J. Math. Cryptol. 4 (2010), 57-93
DOI 10.1515/IMC.2010.003 © de Gruyter 2010

Common modulus attacks on small private exponent
RSA and some fast variants (in practice)

M. Jason Hinek and Charles C. Y. Lam

Communicated by Kaoru Kurosawa

Abstract. In this work we re-examine two common modulus attacks on RSA. First, we
show that Guo’s continued fraction attack works much better in practice than previously
expected. Given three instances of RSA with a common modulus N and private exponents
each smaller than N33, the attack can factor the modulus about 93% of the time in
practice. The success rate of the attack can be increased up to almost 100% by including
a relatively small exhaustive search. Next, we consider Howgrave-Graham and Seifert’s
lattice-based attack and show that a second necessary condition for the attack exists that
limits the bounds (beyond the original bounds) once n > 7 instances of RSA are used. In
particular, by construction, the attack is limited to private exponents at most N %>~¢, given
sufficiently many instances, instead of the original bound of N 7€,

In addition, we also consider the effectiveness of the attacks when mounted against
multi-prime RSA and Takagi’s variant of RSA. For multi-prime RSA, we show three (or
more) instances with a common modulus and private exponents smaller than N '/37€ is
unsafe. For Takagi’s scheme, we show that three or more instances with a common mod-
ulus N = p’q is unsafe when all the private exponents are smaller than N2/G@+D)—e
The results, for both variants, is obtained using Guo’s method and are almost always suc-
cessful with the inclusion of a small exhaustive search. When only two instances are
available, Howgrave-Graham and Seifert’s attack can be successfully mounted on multi-
prime RSA, with r primes in the modulus, when the private exponents are both smaller
than N G+7)/7r—€
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1 Introduction

The RSA cryptosystem [20] is the most widely known and widely used public-key
cryptosystem in the world today. It is well known, however, that RSA is insecure
when the private exponent is too small. Wiener’s famous continued fraction at-
tack [24] can be used to efficiently factor the modulus when the private exponent
is smaller than N 1/4=¢ where N is the RSA modulus, and Boneh and Durfee’s
lattice-based attack [2] shows that private exponents up to N ©29297¢ should be
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considered unsafe also. The latter result is an asymptotic bound, but experiments
have broken instances of RSA with private exponents up to about N %2 and recent
work [21] shows that private exponents up to N %3 are vulnerable (for 1024-bit N)
given some exhaustive search.

The bounds on the private exponent can be increased considerably when there
are two or more instances RSA, having the same modulus, with small private expo-
nents. An unpublished attack by Guo (described in [9]) can be used to efficiently
factor the (common) modulus, with some non-negligible probability, when three
instances of RSA, each with private exponents smaller than N/37€, are given.
A stronger attack, by Howgrave-Graham and Seifert [9], can be used when given
two or more instances of RSA with a common modulus. For example, the at-
tack works for private exponents up to N %3377€_ given only two instances and
for private exponents up to N %4~¢ given three instances. Howgrave-Graham and
Seifert’s attack is a heuristic lattice-based attack, relying on an assumption about
the lattices used, but is observed to work well in practice.

In this work we re-examine both Guo’s and Howgrave-Graham and Seifert’s
common modulus attacks. Our original intent was simply to extend these attacks
to multi-prime RSA and Takagi’s scheme, however, in doing so, we also made
some interesting observations about the original attacks on RSA. First, we noticed
that Guo’s attack is expected to be much more successful than originally suggested.
This follows by using all of the information available and including some small ex-
haustive searches. This improvement is shown to hold in practice as well. Next, we
observe that the bounds in Howgrave-Graham and Seifert’s attack are overly opti-
mistic when there are more than six instances of RSA with a common modulus. In
particular, we show that there is a second necessary condition that limits the attack
when there are many instances. Finally, and achieving our original goal, we show
that multi-prime RSA and Takagi’s scheme are vulnerable to common modulus at-
tacks as well. Somewhat surprising, we find that Guo’s attack works much better
for multi-prime RSA (given three or more instances) than Howgrave-Graham and
Seifert’s attack which is opposite to the case of RSA. In addition, the strength of
the attack on multi-prime RSA (i.e., the bounds on the private exponent) are the
same as that for RSA. This is in contrast to all known attacks on multi-prime RSA
(except for factoring). Also, we find that only Guo’s attack can be used to attack
Takagi’s scheme. The strength of the attack (in theory and practice) depend on the
structure of the modulus and decrease with increasing multiplicity of the prime p.

1.1 Motivation

When using RSA for both an encryption scheme and for a digital signature scheme,
it is suggested by Ferguson and Schneier [6, §13.4.2] that instead of having two
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sets of keysl, each with a different modulus, that a single modulus should be used
for the two (distinct) sets of keys. In this way, only two primes need to be gen-
erated and only one modulus needs to be stored for both keys. The same idea
can be generalized to (arbitrary) multiple instances of RSA with a common mod-
ulus when a user requires several encryption (or signature) schemes. For example,
a user may wish to have both professional and personal encryption and signature
schemes; four instances of RSA in total.

Based on the best known small private exponent attacks on (single instance)
RSA, a user may be tempted to use private exponents that are immune to these
attacks but still relatively small in order to minimize decryption (signature gen-
eration) times. Howgrave-Graham and Seifert have shown, however, that private
exponents exceeding the bounds by Boneh and Durfee (N %-2°2) are insecure when
two or more instances share a common modulus. In fact, they have shown that
private exponents up to N°37 are unsafe when there are two instances sharing
a common modulus (and stronger results for more instances).

There has been no consideration of the common modulus setting for multi-
prime RSA or for Takagi’s scheme though. In order to better understand the secu-
rity of these variants of RSA it is important to consider all possible attacks (just as
with RSA).

1.2 Related work

This work is directly based on Guo’s continued fraction attack and Howgrave-
Graham and Seifert’s lattice based attack on common modulus RSA as described
in [9]. Common modulus attacks have not been, to our knowledge, considered in
the context of variants of RSA before.

There are some earlier common modulus attacks on RSA, by Simmons [22]
and DeLaurentis [5], but these attacks apply to the so-called common modulus
protocol. In this early protocol many users share the same modulus and each user
is not supposed to know the factorization. Since any user with a valid private
exponent can compute the factorization of the modulus, however, this protocol
is completely insecure. Here, we consider a single user who has two or more
instances of RSA with a common modulus.

1.3 Contributions

The contributions of our work, in brief, are as follows.

(i) We show that Guo’s continued fraction attack is much more effective in prac-
tice than previously thought.

1 A single key pair should never be used for more than one specific purpose. For example,
a single key should not be used for encryption and digital signatures.
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(il) We show that Guo’s attack can be mounted on multi-prime (with the same
strength as for RSA) and on Takagi’s scheme with reduced bounds (depend-
ing on the form of the modulus).

(iii) We show that a second necessary condition for Howgrave-Graham and Sei-
fert’s lattice-based attack exists, which limits the strength of the attack for
n > 7 instances of RSA to private exponents smaller than N 172,

(iv) We show that Howgrave-Graham and Seifert’s attack can be mounted on
multi-prime RSA (but not Takagi’s scheme), but that once there are three
instances of multi-prime RSA, Guo’s attack is stronger.

1.4 Outline

The rest of the paper is as follows. In Section 2, we review the RSA cryptosys-
tem and as well as the two fast variants we consider (multi-prime and Takagi’s
scheme). The tools needed for the attacks (continued fractions and lattices) are
briefly reviewed in Section 3. We use Wiener’s attack as an example to illus-
trate both techniques. In Section 4, we review Guo’s continued fraction attack
and present experimental data to show the effectiveness of the attack. In addition,
we mount the attack on multi-prime RSA and Takagi’s scheme. In Section 5, we
review Howgrave-Graham and Seifert’s lattice-based attack. We show that a sec-
ondary necessary condition for the attack exists that limits the effectiveness of the
attack for n > 7 instances of RSA. We also show the effectiveness of the attack
when mounted on multi-prime RSA. Finally, we conclude with Section 6.

2 RSA and some fast variants

The RSA cryptosystem [20] is the most widely known and most widely used public
key cryptosystem in the world. Let N = pg be the product of two large (distinct)
primes and let ¢ and d be inverses modulo A(N) = lcm(p — 1,¢ — 1). Thus, e
and d satisfy the RSA key equation

ed =1+ kA(N).

where k is some positive integer. From this equation, notice that e and d are also
inverses modulo the constant k so that gcd(d,k) = 1. The value N is called
the RSA modulus (or modulus for short), e is the public (encrypting) exponent
and d is the private (decrypting) exponent. The public key is given by (e, N)
and the private key is given by (d, p,¢q). The exponents can actually be defined
as inverses modulo any multiple of A(N). In fact, p(N) = (p — 1)(¢ — 1) =
gcd(p — 1, — 1)A(N) is the value used in the original presentation of RSA [20]
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and is often used in the presentation of many attacks. The reason that ¢(N) is
desirable, from the point of view of an attacker, is that

p(N)=(p—-1D)(@—-1)=N-p—q+1,

can be approximated as N minus a small correction term (s = p + g — 1). When
the primes are balanced, thatis 1/2 < p/q < 2, we then have

Is|=|N —¢(N)|=|p+q—1 <3NV2

and so N is a good approximation of ¢(N). We will only consider RSA with
balanced primes.

Given a plaintext message m € Z y, the ciphertext is computed as ¢ = m® mod
N and plaintext is recovered since ¢ mod N = m®? mod N = m. Thus en-
cryption is simply a modular exponentiation of the plaintext with exponent e and
decryption is a modular exponentiation of the ciphertext with exponent d. We will
refer to decryption in this manner as standard decryption. To speed up decryption,
however, we can first compute partial decryptions modulo p and modulo ¢ and
then combine them with the Chinese remainder theorem to recover the plaintext
(see [19]). In particular, letting d, = d mod p — 1 and dy = d mod g — 1, we
can first compute m, = ¢ mod p and mg = ¢% mod ¢ and then combine mp
and mg, using the Chinese remainder theorem, to recover the plaintext m. We will
refer to this type of decryption as CRT-decryption and the exponents d,, and d; as
CRT-exponents.

Using simple quadratic complexity modular arithmetic and the square-and-
multiply method for modular exponentiation, the expected number of binary oper-
ations for standard decryption is expected to be Trsa = % log,(d) log%(N ). Here,
we also assume that the binary representation of d has roughly an equal number
of ones and zeros. When the private exponent is smaller than each of the primes
(roughly N'1/2), it follows that dp = dg = d, and the expected number of binary
operations for CRT-decryption, is reduced to

Toxr = 2.3 108(d) logd(p) = 23 logy(d) 7 og3(V) = 3 Tisa,

where the time for exponentiations dominate the time and we ignore the cost for
the initial reductions and final combining stages. The runtime can be reduced by
another factor of two if we assume parallel computations. Thus, in theory, using
CRT-decryption gives a decrease in decryption time by a factor of four.

In a typical instance of RSA with a small exponent the public exponent is
expected to be roughly the same size as A(N). For randomly chosen balanced
primes, it is expected that A(N) & ¢(N) and so e &~ N. We will assume that all
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public exponents for RSA (with small private exponent) satisfies this approxima-
tion.

The strongest known small private exponent attack on (single instance) RSA
is Boneh and Durfee’s lattice-based attack [2]. The attack shows that private ex-
ponents smaller than N %-2929=¢ should be considered insecure. In practice, this
bound can be increased with an additional exhaustive search. It was shown by
Sarkar, Maitra and Sarkar [21], for example, that private exponents up to N %3 can
feasibly be recovered.

2.1 Multi-prime RSA

Multi-prime RSA is a variant of RSA in which the modulus is the product of
three or more (distinct) primes. When the modulus is the product of r primes,
N = p1--- pr, we call the system r-prime RSA. The public and private exponents
are defined as inverses modulo ¢(N) = (p1 — 1)---(pr — 1). Encryption and
standard decryption are exactly the same as with RSA (modular exponentiation
with exponent e for encryption and d for decryption). CRT-decryption is a simple
generalization of RSA. We compute the partial decryption modulo each of the
r primes and then combine to recover the plaintext using the Chinese remainder
theorem. For a fixed modulus size (bitlength), larger r implies smaller primes since
each prime is roughly N /7 when the primes are balanced. For private exponents
smaller than each of the primes the expected number of binary operations for CRT-
decryption is given by
r-prime 3 2 3 1 2 1
Terr =73 log,(d) logs(pi) =r Elogz(d) 2 logz(N) = ~ Tisa-

Here the runtime can be reduced by another factor of r if we assume parallel
computations. Thus, in theory, CRT-decryption with r-prime RSA should give
a decrease in decryption time by a factor of 72 compared to standard decryption
(using the same assumptions as above for RSA). Of course, using too many primes
in the modulus makes the elliptic curve method for factoring more efficient so
a trade-off must be made. Balancing the expected complexity of factoring the
modulus with the number field sieve and the elliptic curve method, the suggested
maximum number of primes for several common modulus bitlengths are given in
the following.

Modulus size (bits) 1024 2048 4096 8192

Maximum number of primes 3 3 4 5

As soon as more than this number of primes are in the modulus, the elliptic curve
method is expected to factor the modulus faster than the number field sieve. For
more details, see Lenstra [12].
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When all the primes in the modulus are pairwise balanced, which we will as-
sume is always true, it can be shown (see [8]) that

5] = [N — ¢ (V)| —12——2

Pi ; Pipj

4+ (=) < @r =NV,

This value will be needed when extending Howgrave-Graham and Seifert’s attack
to multi-prime RSA.

In a typical instance of r-prime RSA with a small private exponent, the public
exponent is expected to be roughly the same size as ¢ (N ). Again, since ¢(N) ~
N, we will use the approximation that e ~ N for all public exponents for r-prime
RSA (with small private exponent).

The strongest known small private exponent attack on (single instance) r-prime
RSA is, again, Boneh and Durfee’s lattice-based attack (as applied to multi-prime
RSA). The extension of the attack to multi-prime RSA, by Ciet et al. [3], shows
that private exponents smaller than N1~V 1=1/7 should be considered insecure.
For example, private exponents smaller than about N %1835 should be considered
unsafe for 3-prime RSA, while private exponents smaller than about N 134 should
be considered unsafe for 4-prime RSA. This trend, that attacks become weaker
with increasing number of primes in the modulus, is common to all known at-
tacks on multi-prime RSA except for factoring with the elliptic curve method (see
Hinek [7] for more details about attacks on multi-prime RSA) and, as we shall see
below, Guo’s common modulus attack.

2.2 Takagi’s scheme

Takagi’s scheme [23] is another variant of RSA in which decryption costs are
reduced. In this scheme, however, decryption is different from RSA (and even
standard decryption does not apply). Here, the modulus has the form N = p'q,
for some positive integer ¢t > 1, and the public and private exponents are defined
modulo A/(N) = Iem(p—1,g—1). Notice that A'(N) is not a multiple of A(N) =
p'~Hem(p — 1, — 1). Encryption is the same as for RSA (¢ = m® mod N). For
decryption, however, we first compute m, = ¢% mod p. Using Hensel lifting, we
then lift mj, (which is a partial decryption modulo p) to a partial solution modulo
p'. This is then combined with m,; = ¢% mod q with the Chinese remainder
theorem to recover the plaintext m. See Takagi [23] for full details.

The complexity of the Hensel lifting is dominated by the modular exponenti-
ations, so (just considering the exponentiations), the expected number of binary
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operations is

3
TTakagi =2 5 1082 (d) IOg% (p)

3
=2—log,(d)

1
—_log%(N) =
) (t+1)2 ng()

2

)2 TrsA-

Thus, when computing sequentially, decryption is faster than multi-prime RSA.
In practice, Takagi has observed that decryption time for t = 2 with a 1024-
modulus is about 42% faster than 3-prime RSA with a 1024-bit modulus. Just
as with multi-prime RSA, the size of t must be balanced so that the modulus is
not easily factored. The suggested maximum size of ¢ is given by the suggested
maximum size of r for multi-prime RSA letting ¢ + 1 = r. If we assume parallel
computations the decryption time will be essentially the same (when matching
r=t+1).

In a typical instance of Takagi’s scheme with a small private exponent, the pub-
lic exponent is expected to be roughly the same size as A'(N) = lem(p—1,g—1).
For randomly generated balanced primes, it is expected that lem(p — 1,¢ — 1) =~
pqg ~ N 2/@+1)  We will use this approximation for all instances of Takagi’s
scheme with small private exponents.

The strongest known small private exponent attack on (a single instance of) Tak-
agi’s scheme is, yet again, a generalization of Boneh and Durfee’s lattice-based at-
tack on RSA. The generalization, due to Itoh, Kunihiro and Kurosawa [10], shows
that private exponents smaller than N 2~ v2)/(t+1) should be considered insecure.
For example, private exponents smaller than about N %1933 should be considered
unsafe for moduli N = p2q, while private exponents smaller than about N 0-1464
should be considered unsafe for moduli N = p3q.

3 Continued fractions, lattices and Wiener’s attack

In this section we review some of the mathematical results needed for the attacks.
We assume the reader already has some familiarity with the topics and only review
the needed results. To illustrate each topic (continued fractions and lattices) we
briefly outline Wiener’s small private exponent attack as implemented with each
topic.

3.1 Continued fractions

We need only one main result from the theory of continued fractions (for more
general information see Olds [18]). The result is restated in the following theorem.
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Theorem 3.1 (Continued-Fractions). Let a, b, ¢ and d be integers satisfying

‘a c ‘ 1

—_— < —,

b d 2d?

where a/b and c/d are in lowest terms (i.e., gcd(a,b) = ged(c,d) = 1). Then
c/d is one of the convergents in the continued fraction expansion of a/b. Further,

the continued fraction expansion of a/b is finite with the total number of conver-
gents being polynomial in log(b).

Using this result, we review Wiener’s small private exponent attack on RSA [24]
(using Boneh’s [1] approach). In order to simplify the presentation we will assume
that the public and private exponents are defined modulo ¢ (N ) instead of modulo
A(N) as in Wiener’s original work. Let (e, N) be an instance of RSA with bal-
anced primes and let d < %N 1/4 be its corresponding private exponent. We start
by substituting ¢(N) = N — p — g + 1 into the key equation giving

ed =14+k(N—p—q+1),
and then dividing both sides by d N (and rearranging) to yield

e k 1 k(p+q—1)

N d _dN dN

Since |k| < |d]| < %Nl/“, and |p + ¢ — 1] < 3N'/2, notice that

e _kl_ |1 Kkptg-D| |k(p+g-D 1
N d| |dN dN dN 2d?°

Therefore, from Theorem 3.1, it follows that ¢ = k/d is one of the convergents in
the continued fraction expansion of e/N. Finding this convergent exposes ¢ (N)

since 1/k < 1 and
e ed 1
LEJ = {TJ = {E +¢(N)J = ¢(N).

Once ¢p(N) = (p — 1)(g¢ — 1) is known the modulus is easily factored by solving
the system ¢(N) = (p—1)(¢ —1) and N = pgq. Since we don’t know the correct
convergent, we can simply try each one (computing a candidate for ¢»(/V)) until the
modulus is factored. Since the number of convergents is polynomial in log,(N)
and all computations can be done in time polynomial in log,(N), it follows that
when the private exponent is smaller than %N 1/4 the modulus can be factored in
time polynomial in log, (V).
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Since the attack is guaranteed to work when d < %N Y 4 we know that the
correct convergent in continued fraction expansion of e/ N, call it ¢, should satisfy
le/n —c| < 1/(2d?) < 18N~1/2 Therefore, only the convergents satisfying this
bound (or close to it) need be tested. This allows us to quickly eliminate many
candidates.

3.2 Lattices

A lattice £ is a discrete additive subgroup of R”. Given m < n linearly indepen-
dent vectors by, ...,byn € R”, the set £ = {Z;":l aib; | a; € Z} is a lattice.
The b; are called basis vectors and £ is the lattice generated by these basis vec-
tors. Thus, £ is the set of all integer linear combinations of the basis vectors. In
addition, the volume of a lattice vol(&£) is the volume of the m-dimensional paral-
lelepiped spanned by the b;. The volume of a lattice is basis invariant (that is, it is
a constant of the lattice). When m = n, the lattice is full rank and we can compute
the volume as vol(£) = |det(B)|, where B is the matrix whose rows are the basis
vectors.

The main result that we need for lattices gives a bound on the size of smallest
vectors in a lattice (a non-zero smallest vector must exists since lattices are dis-
crete). The result, due to Minkowski, is given in the following theorem. We use
|lx]| to denote the usual Euclidean norm of the vector x.

Theorem 3.2 (Minkowski). Let £ be an n-dimensional lattice with volume vol(L).
A smallest vector v in £ satisfies

o]l < /n - vol(£)/™.

Using Theorem 3.2, we have a necessary condition for any vector x to be
a smallest vector in a lattice. Notice that if x is a smallest vector in &£ then so
is —x. To simplify the discussion, if +x are the only two smallest vectors in &£ we
will simply say that x is the smallest vector in £.

We now briefly describe Wiener’s attack as a heuristic lattice-based attack.
Again, let (e, N) be a valid public key with corresponding private exponent d =
NP, Letings = N — ¢(N), we begin by writing the key equation ed =
1 + k(N — s) and the trivial equation N%> = N3 as the vector-matrix equa-

tion
NO.S -N
(k,d)|: 0 }: (kN®3, 1 —ks).
e

Therefore, v = (kN°>, 1 —ks) is an integer linear combination of the rows of the
matrix 8. Letting £ be the lattice generated by the rows of B we then know that
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v is a vector in the lattice. Since the volume of the lattice is vol(£) = |det(B)| =
eNO%S ~ N3/ 2 we know from Minkowski’s theorem that a smallest vector in &£
must be bounded by V2 vol(éﬁ)l/ 2 ~ J2N3/4, Therefore, if the vector v =
(kN®,1—ks), which has size ||v] ~ N%11/2 is a smallest vector in &, it follows
that § + 1/2 < 3/4 or more simply

1

5§ < ——¢€,
4

where € > 0 has been added to correct for small constants (that do not depend on
N) that were ignored (for vol(£) and |[v])). Thus, when d < N'/# the vector v
may be a smallest vector. If v is the smallest vector, then finding v will allow us
to factor the modulus. Since x8B = v, we can solve for x which reveals d and k.
Thus, we can compute ¢(N) = (ed — 1)/ k and factor the modulus.

In order for this attack to succeed, we rely on the following assumption?.

Assumption 3.3 (Small Vectors). For the lattices used here, a vector v € £ that
satisfies Minkowski’s bound (from Theorem 3.2) is likely a smallest vector in &£.

When this assumption holds for the given lattice, we can then use the above
method to factor the modulus. Even if the assumption only holds a non-negligible
fraction of the time, the attack is still a success.

Of course, we also need to be able to find the small vector v in the lattice.
For this particular example, with a 2-dimensional lattice, a smallest vector in the
lattice £ can be found efficiently. In general though, we will be interested in
finding a smallest vector in an n-dimensional (full rank) lattice &£’. In this case,
the approach is to compute an LLL-reduced basis for the lattice which guarantees
to contain a basis vector x’ satisfying

x| < 207D 4ol ()"

Even though the size of this small vector does not necessarily satisfy Minkowski’s
bound in Theorem 3.2, which means that x’ is not necessarily a smallest vector, it
is often the case in practice that this vector is a smallest vector in the lattice.

An LLL-reduced basis for an n-dimensional full rank lattice &£ can be computed
with Nguyen and Stehlé’s L? algorithm (see [17]) in time

O(n3(n + log B)log B - M(n)),

where M (x) is the time needed to multiply two x-bit integers, and B is the size of
the largest component in the original basis matrix.

2 There is also a provable lattice-based version of Wiener’s attack by May [13], but the attacks
shown later are based on this heuristic attack.
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3.3 Breaking RSA and its variants

We will consider an instance of RSA (or multi-prime RSA or Takagi’s scheme) to
be broken when the factorization of the modulus is known. There are several ways
in which this can be accomplished.

First, given a multiple of A(N) (or ¢(N)) the factorization can be computed
in probabilistic polynomial time using the results of Miller [15]. Miller’s result is
much more general. It also applies to a multiple of ¢(N) for multi-prime RSA
and for a multiple of lem(p — 1,¢ — 1) for Takagi’s scheme. If the exact value of
(p —1)(g — 1) is known for RSA or for Takagi’s variant, we can deterministically
factor the modulus since L = (p —1)(¢ — 1) and N = pFg (k = 1 for RSA) give
a system of two equations with two unknowns which we can easily solve.

Next, given the private exponent d of an instance of RSA, we can factor the
modulus since ed — 1 = kA(N) reveals a multiple of A(N). Similarly, this also
holds for multi-prime RSA and for Takagi’s scheme (since with d known we can
compute ed — 1 which is a multiple of lcm(p — 1,¢ — 1)). For RSA and Takagi’s
scheme, there are also deterministic methods that can factor the modulus given
the public key and the private exponent. See [14] for RSA and [11] for Takagi’s
scheme.

Finally, given the constant k in the RSA key equation we can also factor the
modulus (assuming that the public exponent is roughly the same size as the mod-
ulus). Assuming that we know g = ged(p — 1,4 — 1), or more simply assuming
that the exponents are defined modulo ¢(N), we can compute s = N —¢p(N) =
p + g — 1 given only e, N and k. Notice that reducing the key equation ed =
1 + k(N — s) modulo the public exponent e yields

0=14k(N —s5) (mod e),
where s is the only unknown. Rearranging, we can compute s since
s=N+k™' (mode),

where the inverse is well defined (as k and e must be relatively prime). Since the
public exponent satisfies e &~ N > s, the value (N + k1) mod e yields s. With
s known, we also know ¢(N) = N — s and can easily factor the modulus. This
also holds for multi-prime RSA but not for Takagi’s scheme.

4 Guo’s common modulus attack

In [9], Howgrave-Graham and Seifert describe an unpublished attack by Guo® on
common modulus RSA with small private exponents. Consider two instances of

3 G.C.R. Guo, “An application of Diophantine approximation in computer security”.
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RSA with a common modulus N and key equations

€1d1 =1 +klk(N)s
eadr =1+ kaA(N).

Guo’s main observation is that these equations can be combined to remove A(N).
Indeed, multiplying the first equation by k», the second equation by k1 and taking
the difference yields

koerdy —kieadr = ko — ki,

where all the unknowns are relatively small (when the private exponent is small).
With this equation as a starting point, the attack then proceeds in a similar way as
Wiener’s continued fraction attack. Notice that dividing both sides of this equation
by exkody yields

(] k 1 dz _ k2 —k 1

€ k2d1 - €2k2d1 ’

which combined with Theorem 3.1, suggests that k1d>/ ka2d1, in lowest terms, can
be obtained from the continued fraction expansion of ej /e, when the right-hand
side of (ky — k1)/(exkod1) is small enough. In particular, a sufficient condition
for Theorem 3.1 to apply is given by

ko — ky 1
, 4.1
erkakdy | = 20kady)? @1
or more simply
€2
dy < ———. 4.2
Ty “2

When both private exponents are bounded by N 5 (le.,0 < dy.dp < N%) and
the public exponents are roughly the same size as the modulus (i.e., e1,e; ~ N),
it follows from the key equation that 0 < k; < d; < N 5, Using these bounds for
the k;, d; and e;, a sufficient condition for inequality (4.2) to be satisfied is given
by

1 1
8<§—10gN(2)=§—e,

where € > 0 is small and decreases with increasing N. Therefore, when this
inequality is satisfied, we know that we can compute k1d»/kod; in lowest terms.
However, knowing k1d>/ k»dy, in lowest terms, does not allow us to break either
instance of RSA. Two problems are:
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(i) Any common factors of k1d» and kpd; will be removed from the numerator
and denominator of convergent k1d>/kod.

(i) Knowing k1d> or kod; (or both) does not seem to help in factoring the mod-
ulus (or determining d; or dp) without factoring k1d or kod;.

As discussed in [9], Guo considers these two problems and offers the follow-
ing solutions. The first problem is avoided by simply assuming that there are no
common factors in the numerator and denominator of the correct convergent. That
is, it is assumed that ged(k1d», kody) = 1. Assuming that the d; and k; behave
like randomly chosen numbers it is estimated that this will occur with probability
6/m% ~ 0.61.

For the second problem two solutions are given. Assuming that the above con-
dition for common factors holds (i.e., gcd(k1ds, kod;) = 1), the solution offered
are

* One could try to factor kjd» to determine dp (or factor kpd; to obtain dy).
With the bound § < 1/3 — €, the number k;d» is no larger than N 2/3 and is
not expected to be of a difficult factorization shape. This is feasible for instances
of RSA with a 1024-bit modulus but completely out of reach for instances with
a 2048-bit modulus using the current state of the art in factoring techniques.

¢ As a second solution, and the one we will focus on, one can assume that a third
instance of RSA with a small private exponent and the same modulus is available.
Here, the continued fraction technique is repeated with a different pair of RSA
instances. Assuming that all the k; and d; are pairwise relatively prime, one can
determine kjd, from the continued fraction expansion of ej /e, and k3d, from
the continued fraction expansion of e, /e3, for example, which can then be used to
compute

ng(kldz,k3d2) = dz ng(kl,k3) = d2.

With d» known, the modulus can be factored (see [4]). This method is expected to
recover dp with probability about (6/72)3 ~ 0.22, under the assumption that the
k; and d; behave as random numbers.

Once d» is known, we can factor the modulus since we know a multiple of
¢(N). Thatis, eady — 1 = kp¢p(N) is known. Thus, given three instances of
RSA with a common modulus and private exponents each smaller than N 1/3—€
it is expected that Guo’s attack will be successful with probability approximately
0.22. A sufficient condition for the attack to succeed is that the pairs (k1d>, kod1),
(kad3,k3dy) and (k1. k3) are each relatively prime (and assuming all quantities
are random integers this is expected to happen with probability about 0.22).
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4.1 Guo’s attack in practice

The success rate of Guo’s attack, in practice, is actually much higher than the the-
oretical probability of 0.22, as described above. Looking at the attack more care-
fully, we derive a new sufficient condition for the attack to succeed. To this end,
we consider the values used in the attack. From the continued fraction expansion
of ej /ey, we compute the convergent 1o = k1dz/kad; and from the continued
fraction expansion of e,/e3, we compute the convergent c23 = kpds/kszd,. In
trying to isolate the private exponent d», we use the numerator of cj» and the
denominator of ¢33, which are given by

B kid>
numer(ci2) = ecd(kyda, kady)
i k1d2 B kl d2
"~ ged(ky, ky) ged(dy, da) — ged(ky, ko) ged(dy, da)
k3ds
denom(cz3) = ecd(kads, kzda)
k3d2 k3 d2

~ god(ky. k3) ged(dy. ds)  god(ky k3) ged(da. d3)’

where the gcds in the denominators split because ged(k;, d;) = 1 fori = 1,2, 3.
(This follows since e;d; = 14+k;¢(N) for eachi and so e; and d; are also inverses
modulo k;.) The candidate D5 for d5 is then computed as

D5 = ged(numer(cy3), denom(cz3))

_ Cd( kl d2 k3 d2 )
8N ed(ky ka) 2ed(dyr. da) " ged(ka. k3) ged(da. d3) )~

We can simplify this further by separating the common parts of d» with the re-
maining parts as

Do eed ( ky d> k3 d> )
2= 8O\ ged(ky. k) ged(dy. d) ged(ka. k3) ged(da.d3) )

_ do gcd( kidi2 k3da3 )
lem(ged(dy, d2), ged(d2, d3)) ged(ky, k2) " ged(ka, k3) )’

d2/d; ki

k/
=dr—123,
dy
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where dq5 and da3 are introduced to simplify the notation. Here d»/ dé is the
common factors of d and k75 is the remaining part of the gcd.

The attack is successful (i.e., the computation reveals d») whenever d;, = k3,
thus a new sufficient condition is given by

kid ksd
dé=lcm(gcd(dl,dz),gcd(dz,da))=gcd( — - )=k’13-

ged(ky, kp) " ged(ka, k3)
“4.3)

In practice, we find that this condition is satisfied about 63% of the time. In
particular, running 260,000 experiments (10,000 trials for 26 different values of
0.25 < § < 0.5), we find that this condition is met (and the attack succeeds) with
probability 0.629 £ 0.004 (where the 0.004 is one standard deviation) for 1024-bit
moduli.

Guo’s attack, as described above, however, does not use all the information
available to it. We can improve the likelihood of success in two ways. First, notice
that computing the continued fraction expansion of ej /ey, ex/e3 and e3z/e;, we
can obtain the convergents c1p = kida/kadi, c23 = kpds/ksdy and c37 =
k3dy/ki1ds. Using all possible combinations of numerators and denominators,
each from a different convergent, we can compute candidates for each of d;, d»,
ds, ki, ko and k3. For example, a candidate for d» was computed (as shown
above) using numer(cy2) and denom(c,3), and

K, = ged(denom(cyz), numer(cy3))

; ( kad, kads )
= C b b
8N\ acd(k1 da, kady) ' gcd(kads, k3dy)

gives a candidate for k5. In fact, for each (i, j, £) that is a permutation of (1,2, 3),
it is easily shown that D; = gcd(numer(c;;),denom(c;¢)) gives a candidate for
d; while a candidate for k; is given by K; = gcd(denom(c;; ), numer(cjy)).

In each case the candidate will be a rational multiple of the correct value (just
as in the d, example) with a similar sufficient condition as given in inequality
(4.3). If any of the candidates are equal to the correct value the modulus can be
easily factored. Given any d;, the modulus can be factored since a multiple of
¢(N) is known. Given any k;, the modulus can be factored if we assume the
public exponents are full sized. Thus, trying each of the six candidates will further
increase the likelihood that the attack will succeed. In practice, we observe that the
attack is successful about 93% of the time when the private exponents are smaller
than N933. The attack continues to work with decreasing likelihood for larger
private exponent sizes until the private exponent is slightly larger then N '/3.
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In addition to computing the six candidates instead of only one, we can also
exploit the form of the candidates. Letting D; and K; be the candidates for d; and
ki, and using the example for D, from above as a guide for notation, notice that
each candidate can be written as

/

K’ d’

k jk

Di =d;i-2% or K;=k-IF,
d! k;

for each (i, j, k) that is a permutation of (1,2, 3). Simply rewriting these, we have

/ !

e
ik i
In practice all of the primed values (which are integers) are expected to be small.
If none of the candidates are correct, we can perform a small exhaustive search to
determine the primed values and hence reveal one of the correct d; or k;. If we
assume that the primed values are each bounded by 2¢, for some positive integer
£, then a search space of 22t must be explored for each candidate.

We illustrate the effectiveness of Guo’s attack, with the modifications men-
tioned above, in Table 1. For various sizes of private exponents (§), we show the
frequency of success of Guo’s attack for RSA with 1024, 2048, 4096 and 10,000-
bit modulus sizes. For each §, we ran 10,000 experiments when the modulus was
1024 and 2048 bits, 1,000 experiments for 4096-bit moduli and 100 experiments
for the instances with 10,000-bit moduli. Three random instances of RSA with
a common modulus and private exponents each of size at most § were generated
for each experiment. The data shows the frequency that the attack was success-
ful when only one candidate (d5) is computed, when all six candidates (d;,k;) are
computed and when a small exhaustive search is allowed for each of the six candi-
dates (denoted by “Guess”). Instead of actually performing the exhaustive search,
we considered the sizes of the numerator and denominator (in lowest terms) of
d!/d; and k! / k;. If both the numerator and denominator, for any one of the can-
didates, were no larger than 210 we considered the attack a success. In all of the
experiments that we conducted, this additional search (of 210 for numerator and
denominator) was sufficient to recover the desired values. The failures occurred
when the convergents in the continued fractions did not yield k; d; / k; d; at all (and
hence revealed no information). The bold data indicates the theoretical limits of
the attack (and will indicate this in all subsequent data shown). As can be seen,
the attack works quite well in practice. For private exponents smaller than about
NO0-332 the attack (with modest exhaustive search) was always successful. The
success rate quickly deteriorated as the size of the private exponents approaches
or just exceeds the 1/3 bound though.
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0000°0 00000 0000°0 || 006€€0
2000°0 20000 0000°0 || 008€E0
9000'0 €000°0 <0000 || 00LEEO
0000°0 00000 00000 | 0SO0°0 62000 TTI000 || 009€E0
9000°0 #0000 €000°0 | 68¢0°0 0ICO'0 S$600°0 || 00SELO
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1000 100 100 | 6410 LST'O TBO'0O | I€8C0 08YE€0 6EICTO | 6LLS0 8CESO YOVED || 0€EEE0
IL0 90 Ovo | ve80 L9LO VIS0 | I¥880 LST8O 98¢0 | L£8B'O OVC80 ¥irSO || 00€EE0
001 €60 <790 | 000T TI¥6'0 ¥¥P9°0 | 0000T L9E6'0 9ST9°0 | 0000'T TI8c6'0 6790 || 00CELO
001 160 L9°0 | 000'T T1€60 +I9°0 | 0000'T T19¢60 ¥LC9'0 | 00001 +9€6'0 LTE9O || 001€E0
00T 960 950 | 000T 0€60 6£90 | 0000T T9¢6°0 9€€9°0 | 0000°T TLE6'0 L¥C90 || 000€E0
001 €60 090 | 000T <¢¥6'0 0S9°0 | 0000'T 08€6'0 8LC9°0 | 0000'T 6£€6'0 8790 || 000CE 0
00T  ¥6'0 €L0 | 000T 6€60 1£9°0 | 0000T SS€6'0 66190 | 0000'T 98¢6'0 ¥1€9°0 || 000IE0
00T 960 L90 | 000'T 6¢60 LZ90 | 0000T 86£60 68¢9°0 | 0000'T 95€6'0 ¥LT90 || 0000E0
00T  ¥60 190 | 000T 6¥6°0 9990 | 0000'T 0TE60 18C9°0 | 0000T €9¢6'0 €8C9°0 || 0006C°0
00T 060 €90 | 000T ¢€€60 +€9°0 | 0000'T €re6'0 T19C9°0 | 00001 +6£6'0 €¥e90 || 0008C0
00T 960 990 | 000T ¢€€60 <TE90 | 0000T 6£€60 LPE90 | 0000 T LSE6'0 €9C9°0 || 000LTO
00T  ¥60 €90 | 000T 1€60 OI90 | 0000T S¥e60 LIE90 | 0000'T 9¢€6'0 1+C9°0 || 0009C°0
00T  ¥60 €90 | 000T 0€60 0I90 | 0000T Cre6'0 LIC90 | 0000'T 95€6'0 8¢€9°0 || 000STO
ssonp 'y 'g @ |ssnp 'y 'q @ ssonp 'y 'q q ssanp 'y 'q @ 9
N 19-000°01 N 19-960¥ N M9-8+0C N MA-1201

Table 1. Guo’s attack: Observed success rate when using only one candidate (D3)
and when using all six candidates (D;, Kj;) for various sizes of private exponents

and modulus sizes.
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Notice that in the above discussion we did not consider the problem of actu-
ally finding the correct convergent. In fact, in all of the experiments for the data
collected in Table 1, we identified the correct convergent using the associated pri-
vate information (d; and k;) to save time. In practice, however, we will only be
given the public keys. Nonetheless, we can still narrow the search of potentially
correct convergents to a small number by finding a good starting point (good start-
ing convergent). When looking for the correct convergent of e /e5, for example,
from the description of Guo’s attack, we know from Theorem 3.1 that the correct
convergent ¢ will most likely satisfy

1
= 2kadr)?

€1
—C
€2

The theorem is a sufficient condition and hence we cannot rule out that the correct
convergent might not satisfy the bound. Since the theoretical bound for the attack
is 8§ < 1/3 — e and each k; < d;, we then also expect that

€2

€1 1 _ 1
P < 2NI/3N1/3)2 T ON4/3T

Thus, when computing the convergents in the continued fraction expansion of
e; /e;j, we can ignore all of the initial convergents that do not satisfy this bound.
In practice, we find that the convergent immediately preceding the first convergent
that satisfies this bound is a candidate for the correct convergent (i.e., it often is the
correct convergent). We will refer to this particular convergent as the good starting
convergent.

In Table 2, we show that, in practice, using this good starting convergent as our
first candidate for the correct convergent works quite well.

For each value of § we show Caye, Cmax and #C, where Cyy. is the average
distance (in absolute value) from the good starting convergent to the correct con-
vergent taken over all successful trials (so C,ye = 0 corresponds to the good start-
ing convergent being the correct convergent for each trial), Cpax is the maximum
distance (in absolute value) over all successful trials and #C is the (rounded) aver-
age number of total convergents for each continued fraction expansion. As can be
seen, the good starting point was always correct for instances with private expo-
nents § < 0.31 and this improves with increasing modulus size. For larger private
exponent sizes some exhaustive search may be necessary. However, since the aver-
age distance is always less than 1.0, it is expected that only two convergents need
to be tested for each continued fraction expansion. Since this additional (expected)
complexity is so small, we simply assume that we can find the correct convergent
(if it is present) with no extra costs.
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1024-bit N 2048-bit N 4096-bit N
5 || Cwe G #C | Cue Con #C | Cuwe Cun #C
025000 [ 0.000 0 440 0.000 0 902 [0.000 0 1820
0.26000 || 0.000 0 459 | 0.000 O 966 | 0.000 0 1875
0.27000 || 0.000 0 486 | 0.000 O 975 | 0.000 0 1903
0.28000 || 0.000 0 507 | 0.000 0 997 |0.000 0 1991
0.29000 || 0.000 0 493 0.000 0 1046 | 0.000 0 2075
030000 || 0.000 0 531 |0.000 O 1077 | 0.000 0 2140
031000 || 0.000 0 538 |0.000 O 1116 |0.000 O 2265
032000 || 0.000 1 585]0.000 O 11380000 O 2308
033000 || 0.097 11 584 | 0011 6 1197 |0.000 0 2427
033100 || 0.177 10 585 |0.043 8 1166 | 0.001 2 2364
033200 || 0334 9 591|071 9 1199|0033 4 2388
033300 || 0453 12 587 | 0422 10 1206 | 0339 6 2420
033330 || 0.199 10 599 | 0.092 11 1193 | 0.021 7 2402
033333 0.187 8 5920076 8 1177|0016 7 2387
033400 || 0.022 7 598 | 0.001 7 1190
033500 || 0.001 4 602 |0.000 3 1217
033600 || 0.000 5 591
033700 || 0.000 4 609
0.33800 || 0.000 5 594

Table 2. Guo’s attack: Finding the correct convergent.

Efficiency

In Table 3, we illustrate the runtime needed to mount Guo’s attack for 1024-bit
RSA and various sizes of exhaustive searches. The attack was mounted on an
AMD Opteron 850 server with quad 2.4 GHz processors and 16GB of RAM using
Maple 12. The time needed to generate three random instances of RSA with small
private exponents and compute the good starting convergents was approximately
0.15 seconds in all trials and is not included in the runtimes shown.

The data in Table 3 shows the average (observed) runtime for a partially op-
timized attack and also the full worst case time for Guo’s attack. Each value of
£ corresponds to an exhaustive search of 2¢ for both the numerator and denom-
inator of the candidate for the private exponent. The data shows average times
and one standard deviation taken over several trials (between 1,000 trials for short
runtimes, 100 for intermediate runtimes and 10 for the largest runtimes). The par-
tially optimized attack aborts the exhaustive search once the modulus is factored
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for a given candidate but carries out the search for all three candidates of the pri-
vate exponents. The full worst case data searches the entire 224 search space for
each candidate. As is expected, the time for the attack increases by a factor of four
when the value of £ is increased by one.

Notice that the data for the attack when £ = 10, which corresponds to the data
collected in Table 1, shows that the attack in practice (with a moderate exhaustive
search) is both very successful and very efficient; taking approximately 10 seconds
to factor the modulus.

Bound Time T} (seconds) Time T} (seconds)
L Ty + oy Te/ Ty Ty £+ oy Te/ Ty
3 0.08 + 0.02 - 0.68 + 0.04 -
4 0.15+0.03 2.01 2.75 £ 0.10 4.05
5 0.30 + 0.06 2.01 11.06 + 0.29 4.02
6 0.62 +0.11 2.02 44.36 £ 0.89 4.01
7 1.24 £ 0.21 2.01 177.59 £+ 3.12 4.00
8 2.53 +£0.43 2.05 710.66 + 11.54 4.00
9 5.24 +£0.85 2.07 2835.36 £ 45.97 3.99
10 11.14 + 1.71 2.12 11365.47 + 171.12 4.01
11 25.02 £ 342 2.25
12 61.02 £ 6.93 2.44
13 165.42 £+ 14.26 2.71
14 503.20 £+ 31.07 3.04
15 1704.98 + 67.82 3.39
16 6180.87 + 172.02 3.63

Partially Optimized Search Full Worst Case

Table 3. Worst case time needed for Guo’s attack: RSA with 1024-bit modulus.

4.2 Multi-prime RSA

In the description of Guo’s attack (and it’s modifications) above, notice that once
the equation

koerdy —kieadr = ko — ky

is obtained, there is no way of knowing if the equation was derived using two
key equations for RSA or using two key equations for multi-prime RSA. Thus, the
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same attack and the same results hold for multi-prime RSA also. That is, we expect
that the attack will be successful (with some non-negligible probability) when all
three instances of multi-prime RSA have private exponents d; < N® when

1
§ <= —e,
3 €

where € > 0 is a small constant that is independent of N. Here, we again assume
that each public exponent is full sized.

In practice, we have observed that the attack is actually slightly more successful
for multi-prime RSA compared to RSA. In particular, the success rate for one
candidate is about 0.65 and for any candidate is about 0.95 (compared to about
0.63 and 0.93 for RSA). We illustrate the effectiveness of the attack for small
values of r and common modulus sizes in Table 4. Just as with the experiments
for RSA, we average the success rates over 10, 000 trials for each private exponent
size for the 1024- and 2048-bit modulus sizes and over 1,000 trials when the
bitlength of the modulus is 4096.

Similar to the RSA, the good starting convergent is, in practice, on average at
most one convergent away from the correct convergent. For private exponents
smaller than N-32% it is always the correct convergent. Since the data is very
similar to that of RSA we omit the data here.

This attack on multi-prime RSA is actually quite remarkable since it is the
first attack (other than factoring) that does not decrease with increasing number
of primes in the modulus. This follows because the attack does not use the relation
ls| = |[N —¢(N)| < (2r — 1)N'=Y7 which is used in all the other attacks. Since
the size of s increases with increasing r, the other attacks become weaker.

4.3 Takagi’s scheme

For Takagi’s scheme, just as with multi-prime RSA, notice that Guo’s attack is the
same as for RSA. The only difference is that even when the public exponents are
full sized, they are much smaller than the modulus N which is the case for RSA
and multi-prime RSA. In particular, since the key equation is given by

ed =1+4+kN(N)=1+klem(p—1,9 — 1),

it is expected, with high probability, that the public exponent will be roughly the
same size as lem(p — 1, ¢ — 1) (when the private exponent is small). For randomly
generated primes it is further expected that lem(p — 1, — 1) will be close to
(p — 1)(g — 1) and so a full sized public exponent will have size N2/¢+1) when
the modulus is given by N = p’q. Now, from the derivation of Guo’s attack
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1024-bit N 2048-bit N 4096-bit N
r=3 r=3 r=4
8 D, D;,K; Guess| D, D;, K; Guess| D, D;, K; Guess

0.25000 || 0.6527 0.9424 1.0000 | 0.6463 0.9473 1.0000 | 0.6370 0.9500 1.0000
0.26000 || 0.6518 0.9489 1.0000 | 0.6528 0.9504 1.0000 | 0.6630 0.9620 1.0000
0.27000 || 0.6531 0.9503 1.0000 | 0.6547 0.9519 1.0000 | 0.6440 0.9560 1.0000
0.28000 || 0.6535 0.9503 1.0000 | 0.6475 0.9470 1.0000 | 0.6730 0.9570 1.0000
0.29000 |{ 0.6519 0.9492 1.0000 | 0.6576 0.9453 1.0000 | 0.6400 0.9490 1.0000
0.30000 || 0.6554 0.9490 1.0000 | 0.6553 0.9464 1.0000 | 0.6800 0.9510 1.0000
0.31000 || 0.6556 0.9503 1.0000 | 0.6561 0.9470 1.0000 | 0.6520 0.9660 1.0000
0.32000 || 0.6505 0.9478 1.0000 | 0.6456 0.9481 1.0000|0.6610 0.9500 1.0000
0.32500 || 0.6575 0.9494 1.0000 | 0.6516 0.9489 1.0000 | 0.6550 0.9490 1.0000
0.33000 || 0.6485 0.9459 1.0000 | 0.6578 0.9524 1.0000 | 0.6810 0.9580 1.0000
0.33100 || 0.6466 0.9489 1.0000 | 0.6563 0.9485 1.0000 | 0.6770 0.9530 1.0000
0.33200 || 0.6469 0.9505 1.0000 | 0.6578 0.9469 1.0000 | 0.6800 0.9590 1.0000
0.33300 || 0.5564 0.8326 0.8785|0.5654 0.8282 0.8773|0.5300 0.7750 0.8320
0.33330 |1 0.3496 0.5372 0.5731]0.2332 0.3614 0.3890|0.0890 0.1700 0.1820
0.33333 |1 0.3337 0.5138 0.5459 | 0.1987 0.3182 0.3455|0.0770 0.1190 0.1280
0.33400 || 0.0854 0.1396 0.1585]0.0105 0.0230 0.0294 | 0.0000 0.0000 0.0000
0.33500 || 0.0094 0.0181 0.0229 | 0.0001 0.0001 0.0003
0.33600 || 0.0011 0.0025 0.0034 | 0.0000 0.0000 0.0000
0.33700 || 0.0002 0.0002 0.0004
0.33800 || 0.0000 0.0000 0.0000

Table 4. Guo’s attack on multi-prime RSA: Empirical success rate.

earlier, recall that a sufficient condition to obtain the desired convergents in the
continued fraction expansion of e /e, was given by (equation (4.2))

€2

d s . 5
U= Dkalks — ki

which can be rewritten as 2k, |ko — k1| d1 < ez. Since 0 < ky,kz,d; < N
and e ~ N2/ ‘H), notice that a new sufficient condition is given by 2N 38~
N2/@+D “or more simply

$ —logy(2) =

3+ 1) 3(+1)

where € > 0 is small and becomes smaller with increasing N. Again, we used
ki < d;, which follows from the key equation. The bound on § shows that the
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attack is expected to become weaker as the multiplicity of the prime p increases
(the parameter ¢).

It should be pointed out that when mounting Guo’s attack on Takagi’s variant,
we do not look for candidates for the k; (constants in the key equations) since we
do not have a method for factoring the modulus given one of the k;. Thus, we only
try to compute candidates for the three private exponents.

In practice, just as with RSA and multi-prime RSA, the attack works well up to
the theoretical bound. We illustrate the effectiveness of the attack for small values
of t and common modulus sizes in Tables 5 and 6. In particular, Table 5 shows
the success rate for different sized moduli with N = p2?q. For moduli of this
form, the bound in Guo’s attack is § < 2/9 & 0.2222. For the 1024- and 2048-bit
modulus sizes, we averaged the data over 10, 000 trials. For the 4096-bit modulus
size, we used 1, 000 trials. As can be seen, the attack works quite well for private
exponents approaching this bound.

In Table 6, we show the success rates when mounting the attack on Takagi’s
scheme with 4096-bit moduli of the form N = p3g. For moduli of this form,
Guo’s bound is § < 1/6 ~ 0.1667. Again, the data illustrates that the attacks
work quite well up to private exponents approaching the theoretical bound. The
data shown is averaged over 1, 000 trials for each private exponent size. In addi-
tion to the success rates, we also include the data showing that the good starting
convergent is indeed a good starting convergent (just as with RSA and multi-prime
RSA).

5 Howgrave-Graham and Seifert’s attack

Howgrave-Graham and Seifert’s small private exponent attack on common modu-
lus RSA [9] improves upon Guo’s attack in several ways. In particular, the attack
can be mounted with only two instances of RSA (although it gets stronger with
more), the problems associated with relatively prime quantities are not a concern
and, most importantly, the attack (even with only two instances) is much stronger.

Even though the attack is a heuristic attack it has been shown to work well in
practice when the number of instances of RSA and the modulus sizes are relatively
small (see [9]). Given n < 5 instances of RSA with a common modulus, each
having private exponent smaller than N 8n_ the attack can factor the modulus when
8y is smaller than given in Table 7.

When there is only one instance of RSA (n = 1), the attack is simply Wiener’s
attack when mounted as a heuristic latticed-based attack (as described earlier).
With only two instances, the attack is already much stronger than Guo’s attack and
with six instances, the attack is expected to factor the modulus when the private
exponents are approaching N /2,
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1024-bit N
N = p%q

2048-bit N
N = p%q

4096-bit N
N = p%q

)

D> D;  Guess

D, D;  Guess

D> D;  Guess

0.15000
0.16000
0.17000
0.18000
0.19000
0.20000
0.21000
0.21500
0.22000
0.22100
0.22200
0.22220
0.22222
0.22300
0.22400
0.22500
0.22600
0.22700
0.22800

0.6193 0.9190 1.0000
0.6252 0.9176 1.0000
0.6307 0.9218 1.0000
0.6287 0.9185 1.0000
0.6322 0.9257 1.0000
0.6312 0.9243 1.0000
0.6384 0.9206 1.0000
0.6205 0.9200 1.0000
0.6356 0.9228 1.0000
0.6336 0.9222 1.0000
0.4737 0.7101 0.7803
0.3276 0.5066 0.5638
0.3172 0.4847 0.5416
0.0667 0.1082 0.1387
0.0065 0.0120 0.0194
0.0013 0.0023 0.0040
0.0000 0.0001 0.0004
0.0001 0.0001 0.0001
0.0000 0.0000 0.0000

0.6289 0.9207
0.6221 0.9218
0.6339 0.9239
0.6322 0.9238
0.6221 0.9266
0.6241 0.9234
0.6281 0.9181
0.6312 0.9242
0.6318 0.9234
0.6262 0.9209
0.4206 0.6470
0.2098 0.3289
0.1902 0.3121
0.0059 0.0108 0.0186
0.0001 0.0002 0.0005
0.0000 0.0000 0.0000

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
0.7121
0.3785
0.3577

0.6400 0.9240
0.6150 0.9210
0.6130 0.9020
0.6160 0.9280
0.6480 0.9160
0.6080 0.8980
0.6350 0.9330
0.6350 0.9110
0.6280 0.9110 1.0000
0.6340 0.9350 1.0000
0.3420 0.5180 0.5730
0.0760 0.1440 0.1700
0.0750 0.1240 0.1510
0.0000 0.0000 0.0000

1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000
1.0000

Table 5. Guo’s attack on Takagi’s scheme: Empirical success rate for N = p2q.

When there are seven or more instances of RSA, however, we note that the

bounds suggested in [9] are too optimistic. We (will) argue that the bound is N 1/2
for any number of instances beyond six. We will discuss this in more detail later,
but now we show how the attack is mounted for two and three instances to give
a flavor of the general approach. Since we also want to mount the attack on multi-
prime RSA, we will re-derive the attack (for n = 2, 3) for multi-prime RSA. The
attack is identical to Howgrave-Graham and Seifert’s attack except that the bound
fors = N — ¢(N) is left as a function of the number of primes r.

Following Howgrave-Graham and Seifert, we let W; denote the key equation

W; -

eidi —kiN = 1—k;js,

which is the basis for Wiener’s attack, and let G; ; denote the equation

Gi,j . k,'djej —kjd,'e,' = ki —kj,
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4096-bit N = p3q

1 D, D; Guess | Cypye Chax #C
0.100 || 0.618 0.919 1.000 | 0 0 729
0.110 || 0.616 0.929 1.000 | 0 0 793
0.120 || 0.637 0.925 1.000 | 0 0 869
0.130 || 0.648 0.916 1.000 | 0 0 923
0.140 || 0.620 0.898 1.000 | 0 0 1012
0.150 || 0.624 0.922 1.000 | 0 0 1060
0.160 || 0.632 0.916 1.000 | 0 0 1159
0.161 || 0.623 0.915 1.000 | 0 0 1166
0.162 || 0.633 0.918 1.000 | 0 0 1151
0.163 || 0.616 0.919 1.000 | 0 0 1161
0.164 || 0.623 0.916 1.000 | 0 1 1182
0.165 || 0.655 0.927 1.000 | 0.02 5 1186
0.166 || 0.678 0.923 1.000 | 0.22 10 1195
0.167 || 0.006 0.010 0.015 | 0.87 3 1179
0.168 || 0.000 0.000 0.000

Table 6. Guo’s attack on Takagi’s scheme: Empirical success rate for N = p3q.

n 1 2 3 4 5 6
8, | 0250 0.357 0.400 0.441 0.468 0.493

Table 7. Common modulus attack with small private exponent.

which is the basis for Guo’s attack. Recall that for multi-prime RSA, the quantity
s = N —¢(N) satisfies |s| < 2r —1)N'=1/7 ~ N1~/ when there are r primes
in the modulus. This inequality also holds for r = 2 (RSA).

First consider two instances of multi-prime RSA. Let (e1, N) and (e3, N) be
two valid multi-prime RSA public keys (with e; # e»), each having their pri-
vate exponent smaller than N%2. Thus, the constants in the key equations satisfy
ki,ko < N%2, Using the equations k2 Wi, G2, W1 W, and the trivial equation
I5 : k1ks = kiko, we construct a lattice with a known small vector. In particular,
notice that the equations

I i kiky = k1ko
koWy :kadier —kaki N = ka(1 — kys)
G121 kidrey —kadier = k1 — k2
WiWs : didrerer — dikaret N — dakieaN + kikaN? = (1 — k1s)(1 — kas),
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can be written as the vector-matrix equation x, 8, = v,, where

X2 = (k1ka, kady, k1d>, d1d>)

1 =N 0 N2

€1 —e1 —€1N

By =
€n —€2N
eiel

Uy = (klkz,kz(l —kls),kl —k2, (1 — kls)(l —kzs)).

The vector v is an integer linear combination of the rows in 85, and is therefore
a vector in the lattice £, generated by the rows in B5. If the vector v; is a smallest
vector in &£, then recovering v, will allow us to factor the modulus. Indeed, given
B, and vy, we can compute x, whose first two components k1k, and dk, yield
k1/d1. Just as in Wiener’s attack, this allows us to compute

o0 = 292 = () ]

which then allows us to factor the modulus (deterministically for RSA and prob-
abilistically for multi-prime RSA with r > 2). Since the components of v, are
not balanced, we can modify the equation by multiplying it by the diagonal ma-
trix D, = diag(Nz(l_l/’), N1-Ur n&+20-1/r) 1), and considering the new
vector-matrix equation x, 8} = v), where

X2 = (k1ka, kady, k1ds, d1d>)

N2(1—1/r) _N2—1/r 0 N2
B — 3D — €1N1_1/r _elN52+2(1—1/r) —e1N
2= P22 = e, NS2H20-1/1) o
e1rel
Ulz = Uzi)z

= (k1kaN2=9) ky(1 — ky )N,
(k1 — ko) N2T200) (1 — ky5)(1 — kys)).
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Notice that the target vector v’2 is a vector in the lattice, call it éC’z, that is generated
by the rows of B and that the components of v/, are balanced (up to multiplicative
constants that do not depend on N'). Now, the target vector has size

||U/2|| ~ N252+2(1—1/r)’

and the lattice £/ has volume
vol(£}) = |det(B))| = e2e2 NO2+50-1/r)  NB2+9=5/r

when the public exponents are full sized. From Theorem 3.2 (Minkowski), we
know that a shortest vector in éC’z will have norm at most 2v01(é€’2)1/ 4. Therefore,
a necessary condition for v} to be a shortest vector in £/ is given by [[va| <
2V01(é€/2)1/ 4 or, looking at the exponents of N

1
26 +2(1—-1/r) < 1(524-9—5/?),

where we have ignored all constants not depending on N. This is further simplified
as

3+r
Tr

82< — €,

where € > 0 is added to account for the ignored constants. Letting r = 2, we
recover Howgrave-Graham and Seifert’s original bound of 8, < 5/14 — € ~
0.357 — €. If both private exponents satisfy this bound and if v} is a smallest
vector in éC’z and if we can find a smallest vector in the lattice (which we can
efficiently do for a 4-dimensional lattice using Nguyen and Stehlé’s greedy algo-
rithm [16]) then we can factor the modulus. Thus, if Assumption 3.3 holds we can
factor the modulus. Again, solving for the vector x;, reveals k»/d> which can be
used to compute ¢ (N).

Now consider three instances of multi-prime RSA with a common modulus. Let
(e1, N), (e2, N), (e3, N) be three valid multi-prime RSA public keys (with e¢; #
ej), each having their private exponent smaller than N 83 1In this case, a lattice
is constructed with the eight equations: kikzks = kikaks, koksWi, k3G 2,
kaWiWa, kaGr,3, Wi1Ga,3, WaG1,3, and W W, W3, In particular, these equations
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can be written as the vector-matrix equation x3 83 = vs, where

x3 = (kikaks, dikaks, kidaks, didaks, kikads, dikads, kidads, didads)

1 =N O N? 0 0 0 —N3

(3] —e1 —€1N —e1] 0 €1N €1N2

e2 —eaN 0 eN 0 eaN?

B; = e1ep 0 —ejep —ejea —ejeaN
e3 —esN —esN  e3N?

ej1es 0 —e1e3N

ere3  —epesN

ejeze3

v3 = (kikoks, koks(1 —kys). ka(ky — k2). k3(1 — k1s)(1 — kas),
ka(ky —k3), (1 —kis)(ka —k3), (1 —kas) (k1 —k3), [ (1 —kis)).

i=1,2,3
As in the n = 2 case, the components of vz are not balanced. Multiplying the

equation by the diagonal matrix £3 given by

diag(N 271, N2 NS N3

N53+3(1—%) N53+2(1—%) N53+2(1—%) 1)

we obtain a new vector-matrix equation x385 = x3839D3 = v3D3 = vj. Here
the new target vector v} is a vector in the lattice £ (generated by the rows in 8%)
and has balanced components. The new target vector has size

3(83+1-1
vl ~ N 63+ /r)’
and the new lattice has volume
VOl(ig) — |det($’§)| — eéllegegN453+16(1—l/r) ~ N48+28—16/r'
From Theorem 3.2, we then know that a necessary condition for v} to be a smallest

vector in &7 is given by |[v5] < \/gvol(é’ig)l/ 8. Ignoring constants that do not
depend on N, this is satisfied when

1
363+3-3/r < §(483 + 28 —16/r),
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or more simply

24r
_67
5r

where € > 0 has been added to account for the ignored constants. If Assump-
tion 3.3 holds and v} is a smallest vector in £% and we can compute a smallest
vector in £ (by computing an LLL-reduced basis for the lattice) then computing
v’3 allows us to factor the modulus. Just as with n = 2, we can recover the vector
x3 whose first two components k1k2k3 and dykok3 allow us to compute ki /d1,
and hence ¢(N).

In the general case, when there are n instances of multi-prime RSA with a com-
mon modulus, a vector-matrix equation x, 8, = v, is constructed with 2" equa-
tions. The first equation is the trivial equation kq---k, = kj---ky, the final
equation is the product of all the Wiener equations Wj --- W, and the remaining
equations are products of various Wiener and Guo equations (W; and G;,;), cho-
sen so that the basis matrix Bj, is triangular. However, the choice of the middle
2" — 2 equations to ensure a triangular basis matrix is not unique and this deter-
mination becomes an optimization problem to maximize the volume of the lattice
(see [9] for more detail on this equation determination). The last component of
U, (coming from the right hand side of the equation Wi --- W,,) will dominate the
components of v, with size N*@»+1=1/7) - Multiplying the vector-matrix equa-
tion by an appropriate diagonal matrix we construct a new vector-matrix equation
Xn B, = vj,, where the new target vector has balanced components. Just as in the
n = 2,3 cases, the diagonal matrix will leave the last row of 8, unchanged (and
so the final row of the new basis matrix will still correspond to Wy --- W},). Using
Theorem 3.2, a necessary condition for 8, can be determined so that v’3 is a small-
est vector in £, (the lattice generated by the rows of B;,). Following the general
bounds determination from Howgrave-Graham and Seifert, it can be shown that if
8, satisfies

53<

n2" 4+ (2" = @2n + ()0 = 7)

T (o —n+ D(,72))

. (.1

when n is even or
n2" + (2" — 1—
5 < 2" = 4n(,"5)))( )’ 52)
n2" — (2 - 4”((n—1)/2))

when n is odd, then the target vector v, will satisfy Minkowski’s bound (The-
orem 3.2) for the lattice £),. Letting r = 2 recovers Howgrave-Graham and
Seifert’s bounds.
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However, the bounds are not a sufficient condition for v}, to be a smallest vector.
In fact, based on the structure of the basis matrix £,’,, we can construct another
necessary condition that requires §, to be much smaller for large values of n.
Consider the description of the construction of the basis matrix B,, given above. It
is always the case that the last column of the basis matrix will always correspond to
the product of all the Wiener equations W - -+ W,,, that this column is not modified
when balancing the components of the target vector (since the right hand side of
this equation is always the dominant component of the target vector) and that the
basis matrix is always (upper) triangular. Looking at the left hand side of the
product of all the Wiener equations Wy -+ Wj;:

(erdi —kiN)(eads —kaN)--- (endn —knN),

each term in the expansion of this product is of the form

[Tedi ] KN

ieS Jje{l,...n}\S

where S C {1,...,n}. Thus, each component in the column of the basis matrix
corresponding to this equation is of the form

NS e

ieS

Since all of the public exponents satisfy e; ~ N, it follows that each component
has (approximate) size N”. The size of the last row vector in the basis matrix,
which has only one non-zero component since the matrix is (upper) triangular,
then also has (approximate) size N”. This vector is clearly a vector in the lattice
since it is a basis vector (being a vector in the basis matrix). Thus, if the target
vector v), is to be a smallest vector in the lattice, it must also be smaller than
this vector. Since v;l has size N#Gnt1-1/r ), it follows that another necessary
condition (for v}, to be a smallest vector) is given by

n@p+1—1/r) <n,

or more simply

1
Sn < —. (5.3)

r
Therefore, the size of the private exponents must satisfy inequality (5.3) in addition
to inequalities (5.1) and (5.2) if it is to be a smallest vector. When all of these
inequalities hold, and when v}, actually is a smallest vector, finding v), allows
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us to factor the modulus in the same way as illustrated in the n = 2,3 cases.
In particular, the components of the vector x, will have the form (hy,...,h,)
where h; € {k;,d;}. Since all 2" possible combinations will be present, we know
that ky --- k, and dyk» - - - k,, will be present (and defined by the structure of B3;,).
Thus, the value k1/d; can be found and used to compute ¢ (N ) as described above.

For RSA (r = 2), notice that inequality (5.3) implies that Howgrave-Graham
and Seifert’s attack cannot break instances of RSA with private exponents greater
than N1/2 (regardless of the number of instances present). Since the bounds im-
posed by inequalities (5.1) and (5.2) exceed N 1/2 when n > 7, the bounds orig-
inally suggested by Howgrave-Graham and Seifert are overly optimistic in this
range. Thus, for any n > 7, we should have §, < 1/2 — € as the bound. The
bounds for n < 6 remain as originally stated. In fact, the experiments in [9] veri-
fied the practical effectiveness of the attacks for 2 < n < 5. Unfortunately, since
the lattice dimension is exponential in 7, mounting the attack for n > 6 becomes
computationally expensive (and hence was not done) and so the N 1/2 ceiling was
not observed (experimentally) by Howgrave-Graham and Seifert or here.

For multi-prime RSA (n > 2), the bound from inequality (5.3) dominates the
attack for almost all parameter choices except r = 3 with two instances, which
has a bound 6, < 6/21 =~ 0.286 < 1/3, r = 4 with two instances, where the
bounds match at 1/4, and r = 3 with three instances where the bounds match at
1/3.

We did not extend Howgrave-Graham and Seifert’s attack to Takagi’s variant.
Our attempts only led to non-attacks (i.e., the bounds on § are always negative).
For simplicity, let the public/private exponents be defined (p — 1)(¢ — 1) instead
of modulo A'(N) = Iecm(p — 1, ¢ — 1). The obvious attempt is to multiply the key
equation by p’~! to obtain an equation

edp™™ = p' M+ k¢(N) = p"t + k(N — ),

where s &~ N/(+D, Using this for the WW; equations, we can follow the deriva-
tion (for n = 2, 3 as above for example). Working through the details, the attack
fails because each public exponent is of size (roughly) N 2/@+1) | which reduces
the volume of the basis matrix considerably. Matching the size of the target vec-
tor to the volume of the lattice (by Minkowski’s theorem) we find that § < 0 is
a necessary condition for the target vector to be a smallest vector in the lattice.

5.1 Practical effectiveness

In Table 8, we illustrate the practical effectiveness of Howgrave-Graham and Sei-
fert’s attack when mounted against RSA and multi-prime RSA forup ton = 4
instances.
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While the attack is only a heuristic, it works extremely well when mounted
against RSA in practice. In [9, Figures 2-7], Howgrave-Graham and Seifert show
experimental results (success rates and runtimes) for up to n = 5 instances of
RSA (with modulus lengths ranging from 200 to 700 bits). In Table 8, we illus-
trate the effectiveness of the attack against RSA and multi-prime RSA (r = 3,4)
when there are up to four instances (n = 2, 3,4) with modulus lengths of 1024
or 2048 bits. For each value of § in the table, Success is the number of successful
attacks out of 100 trials, unless otherwise noted. For each grouping of number of
instances, the theoretical bound is listed in the final row (along with an indication
if the attack can achieve this bound in practice in a random sampling of 100 trials).

From the data in the table it is clear that the attack works quite well against RSA
(r = 2), which was already shown by Howgrave-Graham and Seifert in [9]. The
attack almost always succeeds as the size of the private exponents approach the
theoretic bound at which point the success rate quickly deteriorates to zero. The
attack is successful (albeit with small probability) right up to the theoretical bound.
When the attack is mounted against multi-prime RSA, however, the experimental
limits of the attack do not reach the theoretical limits and this discrepancy seems to
grow with increasing number of primes in the modulus (based on the small sample
set of r = 2,3,4 only). Given two instances of multi-prime RSA, the attack is
still a great improvement over single instance small private attacks (e.g., Boneh
and Durfee’s attack) though. As soon as three instances are known, however,
Guo’s attack is stronger. For r = 3, the theoretical bounds are actually the same
but, in practice, Guo’s attack is successful right up to the N 1/3 bound, whereas
Howgrave-Graham and Seifert’s attack works for private exponents smaller than
about N %278 For larger values of r, the theoretical bound (§ < 1/r) is always
smaller than Guo’s bound N1/3, Thus, when there are at least three instances
available, Guo’s is stronger in practice.

The data also indicates that the attack becomes less effective in practice as the
size of the modulus increases.

Efficiency

The dominant cost of Howgrave-Graham and Seifert’s attack is computing a small
vector which is hopefully the target vector. For n instances of RSA, the lattice
in the attack has dimension dim(£) = 2" and the complexity of computing an
LLL-reduced basis using Nguyen and Stehlé’s L? algorithm is

02 (2" + log B)log B - M(2")),

where B is the size of the largest component in the basis matrix (see [17]). the
attack is only feasible when there are relatively few instances of RSA (small n)
since the complexity is exponential in this parameter.
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1024-bit N 1024-bit N 2048-bit N
N = pq N = pip2ps3 N = p1pap3pa
1) Success 1 Success 1) Success

0.351 100 0.243 100 0.181 100
0.352 100 0.244 100 0.182 100
0.353 100 0.245 100 0.183 100

n=2 0.354 100 0.246 100 0.184 100
instances 0.355 97 0.247 88 0.185 100
0.356 75 0.248 52 0.186 77
0.357 6 0.249 4 0.187 2
0.358 0 0.250 0 0.188

0.357 v 0.286 X 0.250

0.394 100 0.271 100 0.185 100
0.395 100 0.272 100 0.190 100
0.396 100 0.273 100 0.195 100

n=3 0.397 100 0.274 100 0.200 100
instances 0.398 100 0.275 100 0.205 100
0.399 74 0.276 71 0.206 100

0.400 3 0.277 5 0.207 93

0.410 0 0.278 0 0.208 0

0.400 v 0.333 X 0.300 X

0.415 100 0.285 100 0.212 100
0.420 100 0.286 100 0.213 100
0.425 100 0.287 100 0.214 100

n=4 0.430 100 0.288 100 0.215 100
instances 0.435 100 0.289 99 0.216 100
0.436 100 0.290 83 0.217 100
0.437 11 0.291 1 0.218 21
0.438 0 0.292 0 0.219 0
0.441 X 0.379 X 0.348

Table 8. Howgrave-Graham and Seifert’s attack in practice. Number of successes
for 100 trials for each value of § shown for n = 2, 3, 4 instances of RSA and multi-
prime RSA with 3 or 4 primes in the modulus. Last row for a given number of
instances shows theoretical bound.
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When the number of instances of RSA is fixed it can be shown that the attack
is polynomial in log(N). This follows from the construction of the lattices that
are used which imply that B < N2". In practice, of course, the constants in the
complexity estimate arising from the fixed n limit the feasibility of the attack to
a small number of instances. We illustrate this in Table 9, where we show the
runtime of mounting the attack for up to n = 4 instances of RSA with a common
modulus for various modulus sizes. Again, the attack was mounted on an AMD
Opteron 850 server with quad 2.4 GHz processors and 16GB of RAM. The LLL-
reduced basis was computed using Victor Shoup’s NTL c++ library. The values in
the table are averages of 100 trials for n = 2, 3 and for 10 trials for n = 4. As can
be seen, the attack is very feasible for small values of n but the runtime quickly
increases (as is expected).

Modulus Attack Time

(bitlength) n=2 n=3 n=4
1024 0.1 sec 0.3 min 0.3 hours
2048 0.6 sec 1.7 min 1.7 hours
4096 3.5 sec 9.9 min 9.4  hours
10000 347 sec 93.0 min 72.5 hours

Table 9. Howgrave-Graham and Seifert’s attack: Efficiency of the attack for various
modulus sizes and number of instances of RSA.

6 Conclusions

In this work, we re-examined Guo’s continued fraction and Howgrave-Graham
and Seifert’s lattice-based attacks on small private exponent RSA with a common
modulus. We have shown that Guo’s attack is actually quite effective in practice
when a modest exhaustive search is allowed (220 bits in total). We have also
shown that the theoretical bounds of Howgrave-Graham and Seifert’s attack is
N1/2 once there are seven or more instances of RSA. This corrects the original
bounds proposed in the attack. The bounds for n < 6 instances remains the same
as originally given.

The correction to the bound in Howgrave-Graham’s bound arises from the de-
tails of the basis construction as given in [9]. In particular, the equation Wy --- W,
leads to the second necessary condition § < 1/2. Removing this equation (and
possibly others) may still lead to an attack for private exponents greater than the
N2 bound. We are currently investigating this.

In addition, we have also mounted the attacks on two fast variants of RSA:
multi-prime RSA and Takagi’s variant. For multi-prime RSA, we find that in prac-



92

M. J. Hinek and C.C. Y. Lam

tice,

Guo’s attack is the stronger of the two attacks as soon as three instances are

available. For Takagi’s scheme, only Guo’s attack can be applied. Thus, there is
no attack on Takagi’s scheme when only two instances are available. It is an open
question if such an attack exists.

Bibliography

(1]

(2]

[10]

[11]

[12]

D. Boneh, Twenty years of attacks on the RSA cryptosystem, Not. Amer. Math. Soc.
46 (1999), 203-213.

D. Boneh and G. Durfee, Cryptanalysis of RSA with private key d less than N 292,
IEEE Trans. Inf. Theory 46 (2000), 1339-1349.

M. Ciet, F. Koeune, F. Laguillaumie and J.-J. Quisquater, Short Private Exponent
Attacks on Fast Variants of RSA, Université Catholique de Louvain, UCL Crypto
Group Technical Report Series no. CG-2002/4, 2002.

J.-S. Coron and A. May, Deterministic polynomial time equivalent of computing the
RSA secret key and factoring, J. Cryptol. 20 (2007), 39-50.

J.M. DeLaurentis, A further weakness in the common modulus protocol for the RSA
cryptoalgorithm, Cryptologia 8 (1984), 253-259.

N. Ferguson and B. Schneier, Practical Cryptography, Wiley Publishing, Inc., Indi-
anapolis, Indiana, 2003.

M. J. Hinek, On the security of multi-prime RSA, J. Math. Cryptol. 2 (2008), 117—
147.

M.J. Hinek, M. K. Low and E. Teske, On some attacks on multi-prime RSA, in:
Selected Areas in Cryptography — SAC 2002, Lecture Notes in Computer Science
2595, pp. 385404, Springer-Verlag, 2003.

N. Howgrave-Graham and J.-P. Seifert, Extending Wiener’s attack in the presence of
many decrypting exponents, in: Secure Networking — CORE (Secure) ’99, Lecture
Notes in Computer Science 1740, pp. 153-166, Springer-Verlag, 1999.

K. Itoh, N. Kunihiro and K. Kurosawa, Small secret key attack on a variant of RSA
(due to Takagi), in: CT-RSA 2008 (T. Malkin, ed.), Lecture Notes in Computer Sci-
ence 4964, pp. 387-406, 2008.

N. Kunihiro and K. Kurosawa, Deterministic polynomial time equivalence between
factoring and key-recovery attack on Takagi’s RSA, in: PKC 2007 (T. Okamoto and
X. Wang, eds.), Lecture Notes in Computer Science 4450, pp. 412425, Springer-
Verlag, 2007.

A.K. Lenstra, Unbelievable security. Matching AES security using public key sys-
tems, in: Advances in Cryptology — ASIACRYPT 2001, Lecture Notes in Computer
Science 2248, pp. 67-86, 2001.



Common modulus attacks on RSA and some fast variants 93

[13]

[14]

[18]
[19]

(20]

A. May, New RSA vulnerabilities using lattice reduction methods, Ph. D. thesis, Uni-
versity of Paderborn, 2003.

A. May, Computing the RSA secret key is deterministic polynomial time equivalent
to factoring, in: Advances in Cryptology — CRYPTO 2004, Lecture Notes in Com-
puter Science 3152, pp. 213-219, Springer-Verlag, 2004.

G. L. Miller, Riemann’s hypothesis and tests for primality, J. Computer System Sci.
13 (1976), 300-317.

P.Q. Nguyen and D. Stehlé, Low-Dimensional lattice basis reduction revisited, in:
Algorithmic Number Theory: 6th International Symposium, ANTS-VI, Lecture Notes
in Computer Science 3076, pp. 338-357, Springer-Verlag, 2004.

P. Q. Nguyen and D. Stehlé, An LLL algorithm with quadratic complexity, SIAM J.
Comput. 39 (2009), 874-903.

C.D. Olds, Contiued Fractions, Random House, Inc., 1963.

J.-J. Quisquater and C. Couvreur, Fast decipherment algorithm for RSA public key
cryptosystem, Electron. Lett. 18 (1982), 905-907.

R.L. Rivest, A. Shamir and L. M. Adleman, A method for obtaining digital signa-
tures and public-key cryptosystems, Commun. ACM 21 (1978), 120-126.

Sa. Sarkar, S. Maitra and Su. Sarkar, RSA Cryptanalysis with Increased Bounds on
the Secret Exponent using Less Lattice Dimension, Cryptology ePrint Archive, Re-
port 2008/315, 2008, http://eprint.iacr.org/.

G.J. Simmons, A “weak” privacy protocol using the RSA crypto algorithm, Cryp-
tologia 7 (1983), 180-182.

T. Takagi, A fast RSA-type public-key primitive modulo pk q using Hensel lifting,
IEICE Trans. 87-A (2004), 94-101.

M. J. Wiener, Cryptanalysis of short RSA secret exponents, IEEE Trans. Inf. Theory
36 (1990), 553-558.

Received June 10, 2009; revised March 18, 2010.

Author information

M. Jason Hinek, i{CORE Information Security Lab, Department of Computer Science,
University of Calgary, Calgary, AB, T2N 1N4, Canada.
E-mail: mjhinek+ucalgary@gmail.com

Charles C.Y. Lam, Department of Mathematics, California State University, Bakersfield,
Bakersfield, CA. 93311-1022, USA.
E-mail: clam@csub.edu


http://eprint.iacr.org/


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents for journal articles and eBooks for online presentation. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


