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Abstract. We apply combinatorics on words to develop an approach to multicollisions in
generalized iterated hash functions. Our work is based on the discoveries of A. Joux and on
generalizations provided by M. Nandi and D. Stinson as well as J. Hoch and A. Shamir. We
wish to unify the existing diverse notation in the field, bring basic facts together, reprove
some previously published results and produce some new ones. A multicollision attack
method informally described by Hoch and Shamir is laid on a sound statistical basis and
studied in detail.
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1 Introduction

Iterated hash functions have been the most successful method for constructing
fast and secure hash functions. The underlying principle proposed by Merkle and
Damgard [4, 15] is quite simple and easy to implement. However, most of the
modern hash functions built on this foundation were proved insecure in [7, 12,
17,19,20]. Many of these flaws come from the weaknesses in the underlying
compression functions. In recent years, more rigorous theoretical study has also
found some weaknesses in the iterative structure itself [3].

One of the most notable results on the iterative structure was Joux’s method
concerning multicollisions in iterated hash functions [10], which has been used
to disprove some of the assumptions on hash function security. Furthermore,
these achievements concerning multicollisions were generalized by Nandi and
Stinson [16] and later by Hoch and Shamir [9]. These results show that Joux’s
method can be applied to a more general class of iterated hash functions.

The theoretical results concerning hash functions and especially multicollisions
in iterated hash functions were created with a multitude of different approaches,
notation and a varying level of mathematical rigor. This has made it somewhat
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difficult to examine the differences and similarities of the results achieved. It has
also led to the situation where we do not have a unified theoretical and notational
framework for the study of iterated hash functions in general and multicollisions
in particular.

In this paper, we show a way to formulate these problems in a well-established
mathematical system and use this structure to prove the central results related to
multicollisions. The notation and basic theory of combinatorics on words, algebra
and partial orders is extensively applied. In [9] a method of constructing multicol-
lisions in Iterated Concatenated and Expanded (ICE) hash functions is introduced.
The description of the method is informal and difficult, if not impossible, to under-
stand in detail. We wish to give a rigorous mathematical treatment to this method
and point out certain deficiencies in the original version of it. A fairly detailed
complexity analysis of the respective attack construction is provided and the prac-
tical applicability of the attack and the ICE hash functions is discussed.

The paper is organized in the following way. The second section introduces the
basic definitions of combinatorics on words and partial orders. The third section
shows how iterated hash functions and multicollisions can be depicted in this theo-
retical setting; the earlier work conducted in the field is reviewed and the structure
of the attack schema on generalized iterated hash functions is described informally.
In the fourth section, we prove the combinatorial results needed for the construc-
tion of a feasible multicollision attack on so-called bounded generalized iterated
hash functions. The fifth section contains the precise exposition of the multicolli-
sion attack and some analysis of its complexity. In the final section, we discuss our
results, draw some conclusions from our research and give possible future research
proposals.

2 Basics on words, languages and partial orders

We encourage the reader to return to the basic concepts only as the need arises.

2.1 Words and languages

LetN = {0, 1,2, ...} be the set of all natural numbers and N4 = N\{0}. For each
[ € N4, we define N; to be the set of [ first positive integers: N; = {1,2,...,[}.
For each finite set S, let |S| be the cardinality of S, i.e., the number of elements
inS.

An alphabet is any finite nonempty set of abstract symbols called letters. Let
A be an alphabet. A word (over A) is any finite sequence of symbols in A. Thus,
assuming that w is a word over A, we can write w = ajds---a,, where n € N
and a¢; € Afori = 1,2,...,n. Here n is the length |w| of w. Notice that
n may be equal to zero; then w is the empty word, denoted by €, that contains
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no letters. By |w|, we mean the number of occurrences of the letter a in w.
Denote alph(w) = {a € A | |w|g, > 0}. Obviously alph(¢) = @; for nonempty
w, call alph(w) the alphabet of w. Let A* (resp. AT ) be the set of all words
(resp. nonempty words) over A. By A", n € N4, we mean the set of all words
of length n over A. The catenation of two words u and v in A* is the word uv
obtained by writing v after u. Clearly, catenation defines a binary operation - in
A*: u-v = uv for all u,v € A*. In algebraic terms (A*,-) is a free monoid
and (AT,.) is a free semigroup. The word u is a subword of w if there exist
m € N and xg,u1, X1, ..., Um, Xm € A* such that w = xguix71 - UmXxm Where
U = UjUp - Upy. A subword u of w is a factor of w if w = xoux; for some
x0,Xx1 € A*. If a word y can be written in the form y = yjy,---y, for some
p € N and words y1, y2,...,yp, we say that y1y2---y, is a factorization of y
(into y1,y2, ..., Yp).

Let A and B be alphabets. A mapping & : A* — B* is a (monoid) morphism
if h(uv) = h(u)h(v) for each u, v € A*. Note that a morphism always maps the
empty word € to €. Moreover, the morphism /% is completely determined by the
images h(a) of all letters a € A. If B C A, then the projection morphism from A*
into B*, denoted by x4 (or g, when A is understood), is defined by nj_.,f‘ b)=0>b
foreach b € B and g (a) = € foreacha € A\ B.

A permutation of an alphabet A is any word w € AT such that |w|, = 1 for
eacha € A.

A language (over the alphabet A) is any set of words L (such that L C A™). Let
L1 and L, be languages. The catenation of Ly and L, is the language L{L, =
{uv|u € Lij,v € Lp}. Define the powers of the L recursively as follows:
L} = L1, and L’i'H = L"lLl for i € N4. The positive closure of L is the

language LT = o1 Lil. For any word w, we write w™ instead of {w}™.

2.2 Partial orders

A binary relation R on the nonempty set X is a partial order (in X) if it is irreflex-
ive (Vx € X : (x,x) ¢ R), antisymmetric (Vx,y € X : (x,y) € R = (y,x) ¢
R) and transitive (Vx,y,z € X : (x,y) € RA(y,z) € R = (x,z) € R).

Let < be a partial order in X. Call (X, <) a partially ordered set. The elements
X,y € X, x # y, are incomparable (in (X, <)) if neither x < y nor y < x holds.
The nonempty finite sequence xy, X2, ..., X, of elements of X is a chain of (X, <)
if x; < x;j4qforalli € {1,2,...,n—1}. Above n € Ny is the length of the chain
X1 < Xxp < --+ < Xxp. For each chain ¢ of (X, <), let |c| be the length of c.
An (indexed) set of chains {c; };c7 is a chain decomposition of (X, <), if {C;}iert
is a partition of X, where C; = {x € X |x occurs in the chain c¢;}. Obviously,
a chain decomposition exists for all partially ordered sets.
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Now consider a finite partially ordered set (X, <), i.e., a partially ordered set
such that X is finite. The maximum number of incomparable elements of (X, <)
is the cardinality of the largest set ¥ € X such that the elements of Y are pairwise
incomparable. The minimum chain decomposition size of (X, <) is the smallest
number m € Ny such that there exist chains ¢y, ¢z, ..., ¢, of (X, <) for which
{ci}¥L, is a chain decomposition of (X, <). Finally, let the maximum chain length
of (X, <) be the greatest number 2 € Ny such that there exists a chain of length
min (X, <).

An important connection between the first two concepts defined above is stated
in a famous theorem of Dilworth [6].

Theorem 2.1 (Dilworth’s Theorem). Let (X, <) be a finite, partially ordered set.
Then the maximum number of incomparable elements of (X, <) is equal to the
minimum chain decomposition size of (X, <).

Let us now investigate partial orders induced by words. Let o be a nonempty
word. Define the binary relation <, on alph(«) as follows. For each a,b €
alph(), let a <4 b hold if and only if @ # b and all occurrences of a in «
lie before any occurrence of b in . Certainly if a <4 b, then there exist words o
and a such that @« = @107 and |a1|p = |az]g = 0. Obviously, <4 is irreflexive,
antisymmetric and transitive, so (alph(w), <) is a partially ordered set. Call the
elements of a nonempty set A C alph(«) independent (with respect to <) if
they form a chain in (alph(a), <¢). Now suppose that A consists of £k € Ny

independent elements. There then exist elements a1, d», ..., a; of alph(«) such
that a; <q a2 <g -+ <q arp and A = {ay,as,...,ar}. Certainly mq(x) €
a+a Y a+

1%2 k-

The partial order <, plays a central role in the construction of multicollisions
as well as in their combinatorial analysis. The role of partial orders applied to
combinatorics on words is extensively studied in [5].

3 Hash functions and collisions

In this section, we give the basic definitions of hash functions and multicollisions
using a fresh and rigorous notation. The principles of (iterative) hash functions
were, however, presented already in [4], and advanced ideas on multicollisions
appear in [9, 10, 16].

3.1 Fundamental concepts

By a block representation of a message, we mean the division and padding of
the message into blocks of equal size. We may certainly assume, without loss of



Multicollision attacks and generalized iterated hash functions 243

generality, that all our messages are written in the binary alphabet {0, 1} and given
in a block representation form.

Definition 3.1. A hash function of length n (with n € N,) is a mapping f :
{0, 1}* — {0, 1}".

An ideal hash function f : {0, 1}* — {0, 1}" is a variable input length random
oracle (VIL-RO for short): for each x € {0, 1}*, the value f(x) € {0, 1}" is
chosen uniformly at random.

Let f be a hash function. A preimage of a given hash value y is any x € {0, 1}*
such that f(x) = y. A second preimage of y = f(x) is any x’ € {0, 1}* such
that f(x’) = y and x # x'.

Let k € N4. A k-collision in the hash function f : {0, 1}* — {0, 1}" is a set
A € {0,1}* such that |A| = k and f(x) = f(y) forall x,y € A. A 2-collision
(in f)is also called a collision in f.

A k-collision attack on a hash function f can be loosely characterized as a prob-
abilistic procedure (based on the birthday paradox) that finds a k-collision in f
with some nonnegligible probability. The complexity of the attack can be mea-
sured, for instance, with respect to the expected number of messages the hash
values of which have to be determined in order to carry out the attack successfully.

According to the (generalized) birthday paradox, a k-collision can be found
(with probability approx. 0.5) by hashing (k!)%Zw different messages [18].
In the case k = 2 this gives /2 - 22 hash function computations. Intuitively most
of us would expect the number to be around 2”~!. For preimages and second
preimages the complexity of an attack on an ideal hash function is in O(2").

In the following, we shall derive the concept of a (generalized) iterated hash
function. Remember that all messages are assumed to be in a block representation
form.

Definition 3.2. A compression function (of block size m and length n) is a map-
ping f : {0,1}"* x {0,1}" — {0, 1}"* where m,n € N4, m > n.

Again, an ideal compression function f : {0, 1}"* x{0, 1} — {0, 1}" is a fixed
input length random oracle (FIL-RO for short): for each 7 € {0,1}" and y €
{0, 1}, the value f'(h, y) € {0, 1}" is chosen uniformly at random.

Let m,n € Npy,m > n and f : {0,1}" x {0,1}'* — {0,1}" be a given
compression function.

Define the function 7 : {0, 1} x ({0, 1}")™ — {0, 1}" inductively as follows.
Let h € {0,1}", y; € {0, 1}, and y, € ({0,1}")". Then T (h,y1) = f(h.y1)
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and f*(h, y1y2) = fT(f(h, y1),y2). Surely for all y,y" € ({0,1}")*, the
equality f*(h,yy') = fT(f*(h,y),y’) holds.

Let u be a word in ({0, 1})" such that ¥ = uqus---u; where [ € N and
u; € {0,1}" fori = 1,2,...,1. Define the morphism u# : N — {0, 1}* by
u(i) = u; foreachi € N;. Leta € Nl+ be given. Then o = iyi,---is, where
s € Nyandij € Nj for j = 1,2,...,s. By definition, @ () = u;,uj, -+ ;.
Obviously #(«) is the word where blocks taken from vy, us, ..., u; are written in
the order and multiple determined by «.

Example 3.3. Let u = uqup---us where u; € {0,1}" fori = 1,2,3,4,5. Then
l_t(z' 5-1-3-5-5- 1) = UpU5UTU3U5U5U].

Now define the iterated compression function fy : {0,1}" x{0, 1! — {0, 1}"
(based on o and f) by fyu(h,u) = f+(h,ii(a)) foreach h € {0,1}* and u €
{0, 1y,

It is clear from the definitions that if « = ajay, where a1, a2 € NV, then

Ja(hou) = fF(hi(@) = [ (hi(en)a(@2)
= fRU T (ha(en),i(@2) = foo (fay (hou),u)

for each h € {0,1}" and u € {0, 1}, Given k € N, and ho € {0,1}", a k-
collision (with initial value hg) in the iterated compression function fy is a set
A C {0,1)! such that |A| = k and fy(ho.u) = fy(ho,v) for all u,v € A.
We say that the k-collision A in fy is nontrivial if, for each u = uqu, ---u; and
v = vivp---v; in A such that u;,v; € {0,1}" fori = 1,2,...,[, the equality
uj = v; holds for each j € N; \ alph(a).

Example 3.4.Let/ = 5ando = 3-1-5-4-4-3-1 a word over the alphabet
Ns. Assume furthermore that 2o € {0, 1}"* and vy, un, us3, uq, us, ”/5 € {0,1}™,
us # uf are message blocks such that f ¥ (ho,usuius) = f7(ho,uzujus).
Since
Ja(ho uiusuzugus) = f* (ho, uzuiususugusiy)

= fT(f T (ho.usuyus), usususuy)

= f+(f+(h0,M3M1M/5)»M4M4M3M1)

= fa(ho. uruzuzuaus),

the set {u uau3U4Us, UTU2U3U4US} is a nontrivial (2-)collision in fo with the
initial value /. Since, given h € {0,1}" and u € {0, 1}>™, the second block of
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the message u is never used when calculating fy (i, u), the set {u1 x uzuqus|x €
{0, 1}™} is a trivial 2™ -collision in f, with any initial value.

Finally, we are ready to characterize a generalized iterated hash function. For
each j € Ny, leta; € Nj+ be such that alph(ctj) = Nj. Denote & = (o1, @2, .. .).
Define the generalized iterated hash function Hg ¢ : {0, 1}" x ({0, nmt -
{0, 1}"* (based on & and f) as follows: Given the initial value kg € {0, 1}™
and the message x for which the block representation consists of j blocks, let
Hg r(ho,x) = fa; (ho, X).

Remark 3.5. A traditional iterated hash function H : ({0, 1}"")* — {0, 1}" based
on f (with initial value g € {0,1}") can of course be defined by H(u) =
f1(ho,u) for each u € ({0,1Y")™. On the other hand H is a generalized it-
erated hash function Hyg r : {0, 1}" x ({0, 1}™)* — {0,1}" based on @ and f
where @ = (1,1-2,1-2-3,...) and the initial value is fixed as hy.

Now, let the generalized iterated hash function Hg 5 : {0, 1}" x ({0, Mt -
{0, 1}" based on & and f be as defined before the previous remark. Given k € N
and ho € {0, 1}, a k-collision in the generalized iterated hash function Hy s is
aset A C ({0,1}™)" such that |A| = k and for all u,v € A, |u| = |v| and
Hg r(ho,u) = Hg r(ho,v). Now suppose that 4 is a k-collision in Hg  with
initial value ho. Let | € N4 be such that A C {0, 1}/, i.e., the length in blocks
of each message in A is /. Then, by definition, for each u,v € A, the equality
Ja;(ho,u) = fo,(ho,v) holds. Since alph(a;) = N, the set A is a nontrivial
k-collision in f, with initial value &g.

We assume that the attacker knows how Hg  depends on the respective com-
pression function f (i.e., the attacker knows &), but sees f only as a black box.
She/he does not know anything about the internal structure of f and can only
make queries (i.e., pairs (h,x) € {0,1}" x {0,1}") on f and get the respective
responses (values f(h,x) € {0, 1}").

A k-collision attack on Hg ¢ is a probabilistic procedure (based on the birthday
paradox) that finds a k-collision in Hg r with probability equal to one for any
initial value ho. The complexity of a k-collision attack on Hg_ y is the expected
number of queries on f required to get a k-collision.

3.2 Earlier work

In [10] Joux considers iterated hash functions H : ({0,1}")* — {0,1}" and
shows that, for each r € N there exists a 2" -collision attack on H of complexity
o(r-2" 2). The idea of Joux is simple and ingenious: a sequence of message sets
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{urr. w1z}, {uar. uzz}, ..., {ur1, U2} such that u; # u and f(hi—1,u;1) =
f(hi—1,uj2) = h; fori = 1,2,...,r is generated with 0(r2”/2) queries on
f. Then H(y1yz---yr) = H(z1z2---z;) for all y1,z1 € {u11,u12}, y2.22 €
{uz1,u22}, ..., yr, zr € {Ur1, ur2}, which means that the set {u 11, uz1 }-{u21, u22}
-+-{ur1,urp} is a 2" -collision in H.

In [16] Nandi and Stinson show that there exists an attack procedure of com-
plexity O(r2 - (In r) - (n + In(In 2r)) - 2/2) which (1) takes as input the (unique
identity of) the function f : {0, 1}" x {0, 1} — {0, 1}, a number r € N, and
a word « such that alph(«) is sufficiently large and |«|, < 2 for all @ € alph(«);
(2) makes queries on f and gets the respective answers; and then (3) outputs (with
probability equal to one) a 2" -collision in fg .

In [9] Hoch and Shamir continue the work on generalized iterated hash func-
tions Hy_ s showing the following: Let & = (a1, @2, ...) and ¢ € N4 be such that
lejl; < g forall j € Ni,i € N;. Then a polynomial p(n, r) exists such that,
for each r € N, a 2"-collision attack on Hy_ ¢ of complexity O(p(n, r)Z%) can
be constructed. However, some proofs are written in a short form and they con-
tain a few inaccuracies being thus quite hard to follow. Our intention is to present
new proofs and a detailed analysis of multicollisions in generalized iterated hash
functions.

Multicollisions have been applied in practical attacks usually as a method for
generating second preimages for hash values [13]. Multicollisions have been found
for MD4, HAVAL, and Blender [13,21]. The herding attack proposed by Kelsey
and Kohno is also based on multicollisions [11]. Thus, theoretical advances in
finding multicollisions have had an impact on the security of practical hash func-
tions. However, there are no practical implementations of generalized iterated
hash functions and thus theoretical advances in this field have a limited influence
in practice, but can help in devising more secure hash functions in the future.

3.3 Nested Multicollision Attack Schema (NMCAS)

Below we describe a general (and at this stage still informal) attack procedure that,
given Hy r, ho € {0,1}", and r € N4 creates a 2"-collision in the generalized
iterated hash function Hg ; with initial value ho.

Procedure Schema NMCAS

Input: A generalized iterated hash function Hy ¢, an initial value &g € {0, 1}",
a positive integer r.

Output: A 2"-collision in Hy .

Step 1: Choose (a large) / € N. Consider the /th element ; of the sequence &.
Leto; = iyip---is, wheres e Ny andi; e Ny for j =1,2,...,s.
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Step 2: Fix a (large) set of active indices Act € N; = {1,2,...,1}.

Step 3: Factorize the word «; into nonempty strings appropriately, i.e., find p €
{1,2,...,s}and B; € N;r such that oy = B1B2 -+ Bp.

Step 4: Based upon the active indices, create a large multicollision in fg, . More
exactly, find message block sets M1, M», ..., M; satisfying the following proper-
ties.

(1) Ifi € Nj \ Act, then the set M; consists of one constant message block w.

(i) If i € Act, then the set M; consists of two different message blocks m;; and
mi».

(iii) The set M = MiMs-+-M; = {uquz---u; |uj € Mi, i = 1,2,....1}is
a 2lA¢tl_collision in f3, with initial value /.

Step 5: Based on the set C1 = M, find message sets C3, C3, ..., Cp such that
@iv) Cp - Cp_l c...CCi =M.

(v) Foreach j € {1,2,..., p} the set C; is a (large) multicollision in fg, g,..g;
with initial value /.

(vi) |Cp| =2".
Step 6: Output Cp,.

It should be clear that if the above procedure is successfully carried out, then
Hy r(ho.m) = Hg f(ho.m’)

for all m,m’ € Cp,. Also one should note that NMCAS can be applied trivially to
produce a 2" -collision with initial value /¢ for any generalized iterated hash func-
tion Hg r. Namely, choosing /[ > n + r we know, by the pigeonhole principle,
that among the messages of length [, a 2" -collision exists. Then letting Act = N;
and p = 1, we can, by going in the worst case through all the 2”7 possible mes-
sage values, certainly find the desired multicollision. Note that, as proved in [18],
by hashing ((2" )!)2%2"(2;7’_” messages, a 2" -collision is found with probability
approx. 0.5.

Given Hy ¢ and r, does there exist a 2" -collision attack on Hg s of complexity
0(2%)? The problem in its full generality, i.e., with no restrictions on Hy r,
seems to be extremely difficult and is certainly still open. Probably the answer to
the question is negative.

Call the sequence & = (1.2, ...) g-bounded, g € N, if |aj|; < g for each
J € Ny andi € N;. Now suppose that ¢ € N and in Hy s the sequence & is
g-bounded. In the following we shall show that the procedure NMCAS with input
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Hg r,ho and r can be realized so that a 2"-collision in Hg  with initial value &g
is created (with probability equal to one) and the expected number of queries on
the compression function f is O(5(n,r)22) where j(n, r) is a polynomial.

The idea behind the successful construction is the fact that since & is ¢-bounded,
unavoidable regularities start to appear in the word «; of @ when [ is increased.
More accurately, choosing / big enough (still so that |o;| depends only polynomi-
ally on n and r), arbitrarily large sets A C alph(c;) can be found such that

(P1) o = B1B2---Bp, where p € {1,2,....q}, B; is a word such that A C
alph(f;) and the elements of A are independent with respect to <g, fori =
1,2,..., p;and

(P2) forany i € {1.2,...,p — 1}, if ma(Bi) = z122+-Z,p—if is a factoriza-
tion of 4(B;) such that |alph(z;)| = n'~! for j = 1,2,...,n? "k and

wa(Bit1) = uruz---u,p—i—1y is a factorization of m4(B;+1) such that
lalph(u;)| = n' for j = 1,2,...,nP7 "1k, then for each j; € {1,2,...,
np_ik}, there exists j» € {l1,2,..., nl’_i_lk} such that alph(zj,) <
alph(u, ).

The property (P1) allows us to construct a 2/4l-collision C; in fp, with any
initial value /¢ so that the expected number of queries on f is O(|B; |22). The
property (P2) ensures that based on the multicollision guaranteed by (P1), we can
proceed and create the multicollision C; in fg, g,...; so that (i) the expected num-
ber of queries on f is O(|B1B2---Bi|22) forall i = 2,3,.... p; and (ii) the
cardinality of Cp is 2". Since || (and thus [B1B2---Bi| fori = 1,2,...,p)
depend only polynomially on # and r, steps 1 to 6 in NMCAS do not consume too
much resources.

We prove the necessary combinatorial results for properties (P1) and (P2) in the
next section. The construction of the actual attack is postponed to Section 5.

Remark 3.6. In many problems of combinatorics on words (in contrast to ours),
arbitrarily long words over a fixed (finite) alphabet are considered. Then, as the
length of the word increases, unavoidable regularities start to appear and some
famous results of classical combinatorics like Ramsey’s, Shirshov’s and Van der
Waerden’s Theorems may be applied (for details, see for instance the book of de
Luca and Varricchio [5]).

4 Basic combinatorial results

Let o be a (nonempty) word and A any alphabet. We wish to study how the
occurrences in ¢ of any symbol a € A are positioned in relation to occurrences
in o of other symbols of A. In principle, for this purpose the image 74 () of
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under the projection morphism 4 is completely sufficient. However, for the sake
of simpler notation and ability to apply some classical results of combinatorics
directly, one more concept is introduced (see also [9, 16]): define (x)4 = € if
wga() = € and (@)g = ajaz---as if mg(a) € afa;---aj, where s € Ny,
ai,az,...,as € A,and a; # aj4q fori =1,2,...,5 — 1.

It should be obvious from the definition that the word o4 exists and is unique.

Example 4.1. Let o = asaga%agalaiaga%azag, so alph(e) = {ay,az,...,a7}.

Let us choose A = alph() \ {as5}. Then my(x) = a%a%alaiaga%azag and
(0)4 = aragaiasaszaiazas.

Note that even though the word o4 is unique, there certainly may be different
ways to obtain it from the original word «. For example, let « = abbcc and
A = {b,c}. Now, agy = bc, but there are four different ways of obtaining this
word from o depending on whether one chooses the first or the second occurrence
of hand c.

Remark 4.2. It is important to notice that the operation (-)4 does not behave
like a morphism, i.e., given an alphabet A and words u, v, we generally have
(uv)g # ugqvy. The case where A = {a} and (aa)y = a # aa = (a)4(a)y is
the simplest possible example. This certainly means that in all cases (1#v)4 cannot
be constructed from u4 and v4 (as is done in [9]).

Remark 4.3. Let o be a word, @ # €, and A C alph(«) nonempty. Recall that
the independence of elements in A with respect to <, means that these elements
form a chain in the partially ordered set (A4, <y). Then the following conditions
are equivalent.

(a) The elements of A are independent with respect to <.

(b) There exists a sequence ai,dp,...,ag of all d = |A| elements of A such

that 4 (o) is in afa; ‘e a;.

(c) The word a4 is a permutation of A.

Suppose that & = («1,®z,...) is g-bounded, ¢ € Ny, i.e., for each j € Nt
and i € Nj, the inequality |o|; < g is satisfied. Our first task is to show that the
property (P1) holds.

We state the following (binary) matrix form of Hall’s famous matching theorem
(see, for instance [2, p. 77]).

Theorem 4.4 (Hall). Let m and n, m < n, be positive integers and A = (a;j)mxn
be a m x n-dimensional binary matrix. Now there exists an injective function
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o:{1,2,....m} > {1,2,...,n} such that ajo;y = 1 fori =1,2,...,mifand
only if for each I C {1,2,...,m} the number of elements ajj such thati € I,
J €1{1,2,...,n}and a;j = 1is at least |1 |.

It is a well-known fact that Dilworth’s Theorem and Hall’s Theorem are, as
many results in basic combinatorics, strongly related. The following theorem can
be found also in [9].

Theorem 4.5 (Partition Theorem). Let k € N and A be a finite nonempty set
such that k divides |A|. Furthermore, let {B,-}f-‘=1 and {Cj };‘zl be partitions of
A such that |B;| = |Cj| fori,j = 1,2,...,k. Then for each x € Ny such that
|A| > k3 - x, there exists a bijection o : {1,2,...,k} — {1,2,...,k} for which
|Bi n Co‘(i)| > Xx fori = 1,2,...,k.

Proof. Let x € N4 be such that |A| > k3 - x. Let D = (d;j)gxx be the k x k-
dimensional binary matrix defined by d;; = 1if |B; N Cj| > x and dj; = 0 if
|B; N Cj| < xforeachi,j e {l,2,... k}.

Suppose that the required bijection does not exist. By Hall’s Theorem, we can
findaset I € {1,2,...,n} of size r < n such that the number s of elements d;;
for whichi € I, j € {1,2,...,n}, and d;j; = 1 is less than r. Assume without
loss of generality, that dij =0fori =1,2,...,r,j =s+1,s+2,...,n. This
means that |B; N Cj| < x foreachi € {1,2,...,r},j e {s+1,s +2,...,n}.
Certainly Y ;_; |Ci| = s - |kil. On the other hand (since |B; N C;| < x for each
ief{l,2,....,r},je{s+1,s+2,...,n}) we have

Sz ke,

i=1

Thens-'kil > r-lkil—r(k—s)(x— 1),ie., (r—s)~%—r(k—s)(x— 1) <0. We
have reached a contradiction, since (rr —s) - “,:J —rk—s)(x—1) > (r —s)k?x —
rtk —s)(x—1) > 0. ]

Remark 4.6. In the previous theorem the power 3 of k& cannot be reduced to 2.
Consider the following example. Let A be a set consisting of k2-x elements, where
k,x € Ny, x > k2. Suppose r € {1,2,...,k — 2} and let {Ai}fle and {Bi}f-‘=1
be two partitions of A such that |4; N By| =x+k —rfori =1,2,....r +1;
|[A; N Bj| =xfori =1,2,....,r+1,j =2,3,...,r;|4i N Bj| = x — 1 for
i=L2,....r+ 1L j=r+1Lr+2,....k|Ars2 N B =x—(r+ )k —r);
|Ary2o N Bj| =xforj =2,3,...,r;|Ar42 N Bj| =x+r+1forj =r+1,
r+2,....k;and [4; NBj| =xfori =r+3,r+4,....k,j =1,2,..., k. Then



Multicollision attacks and generalized iterated hash functions 251

|A| = k?-x and |A;| = |Bj| = k-x fori = 1,2,...,k. Clearly there does not
exist a bijection o of {1,2,...,k} such that [4; N By)| = x fori =1,2,... k.

The example above generalizes neither to the case |A| > a - k? where a > 2
nor to the case |A| > k? where b is a rational number such that 2 < b < 3.

Remark 4.7. Let A be a finite set, k € N, and {Ai}f.‘=1 and {Bi}f.‘=1 two par-
titions of A such that |A4;| = |B;| foralli,j € {1,2,...,k} . When applying
Lemma 4.5, the total number Zle |Ai N By ;)| of elements in the intersections
can be guaranteed to be at least lki2|' This implies that in Theorem 1 of [9] one has

to assume that /| = |M| > k2473 -n@=D? instead of | = M| > k3. n3@—3)+2
(see the proof of Theorem 4.15). Note that the assumption leads to a remarkable
increase in the complexity of the respective multicollision attack presented later.

The following lemma is a new formulation of a result in [16].

Lemma 4.8. Let m, n and q be positive integers and « a word such that alph(o) >
m - n. Then either (i) the maximum chain length of (alph(w), <) is at least m; or
(1) the maximum number of pairwise incomparable elements in (alph(x), <q) is
greater than n.

Proof. Suppose that the maximum chain length in (alph(«), <), denoted by d,
is less than m. Let ¢ be the minimum number of chains needed to cover (alph(w),
<a)- Obviously

m-n < |alph(x)] < d -t.

Since d < m, we have ¢t > n. By Dilworth’s Theorem, the maximum number of
pairwise incomparable elements of (alph(a), <) is equal to . O

Remark 4.9. Note that the limits given by the previous lemma are sharp in the
sense that for each m,n € N, there exists a word « such that |alph(x)| = m -
n, the maximum chain length in (alph(x), <) is equal to m and the maximum
number of pairwise incomparable elements in the set (alph(x), <) is equal to n.
Clearly the word (aj1a12--- aln)z(azlazz s a2n)2 < (amiama - amn)2 is an
example of such an «.

Theorem 4.10. For all positive integers q and m there exist positive integers ry
and sq with the following property. Let a be a word such that |alph(a)| > rq - m*
and ||, < q for each a € alph(«). Then there exists A C alph(«) with |A| > m
and p € {1,2,...,q} as well as words a1, cz, ..., 0p such that ¢ = ajon -+ op
and foralli € {1,2,..., p}, the word (a;)4 is a permutation of A.
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Proof. Proceed by induction on g.
Letg = 1. Choose r; = 51 = 1 and B = alph(«). Then « is a permutation of
all the letters in alph(w) and the claim is satisfied.

Assume that positive integers r1, 51, 52,52, ...,Fg—1,5¢—1 such that r;_1 < r;
and s;—; < s; fori =2,3,...,g — 1 satisfying the claim of the lemma have been
determined.

sq—1+1 2

— Sqg—1
Letry = g° Tg—1

and s, = Sg—1+ 1. Suppose further that « is a word
such that alph(a) > ry - m*@ and ||, < ¢q for all @ € alph(xr). Let ¢ be
the maximum chain length and ¢ the maximum number of pairwise incompa-
rable elements in (alph(x), <4). By the previous lemma, either ¢ > m or d >
g*e=r, i,

In the former case, let V' be any largest possible set of pairwise incomparable
elements in (alph(a), <¢). Certainly |V| > m; choosing A = V and p = 1 (thus
o1 = o) we find that the induction is extended.

Consider the latter case and assume that d > ¢%¢-! r;”:lles?I—l. Let U be
a set of pairwise incomparable elements in (alph(«), <) such that |U| = d. Let
u € U and o’,a” € alph()™ be such that o« = o’ua”,|a’|, = 0 and for all
x € U, x # u, |a’|x > 0. Since the elements of U are pairwise incomparable,
we have 0 < |@’u|; <g—1land|a”’|; <g—1forallz € U. Let B = ny(a),
where 7y is the projection morphism: alph(a)* — U*. Then 8 = S’B” where
B’ = my(a’u) and B” = my(a”). By the facts above, alph(f) = alph(8’) = U,
U\ {u} Calph(B”), |B'|x <g—1,and |"|x <g—1foreachx € U.

Sg—1+1 2

Apply the induction hypothesis on f’. Since | alph(8')| > ¢*¢=1r 7' " "m’a-1

and

Sg—1+1 2

A P L Y € R L R L b LU ) M

there exists an alphabet B C alph(B), |B| > 1 + rim®' + -+ + rg_ym’e-1,
ki €{1,2,...,q—1},and words B1, B2, ..., Bk, suchthat B’ = BB --- Pk, and
foreachi € {1,2,...,k1},b € B, wehave |(8;)p|p = 1. Now consider the word
B”. Remember that |8”|, < g —1forallb € B. Foreachi € {0,1,...,g — 1},
let B; = {b € B||B"|p = i}. Certainly the sets By, B, ..., B4—1 are pairwise
disjoint and B = U,q;é B;. Furthermore, either By = @ or Bp = {u}. Since
|B| > 14+ rim®' + .-+ rq_ym®—1, there exists, by the pigeonhole principle, an
integeri € {1,2,...,q — 1} such that | B;| > r;ym%. Let i be such an i. Consider
the word y = B, (B") where B, is the projection morphism : alph(a)* —
Bl."(‘). Again, by the induction hypothesis, there exists C < B, |C| > m and
ky € {1,2,...,q — 1}, and words y1,¥2,..., Yk, such that y = yyy2--- ¥, and
foreachi € {1,2,...,kz}, c € C, we have |(¥i)c|c = 1. Since C C B, we
have |(Bi)cl|c = 1 foreachi € {1,2,...,kp} and ¢ € C. Certainly k; + ko <
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g. Choose A = C, p = ki + ka, and words a1, a2, ..., 0k, 4k, SO that & =

Q1Q2 - Oy ks T () = e (Bi) fori = 1,2,... ky, and e (ok,4i) = Vi
fori =1,2,..., ks where ¢ is the projection morphism : alph(@)* — C*. The
proof is now complete. o

Remark 4.11. The first task just after the induction hypothesis in the proof above
is to catch the chain of the maximum length in the set (alph(a), <). If this en-
tity is at least m, we are certainly done. If not, we concentrate on incomparable
elements in (alph(), <) and erase everything else. This is quite natural, since
while wishing to have more than one permutation in our subword construction,
only incomparable elements can be brought into the play. Our final task is to find
an alphabet A C alph(o) and a decomposition « = a2 ap, p < ¢, such
that, foreach i € {1,2,..., p}, the elements of A form a chain in (alph(c; ), <g; ).
This is equivalent to saying that, for each i € {1,2,..., p}, the word (¢;)4 is
a permutation of A.

Remark 4.12. The parameters r4 and s4 in Theorem 4.10 grow very fast with
respect to ¢, the parameter restricting the number of occurrences of any symbol
in . For 5, we have the recurrence relations

S1=1
Sqg+1 =s§+ 1, ifg e N4.

We can roughly estimate that s[? < Sg+1 < 2s§ for each g € N. It is easily seen
that 54 is in 9(22q_l) and in O(22’~1). On the other hand

ry = 1
rge1 = (g + 1% ifg e Ny

Again, with a rough estimate, (g + 1) r;q <rgt1 < r‘?sq forallg e N, g > 2.

With a standard consideration we find that ry is in 9(222q 1_l) and in 0(222q ).
This, among other things, limits the appliance of the lemma substantially. It means
that one can apply the lemma only to those words where alph(w) is very large
when compared with ¢g. The sequences of numbers generated by recursions that
are similar to s, and r4 have been studied for example in [1].

Recall that the infinite sequence & = (&1, ®2,...) of words is such that for
all [ € Ny, we have alph(o;) = Ny, i.e., o is a word over the alphabet N; =
{1,2,...,1}, and each symbol of N; occurs in «;. For any (probabilistic) algo-
rithm to be able to use &, the sequence has to be effectively encoded, i.e., it has to
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have a finite presentation from which the word «; can be computed in polynomial
time with respect to |o;| forall i € N,

We wish to remind that a permutation of an alphabet A4 is any word w € AT
such that |w|, = 1 for each a € A.

The result we achieved in our previous theorem is not yet sufficient for our
purposes; inside the permutations (1) 4, (®2)4, . . ., (0% )4 of A, the symbols have
to be appropriately grouped. We need an application of the following lemma.

Lemma 4.13. Let dy,d1,da,...,dr, where r € N_ be positive integers such
that d; divides di—y fori = 1,2,...,r, A an alphabet of cardinality |A| =
d0d12d22 .. d,z, and wy, w3, ..., Wry1 permutations of A. Then there exists a sub-
set B of A of cardinality | B| = do such that the following conditions are satisfied.
(1) Foranyi € {1,2,....,r}, if tgp(w;) = X1X2---Xg, is the factorization of
wg(w;) and mg(wi+1) = y1y2-+* Ygq; IS the factorization of wg(wj+1) into

d; equal length (= %) blocks, then for each j € {1,2,...,d;}, there exists

J'€{1,2,...,d;} such that alph(x;) = alph(y;s); and

(2) Ifwy = z122+- 24, and Wr41 = ULU2 -+ Uy, are factorizations of w, and
Wy 41, respectively, into dy equal length (= dodid? ---d?_,d,) blocks, then
the words

ng(wy) = np(z1)wp(z2) -~ wp(zq,) and

mg(Wr4+1) = wp(ur)mp(uz)---mp(ug,)

are factorizations of wp(w;) and wp(Wwy41), respectively, into d, equal
length (= Z—(r’) blocks.

Proof. Proceed by induction on r. Consider first the case r = 1. Let wy =
, and wy = ujuz---uy, be factorizations of wy and wy, respectively,

into dy equal length (= dod;) blocks. Then {alph(z,-)};j;1 and {alph(ui)}fl;1
are partitions of A into equal cardinality (= dod) sets. Now |A| = Z—?df, o)
by the Partition Theorem, there exists a bijection from o : {1,2,...,d;} onto

{1,2.....d1} such that |{alph(z;)} N {alph(ue))}| > 92 fori = 1.2,...d;.
Let o be as above and B; C {alph(z;)} N {alph(us(;))} such that |B;| = Z—? for
i =1,2,...,d;. Denote B = U:’ll B;. Then certainly |B| = d and {Bi}fll is
a partition of B. Define x; = np(z;) and y; = np(u;) fori =1,2,...,d;. Then

Z1Z2 24

np(wy) = mp(z1)mp(z2) - wB(2q,) = X1X2+--Xg,; and

nB(wZ) = nB(ul)ﬂB(uz)“'ﬂB(udl) = y1y2'Vd,
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where |x;| = |yi| = Z—? and alph(x;) = alph(ys()) = Bi fori = 1,2,....d;.
Thus (1) and (2) hold for r = 1.

Now suppose that the lemma holds for r = k, k € N.. Consider the case r =
k+ 1. Let wg4; = z’lzémzzlkJrl and w4, = uju, ~-u’dk+1 be factorizations
of w41 and wy 45, respectively, into di4; equal length (= dodd3 - d,fdkﬂ)
blocks. Then again {alph(z]) ?f{‘ and {alph(u}) l‘.ifl” are partitions of A into
equal cardinality (= dod?d3 - "d]?dk+1) sets. Again

dod?d2 ---d?

Al = 3
4] dis1 ke
so, by the Partition Theorem, there exists a bijection o : {1,2,...,dg4+1} —
. dod?d?--d? .
{12 dg1}, with [{alph(z))} N {alph(u ;))}| = ‘)[;k—jlkforz =1,2,...,

242..42
dry1. Leto beasaboveandd’ = %. LetC; € {alph(zlf)}ﬂ{alph(u;(i))}

such that |C;| = d’ fori = 1,2,...,dgy1. Denote C = Udk+l C;. Then |C| =

i=1

d'diqy = dodds ---df and {C; ;if{' is a partition of C. Define w; = m¢ (w;)
fori = 1,2,...,k + 2. Obviously wy | = JTC(le)jTC(le)"'T[C(Z&k_H) and
Wy, = me))me ) - nc (u:ik+1) are factorizations of wy_ , and wy ,,
respectively, into dy; equal length (= d’) blocks such that |alph(rc(z]))| =
|lalph(7rc (u}))| = d’ and alph(r¢ (z])) = alph(¢ (u;(l.))) fori =1,2,...,dg41.

Certainly C is an alphabet of cardinality |C | = dod?d3 -+ d,? and wi, wh, ...,
w;c 4 (as well as w,’( 4p) are permutations of C. Apply the induction hypothesis
to achieve an alphabet B € C C A so that (1) and (2) hold when r is replaced by
k and w; is replaced by wlf fori = 1,2,...,k. Without loss of generality we may
interpret 77 to be the projection morphism: A* — B*. Since np(w;) = 7p(w;)
fori = 1,2,...,k + 2, the condition (1) holds fori = 1,2,...,k. Consider
the case i = k + 1. Let w;c_H = z1z3---Zq, be the factorization of w,’chl
into dj equal length (= a’odlzdz2 e d,f_ldk) blocks. Then, by property (2) of the
induction hypothesis, 7 (w;c +1) = 7B(21)7B(22) -+ B (24, ) is the factorization
of wp(wy, 41) into dy equal length (= Z—Z) blocks. By our earlier considerations,
nc(wy ) = nc(z)rc(zy) - 7c (ZZZHI) is a factorization of 7c (wy_,) into

242..42
dj41 equal length (= d’ = %jld") blocks. Since dj; divides dg, the

equality

me(z) =z d Tt _dk

G 12 "

. d z .
(1—1)ﬁ+1 i—-1)
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holds fori = 1,2,...,dg+1. Then

N =
JTB(Zl-) = JTB(Z(i_l)d:Jrkl-i'l)nB(Z(i l)d:kl 2) ”B(Zidel)
d |alph(rg(z]))| = -H—do = _do_ g5 =12 d N
and |alpn(p Zi = T dr T dima orti =1,2,..., k+1- ow

m(wik+1) = wp(z)7B(23) - 7B(z4, )

do
di+1
blocks. Since alph(wc(z])) = alph(nc(u;(l.))) foralli = 1,2,...,dg41 and

is the factorization of np(wx41) = 7B (wl/c+1) into dy 41 equal length (=

7g(Wi+2) = 7B (Wy, ,), we have that

g (Wk+2) = 7B (ull)”B (u/z) ©7TB (uilk+1)

is the factorization of wg (wg4,) into dg4; equal length (= dltciil ) blocks. More-

over, alph(p(z))) = alph(JTB(u;(i))) fori = 1,2,...,d;4q. Thus the condi-
tion (1) is true also fori = k + 1.
Surely the factorizations

! ! / !’ /
wk+122122...zdk+1’ wk+2:ulu2...udk+1’
ng(we+1) = 7p(z)7p(25) -~ mp(zy, ) and
mg(Wi+2) = mp ) pUs) - g uy, )

satisfy also the condition (2). The induction is thus extended and the proof is now
complete. o

Remark 4.14. Let us apply the previous lemma; choose the parameters values
di =n"""*lkfori =1,2,...,r where k,n € N;. Then

|A| = dod}d3---d? = n" T k(" k)*(n" k) -+ (nk)?
— 1,20+ 0= D++241) 27 +1
— D22 2r 1 r2 2 2r 4
— pr+D? p2r 41

The next theorem is of fundamental importance to our further considerations. It
combines the results of Theorem 4.10 and Lemma 4.13.
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Theorem 4.15. Let o be a word and k > 2, n > 1, and q > 2 integers such that

(1) |alph(a)| > rqn(q_l)zs‘fk(zq_”S‘I; and
(2) |alqg < q foreach a € alph(x)

withrgq and sq as in Theorem 4.10. Then there exist B C alph(a), p €{1,2,...,q}
and a factorization @ = a0y - - - oty for which

(3) |B| = nP~k;

(4) B C alph(w;) and the elements of B are independent with respect to <q; for
i=1,2,...,p;and

(5) foranyi € {1,2,....,p — 1}, if (0;)p = z122-++Z,p—i} IS the factoriza-
tion of (o)p into n?~'k equal length (= n'~1) blocks and (aj4+1)p =
Uiy U, p—i—1g the factorization of (aj4+1)p into nP~'=1 equal length
(= n') blocks, then for each ji € {1,2,...,nP7'k}, there exists j, €
{1,2,...,n?7" 7k} such that alph(z;,) < alph(u}, ).

Proof. Since the conditions (1) and (2) hold, Theorem 4.10 implies that there
exists A C alph(a) with |A| > n@=1D?(24=3 and p €{Ll,2,...,q} as well as
words a1, 2, ...,0p such that @ = aja---ap and forall i € {1,2,..., p}, the
word (;)4 is a permutation of A.

If p = 1,any set B C A of cardinality k satisfies (3), (4) and (5). Analogously,
if p =2, any set B C A of cardinality n k satisfies the claims of our theorem.

Suppose that p > 3. Choose a subset A’ of A such that |A"| = n(P=D?2p=3,
In Lemma 4.13, choose parameters as follows: A = A',r = p — 2, w; = &j4+1
fori =1,2,...,p—1,do =nP 'k,andd; =n?"“Jkforj=1,2,...,p—2.
Then, by Lemma 4.13, there exists a subset B of A’ of cardinality |B| = dy =
nP~1k such that

(x) foranyi € {2,3,..., p—1},if (a;)Bp = x1X2 - X, p—i} 1 the factorization
of (¢;)p and (j+1)B = Y12+ ¥, »—i) is the factorization of (o; +1)p into
nPik equal length (= % = n'~1) blocks, then Vjed{l,2,... ,np_ik},
there exists j' € {1,2, ..., n?~'k} such that alph(x;) = alph(y;).

Since B C A, the elements of B are independent with respect to <, fori =
1,2,...,p. Leti € {1,2,...,p —1}. If i = 1, then certainly the claim in (5)
holds, since the factorization of 75 (1) consists of 77~k one symbol blocks.

Now suppose thati € {2,3,..., p—1}. Let (o;)p = 2122 -+ - Z,,p—i be the fac-
torization of (o;;)p and (@ +1)B = Y12 -+ Yyr—ig Of (@i41)p into n? 'k equal
length blocks and (¢j+1)B = ujuz---u, p—i—1; be the factorization of («;j4+1)B
into n?~"~1k equal length blocks. Let j; € {1,2,...,nP7'k}. By the prop-
erty (%), there exists j' € {1,2,...,nP "k} such that alph(z;,) = alph(y;’).
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Since nP?~ "1k divides n? 'k, there exist j2 € {1,2,.. .,np_l_ik} such that
alph(y;s) < alph(uj,). Then alph(z;;) < alph(u;,). The proof is now com-
plete. ]

The previous theorem clearly implies that property (P2) statet in Section 3
holds.

5 Construction and analysis of the nested multicollision attack

In this section, we shall supplement the steps of the Nested Multicollision Attack
Schema so that a detailed description and analysis of a probabilistic multicollision
attack procedure is possible.

5.1 The attack as a statistical experiment

Suppose that f* : {0,1}" x {0, 1} — {0,1}" is a compression function and
[ € N4. Assume furthermore that we have fixed a set Act € N; of so-called
active indices. Let T € Nl’L be a word such that alph(t) contains exactly one
element, say ¢, which is an active index. Finally, let @ € {0, 1}’ be a given
constant message block.

A basic birthday attack on f; with active index t and initial value h, denoted
by BBA( f7,t, h) is understood to be a statistical (probabilistic) experiment carried
out as follows.

(1) Generate a set R C {0, 1}" of 2% random message blocks.

(2) Let
S ={ujuz---u;|u; € Rand Vi e Ny \{t}:u; = o }.

(3) Foreachu € S, compute the value f; (4, u) to find message blocks x, y € R,
x # y, and the respective collision value /2’ such that

fr(h,a)t_lxa)l_t) — f,(h,a)t_lya)l_t) — h/.

The probability p that BBA( f,t, h) yields a collision is approximately equal
to 0.4 (for details, see for instance [14, 16]). In an (extended) birthday attack on
fr with active index ¢ and initial value /, (abbreviated EBA( fz,t, h)) one or more
basic birthday attacks are carried out one after another until a collision is found.
Thus in an extended birthday attack a collision is always found with probability
equal to one. The expected number a of BBAs in an EBA is obviously equal to
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1/p. As mentioned above, p &~ 0.4, so we have @ &~ 2.5. Thus the expected
number of queries on f in EBA( f;.t,h) is equal to d|z|25.

Let now o be a word over the alphabet N; and Act be the set of r € N active
indices a1,as, ...,a, such that @y <y az <q -+ < ar. Suppose furthermore
that « = aja - - - o is a factorization of « such that for eachi € {1,2,...,r},all
occurrences of the symbol a@; in « lie in ;. In our construction (see Lemma 5.1),
a sequence

EBA(fou ho,ay), EBA(fazv hi,az),..., EBA(farvhr—lyar)

of extended birthday attacks is executed. Above /g is the initial value and for each
i €{l,2,...,r}, during the execution of EBA( fu,.hi—1,a;), values h; € {0, 1}"
and distinct message blocks x4, , ¥4, € {0, 1}" are found such that

hi = fo; (hic1, 0% g0 7%) = fo, (hi—1, 0%y, 0! %),

The collision value h; of EBA(fy,;,hi—1.a;i) serves as the initial value to the
attack EBA(fai+1,hi,ai+1) fori = 1,2,...,r — 1. We may assume that the
EBA’s above are statistically independent, so the expected number of BBA’s in
the sequence is a - r. We may also deduce that the expected number of queries on
the total sequence is equal to d|ojaz - - - |27 . Obviously the set

M = {u1u2'~u1|‘v’i e{l,2,....,r} 1 uq; €{xq;.Ya;}
A Vi e Ny \ Act: u; =a)}

is a 2"-collision in f, with initial value hgy. If we above choose o; = a; for
i =1,2,...,r, we can interpret Joux’s 2" -collision attack to be a special case of
our construction: certainly the complexity of this attack is a r 2%,

The time is now ripe to augment the first three steps in the schema NMCAS.
Call the expanded plan of action Nested Multicollision Attack (NMCA).

Procedure NMCA

Input: A g-bounded (¢ € N, ¢ > 2) generalized iterated hash function Hy ¢,
initial value ho € {0, 1}", integer r € N.

Output: A 2"-collision in Hg .

Step 1: Let/ = rqn(q_l)zsqr(zq ~3a where r, and s, are parameters defined in
Theorem 4.10. Let @ = o where o is the /th element of the sequence &. Write «
in the form o = iyiz---is, where s € Ny andi; € Nyfor j =1,2,...,5s.

Step 2: Let Act = B, |B| = n?~1r, be the set of active indices, where B € N; =
{1,2,....0l}and p € {1,2,...,q} are as in Theorem 4.15, when the parameter
k=r.
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Step 3: Leto = B1f> - - - Bp the factorization of o such that the words B1, B2, . ...
Bp have the same properties as the words a1, @z, ..., ap, respectively, in Theo-
rem 4.15, when k = r.

Note that, in Step 2 above, no algorithm to find the set B is specified. In the
trivial case, given [ = rqn(q_l)zsff r(24-3)sq4  one could check all the (npl_lr) sub-
sets of size n?~1r of {1,2,...,1}. This certainly can be carried out in polynomial
time with respect to 7.

5.2 The two phases of the attack

Our next task is to show that Step 4 in NMCAS is feasible, i.e., the multicollision
can be constructed so that the expected number of queries on f is not too large.
The next lemma is an extended version of Theorem 5.1 in [16].

Lemma 5.1. Let o be a word over the alphabet N;, r € N4, and ay,as,....a,
in alph(w), symbols such that a; <y ap <¢g ... <q ar. Let furthermore o =
a0 - -y be a factorization of a such that for each i € {1,2,...,r}, all occur-
rences of the symbol a; in « lie in «;. Given an initial value hg € {0, 1}"*, we can,
with probability equal to one, find message block sets My, M», ..., M; € {0, 1}™
as well as values hy, ha, ..., hy € {0, 1}" such that

(1) My = {w} foreachb € Ny \ A, where A = {ay,az,...,ar};
(2) Mgy, = {u;. u}}, where u; # uj foreachi € {1,2,....r};
(3) foreachi €{1,2,....r}theset M = My -M>--- M is a 2-collision in fq,
with initial value h;—y and a 2'-collision in fy,q,-«; Such that Vu,u’" € M
hi = fo;(hi—1,u) = fo;(hi—1,u’) and
fa1a2-~-ai (ho,u) = falazn-ai (ho, ”/)-

Moreover, the expected number of queries on [ needed to carry out the task is
~ n
ala)2z.

Proof. Let initially M; = {w} fori = 1,2,...,l and M = M, - My --- M;.
Proceed by induction on r. Suppose that, given the initial value ko € {0, 1}"
we are, with probability equal to one, able to find message block sets M, =
{uiuiy,uip #u),i =1,2,...,r—1,aswellasvalues iy, ha, ... . hy—1 €{0,1}"
such that after updating M := M - M, --- M; the following holds: for each
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i €{l,2,...,r — 1} the set M is a 2-collision in faj with initial value /1j_; such
that

VYuu' € M : hj = fo; (hj—1,u) = fo, (hj—1.u").

Furthermore, assume that the expected number of queries on f is equal to
alojay -+ ar—q] - 25. Replace in M = M; - M, --- M; the message block set
M,, = {w} with aset T, of 2% random message blocks and denote the attained
set by 7. Among the messages, a 2-collision in f,, with initial value h;_1 is
searched for. Reasoning exactly as in the beginning of the previous Subsection 5.1,
we deduce that, to find a collision in fy,, the expected number of times that the
generation of the set 7, of 2% random message blocks has to be repeated is a.
Thus, to find a collision in f, , the expected number of queries on f is a|o; 122,
Note two things in the construction of the collision in fy;:

(i) only message blocks from those sets M; for which j € alph(«,) are used;
and

(ii) for each a € alph(ayg, ), if a # a,, then M, = {w}.

Let x,y € T, x # y, be such that fy, (hy—1,x) = fo,(hr—1,y). Let x =
X1x2---x;and y = y1ya---y;, where x;, y; € {0,1}", foralli = 1,2,...,1.
By the properties (i) and (ii) above, x4, # yq,. Choose U, = x4, and u), = yg,.
Let My, = {u;.u}} and hy = fo,(hy—1,x). Update M = My - M5 --- M; and
deduce that Yu,u’ e M

hy = fotr (hr—1,u) = far (hr—l,u/)
= fonoez-"otr (ho,u) = famznur (h07”/)-

Obviously, M is a 2-collision in fy, with initial value /,_; and a 2" -collision in
. .~ n o,

Jajar—a,- The expected number of queries on f is d@|ojaz -+~ |22 in all. The

induction is now extended. |

We can now top up the fourth step of NMCAS.
Step 4 of NMCA: Let My, M5, ..., M; be as in Lemma 5.1.

Our next result implies that in Step 5 of NMCAS for any r € {2,3,..., p}, the
set €; can be constructed from €;_; feasibly, i.e., so that the expected number of
queries on f is again not too high. Recall the definition of #: if &« = ajas---as
and v = wujuy---u; are words such that ¢; € Ny fori = 1,2,... s and u; €
{0,1}" for j =1,2,...,/,then (o) = ug,Ug, *+*Uq

s*
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Lemma 5.2. Let o be a word over the alphabet N;, d and r positive integers,
A C alph(a) a set of cardinality |A| = dnr, and @« = 182+ BnrviV2 -+ Vr
a factorization of o with the following properties.

(1) A < alph(B) Nalph(y) where B = B1B2 -+ Bnr andy = y1y2---yr;

(2) |alph(Bi) N A| = d fori = 1,2,...,nr, and |alph(y;) N A| = nd for
j=12,...,r; and

(3) foreachi € {1,2,...,nr}thereexists j € {1,2,...,r} such that alph(B;)N
A C alph(y;) N A.

Moreover, let uy,u'y, uz, 1%, ... upr u,, € {0, l}ml be messages and hg, h1,
oo hyyr €40, 1} be values such that for eachi € {1,2,...,nr}:

(4) Ybe N\ A1 ii:(b) = ill(b) = w; and
(5) i (Bi) # w;(Bi) and h; = fp,(hi—1,u;) = fp, (hi—1,u}).

Then the set S of all messages u € {0,1Y™ such that for each b € N; \ A:
u(b) = w and for each i € {1,2,....nr}: u(B;) € {u;(Bi).u;(B;)} is well-
defined and satisfies for each i € {1,2,...,nr} and u € S the equality h; =
S8, (hi—1.u). Moreover we can, with probability equal to one, find messages
V1, V], V2, V), ..., Ur, Uy in S and values hy, b, ... h,, hy = hyy, such that for
each j € {1,2,...,r}:

6) v;(yj) # 17}()’1’) and h} = fy (h;‘—l’vj) = fy (h}—v Uj/)

The expected number of queries on f needed to carry out the task is L~l|)/|2%.
Finally, the set T of all messages v € {0, 1Y"! such that for each b € Nj \ A:
v(b) = w and for each j € {1,2,...,r}: v(y;) € {vj(y;). ﬁ;(yj)} is a well-
defined subset of S and forms a nontrivial 2" -collision on fy with initial value hy.

Proof. Note first that since |A| = dnr, A C alph(B), and |alph(B;) N A| = d
for each i € {1,2,...,nr}, the indexed family of sets {alph(8;) N A}'_, forms
a partition of A. With analogous reasoning, {alph(y;) N A}’_, is a partition of A,
too.

Let now x; € {u;,u;} fori = 1,2,...,nr. Consider the sequence X1(f1),
X2(B2), ..., Xnr(Bnr). Define t1,t2,...,1; € {0,1}" as follows. For each b €
N;\A4,lett, = w. Foreacha € Aandi € {1,2,...,nr},ifa € alph(B;)NA, then
ta = X;i(a). Since {alph(B;) N A}'_, is a partition of A, the message block 7, is
uniquely determined. Thus the sequence X1(B81), X2(82), ..., Xnr(Bnr) uniquely
defines the message 7115 - - - 1;. We deduce that the set S is well-defined.
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Consider now the sets {it(y1)|u € S}, {u(y2)|lu € S}, ..., {u(yr) \u e S}
Since {alph(y;) N A}J’. —, 1s a partition of A and the property (3) holds, the car-
dinality of the set {u(y;) | u € S}is 2" foreach j € {1,2,...,r}. Furthermore,
since Yy = y1y2 - ¥r, the equality

{u(y)lu e S} ={u(yr) |u e SHu(y2) |u € S}---{u(y,) [u € S}

holds, so the cardinality of the set {i(y) ’ ueStis2",
Letu € S. Then

fp(ho,u) = [T (ho,u(B)) = [T (ho, u(B1)u(B2) - #(Bnr)) = hur -

Thus S is a 2""-collision in fg with initial value ho.
By assumption, iy = h,,. Continue by induction; assume that k is in {1, 2,

...,r — 1} and with probability equal to one, messages vy, v}, V2, V5, ..., Vg, v}c
in S and values ', 7}, .. ., h;{ in {0, 1} have been found such that for each j €
{1,2,....k}

0 (y) # 0j(y)) and k= f, (W_ . vp) = fy, Wy v)).

Furthermore, the expected number of queries on f is @|y1yz -+ Yk |2%. Since, for
each u € §, the equality

Friwr (i) = fF (B ti(yie41)

holds and the cardinality of the set {u (yx+1) | u € S}is2". Thus we can, choosing
randomly from the set S message sets of cardinality 2% and reasoning exactly as in
the proof of Lemma 5.1, with probability equal to one, find messages vg 41, v,’c 41
in {0, 1" and a value Ry .y in {0, 1}" such that Ug 1 (Vk+1) # V) (Vk+1) and

Riepr = friopr (Wi vie+1) = fyiqy (e, vy ;). The expected number of queries

on f is certainly a|yg 41 122,

The induction is now extended and messages vy, v’l, vy, v’z, ..., Up, 0. in S and
values iy, h'y, ..., k) in {0, 1}" satisfying (6) found with expected number |y |2%
of queries on f. The task is successful with probability one.

Reasoning as with the set S’ and noting that v;, vj/- e Sforall j € {1,2,...,r},
it is straightforward to see that 7 is a well-defined subset of S. Since v, (y;) #
17]’.()/j) for each j € {1,2,...,r} and v;(b) = ﬁ}(b) for all b € N; \ A, the
cardinality of 7" is 2". Certainly fo(ho,u) = h) foreachu € T. The proof is now
complete. |

The following theorem combines the results of the two previous lemmata; we
verify that Step 5 in NMCAS can be carried out in a feasible fashion without con-
suming too much resources.
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Theorem 5.3. Let a be a word over the alphabet Ny, r and p positive integers, A
a subset of the alphabet alph(a) of cardinality |A| = n?~1r, and @ = a0z -+ ap
a factorization of o such that for each i € {1,2,..., p}, the elements of A form
a chain in the partially ordered set (alph(a), <g, ) (i.e., the elements of A are inde-
pendent with respect to <y, ). Assume furthermore that for each i € {1,2, ..., p},
there exists a factorization o; = Q102 -+« of the word a; such that the
following conditions are satisfied.

inP—ir

(1) |alph(aij)NA|=n'"" foreachi € {1,2,...,p}and j € {1,2,...,nP7'r};
and

(2) foralli €{1,2,...,ptand j € {1,2,...,np_ir}thereexistsk e{l,2,...,
nP~=1r} such that alph(e;;) N A is a subset of alph(a; 1 £) N A.

Then, given an initial value ho € {0, 1}" we can, with probability equal to one,

find a nontrivial 2" -collision in fy. Moreover, the expected number of queries on
.~ n

fo needed to carry out the task is a|a|22.

Proof. We first apply Lemma 5.1 to generate a 27" _collision set By on fo, and
then, by using Lemma 5.2 repeatedly, show that there exists a 27T collision B;

on fo asa; fori =2,3,..., psuchthat By 2 By 2 --- 2 B,.

In Lemma 5.1, choose the parameters as follows: « is equal to «; and r is
equal to n?~1r. Let A = lar,az,...,a,p—1,yand a1 <q a2 <g ... <g dyp—1,
i =1,2,..., p. Certainly these assumptions can be made.

Then a1 = 110012+ @y ,p—1, is a factorization of «y such that all occur-
rences of the symbol a; in a; lie in aj, for each j € {1,2,...,nP71r}. Let

ho € {0, 1}" be given. Applying Lemma 5.1, one can, with probability equal to
one and with expected number a|o; |2% of queries on £, find message block sets
M, M, ..., M; < {0,1}" as well as values hy, ha, ..., h,»—1, such that

(a) My = {w}foreachb € N; \ 4;
(b) My, = {w;, w;}, where w; # w; foreachi € {1,2,.. .,nP71r); and

(c) foreachi € {1,2,...,nP~1r}, theset M = MM, --- M is a 2-collision in
Ja,; and a 2'-collision in f,;,--e; With initial value ;1 such that for each
wand v’ in M:

hi = fali(hi—la M) - fal,'(hi—l, M/) and
faualz"'ali (ho,u) = fanalz'"ali (ho, ”l) :

Obviously the set By = M is a "I _collision in Ja, with initial value hyg.
The creation of B; was carried out by a statistical process which succeeds with
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probability equal to one; in the process the expected number of queries on f is
aloy|22.

Choose the parameters of Lemma 5.2 as follows. Let 8 be o1, y be oy and r
be n?71r. Let d be equal to 1, B; equal to oy; fori = 1,2,... ,nP7 1y and Vi
equal to apj for j = 1,2, ... ,nP72r. Then the assumptions of Theorem 5.3 for
o1 and ap imply that all the assumptions of Lemma 5.2 (with parameters chosen
as above) are valid. Thus we can, with a probability equal to one and expected

~ n . ’ / ’
number d|a2|22 of queries on f, find messages vy, v}, V2,05, ..., Vyp—2,, Vp—2y
: ml /AR / . n o1 _
in {0, 1}™** and values hy, h), ... ,hn,,,zr in {0, 1}", hyy = h, p—1,, such that for

each j € {1,2,...,n?2r}, Vb e N;\ A : 9;(b) = l_);-(b) = o and v; (a2;) #
Viazy) and iy = fo, (W _ 1. vj) = fap; (W;_;.v};). The set S of Lemma 5.2 is
clearly our set By = M. Choose B; to be the set 7' guaranteed by Lemma 5.2.
Then B € Bj is a (nontrivial) 2m” 721 _collision in Sy, With initial value /.
Continue by induction and let k € {2,3,..., p — 1}. Let the words xl,x/l,
X2, Xy, ..., xnp_kr,x;lp_kr € {0, 1}”’1 and values do, d1,...,d,p—x, € {0,1}"
be such that for each i € {1,2,...,n?7%r}, Vb e N;\ 4 : X;(b) = X/(b) = w
and X (ag;) # Xj(ox;) and di = fo;(di—1,%i) = for;(di—1,x]). Let By be
the set of all messages u € {0, 1}/ such that for each b € N; \ 4: i (b) = w
and foreach j € {1,2,...,nP %} i (ag;) is in {X (otgj), X' (g j)}. Suppose that
By, is a subset of By_; and that By is a 21”7 _collision in Jaraz-a; With ini-
tial value hg. Choose the parameters of Lemma 5.2 as follows. Let d be equal
to n?—k=1;, B be equal to o, B; be equal to ag; fori = 1,2,... nP~kr and
yj be equal to oy ; for j = 1,2,... ,nP~k=1p By the assumptions of The-
orem 5.3, all the assumptions of Lemma 5.2 are valid (with the chosen param-
eter values). Lemma 5.2 implies that one may, with a probability equal to one
and expected number a|og 41 |2% of queries on f, find messages yi, Vs Y2, V5,
ynp—k—lr,y;lp_k_lr in {0, l}ml and values dj, d], .. "dr/zp_k_lr in {0, 1}",
dy = d,p—x,,suchthat foreach j € {1,2,... nPk=1y Vb e Nj\A yj(b) =
yi(0) = o and yj(akt1,;) # Vi(@kt1,;) and d} = fo,p, (di_j.yj) =
Jorir,; (djf_l,yj/.). The set 7 of all messages y in {0, 1} such that for each
b e N;\ A: j(b) = w and for each j € {1,2,...,nP~k=1p}: V(@gy1,7) is in
{V(k+1,7), V' (ag41,7)} is then a well-defined subset of By and forms a (non-
trivial) 2” "7 _collision in S, with initial value do. By the induction as-
sumption, T is a 27"~ 'T-collision in fy,qy- 4, With initial value /9. Choose
Bi4+1 = T and the induction is extended. We deduce that we can, with proba-
bility equal to one, find a nontrivial 2" -collision in f, with initial value k9. The
expected number of queries on f is altogether a |oz|2%. |
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The fifth step of step of NMCAS can be completed:

Step 5 of NMCA: Let By, B>, ..., B, be as in the proof of Theorem 5.3. The
theorem guarantees that, to create a 2"-collision in fg, the expected number of
queries on f is d|a|2%.

Let us recapitulate our results.

Theorem 5.4. Let m,n and g be positive integers such thatm > n and g > 2, f
a compression function of block size m and length n, and @ = (a1, a2,...) a g-
bounded sequence of words such that alph(«;) = Ny for eachi € Ny. Then, for
each r € Ny, there exists a 2" -collision attack on the generalized iterated hash
function Hg,_ ¢ of complexity @ rq n@=D%54124-3)5425 \where the parameters rq
and sq are defined recursivelybyry = s1 = 1, rig1 = i risi+1 and sj+1 = siz—l—l
fori € N4.

We wish to recall that in [9] an informal proof of the previous theorem with
a different complexity and parameter definitions was given.

5.3 The case ¢ = 2 and some complexity considerations

Now suppose that in the input of the procedure NMCA the generalized iterated hash
function H&, f is such that the sequence & = (a1, @2, ...) is 2-bounded. Then, by
Theorem 4.10, the equalities 1, = 2°! rf‘ 1 — 2 and = s% + 1 = 2 hold.
By Theorem 5.4, when creating a 2"-collision (r € Nt) on Hy z, the expected
number of queries on f isa rp n@=1%s2 p22-3)5225 = 232225, In [16] with
rigorous considerations a somewhat smaller average complexity O(r2-(In r)-(n +
In(In 2r)) - 2*/2) was attained.

The method of Nandi and Stinson [16] guarantees that a 2" -collision is reached
regardless of the number of permutations (one or two). The method applied in this
paper yields either a 2""-collision (for one permutation) or a 2"-collision (in the
case of two permutations). This leads to a somewhat rougher estimate and thus to
greater complexity in this special case. It would be interesting to see if some of the
techniques in [16] could also be used in the general case to lower the complexity.

Note that in NMCA it is possible to take also ¢ as an input parameter. Then
the procedure is of course extremely inefficient: due to the recurrence relations
ri =51 = 1l,and rg41 = qsqr;qﬂ, Sg+1 = sg + 1 for ¢ € N4, we have
a procedure that is at least triple exponential with respect to g. A natural question
arises whether or not in Theorem 4.10, the length of the word o could be chosen
to be considerably smaller. Our opinion is that then a significantly different proof
technique is needed. If Lemma 4.8 and Dilworth’s Theorem (and thus the relation
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between independent elements and incomparable elements in alph(«) is applied,
it is difficult to imagine that a 2"-collision in Hg ¢ could be constructed so that
the expected number of queries on f is less than exponential with respect to g.

To implement a generalized iterated hash function, a relatively strong comput-
ing device (in automata theoretic sense) is needed. In fact, a two-way deterministic
pushdown transducer seems to be an indispensable tool regardless of the way the
respective compression function is realized as a computer program. This raises
the question of efficiency because a two-way deterministic pushdown transducer
is a much more complicated machine (and thus much more resource consuming
to implement and use) than a finite state transducer which is needed to realize
a traditional iterated hash function.

If a generalized iterated hash function is used, the sender has to construct the
whole message before he can start to hash it. Similarly, the receiver has to have
the complete message available before the sent hash value can be verified to be
correct. This greatly impedes their applicability in applications where streaming
data is used. Suppose that we wish to somehow avoid this restriction and start
hashing the message before it has completely been formed or received. Then the
message blocks occurring at the end of the message are not available when we start
hashing. This causes extra restrictions on the sequence & and possibly implies that
multicollisions are easily found. Especially chains could be forced to form as the
earlier message blocks will be used up before the message blocks in the end can
be applied. As can be seen from our method, this enables a relatively fast and
straightforward multicollision attack.

We also need an efficient encoding for the sequence &. If @ is complicated,
which means that the hash function Hg ¢ is secure, then picking an element ¢;
from & may be resource consuming. On the other hand, if & is very simple and
picking an element from the sequence can be done with ease, then there might be
very efficient multicollision attacks against these types of hash functions.

6 Conclusion

In this paper, we have demonstrated how the analysis of multicollisions in iterated
hash functions can be done with the use of word combinatorics. We have also given
some new results and settled some inaccuracies in the previous results concerning
multicollisions in generalized iterated hash functions. We have also brought these
results into a unified and well established theoretical framework, which should
make further investigation of the theory of iterated hash functions easier.

The next step in the research could be to investigate the possibilities of gen-
erating words, which have desirable properties in the context of multicollisions.
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We could also categorize words and whole languages with respect to their per-
formance in the iterative structure. Also the even more general types of iterated
hash functions presented in [16] and [9] could be brought into this framework and
further analyzed.
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