Lemma 5.2 implies that one may, with a probability equal to one
and expected number Qaj˛kC1j2

n
2 of queries on f , find messages y1; y01, y2; y02,

: : : ; ynp�k�1r ; y
0
np�k�1r

in ¹0; 1ºml and values d 00; d
0
1; : : : ; d

0
np�k�1r

in ¹0; 1ºn,

d 00 D dnp�kr , such that for each j 2 ¹1; 2; : : : ; np�k�1rº, 8b 2 NlnA W Nyj .b/ D
Ny0j .b/ D ! and Nyj .˛kC1;j / ¤ Ny0j .˛kC1;j / and d 0j D f˛kC1;j .d

0
j�1; yj / D

f˛kC1;j .d
0
j�1; y

0
j /. The set T of all messages y in ¹0; 1ºml such that for each

b 2 Nl n A: Ny.b/ D ! and for each j 2 ¹1; 2; : : : ; np�k�1rº: Ny.˛kC1;j / is in
¹ Ny.˛kC1;j /; Ny

0.˛kC1;j /º is then a well-defined subset of Bk and forms a (non-

trivial) 2n
p�k�1r -collision in f˛k˛kC1 with initial value d0. By the induction as-

sumption, T is a 2n
p�k�1r -collision in f˛1˛2���˛kC1 with initial value h0. Choose

BkC1 D T and the induction is extended. We deduce that we can, with proba-
bility equal to one, find a nontrivial 2r -collision in f˛ with initial value h0. The
expected number of queries on f is altogether Qaj˛j2

n
2 .
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The fifth step of step of NMCAS can be completed:

Step 5 of NMCA: Let B1; B2; : : : ; Bp be as in the proof of Theorem 5.3. The
theorem guarantees that, to create a 2r -collision in f˛, the expected number of
queries on f is Qaj˛j2

n
2 .

Let us recapitulate our results.

Theorem 5.4. Let m; n and q be positive integers such that m > n and q � 2, f
a compression function of block size m and length n, and Ǫ D .˛1; ˛2; : : :/ a q-
bounded sequence of words such that alph.˛i / D Nl for each i 2 NC. Then, for
each r 2 NC, there exists a 2r -collision attack on the generalized iterated hash
function H Ǫ ;f of complexity Qa rq n.q�1/

2sqr.2q�3/sq2
n
2 , where the parameters rq

and sq are defined recursively by r1 D s1 D 1, riC1 D isi r
siC1
i and siC1 D s2i C1

for i 2 NC.

We wish to recall that in [9] an informal proof of the previous theorem with
a different complexity and parameter definitions was given.

5.3 The case q D 2 and some complexity considerations

Now suppose that in the input of the procedure NMCA the generalized iterated hash
function H Ǫ ;f is such that the sequence Ǫ D .˛1; ˛2; : : :/ is 2-bounded. Then, by

Theorem 4.10, the equalities r2 D 2s1r
s1C1
1 D 2 and s2 D s21 C 1 D 2 hold.

By Theorem 5.4, when creating a 2r -collision (r 2 NC) on H Ǫ ;f , the expected

number of queries on f is Qa r2 n.2�1/
2s2 r.2�2�3/s22

n
2 D 2 Qa n2 r22

n
2 . In [16] with

rigorous considerations a somewhat smaller average complexityO.r2 �.ln r/ �.nC
ln.ln 2r// � 2n=2/ was attained.

The method of Nandi and Stinson [16] guarantees that a 2r -collision is reached
regardless of the number of permutations (one or two). The method applied in this
paper yields either a 2nr -collision (for one permutation) or a 2r -collision (in the
case of two permutations). This leads to a somewhat rougher estimate and thus to
greater complexity in this special case. It would be interesting to see if some of the
techniques in [16] could also be used in the general case to lower the complexity.

Note that in NMCA it is possible to take also q as an input parameter. Then
the procedure is of course extremely inefficient: due to the recurrence relations
r1 D s1 D 1, and rqC1 D qsqr

sqC1
q , sqC1 D s2q C 1 for q 2 NC, we have

a procedure that is at least triple exponential with respect to q. A natural question
arises whether or not in Theorem 4.10, the length of the word ˛ could be chosen
to be considerably smaller. Our opinion is that then a significantly different proof
technique is needed. If Lemma 4.8 and Dilworth’s Theorem (and thus the relation
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between independent elements and incomparable elements in alph.˛/ is applied,
it is difficult to imagine that a 2r -collision in H Ǫ ;f could be constructed so that
the expected number of queries on f is less than exponential with respect to q.

To implement a generalized iterated hash function, a relatively strong comput-
ing device (in automata theoretic sense) is needed. In fact, a two-way deterministic
pushdown transducer seems to be an indispensable tool regardless of the way the
respective compression function is realized as a computer program. This raises
the question of efficiency because a two-way deterministic pushdown transducer
is a much more complicated machine (and thus much more resource consuming
to implement and use) than a finite state transducer which is needed to realize
a traditional iterated hash function.

If a generalized iterated hash function is used, the sender has to construct the
whole message before he can start to hash it. Similarly, the receiver has to have
the complete message available before the sent hash value can be verified to be
correct. This greatly impedes their applicability in applications where streaming
data is used. Suppose that we wish to somehow avoid this restriction and start
hashing the message before it has completely been formed or received. Then the
message blocks occurring at the end of the message are not available when we start
hashing. This causes extra restrictions on the sequence Ǫ and possibly implies that
multicollisions are easily found. Especially chains could be forced to form as the
earlier message blocks will be used up before the message blocks in the end can
be applied. As can be seen from our method, this enables a relatively fast and
straightforward multicollision attack.

We also need an efficient encoding for the sequence Ǫ . If Ǫ is complicated,
which means that the hash function H Ǫ ;f is secure, then picking an element ˛l
from Ǫ may be resource consuming. On the other hand, if Ǫ is very simple and
picking an element from the sequence can be done with ease, then there might be
very efficient multicollision attacks against these types of hash functions.

6 Conclusion

In this paper, we have demonstrated how the analysis of multicollisions in iterated
hash functions can be done with the use of word combinatorics. We have also given
some new results and settled some inaccuracies in the previous results concerning
multicollisions in generalized iterated hash functions. We have also brought these
results into a unified and well established theoretical framework, which should
make further investigation of the theory of iterated hash functions easier.

The next step in the research could be to investigate the possibilities of gen-
erating words, which have desirable properties in the context of multicollisions.
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We could also categorize words and whole languages with respect to their per-
formance in the iterative structure. Also the even more general types of iterated
hash functions presented in [16] and [9] could be brought into this framework and
further analyzed.
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