© de Gruyter 2007
J. Math. Crypt. 1 (2007), 373-384 DOI 10.1515 /JMC.2007.019

The average transmission overhead
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Abstract. We consider broadcast encryption schemes wherein a center needs to broadcast a secret
message to a privileged set of receivers. We prescribe a probability distribution P on the privileged
set. In this setting, the transmission overhead can be viewed as a random variable over P and we
define its expected value as the average transmission overhead (or ATO).

Given P, the Shannon’s entropy function H(.) provides a lower bound on the average number
of bits required to identify every privileged set. This implies a natural lower bound for the ATO in
terms of H(P). For session key distribution, we consider the subset cover framework and bound
the ATO in terms of the size of the cover. We further specialize our bound to accommodate storage
constraints at receivers.

We consider two families of distributions for P that occur naturally in broadcast networks.

1. Each receiver independently joins the privileged set with probability p.
2. The privileged set is selected uniformly from a collection of subsets of receivers.

We evaluate the ATO of some practical schemes such as the subset difference method, the LSD
scheme and the Partition-and-Power scheme under these distributions. Our investigations lead us to
conclude that each scheme is inherently tailored to perform optimally for specific distributions.
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1 Introduction

The average transmission overhead is an important statistical measurement of the ef-
fectiveness of communication systems. It finds applications in diverse fields such as
video transmission over wireless networks [13], management of replicated data [14]
and classification of access networks [16]. The overhead is determined by prescribing
a probability distribution on some parameter of the system and using standard methods
from probability theory (see [1] for a good introduction) to compute its value.

The setting in a broadcast encryption scheme consists of a broadcaster B and a col-
lection of receivers R. Periodically, B will want only some privileged subset R C R
of receivers to avail the broadcast. To ensure this, B first broadcasts a message M that
only the receivers in R can decipher. The receivers are pre-configured with the right
bits of information to achieve this. M includes a session key that is used for encrypt-
ing further broadcasts intended for R. The transmission overhead is the length of M,
that is, the amount of information (in bits) required to transfer the session key to R.
Naturally, this overhead depends on R.

We now impose a probability distribution P on the privileged set. The distribution
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is determined by the particular application the broadcaster intends to deploy. For in-
stance, if the programs belong to the premium pay-per-view category, the privileged
sets are more likely to be small and P would reflect this fact.

We assume that P holds true for every broadcast and is not affected by past broadcast
history. Let us denote the probability of a subset R C R being privileged as P(R).
The transmission overhead may then be viewed as a random variable over P whose
expected value we define as the average transmission overhead (or ATO). In other
words,

ATO = > P(R)-TO(R),
RCR

where TO(R) is the transmission overhead for R.
We observe that the Shannon’s entropy function [15]

H(P)=- > P(R)logP(R)'
RCR

provides a lower bound on the average number of bits required to identify every priv-
ileged set. Since the broadcasts are independent, any broadcast encryption technique
must provide for enough communication to allow identification of the privileged set.
This observation translates into the following fact.

Fact 1.1.
ATO > H(P).

In Section 2, this bound is improved to take into account the transfer of session key.

1.1 Related work

To the best of our knowledge, the concept of average transmission overhead has not
been studied before in the broadcast encryption context. Broadcast encryption itself
is a well-studied topic though; see for instance [7, 3, 8] for an introduction. In [3], a
broadcast scheme is proposed using polynomial interpolation and related vector for-
mulation methods. Fiat and Naor [8] consider k-resilient broadcast schemes where
coalitions of k users not in the privileged set cannot recover the session key. Blundo
et al study the trade-off between communication and storage in an information theo-
retic setting for unconditionally secure broadcast encryption schemes [4, 5]. Luby and
Staddon [11] use a combinatorial model to study this trade-off.

Subset cover schemes were introduced in [12]. The authors describe a subset differ-
ence method to cover the set of non-revoked users by a collection of disjoint subsets.
Each non-revoked user uses the key corresponding to his subset to recover the session
key. If r is the number of revoked users and n the total number of users, their scheme

'In this paper, all logs are in base 2.
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has a transmission overhead of (2r — 1) messages, each receiver stores O(log” n) keys
and the processing time at a receiver is O(logn) operations. These bounds are im-
proved by Halevy and Shamir [9] using a Layered Subset Difference (LSD) scheme.
Specifically, they reduce the storage size to O(logS/ 2 n) while the processing time re-
mains the same. However, the transmission overhead increases to 4r messages.

In [10, 6], the authors develop new methods to reduce transmission overheads in
broadcast encryption. The methods are based on the idea of assigning one key per each
partition using one-way key chains after partitioning the users. One method adopts
skipping chains on partitions containing up to p revoked users and the other adopts
cascade chains on partitions with layer structure. The scheme using the former re-
duces the transmission overhead down to pil messages asymptotically as  grows, and
the scheme using the latter keeps the transmission overhead very small when r ap-
proaches 0, where r is the number of revoked users. Combining the two schemes, the
authors propose a new broadcast encryption scheme with the least transmission over-
head. However, these schemes require a large storage at a receiver and this storage may
grow exponentially in some cases.

The Partition-and-Power scheme (PaP) was introduced in [2] wherein each user
stores m keys and the subset cover is formed by partitioning the set of users into
n/(logm + 1) equally sized sets and taking the union of all subsets of each set. A
lower bound for the maximum transmission overhead for a subset cover scheme was
determined and the PaP scheme was shown to achieve within a constant factor of this
bound.

1.2 Our contribution

In this article, we assume that keys are distributed using the subset cover method.
These offer several advantages over other key distribution methods. For instance, the
receivers in this scheme are stateless, that is, once configured, the keys don’t have to be
updated. This scheme is also fully resilient in the sense that the session key cannot be
computed by any coalition of non-receivers. The keys may either be explicitly stored
as in the complete subtree method [12] and partition-and-power (PaP) scheme [2] or
computed through pseudo-random generators as in the subset difference (SD) method
[12] or the layered subset difference (LSD) method [9].

Our main result is a generic lower bound for the ATO in terms of the storage at a
receiver, the distribution P and the key length (Theorem 2.3). Using this bound as the
benchmark, we evaluate different subset cover schemes (SD, LSD and PaP) under two
families of distributions encountered in practice. Our findings show that each scheme
is inherently tailored to perform optimally for specific distributions.

Outline of the paper: In the next section, we introduce subset cover schemes and
derive the expression for the ATO. We specialize this bound in terms of the storage
at receivers when all subset keys are explicitly stored with the receiver. In Section 3,
we consider some probability models for the privileged set that are natural and useful
in practice, and compute the bounds for ATO under these distributions. In Section 4,
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we consider some specific subset cover schemes (such as SD, LSD, PaP schemes) and
estimate their ATO for these distributions. We conclude with Section 5.

2 The subset cover framework

We consider subset cover schemes introduced in [12]. The idea is to express the privi-
leged set as a union of a collection of subsets from a cover and encrypt the session key
with the subset key corresponding to each subset in the union. These encrypted values
are broadcast. Each privileged user either stores the subset keys explicitly or is able
to compute them using some pre-stored information. The subset key is then used to
recover the session key from the encrypted message.

Let R = {r1,...,r,} be a set of n receivers capable of receiving transmissions
from a broadcaster B. Let S, X C ZR be collections of subsets of R defined in the
following manner. S is the collection of privileged sets. In the most general case, S
would comprise of all subsets of R. X is defined to be a cover for S, that is, every
element in S can be expressed as a union of some elements from X’. Formally,

VRS, 3IXp C X suchthat |J X =R

XeXr
Let
fr(R) = min | X R
XRrC s
UXEXR X=R

be the minimum number of elements from X required to cover R.

For each X € X, there exists a (unique) subset key K x that is known only to the
receivers in X. To distribute a session key K to a set of receivers, say R € S, B first
finds the smallest cover for R by the elements from X. Suppose itis R = X; U X, U
---U Xy where f = fy(R). Then B sends the following broadcast

([MX],...,MXf,EKXl (K),.. .7EKXf (K)], Ex(M)), (2.1)

where E,, (K) is the encryption of K under K x and Ex (M) is the broadcast message
M encrypted under K. Here the message My, uniquely addresses X;. Note that the
quantity in square brackets in (2.1) is the transmission overhead.

Suppose all keys are ¢ bits in length (so that [X| < 2) and let M y(R) = |[Mx,| +
-+ +|Mx,|. Let TOx(R) be the transmission overhead to target R so that

TOx(R) = My(R)+ fy(R)t. 2.2)

To define the average transmission overhead, we assume a probability distribution
P on the privileged sets. Assume that a privileged set R € S, occurs with probability
0 < P(R) < lsothat ), _gP(R)= 1. The average transmission overhead is then
the quantity

ATOx = > P(R)-TOx(R).
ReS
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We observe that ATO» depends only on the cover and not on any specific privileged
set. Since R is identified by My (R), using (2.2) and Fact 1.1, we get

ATOx = > P(R) + Y P(R)- fy(R)t

ReS ReS
> H(P)+axt, (2.3)

where axy = >, g P(R)fy(R) is the average covering number of X. Let us now
bound ay in terms of H(P).

Claim 2.1.

X
ax log il > H(P).
ax

Proof. There are | X| different elements of X'. Let’s suppose that they are represented
by numbers 1 to |X|. We denote by Nx the number representing the set X € X.

Consider the case when R € S is the privileged set whose minimum cover is R =
XiUXoU...UXy (wheref:fX(R)),andNXO =0< Nx, <Nx, <--- <NXf <
|X]. Then, B sends Mx, = Nx, — Nx,_, for 1 <i < f. Note that

Nx, =Y Mx,,
=1

so it is easy for receivers to reconstruct the numbers Nx;s and identify X;s. Here,

My (R) = [Mx,|+[Mx,|+ -+ |[Mx,|
= logNXI+10g(NX2_NX1)+"'+10g(NXf_NXf—l)

Ed - N Y
< flogT (Since Hri < (f) when Z” <N)
i=1

=1
= fy(R)log|X|— fy(R)log fy(R).

Now,
H(P) < > PRM

ReS

< Y PR)fx(R)log|X|— Y P(R)fy(R)log fy(R)
ReS ReS

= axloglX|— Y P(R)fy(R)log fy(R)

ReS
< axlog|X|—axlogaxy.
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Note that we used the Jensen’s inequality for convex function ¢ = zlogx in the fi-
nal simplification. The Jensen’s inequality says that E[¢(X)] > ¢(E[X]) when ¢ is
convex. d

From Claim 2.1, we get the following bound on ay:

HP) H(P)
log |X| —logay ~ log|X|—log H(P) + loglog |X|

ax

Plugging this bound in equation (2.3), we get the following important lemma.

Lemma 2.2. Under a probability distribution P over the privileged sets S C 2R, with
a subset key of length t bits, the average transmission overhead is bounded by

t
ATO > H 1 2.4
ro= UD)( +10g|X|—10gH(7>)+10g10gX|> 24

for broadcast encryption schemes that use subset cover method as outlined by (2.1).
Suppose a receiver can store a maximum of m subset keys and we consider schemes

where the subset keys are stored explicitly in the receiver. The cover size then satisfies
|X| < mn and (2.4) specializes to the following result.

Theorem 2.3. Under a probability distribution P over the privileged sets S C 2R,
with a storage bound of m keys per receiver and a subset key of length t bits, the
average transmission overhead is bounded by

t
AT > H 1 2.
Ox = H(P) ( + logmn — log H(P) + loglog mn) 2.5)

for broadcast encryption schemes that use subset cover method as outlined by (2.1)
and explicit storage of subset keys at the receiver.

Theorem 2.3 bounds the average transmission overhead in terms of the parameters
of the broadcast network, such as the number of receivers, key length, receiver storage
and the distribution of the privileged set. Thus a practical scheme can determine its
effectiveness by measuring how far it deviates from this bound.

3 Some special probability distributions

We evaluate the lower bound expression in (2.5) for a couple of probability distributions
that are natural and useful in practice.

3.1 Independent and identically distributed case

Consider the case where each receiver, independently, joins the privileged set with
probability 0 < p < 1. Therefore, the probability of R C R being privileged is

P(R) = plfl(1 — p)"~IFl.
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For such a distribution P,, over ZR, its Shannon entropy is

H(Pp) = nHZ(P)7

where H,(p) = —plogp — (1 — p) log (1 — p) is the standard binary entropy function.
This follows from the fact that the entropy of the joint distribution of independent
events is the sum of the individual entropies of each distribution.

Thus, equation (2.5) translates into

t

ATOx = m (1 + logm + loglogmn) Ha(p). -1y

This expression is symmetric around p = 1/2. It reaches its maximum value n(1 +

m) when p = 1/2 which corresponds to the case where every subset of

R is equally likely to be a privileged set. It is interesting to note that this bound is

comparable with the lower bound of [2] for the maximum transmission overhead in
broadcast communication.

Note that equation (3.1) shows that the average transmission overhead is high for
mid-range p. In fact, broadcast schemes addressing such distributions are hard to im-
plement since all subsets of R are more or less equally likely to be privileged.

3.2 Equi-probable case

Next, we assume a uniform distribution over S C ZR, that is, all privileged sets occur
with the same probability (of 1/|S|). Let us label this probability distribution as Pg.
In this case, its Shannon entropy is

log|S
H(Ps) = - X Pim)ogp(r) = Y “E°
ReS ReS
= log|S|.
Thus, equation (2.5) translates into
t
AT > 1 1 . 2
Ox =z log|d] ( +logmn—loglog|8|+loglogmn> (3-2)

When S = ZR, P S is the uniform distribution over all subsets of R, and the expres-
sion in (3.2) reaches its maximum of n(1 + m) (as in the IID case when
p = 1/2). The scenario of practical interest is the case where S = {R C R : I < |R| <
u}, that is, privileged sets are restricted to a size in the interval [{, u]. Then,

n n (7:}2) ifl<n/2<u
— >
151 (l) o (u) - {(u —1+1)(if) otherwise.

This bounds |S| from below and hence the ATO in equation (3.2).
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4 Analysis of some subset cover schemes
We consider the SD, LSD and the PaP schemes and evaluate their ATO values for
distributions P, and P g studied in Section 3.

4.1 The subset difference method

In the SD method [12], the storage per receiver is m = O(log2 n) keys. The cover X is
chosen in such a way that if R is a privileged set of size n — r, then fy (R) ~ 1.25r.

4.1.1 Independent and identically distributed case

The average covering number under distribution P, is then

ay ~ Z (?)1.257"])"—7)(1 —p)" =1.25n(1 —p).
r=0

Since identification of the privileged set in this scheme requires a negligible number
of bits compared to the key distribution, the ATO value is
ATOx = 1.25nt(1 — p).

Consider the ratio of ATOy to the minimum ATO. Using m = log” n and the lower
bound provided by equation (3.1), we get

ATOyx nt(1 — p)loglogn
min ATO nH,(p)(t + loglogn)
(1-p)
= -O(loglogn). 4.1
i) Cloglogn) 4.1

Note that we have used 2! > |X| > n while deriving (4.1). The ratio in (4.1)
decreases with p. Note that the average size of a privileged set is np. Thus this scheme
is effective when the privileged set is likely to be large.

4.1.2 Equi-probable case

The average covering number under distribution P g is

1
ax = Y Jx(RP(R)~ g 37 1250 = 1252
ReS ReS
where z = ﬁ > res T Note that (n — z) is the average size of a privileged set.

Assuming again that the identification of the privileged set requires a negligible number
of bits, the ATO is
ATOx =~ 1.25tz.
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Using m = log2 n and the lower bound for minimum ATO given by equation (3.2), we
get

ATOx 1.25¢tz(log mn — loglog|S| + log log mn)
min ATO ~ log|S] - (logmn — loglog |S| + loglog mn + t)

1.25tz(logn — loglog |S| + loglog n)
log|S| - (logn — loglog |S| + loglogn + t)
logn — loglog|S| + loglogn

log |S|

— .0 ) 4.2)

where we have used ¢ > logn > logm and n > |log S|. We now analyze this ratio for
two important scenarios.

Qs = 2R: 1In this case, the expression (4.2) is ®(loglogn), that is, similar to the
expression (4.1) for p = 1/2. Note that the average size of a privileged set is ~ n/2
here.

2)S={R|RCR A\ |R|=n—r}: Inthiscase, |S|=(")and z = r.

» For 7 < n (or when 7 is a constant), the expression (4.2) is ®(1), that is, the
performance of the SD scheme is within a constant factor of the minimum on the
ATO measure.

» When r is large, say » = c¢n (where 0 < ¢ < 1 is a constant), the expression (4.2)
is ﬁ(c) - O(loglogn), that is, similar to the expression (4.1). It increases with c.
Thus this scheme is effective when the privileged sets are large in size.

4.2 The layered subset difference method

The LSD scheme [9] essentially improves the SD scheme of [12]. Specifically it re-
duces the storage per receiver to m = log3/ Zn keys while the processing time re-
mains the same. The subset cover X is little bigger - it satisfies fy (R) ~ 2r where
IRl =n—r.

Since m is poly-logarithmic (that is, O(log®n)) and fy (R) = O(r) for both the
SD and the LSD schemes, their ATO analyses are very similar. Therefore, we choose
not to repeat it for the LSD scheme. We conclude that, like the SD scheme, the LSD
scheme is again effective when the privileged set is likely to be large.

4.3 The PaP scheme

Let m be the number of subset keys that can be stored at a receiver. The PaP scheme
[2] partitions R into groups of size g := logm + 1. The subset cover X is the union
of the power set of each of these groups. Thus, |X| = 29n/g ~ 2mn/logm. Each
receiver stores all the keys corresponding to the subsets it belongs to in X'. To address
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a privileged set R, R is expressed as a disjoint union of at most f = n/g sets from X.
Thus for any distribution, the average cover number is always less than n/g.

4.3.1 Independent and identically distributed case

Suppose R C R is privileged with distribution P,,. If fy(R) = j, then R contains
at least one element from j groups and none from the remaining groups. The average
cover number is given by

ay = ij(ﬁ)(l—p)g‘f‘” (i(f)pi(l—p)g‘iy

j=1 i=1
- f<1—<1—p>g>=§<1—<1—p>9>

after routine simplifications. As one would expect, a X increases with p. Now, the ATO
is given by

n(l—(1—-p)?)(log2+g+t
ATOx = ay(log|X|+t)= (- )2}( £y 19 )

Consider the ratio of ATO» to the minimum ATO. Using the lower bound provided by
equation (3.1), we get

ATOy n(l—(1-p)?)(log% +g+1) log m + loglog mn
min ATO — g nH,(p)(t + logm + loglog mn)

). (4.3)

2 1+ loglogmn

= H,(p) ( logm

Note that we have used g = log2m > 2, and 2! > |X| > n while deriving (4.3).
There are two distinct terms in (4.3): the first term —2— underlines the probabilistic

H;(p)
setup whereas the second term (1 + %) represents the storage constraint. We

now analyze this ratio for different values of p.

(1) p = ¢/n(or p = 1—c/n) where cis a constant: In this case, the expression (4.3)
is ®(n). Thus, the performance of PaP scheme could be arbitrarily bad.

(2) p=1/2 (or any constant): In this case, the expression (4.3) is (1 + %)

If m is fixed, and n is varied, then here again the performance of PaP scheme could be
arbitrarily bad.

If mn < 2™ (which is a likely scenario in practice), then the expression (4.3) is
O(1). Thus, the ATO of PaP scheme is within a constant factor of the optimal. For
example, if n = 22°,m = 2'° and p = 1/2, then the performance of PaP scheme is
within a factor of 3 of the minimum on the ATO measure.
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4.3.2 Equi-probable case

Since S can be any sub-collection, the best we can do is bound the average cover
number from above by f = n/g. Thus, the ATO of PaP scheme is

2tn
log2m’

ATOxy < 2tf =

Comparing with the lower bound given by (3.2), we observe that when log |S| = n, the
ATO is within a (1 + %) factor of the minimum. When |S]| is small, the PaP
scheme is not effective.

5 Conclusion

The ATO is a statistical measure of the efficacy of a transmission scheme and finds
applications in different domains [13, 14, 16]. Thus studying this concept in the field
of broadcast encryption is a natural extension. The ATO can be used as a yardstick to
measure the effectiveness of a broadcast scheme and to compare different schemes un-
der uniform conditions such as same storage at receivers, same key length and identical
distributions.

In this article, we studied the subset cover framework and derived a lower bound for
the ATO under a given distribution on the privileged set. Our analysis used the entropy
of the distribution to bound the number of bits required to identify any privileged set.
We specialized the lower bound when the storage on a receiver was constrained. We
considered two probability distributions and evaluated the ATO of some subset cover
schemes under these distributions. Our studies show that each scheme is naturally
designed to give optimal performance for specific distributions.

Other distributions for the privileged set are possible. For instance, we have assumed
that every receiver is privileged with the same probability p. A natural extension is to
consider the scenario where different groups of receivers are privileged with different
probabilities. The most general case would prescribe a probability for each privileged
set. However, such distributions appear harder to analyze.
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