
Research Article

George Teşeleanu*

Sherlock Holmes zero-knowledge protocols
secure against active attackers

https://doi.org/10.1515/jmc-2025-0007
received March 17, 2025; accepted July 14, 2025

Abstract: We present two simple zero-knowledge interactive proofs that can be instantiated with many of
the standard decisional or computational hardness assumptions. Compared with traditional zero-knowledge
proofs, in our protocols, the verifier starts first, by emitting a challenge, and then, the prover answers
the challenge.

Keywords: zero-knowledge protocols, sequential attacks, active intruder attacks

MSC 2020: 94A60

1 Introduction

A standard interactive proof of knowledge involves a prover, usually called P or Peggy, and a verifier, usually
calledV or Victor. Peggy is in possession of some secret k , and by interacting with Victor, she wants to convince him
that she indeed owns k . More formally, an interactive proof is a pair of programs that implement the protocol
between Peggy and Victor. To be useful, such a proof must be complete and sound. By complete, we mean that
an honest Peggy succeeds in convincing an honest Victor, and by sound, we mean that a dishonest prover does
not succeed in convincing the verifier of a false statement. Moreover, if Victor does not learn anything from
the protocol’s execution which he did not know before, we say that the protocol is zero-knowledge.

In a classical zero-knowledge protocol, Peggy starts the protocol by sending a commitment to Victor, then
Victor sends a challenge to Peggy, and finally, Peggy sends her answer. The verifier will accept the proof if and
only if Peggy’s answer coincides with the answer he expects. In contrast with these protocols, Grigoriev and
Shpilrain [1] introduced a new class of protocols1 in which Victor starts the protocol. Once the verifier knows
that Peggy wants to start the protocol2, he issues a challenge to which Peggy answers. If the answer is correct,
then the protocol ends successfully. Otherwise, it fails.

1.1 Attack models for identification protocols

When proposing novel interactive proof of knowledge protocols, we must be able to prove their security
against various types of adversaries. This includes security against legitimate, but malicious users of the
protocol. We say that an adversary is successful if he manages to impersonate the prover with a non-negligible



* Corresponding author: George Teşeleanu, Simion Stoilow Institute of Mathematics of the Romanian Academy, 21 Calea Grivitei,
Bucharest, Romania, e-mail: george.teseleanu@yahoo.com
ORCID: George Teşeleanu 0000-0003-3953-2744



1 Based on what the Grigoriev and Shpilrain [1] call the Sherlock Holmes method.
2 For example, Peggy can send a “hello”-type message or Victor can be equipped with motion sensors and detect Peggy’s proximity.

Journal of Mathematical Cryptology 2025; 19: 20250007

Open Access. © 2025 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.

https://doi.org/10.1515/jmc-2025-0007
mailto:george.teseleanu@yahoo.com
http://orcid.org/0000-0003-3953-2744

probability. We usually think of the verifier as an adversary trying to cheat [2], since the zero-knowledge
property should hold for any strategy employed by the verifier to gain some information about the secret
knowledge held by the prover.

1.1.1 Adversaries

The weakest type of adversary is the one that simply eavesdrops on the communication between the prover
and the verifier. Another type of adversary is the “honest” verifier. This attacker interacts with the prover
according to the protocol, but he maintains a database with all the protocol transcripts and all the associated
data3 generated by him during the protocol.

A stronger notion is the so-called “impersonation” attacker [3]. In this model, the attacker first plays
the role of the verifier and interacts with the prover in different sessions, and then, it tries to impersonate
the prover. Depending on how the adversary interacts with the prover, impersonation adversaries split into
three categories: sequential, parallel, and concurrent.

The last type of adversary that we consider is the active-intruder adversary [4]. This adversary is able to
alter, inject, drop, and/or divert at least one message in the given session. We say that the active-intruder
adversary is successful if the verifier accepts the session after the adversary becomes active.

1.1.2 Sequential attacks

In the case of sequential attacks, once an instance of the protocol is started, then that instance must be
terminated before starting a new one [2]. This is the classical attack model for zero-knowledge protocols
and is inspired by the smartcard communication model [5].

In the sequential attack model, the Feige-Fiat-Shamir [6] and Okamoto [7] protocols are secure as long as
the square root and discrete logarithm problems are intractable. Although the Schnorr [8] and Guillou-
Quisquater [9] protocols are proven secure [10,11] in the honest verifier model under the discrete logarithm
and eth root problems, the protocols do not have a security proof in the sequential model under standard
assumptions [3].

1.1.3 Parallel attacks

Compared to sequential attacks, in the parallel case, many instances of the protocol are run at the same time
and proceed at the same pace [2]. This model is inspired by the synchronous model of communication and
considers a polynomial number of executions that are synchronized such that the ith message is sent approxi-
mately at the same time. Note that in Goldreich [2], we can find an example of a protocol that is secure in the
sequential model, but insecure in the parallel one.

1.1.4 Concurrent attacks

These attacks generalize both the sequential and parallel attacks. In this case, a polynomial number of
instances are run at arbitrary times and proceed at an arbitrary pace [2]. This model is inspired by the internet
communication model [5].

According to previous studies [7,12], the Feige-Fiat-Shamir and Okamoto protocols remain secure in this
attack model. Bellare et al. [3] showed that the Schnorr and Guillou-Quisquater protocols can be proven secure
in the concurrent model if stronger non-standard assumptions hold.



3 For example, coin tosses.

2  George Teşeleanu

In the case of two-round protocols where the verifier starts, concurrent attacks are equivalent to sequen-
tial attacks [5]. This is because once the prover receives a challenge, he immediately responds and the protocol
ends. Therefore, each reply is determined only by the corresponding challenge. Hence, since our proposals
are two-round protocol, it is sufficient to study their security in the sequential attack model.

1.1.5 Active-intruder attack

In the concurrent scenario, the attacker is only allowed to interact with the prover before attempting to
impersonate him. But in real-life scenarios, the adversary might be able to interact with the prover at the
same time that the adversary impersonates him. This is a type of man-in-the-middle attack. In this setting, we
impose that the adversary alters, injects, drops, and/or diverts at least one message to avoid attackers who
simply relay messages faithfully. This is an attacks model proposed by Stinson [4].

In Appendix A, we present an active-intruder attack against a family of zero-knowledge protocols. This
family includes some of the most popular identification schemes [13,14]. Although it is controversial if these
attacks could be categorized as “real” attacks [5], it is often desirable to design protocols that withstand the
strongest possible attacks, as long as it does not result in substantial overhead.

1.1.6 Reset attacks

This class of attacks was introduced in the study of Bellare et al. [15]. In this model, the verifier can reset the
prover, thus forcing him to use the same random tape in multiple concurrent executions [2]. Such attacks were
inspired by smartcards that can be controlled by the attacker or are in his possession. Therefore, even if the
attacker cannot read the secret content contained in the secure hardware, he can disconnect the smartcard’s
battery and reset its internal state.

It is worth mentioning that most popular identification schemes, such as Schnorr, Guillou-Quisquater,
Feige-Fiat-Shamir, and Okamoto protocols are not secure in this model [15].

According to Stinson and Wu [5] if the prover is stateless and deterministic, then the corresponding
protocol is secure in this setting. Since our proposals use exactly this type of prover, it follows that they are
secure against reset attacks. The most powerful security model is the combination of active-intruder attacks
and reset attacks [16]. According to the aforementioned arguments, in the case of our proposals, all we need to
prove is that they are secure against active-intruder attacks.

1.2 Our contributions

Although Grigoriev and Shpilrain’s protocol [1] is very interesting, the authors only claim that their protocol is
zero-knowledge in the honest verifier scenario without actually proving it. To fill this gap, we re-formalize and
generalize Grigoriev and Shpilrain’s protocol, and then, we prove its security in the same scenario. Moreover,
we provide active-intruder attacks that can be mounted against this protocol. A downside of this formalization
is that Victor must iterate the protocol a number of times in order to fulfill the soundness property.
By vectorizing the protocol, we manage to reduce the number of iteration to one. Additionally, we provide
a variation of the vectorized protocol that is secure in the sequential and active-intruder attack scenarios.

To further improve our protocol, we modified it by changing the underlying assumption from a decisional
one to a computational one. This was necessary in order to reduce the bandwidth requirements necessary for
the decisional version. Note that if Peggy and Victor choose the right parameters, the new protocol will provide
the same security assurances. Furthermore, we introduce two variations that are secure in the sequential and
active-intruder attack scenarios.

Sherlock Holmes zero-knowledge protocols  3

Finally, we offer the reader several concrete realizations of our protocols and compare them with classical
zero-knowledge protocols such as Schnorr [8], Guillou-Quisquater [9], and Fiat-Shamir [17]. Note that one can
devise new instantiations of our protocols.

We remark that in the case of our protocols, the verifier knows with overwhelming probability the answer given
by the prover. This is not the case for classical protocols, since the verifier does not know the reply in advance.

1.2.1 Previous work

Note that a preliminary version of this article was presented in the study of Teşeleanu [18].

1.2.2 Structure of this article

We introduce notations and definitions used throughout this article in Section 2. Inspired by Grigoriev and
Shpilrain’s protocol, in Section 3, we formalize and analyze the Multi-Decisional Sherlock Holmes (MDSH)
protocol. A vectorized version of MDSH and a variant of it are presented in Sections 4 and 5. The computational
version and its variants are tackled in Sections 6–8. Section 9 contains a comparison with classical zero-
knowledge protocols. We conclude in Section 10.

2 Preliminaries

Notations: Throughout this article, the notation ∣ ∣S denotes the cardinality of a set S . The action of selecting

a random element x from a sample space X is denoted by ←x X
$

, while ←x y represents the assignment of
value y to variable x . The probability of the event E to happen is denoted by []EPr . The subset �{ }− ∈s0, …, 1

is denoted by []s0, . A vector v of length n is denoted either ()= −v v v, …, n0 1 or { } []= ∈v vi i n0, , and =v v1 2 stands
for element-wise equality between two vectors v1 and v2.

2.1 Hardness assumptions

Inspired by the computational and decisional hardness assumptions described in the study of Bellare and
Rogaway [19] and the one-way function definitions found in previous studies [20,21], we further provide
the reader with the following two definitions. The first one captures the idea of a generic computational
hardness assumption, while the second the decisional version. We do not claim to capture all the generic
hardness assumptions, but for our purpose, these definitions suffice. Note that when we define an advan-
tage, we use “;” to denote the end of simple instructions or for loops and “,” to denote the end of an
instruction inside a for loop.

Definition 2.1. (Computational hardness assumption) Let { }⊆K 0, 1 * be a family of indices, and for ∈k K , let
{ }⊆D R, 0, 1 *k k . A computational hard function f is a parameterized family of functions →f D R:

k k k such that
(1) for every key ∈k K , there exists a PPT algorithm that on input ∈x Dk outputs ()f x

k
;

(2) for every PPT algorithm A, the advantage

() [() ∣ () ()]= = ← ← ← ←A f z y k K x D y f x z A f yADV Pr ; ; ; ,f k k k k

CHA
$ $

is negligible;

4  George Teşeleanu

(3) there exists a PPT algorithm B such that

[() ∣ () ()]= ← ← ← ← =f z y k K x D y f x z B k yPr ; ; ; , 1.
k k k

$ $

Definition 2.2. (Decisional hardness assumption) A function f is a decisional hard function if in Definition 2.1,
Items 2 and 3 are changed to
(2) for every PPT algorithm A, the advantage

() ∣ [∣ { } () ()] ∣= = ′ ← ← ← ← ′ ← −A b b k k K b x D y f x b A f f yADV 2Pr , ; 0, 1 ; ; ; , , 1f k k k k

DHA
0 1

$ $ $

b b 0 1

is negligible;
(3) there exists a PPT algorithm B such that

[∣ { } () ()]= ′ ← ← ← ← ′ ← =b b k k K b x D y f x b B k k yPr , ; 0, 1 ; ; ; , , 1.k k0 1

$ $ $

0 1b b

We further provide a security assumption from [19] that will be useful later on.

Definition 2.3. (Pseudo-random permutation - PRP) A function { } { } { }× →π : 0, 1 0, 1 0, 1δ τ τ is a PRP if:
– Given a key { }∈K 0, 1 δ and an input { }∈X 0, 1 τ , there is an efficient algorithm to compute () ()=π X π X K,K .
– Given a key { }∈K 0, 1 δ, the function ()⋅πK is one-to-one.
– Let A be a PPT algorithmwith access to an oracle� that returns 1 if� ()= ⋅πK . The PRP-advantage of A, defined as

�() ∣ [∣ { }] [∣]∣() ()= = ← − = ←⋅ ⋅A A K A FADV Pr 1 0, 1 Pr 1π
π δ FPRP

$ $
K

must be negligible for any PPT algorithm A, where � { { } { } ∣ }= → - -F F: 0, 1 0, 1 is one to oneτ τ .

2.2 Zero-knowledge protocols

Let { } { } { }× →Q : 0, 1 * 0, 1 * true, false be a predicate. Given a value z, Peggy will try to convince Victor that she
knows a value x such that () =Q z x, true.

We further base our reasoning on two definitions from [6,13,22] which we recall next.

Definition 2.4. (Proof of knowledge protocol) An interactive protocol ()P V, is a proof of knowledge protocol
for predicate Q if the following properties hold:
– Completeness: V accepts the proof when P has as input a value x with () =Q z x, true;
– Soundness: there exists an efficient program E (called knowledge extractor) such that for any P̄ (possibly

dishonest) with non-negligible probability of making V accept the proof, E can interact with P̄ and output
(with overwhelming probability) an x such that () =Q z x, true.

Definition 2.5. (Zero-knowledge protocol) A protocol ()P V, is zero-knowledge if for every efficient program
V̄ , there exists an efficient program S , the simulator, such that the output of S is indistinguishable from
a transcript of the protocol execution between P and V̄ .

Remark. (Negative results) The first impossibility result for two-round zero-knowledge proofs was initially
presented in the study of Goldreich and Oren [23] and subsequently refined in the study of Barak et al. [24].
More precisely, Barak et al. [24] proved that if a language L has a two-round public-coin4 zero-knowledge proof
system that has an efficient prover, then L belongs to the complexity class P. If we consider private-coin proof



4 A public-coin proof system, or Arthur-Merlin game, is characterized by the verifier’s strategy, which primarily involves sending
random string messages, followed by a final decision to accept or reject the proof, with the verifier’s coin tosses being public.

Sherlock Holmes zero-knowledge protocols  5

systems, if ≠NP coNP, then L belongs to the complexity class coNP. Another negative result was proven in the
study of Goldreich and Krawczyk [25], which states that a language L has a constant-round public-coin zero-
knowledge proof system, which is black-box simulation5 zero-knowledge if and only if belongs to the com-
plexity class BPP. Note that the protocols presented in this article are not public-coin.

Remark. (Negative results on negative results) Based on Damgård’s knowledge-of-exponent assumption [26], Barak
et al. [24] established the existence of a two-round private-coin zero-knowledge proof system for a promise problem
that lies beyond BPP. Therefore, the negative result from the study of Barak et al. [24] for NP-complete languages
cannot be generalized to cover all nontrivial problems without challenging this assumption. The protocol intro-
duced in the study of Barak et al. [24] can be seen as a specialized version of a more generic protocol introduced in
the study of Sahai and Vadhan [27], which centers around deciding if two distributions are statistically “close” or
“far apart.” Sahai and Vadhan [27] further established that, under the honest verifier scenario, their two-round
private-coin protocols is a statistical6 zero-knowledge proof system. Additionally, they prove that statistical zero-
knowledge protocols are essentially those designed to decide whether a pair of efficiently samplable distributions
exhibit statistical closeness or not. Independently, two-round private-coin protocols were introduced in previous
studies [5, 16] based on the knowledge-of-exponent assumption. Additionally, in the study by Wu and Stinson [28],
another two-round protocol is presented, relying on the strong Diffie-Hellman assumption.

We further define impersonation under concurrent attack as presented in the study of Bellare et al. [3].

Definition 2.6. (Impersonation under concurrent attack - IMP-CA) An IMP-CA adversary is a pair of PPT algorithms
()=A P V¯, ¯ , where P̄ and V̄ are the cheating prover and verifier, respectively. In the first phase of the attack,

a random tape is chosen for V̄ and it receives as input z. Then, V̄ starts to interact concurrently with a polynomial
number of clones of the honest prover P. Note that each clone knows an x such that () =Q z x, true. We further
view P as a function that takes as input an incoming message and the current state, and returns an outgoing
message and the updated state. The cheating verifier V̄ can issue two types of requests that can be arbitrarily
interleaved. The first type of request is of the form ()ε i, , and it leads to
– the initial state of clone i is set to ()←St x z R, ,i i , where Ri is a fresh random tape;
– the operation () ()←M St P ε St, ,i iout is executed;
– Mout is returned to V̄ and Sti is saved as the new state of clone i.

The second type of request is ()M i, , and it has the following effect:
– message M is sent to clone i;
– the operation () ()←M St P M St, ,i iout is executed;
– Mout is returned to V̄ and Sti is saved as the new state of clone i.

After finishing the request phase, V̄ outputs a state St and stops. In the second phase of the attack, the cheating prover
P̄ is initialized with St and starts to interact with a verifierV . Note thatV is in possession of z and fresh random coins.
We say that adversary A wins if V accepts P̄ ’s proof. We say that an interactive protocol ()P V, is secure against
concurrent impersonation attacks if for any IMP-CA adversary the probability of winning ()-

AADVP V,
IMP CA is negligible.

Finally, we provide a definition from [4] that captures active-intruder attacks.

Definition 2.7. (Active-intruder attack) An active-intruder is successful if the verifier accepts in a session after
the adversary becomes active (i.e., injects, drops, and/or diverts at least one message) in the same session.



5 In simple terms, a protocol is considered to be black-box zero-knowledge when the zero-knowledge property is proven through
a universal simulator that exclusively relies on black-box or oracle access to the verifier’s strategy.
6 In Definition 2.5, we require that the output of S has negligible statistical difference from the real transcript, instead
of computational indistinguishablility.

6  George Teşeleanu

3 Multi-decisional protocol

3.1 Description

Based on a variation of decisional hard functions, we further describe a protocol (Figure 1) that allows Peggy to
prove to Victor that she is in possession of some secrets. When Victor knows that Peggy is ready to start the
protocol, he sends her a challenge and Peggy responds with her guess. If the guess is correct, then Victor
accepts the answer.

Remark. The probability of an adversary guessing the correct index i is ∕n1 . Thus, the protocol must be
repeated sufficient number of times (e.g., m times) in order to prevent an attacker7 to convince Victor that
he knows ki, for []∈i n0, .

Remark. In order for the MDSH protocol to be efficient, we must assume that the decision of membership
∈y Rkj

can be made in polynomial time with respect to the bit-length of the statement ∣{ } ∣[]∈f
k i n0,

i
.

Remark. A protocol for statistical distance was introduced in the study of Sahai and Vadhan [27]. Let D0 and D1

be two statistical distributions. The verifier begins by flipping a coin b to obtain a random bit b and then sends

an element ←z Db

$

to Peggy. She has to determine the correct distribution for z and send her guess ′b to Victor.
The verifier accepts the proof if and only if = ′b b . Sahai and Vadhan proved that this protocol is statistical
zero-knowledge in the honest verifier scenario. Note that if =n 2, our proposed protocol becomes a special
case of Sahai and Vadhan’s protocol.

Figure 1: MDSH protocol.



7 In this case, the attacker’s success probability is ∕n1 m.

Sherlock Holmes zero-knowledge protocols  7

3.2 Security analysis

To ease understanding, we first introduce the notion of a multi-decisional hard function, and then, we prove
the security of the MDSH protocol. At the end of this section, we show how to relate the security of a multi-
decisional function to the security of a decisional function.

Definition 3.1. (Multi-decisional hardness assumption) Let ≥n 2 be an integer. A function f is a multi-deci-
sional hard function if in Definition 2.2, Items 2 and 3 are changed to
(2) for every PPT algorithm A, the advantage

() ∣ [∣ [] [] () ()] ∣= ⋅ = ′ ∈ ← ← ← ← ′ ← −A n i i i n k K i n x D y f x i A f yADV Pr for 0, : ; 0, ; ; ; , 1f i k k k

MDHA
$ $ $

i i

is negligible, where { } []= ∈f f
k k i n0,

i
;

(3) there exists a PPT algorithm B such that

[∣ [] [] () ()]= ′ ∈ ← ← ← ← ′ ← =i i i n k K i n x D y f x i B k yPr for 0, : ; 0, ; ; ; , 1,i k k

$ $ $

i i

where { } []= ∈k ki i n0, .

Remark. Note that in the case of the multi-decisional hardness assumption, we implicitly assume that all the
keys are kept secret and none of them are leaked to an adversary (dishonest prover). If, for example, t out of n

keys are leaked, there is a simple strategy that makes the attacker win with probability ()+ ∕t n1 . More
precisely, his strategy works as follows: the attacker, upon receipt of the verifier’s challenge y, checks whether
the message belongs to the set Rki

for any of the t known secrets. If true (that happens with probability ∕t n),
the attacker correctly answers the corresponding index of the matching secret. Otherwise, the attacker
answers a random index chosen among the unknown secrets. In this last case, the success probability is

() ()∕ − ⋅ − ∕ = ∕n t n t n n1 1 . Hence, the total success probability is ()∕ + ∕ = + ∕t n n t n1 1 .

Algorithm 1. Algorithm Q.

Input: An element ()←y f x
ki

and n functions f
ki
, where []∈i n0,

1 Send y to P̃

2 Receive ′i from P̃

3 return ′i

Algorithm 2. Simulator S .

Input: n functions f
ki
, where []∈i n0,

1 Choose []←i n0,
$

2 Choose ←x Dk

$

i

3 Compute ()←y f x
ki

4 return ()y i,

Theorem 3.1. The MDSH protocol is a proof of knowledge if and only if f is a multi-decisional hard function.
Moreover, the protocol is zero-knowledge in the honest verifier scenario.

Proof. If f is a multi-decisional hard function, then according to Definition 3.1, Item 3, Peggy will compute
with probability 1 the correct index. Thus, the completeness property is satisfied.

8  George Teşeleanu

Let P̃ be a PPT algorithm that takes as input
−

f f,…,
k kn0 1

and makes V accept the proof with non-negligible

probability ()PPr ˜ . Then, we are able to construct a PPT algorithm Q (described in Algorithm 1) that interacts
with P̃ and that has a non-negligible advantage () ()=Q Pr PADV ˜

f

MDHA . Thus, the soundness property is satisfied.
The last part of our proof consists in constructing a simulator S such that its output is indistinguishable

from a genuine transcript between Peggy and Victor. Such a simulator is described in Algorithm 2. □

We further show that if ADV f

DHA is negligible, then MDSH is secure. Thus, when instantiating MDSH,
it suffices to know that decisional functions are secure.

Theorem 3.2. For any PPT algorithm A, there exists a PPT algorithm B such that the following inequality
holds:

() ()≤A BADV ADV .f f

MDHA DHA

Proof. Let A have a non-negligible advantage ()AADV f

MDHA . We describe in Algorithm 3 how B can obtain a non-
negligible advantage ()BADV f

DHA by interacting with A. Note that we have to randomly shuffle the functions’
positions, in order to ensure that the index is randomly chosen from []n0, . □

Algorithm 3. Algorithm B.

Input: An element ()←y f x
kb

, where { }←b 0, 1
$

1 for []∈i n2, do

2 ∣ Choose ←k Ki

$

3 Randomly shuffle
−

f f,…,
k kn0 1

’s positions and denote the result by ′ ′
−

f f,…,
k kn0 1

4 Let ()′ ← ′ ′
−

i A f f y, …, ,
k kn0 1

5 if ′i is the position of f
k0
then return 0

6 else if ′i is the position of f
k1
then return 1

7 else return ⊥

Proposition 3.3. Let ⊆D Dki
and ⊆R Rki

. If ()⊙R, is a group and there exists an ∈x D¯ and an []∈j n0, such
that () ()=B k y B k y, , ¯ , where ()← ⊙y y f x¯ ¯kj

, then the MDSH is not secure against active-intruder attacks.

Proof. When Victor sends his first message y, Mallory intercepts it, computes ()f x̄
kj

, and forwards
()= ⊙y y f x¯ ¯kj

to Peggy (Figure 2). The second message is simply forwarded by Mallory. We can see that
Mallory’s attack succeeds since

() ()′ = =i B k y B k y, ¯ , ,

just as required by Victor’s verification. □

Proposition 3.4. Let ⊆D Dki
and ⊆R Rki

. If ()⊙R, is a group and for any ∈x D¯ and []∈j n0, , we have
() () ()≡ +B k y B k y B k y n, ˜ , ¯ , mod , where ()=y f x¯ ¯kj

and = ⊙y y y˜ ¯ , then the MDSH is not secure against
active-intruder attacks.

Sherlock Holmes zero-knowledge protocols  9

Proof. When Victor sends y, Mallory intercepts it, selects any ()x j¯, , and forwards ()= ⊙y y f x˜ ¯kj
to Peggy

(Figure 3). The second message is intercepted by Mallory, who computes ≡ ′ −i i j n˜ mod and forwards ĩ to
Victor. We can see that Mallory’s attack succeeds since

() () ()≡ ′ − ≡ − ≡i i j B k y B k y B k y n˜ , ˜ , ¯ , mod ,

just as required by Victor’s verification. □

Remark. Note that if the conditions of Proposition 3.4 hold, then Proposition 3.3 is automatically obtained
by selecting =j 0.

3.3 Examples

3.3.1 Quadratic residuosity assumption

Let N be the product of two large primes p and q, and let ()J x
N

denote the Jacobi symbol of x modulo N .
We denote by �{ ∣ () }= ∈ =J x J x* 1

N N N
and �{ ∣ () () }= ∈ = =QR x J x J x* 1 and 1N N p q

. Let u be an element such
that his Jacobi symbol ()J u

N
is 1. The quadratic residuosity assumptions (denoted by QR) state that deciding

if ∈u J QR\
N N or ∈u QRN is intractable without knowing p or q [29].

Since QRA partitions J
N

in two sets, we must set =n 2 for MDSH. Let u be an element such that
() ()= = −J u J u 1

p q
. Then, the MDSH parameters are as follows:

– the secret keys are ()= =k k p q,0 1 ;
– the functions are defined as () =f x x Nmod

k

2

0
and () = ⋅f x u x Nmod

k

2

1
, where u and N are public.

To decide if ∈y J QR\
N N or ∈y QRN , Peggy computes ()J y

p
. Note that when =b 0, we have () ()= =J y J x 1

p p

2 ,

and when =b 1, we have () () ()= = −J y J u J x 1
p p p

2 .

The active-intruder attack from Proposition 3.4 works as follows: Mallory chooses { }←j 0, 1
$

, �←x̄ *
N

$

and
forwards ⋅y u x N¯ modj 2 to Peggy, and in the second phase forwards ′ +i j mod 2 to Victor. Let ≡y u x Nmodb 2 .
The attack works since

()≡ ⋅ ≡ ⋅+ +y u x u x u u xx N¯ ¯ ¯ mod ,b j b j b j2 2 mod 2 div2 2

and the term +ub j mod 2 decides if ȳ is a quadratic residue or not.

Remark. A similar assumption can be found in the study of Benhamouda et al. [30]. Let >κ 1 be an integer,
and let ≡p q, 1 mod 2κ. Then, the gap 2κ-residuosity assumption states that it is hard to distinguish between
an element from J QR\

N N and element of the form y Nmod2
κ

, where �∈y *
N . In this case, the functions become

() =f x x Nmod
k

2
κ

0
and () = ⋅f x u x Nmod

k

2
κ

1
. Note a similar QR active-intruder attack exist for this assumption.

Figure 2: Active-intruder attack against MDSH.

10  George Teşeleanu

3.3.2 Least significant bit of the eth root assumption

Let =N pq be the product of two large primes. We denote by ()φ N the Euler totient function. Let e be an
integer such that (()) =gcd e φ N, 1. The least significant bit of the eth root assumption (denoted LSB-ER) states that
given ≡y x Nmode is hard to decide if the least-significant bit of x is 0 or 1 [31].

As in the case of QR, we have =n 2. The protocol’s parameters are as follows:
• the secret keys are ()= =k k p q,0 1 ;
• the functions are defined as () ()=f x x N2 mod

k

e

0
and () ()= +f x x N2 1 mod

k

e

1
, where N and e are public.

To find the least significant bit lsb, Peggy computes a d such that ()≡ed φ N1 mod and an element
←z y Nmodd . Then, ≡lsb z mod 2.

The active-intruder attack from Proposition 3.3 works as follows: Mallory chooses =j 1, �←x̄ *
N

$

and
forwards ()⋅ +y x j N2¯ mode to Peggy, and in the second phase forwards ′i to Victor. Let ()≡ +y x b N2 mode .
The attack works since

() () [()] ()≡ + ⋅ + ≡ + + + ≡ ′ +y x b x j xx xj xb jb x b N¯ 2 2¯ 2 2 ¯ ¯ 2 mod ,e e e e

and thus, () ()≡y N y N¯ mod mod mod 2d d .

3.3.3 Decisional Diffie-Hellman assumption

Let � be a cyclic group of prime order q and g a generator of �. Let �←x x y, , *
q1 2

$

and { }←b 0, 1
$

. The decisional
Diffie-Hellman assumption (denoted by DDH) states that given (())g g g g, , ,x x y x yb1 2 , the probability for a PPT
algorithm to compute the bit b is negligible [19].

In this case, ≥n 2 and the parameters are as follows:

• the secret keys are �←k *i q

$

, for []∈i n0, ;

• the public parameters are ←r gi
ki, for []∈i n0, , the group � and the generator g ;

• the functions are defined as () ()=f x g r,
k

x
i

x

i
, for []∈i n0, .

To decide the correct index, Peggy has to parse ()=y y y,
0 1

and to compute ℓ = y
k

0
i until ℓ = y

1
. Note that

=y r
k

i

x

0
i .
Let () ()=y y g r, ,x

i

x

0 1
. The active-intruder attack from Proposition 3.3 works as follows: Mallory forwards

() ()=y y y y¯ , ¯ ,
0 1 0

2

1

2 to Peggy, and in the second phase forwards ′i to Victor. The attack works since

()= = = = =y y r g y y¯ ¯ ,i

x xk k k

1 1

2 2 2

0

2

0
i i i

and thus, we obtain the same index i.

Remark. When =n 2, we obtain the protocol introduced in [24]. This protocol was introduced to show the
existence of a two-round private-coin zero-knowledge proof system for a promise problem lying outside
of BPP.

Figure 3: Active-intruder attack against MDSH.

Sherlock Holmes zero-knowledge protocols  11

3.3.4 Decisional bilinear Diffie-Hellman assumption

Let � be cyclic group of prime order q, and let P be the corresponding generator. We denote by
� � �× →e : T a cryptographic bilinear map, where GT is a cyclic group of order q. We will use the conven-

tion of writing � additively and �T multiplicatively.

Let �←a a b b c, , , , *
q0 1 0 1

$

. The decisional bilinear Diffie-Hellman assumption (denoted DBDH) states that given

()a P a P b P b P cP Z, , , , ,0 1 0 1 , the probability of deciding if ()=Z e P P, a b c0 0 or ()=Z e P P, a b c1 1 is negligible [32].
As in the case of DDH, we have ≥n 2. The MDSH’s parameters are as follows:

• the secret keys are �←a b, *i i q

$

, for []∈i n0, ;
• the public parameters are ←Q a P

i i and ←R b Pi i , for []∈i n0, , the group �, the generator P, and the bilinear
map e;

• the functions are defined as () (())=f x xP e Q R, ,
k i i

x

i
, for []∈i n0, .

To find the correct answer, Peggy parses ()=y Y Y,0 1 and computes ()=L e P Y, a b
0

i i until =L Y1. Note that
() () () ()= = =e Q R e P P e P xP e P Y, , , ,

i i
x a b x a b a b

0
i i i i i i.

Let () (())=Y Y xP e Q R, , ,
i i

x
0 1 . The active-intruder attack from Proposition 3.3 works as follows: Mallory

forwards () ()=Y Y Y Y¯ , ¯ 2 ,0 1 0 1
2 to Peggy, and in the second phase forwards ′i to Victor. The attack works since

() () () () ()= = = = = =Y Y e Q R e a P b P e P xP e P Y e P Y¯ , , , 2 , 2 , ¯ ,
i i

x
i i

x a b a b a b
1 1

2 2 2
0 0

i i i i i i

and thus, we obtain the same index i.

4 Basic vectorized multi-decisional protocol

4.1 Description

A downside to the MDSH protocol is that Victor has to run the protocol a number of times before he can be sure
that Peggy knows { } []∈ki i n0, . We further present a variation of MDSH (Figure 4) that allows Victor to run the
protocol only once, if he chooses the right parameters. Let >t 1 be an integer.

Figure 4: Vectorized multi-decisional Sherlock Holmes (VDSH0) protocol.

12  George Teşeleanu

Remark. The probability of an adversary guessing the correct index vector v is ∕n1 t. If nt is sufficiently large,
then a single execution of the protocol suffices. Otherwise, Victor must rerun the protocol multiple times.

Remark. As in the case of MDSH protocol, we must also assume that the decision of membership ∈y Rkj
from

Peggy’s side of the VDSH0 protocol can be made in polynomial time.

4.2 Security analysis

As in Section 3.2, we first introduce the relevant hardness assumption, then we prove the security of the
VDSH0 protocol, and at the end, we relate the new hardness assumption to the multi-dimensional hardness
assumption.

Definition 4.1. (Vectorized multi-decisional hardness assumption) Let >t 1 be an integer. A function f is
a vectorized multi-decisional hard function if in Definition 3.1, Items 2 and 3 are changed to
(2) for every PPT algorithm A, the advantage

() ∣ [∣ [] [] [] ()

()] ∣

= ⋅ = ′ ∈ ← ∈ ← ← ←

′ ← −

A n v v i n k K j t i n x D y f x

v A f y

ADV Pr for 0, : ; for 0, : 0, , , ;

, 1

f
t

i j j k j k j

k

VDHA
$ $ $

i j i j

is negligible, where { } []= ∈f f
k k i n0,

i
, { } []= ∈v ij j t0, and { } []= ∈y y

j j t0, ;
(3) there exists a PPT algorithm B such that

[∣ [] [] [] () ()]= ′ ∈ ← ∈ ← ← ← ′ ← =v v i n k K j t i n x D y f x v B k yPr for 0, : ; for 0, : 0, , , ; , 1,i j j k j k j

$ $ $

i j i j

where { } []= ∈k ki i n0, , { } []= ∈v ij j t0, and { } []= ∈y y
j j t0, .

Theorem 4.1. The VDSH0 protocol is a proof of knowledge if and only if f is a vectorized multi-decisional hard
function. Moreover, the protocol is zero-knowledge in the honest verifier scenario.

Proof. The proof is similar to Theorem 3.2, and thus, we only provide a sketch. The completeness property is
satisfied due to Definition 4.1, Item 3.

Algorithm 4. Algorithm R.

Input: A vector (() ())← −−
y f x f x, …,

k k t0 1
t0 1

1 Send y to P̃

2 Receive ′v from P̃

3 return ′v

A PPT algorithm R is described in Algorithm 4 and R has a non-negligible advantage () ()=R Pr PADV ˜
f

VDHA .
Finally, the simulator T is described in Algorithm 5. □

Algorithm 5. Simulator T .

Input: n functions f
ki
, where []∈i n0,

1 for []∈j t0, do

2

3

4

[]

()

←

←

←

i n

x D

y f x

Choose 0,

Choose

Compute

j

j k

j k

$

$

i j

i j

Sherlock Holmes zero-knowledge protocols  13

5 Let ()= −y y y, …,
t0 1

and ()= −v i i, …, t0 1

6 return ()y v,

The next theorem proves the equivalence between the security notion associated with multi-decisional
functions and the vectorized version of it. Using Theorems 3.2 and 4.2, the security of VDSH0 reduces to making
sure that the decisional security notion is intractable.

Theorem 4.2. For any PPT algorithms A and C, there exist PPT algorithms B and D such that the following
inequalities hold:

() ()

() ()

≤

≤

A B

C D

ADV ADV ,

ADV ADV .

f f

f f

MDHA VDHA

VDHA MDHA

Proof. Let A have a non-negligible advantage ()AADV f

MDHA , and let () (())= + ∕A A nPr ADV 1f

MDHA . We describe in
Algorithm 6 how B can obtain a non-negligible advantage () ∣ () ∣= ⋅ −B n Pr AADV 1f

t tVDHA by interacting with A.

Algorithm 6. Algorithm B.

Input: A vector of elements ()← −y y y, …,
t0 1

1 for []∈j t0, do
2 ∣ Let ()′ ←

−
i A f f y, …, ,j k k jn0 1

3 Let ()′ = ′ ′−v i i, …, t0 1

4 return ′v

To prove the second inequality, we assume that ()CADV f

VDHA is non-negligible. Using algorithm C ,

we construct algorithm D (Algorithm 7) that has a non-negligible advantage ()DADV f

MDHA .

Algorithm 7. Algorithm D.

Input: An element ()←y f x
ki

, where []←i n0,
$

1 for []∈j t1, do

2

3

4

[]

()

←

←

←

i n

x D

y f x

Choose 0,

Choose

Compute

j

j k

j k

$

$

i j

i j

5 Let ()= −z y y y, , …,
t1 1

and ()=
−

f f f, …,
k k kn0 1

6 Let ()′ ←v C f z,
k

7 Parse ()′ = ′ ′−v v v, …, t0 1

8 return ′v0

□

Since VDSH0 is the vectorized version of MDSH, the active-intruder attacks from Propositions 3.3 and 3.4
can be easily adapted to VDSH0 by simply applying them for each component of the y vector.

Corollary 4.2.1. Let ⊆D Dki
and ⊆R Rki

. If ()⊙R, is a group and there exists an ∈x D¯ and an []∈j n0, such that
() ()=B k y B k y, , ¯ , where ()← ⊙y y f x¯ ¯kj

, then the VDSH0 is not secure against active-intruder attacks.

14  George Teşeleanu

Corollary 4.2.2. Let ⊆D Dki
and ⊆R Rki

. If ()⊙R, is a group and for any ∈x D¯ and []∈j n0, , we have
() () ()≡ +B k y B k y B k y n, ˜ , ¯ , mod , where ()=y f x¯ ¯kj

and = ⊙y y y˜ ¯ , then the VDSH0 is not secure against
active-intruder attacks.

5 Vectorized multi-decisional protocol variant

5.1 Description

We further present a variation of VDSH0 (Figure 5) that is secure against concurrent and active-intruder
attacks. In order to work, the protocol uses a public string str , a hash function { } { }→h : 0, 1 * 0, 1 δ,
and a pseudo-random permutation { } { } { }× →π : 0, 1 0, 1 0, 1δ τ τ . Note that we assume that nt is large enough
to avoid brute force attacks.

5.2 Security analysis

We further prove that the variation of VDSH0 can protect the end users frommore powerful attackers than the
basic version.

Theorem 5.1. The VDSH1 protocol is secure against sequential impersonation attacks in the random oracle
model.

Figure 5: Vectorized multi-decisional Sherlock Holmes (VDSH1) protocol.

Sherlock Holmes zero-knowledge protocols  15

Algorithm 8. Hashing oracle �h simulation for h.

Input: A hashing query q
i
from A

1 if ∃hi such that { } ∈q h T,
i i then

2 ∣ ←e hi

3 else

4

5

{ }

{ }

←e

q e T

0, 1

Append , to

δ

i

$

6 return e

Algorithm 9. Prover P simulator �P.

Input: A challenge query ()y w,
i i from A

1 if { }∃ ∈q h T,
j j such that () =−π h w str,j i

1

2 ∣ return q
j

3 else
4 ∣ return ⊥

Proof. Let A be an impersonator that has a non-negligible success probability ()-
AADVP V,

IMP CA . In the first phase,
the attacker A can make hash oracle queries and can interact with the prover P. Therefore, we must simulate
the hash oracle (Algorithm 8) and the prover (Algorithm 9) such that the outputs are statistically indistinguish-
able from genuine outputs. Note that in Algorithm 8, the list T starts empty. We can see that simulator �P is
identical with P except when it aborts on correct challenges8 or responds with a ′ ′ ≠ ′v vi i that correctly decrypts
str . These events happens if and only if π ’s key Ki is not a reply to a hash oracle query or there exists an ≠q K

j i

such that ()=h h Kj i . Hence, they happen with probability ∕1 2δ and less than ∕q 2
h

δ, where q
h
is the number of

queries to �h made by A. Thus, both events happen with negligible probability. As a result, the probability
of ending phase one with success is greater than (()) ()− + ∕ ≥ − + ∕q q q1 1 2 1 1 2

h

δ q

h p

δ
p , where q

p
is the number

of queries to �P made by A.
In the second phase of the attack, A interacts with the prover and tries to impersonate P. A PPT algorithm

�V is described in Algorithm 10. Since π is a pseudo-random permutation and y is VDHA challenge, then A will
always accept ()y w, . We can see that the probability of A not aborting is ∕1 2τ . In this case, �V has a non-
negligible advantage () ()= -

O AADV ADVf V P V

VDHA
,

IMP CA . If A aborts, then the probability that the correct
answer is found in T is − ∕1 1 2δ, which is non-negligible. In this case, �V has a non-negligible advantage

() ()= ∕-
O A qADV ADVf V P V h

VDHA
,

IMP CA . Therefore, the total advantage of �V is

() (()) (()) ()

() ()

≥ − + ∕ ⋅ ∕ + − ∕ ⋅ ∕ ⋅

≃ − ∕ ∕ ⋅

-

-

O q q q A

q q q A

ADV 1 1 2 1 2 1 1 2 1 ADV

1 2 ADV ,

f V h p

δ τ δ

h P V

h p

δ

h P V

VDHA
,

IMP CA

,
IMP CA

which is non-negligible.

Algorithm 10. Verifier V simulator �V .

Input: A vector (() ())← −−
y f x f x, …,

k k t0 1
t0 1

1 Choose { }←w 0, 1 τ
$

2 Send ()y w, to A



8 if ()y w,
i i is malformed, then P would also abort.

16  George Teşeleanu

3 if A sends the abort signal

4

5

6

[]

{ }

←i q

q h T

qreturn

Select 0,

Retrieve , from

h

i i

i

$

7 else

8

9

′
′
v A

vreturn

Receive from

□

Theorem 5.2. The VDSH1 protocol is secure against active-intruder attacks in the random oracle model.

Proof. We further prove that if attacker A becomes active in a session, then the verifier will reject. We use
three bit strings to indicate which of the three items ()′y w v, , and are not fatefully relayed. More precisely,
1 means that the corresponding item is altered, while 0 means that is not altered. Let ȳ , w̄ and ′v̄ denote
the altered items. We distinguish the following possible cases:
case 001: Since ′ ≠ ′ =v v v¯ , the verifier will automatically reject.
case 010: Changing w will result in rejection from the prover because str cannot be recovered. This implies
that the prover will also reject.
case 011: The prover will reject as in the previous case, and thus, A will not get any useful information from
interacting with P. If A manages to make the verifier accept ′v̄ , then he can do the same thing without
interacting with P. This contradicts Theorem 5.1.
case 100: Since h is random oracle, the probability of obtaining a collision such that (‖ ‖) (‖ ‖)=− −h i i h i i… ¯ … ¯t t0 1 0 1

is ∕1 2δ, where the indexes are corresponding to y and ȳ . This implies that the prover will reject with non-negligible
probability.
case 101: As in the previous case, the prover will most certainly reject. Therefore, if A manages to convince
V that ′v̄ is correct, then he can do that without interacting with P. Again, this contradicts Theorem 5.1.
case 110: In this case, the prover will reject with overwhelming probability since the probability of obtaining
str is ∕1 2τ . Therefore, the prover will also reject.
case 111: According to the previous case, the prover will reject with overwhelming probability. Therefore, A

caries out a concurrent attack, and according to Theorem 5.1, the verifier will reject with non-negligible probability.

To summarize, if adversary A becomes active in a session, then the verifier will most certainly reject the
proof. □

6 Basic computational protocol

6.1 Description

Using a different security notion, we describe in Figure 6 a protocol that consumes less bandwith that the VDSH
protocol, while maintaining its security, if the parameters are selected correctly.

Remark. The probability of an adversary guessing the correct element x is ∣ ∣∕ D1 k . If ∣ ∣Dk is sufficiently large,
then a single execution of the protocol suffices. Otherwise, the protocol must be repeated several times.

Remark. A vectorized version of the CSH0 protocol can also be constructed, but as we will see in Section 6.3,
it is not necessary. Note that the security analysis is similar to the one from Section 4.2.

Sherlock Holmes zero-knowledge protocols  17

6.2 Security analysis

Theorem 6.1. The CSH0 protocol is a proof of knowledge if and only if f is a computational hard function.
Moreover, the protocol is zero-knowledge in the honest verifier scenario.

Proof. The proof is similar to Theorem 3.2, and thus, we only provide a sketch. The completeness property
is satisfied due to Theorem 2.1, Item 3.

A PPT algorithm O is described in Algorithm 11 and O has a non-negligible advantage () ()=O Pr PADV ˜
f

CHA .

Note that in this case, P̃ only takes as input a function f
k
.

Algorithm 11. Algorithm O.

Input: An element ()←y f x
k

1 Send y to P̃

2 Receive z from P̃

3 return z

Finally, the simulator U is described in Algorithm 12. □

Algorithm 12. Simulator U .

Input: A function f
k

1 Choose ←x Dk

$

2 Compute ()←y f x
k

3 return ()y x,

Proposition 6.2. Let ⊆D Dki
and ⊆R Rki

. If ()D, • and ()⊙R, are groups, and for any ∈x x D,1 2 we have
() () ()= ⊙f x x f x f x•

k k k1 2 1 2 , then the CSH0 is not secure against active-intruder attacks.

Proof. When Victor sends y, Mallory intercepts it, chooses ←x D¯
$

and forwards ()= ⊙y y f x˜ ¯k
to Peggy

(Figure 7). The second message is intercepted by Mallory, who computes = −z z x˜ •¯
1 and forwards z̃ to Victor.

We can see that Mallory’s attack succeeds since

() () ()= ⊙ =y f x f x f x x˜ ¯ •¯ ,
k k k

and thus, Peggy computes =z x x• ¯. Therefore, = −x z x• ¯
1 just as required by Victor’s verification.

Figure 6: Basic computational Sherlock Holmes (CSH0) protocol.

18  George Teşeleanu

□

6.3 Examples

6.3.1 eth root assumption

Using the same parameters as in the case of LSB-ER, the eth root assumption (denoted ER) states that given
≡y x Nmode , computing x is intractable [13].
Using this assumption, we can instantiate the CSH0 protocol with ()=k p q, and () =f x x Nmod

k

e .
To recover x , Peggy has to compute a d such that ()≡ed φ N1 mod and then ←x y Nmodd .

The active-intruder attack from Proposition 6.2 works as follows: Mallory chooses �←x̄ *
N

$

and forwards
yx N¯ mode to Peggy, and in the second phase forwards −zx N¯ mod1 to Victor. The attack works since

()≡ ≡y yx xx N¯ ¯ ¯ mod ,e e

and thus, Peggy computes ≡z xx N¯ mod .

Remark. The problem can also be stated for =e 2, but to find a solution to x Nmod2 , Peggy has to use
a different technique (e.g the Shanks-Tonelli algorithm [33]). Note that this assumption, called the square
root assumption, is equivalent with the intractability of factoring N (i.e., factoring assumption).

6.3.2 Gap 2κ-residuosity assumption

Using the same parameters as in Section 3.3, we can define () =f x u z Nmod
k

x 2
κ

, where ()=k p q, , []=D 0, 2k
κ ,

and �←z *
N

$

. A method for recovering x if one knows p is described in Benhamouda et al. [30].

In this case, Proposition 6.2’s attack becomes: Mallory chooses �←z̄ *
N

$

and []←x̄ 0, 2κ
$

, and forwards
⋅y u z N¯ modx̄ 2

κ

to Peggy, and in the second phase forwards −z x̄ mod 2κ. The attack works since

()≡ ⋅ ≡ ⋅ ⋅+ +y y u z u u zz¯ ¯ ¯ ,x x x x x¯ 2 ¯ mod 2 ¯div2 2
κ κ κ κ

and thus, Peggy computes ≡ +z x x̄ mod 2κ.

6.3.3 Computational Diffie-Hellman

Let � be a cyclic group of order q and g a generator of �. Let �←x x, *
q1 2

$

. The computational Diffie-Hellman
assumption (denoted by CDH) states that given ()g g,x x1 2 is intractable to compute g x x1 2 without knowing x1 or x2

[19]. In this case, a more efficient version of the CSH0 protocol is provided in Figure 8.

Remark. Note that the DHCSH0 protocol was used in the study of Teşeleanu [34] to develop a method that
performs full network authentication for resource-constrained devices.

Figure 7: Active-intruder attack against CSH0.

Sherlock Holmes zero-knowledge protocols  19

The active-intruder attack from Proposition 6.2 works as follows: Mallory chooses �←x̄ *
q

$

and forwards
=y yg¯

x̄ to Peggy, and in the second phase forwards = −z zr¯
x̄ to Victor. The attack works since

() ()= = ⋅ = =− −z y r yg g y r¯ ¯ ,k x x k k x k x¯ ¯ ¯

just as desired.

6.3.4 Computational bilinear Diffie-Hellman assumption

We assume the same setup as in the case of DBDH. Let �←a b c, , *
q

$

. The computational bilinear Diffie-Hellman

assumption (denoted CBDH) states that given ()aP bP cP, , a PPT algorithm will compute ()e P P, abc with negligible
probability [32].

As in the case of CDH, this assumption allows us to have a more efficient version of the protocol. We will use
Figure 8 as a reference. Thus, Peggy and Victor know ()=k a b, and, respectively, ()=r aP bP, . The protocol’s
first step consists of Victor computing ←y xP . Then, Peggy computes ()←z e P y, ab. Finally, the protocol’s
output is true if and only if ()=z e aP bP, x .

The active-intruder attack from Proposition 6.2 works as follows: Mallory chooses �←x̄ *
q

$

and forwards
= +y y xP¯ ¯ to Peggy, and in the second phase forwards ()= ⋅ −z z e aP bP¯ , x̄ to Victor. The attack works since

() () (()) () () () ()= ⋅ = + ⋅ = ⋅ =− − + −z e P y e aP bP e P x x P e aP bP e aP bP e aP bP e aP bP¯ , ¯ , , ¯ , , , , ,ab x ab x x x x x¯ ¯ ¯ ¯

just as desired.

7 Computational protocol – first variant

7.1 Description

Using a different functional requirement for computational hard functions (see Definition 7.1), we describe
in Figure 9 a protocol that is secure against sequential and active-intruder attacks, as long as the parameters
are selected correctly.

Definition 7.1. (Complete computational hardness assumption) A function f is a complete computational hard
function if in Definition 2.1, Item 3 is changed to
(3) there exists a PPT algorithm B such that

[() ∣ () ()]= ∈ ← ← ← ← =f z y z Z k K x D y f x Z B k yPr iff ; ; ; , 1.
k k k

$ $

Figure 8: Basic Diffie-Hellman version of the CSH0 (DHCSH0) protocol.

20  George Teşeleanu

Remark. A class of computational problems that satisfy the completeness property are eth root problems
for which e is not coprime with ()φ N . This class includes the square root assumption. Note that for this
class, ∣ ∣ ≥Z 1.

Remark. Stinson and Wu [5] introduced a version of the DHCSH0 protocol (further denoted by DHCSH1) in
which instead of sending y, the verifier sends (())y h r, x , where h is a hash function. Stinson and Wu [5]
proved that their protocol is secure against active-intruders and sequential attacks in the random oracle model
under the knowledge-of-exponent assumption. We refer the reader to Stinson and Wu [5] for the details.

7.2 Security analysis

Theorem 7.1. The CSH1 protocol is secure against sequential impersonation attacks in the random oracle model.

Proof. The proof is similar to Theorem 5.1, and thus, we only provide a sketch. In the first phase, we must
simulate the hash oracle (Algorithm 8) and the prover (Algorithm 13). We can see that simulator �P is
identical with P except when it aborts on correct challenges or responds with a ′ ≠z zi i that gives the correct
hash ()′ =h z wi . These events happen if and only if wi is not a reply to a hash oracle query or there exists an

≠q x
j i such that ()=h h xj i . Hence, they happens with probabilities ∣ ∣∕Z 2δ and less than ∕q 2

h

δ, and thus, is

negligible. Therefore, the probability of ending phase one with success is greater than (∣ ∣)− + ∕Z q q1 2
h p

δ.

Algorithm 13. Prover P simulator �P.

Input: A challenge query ()y w,
i i from A

1 if { }∃ ∈q h T,
j j such that () =f q y

k j i
then

2 ∣ return q
i

3 else
4 ∣ return ⊥

In the second phase of the attack, A interacts with the prover and tries to impersonate P. A PPT algorithm
�V is described in Algorithm 14. Since h is a random oracle and y is CHA challenge, then A will always accept
()y w, . We can see that the probability of A not aborting is ∕1 2δ. In this case, �V has a non-negligible advantage

() ()= -
O AADV ADVf V P V

CHA
,

IMP CA . If A aborts, then the correct answer is found in T . In this case, �V has a non-

Figure 9: First variant of the computational Sherlock Holmes (CSH1) protocol.

Sherlock Holmes zero-knowledge protocols  21

negligible advantage () ()= -
O AADV ADVf V P V

VDHA
,

IMP CA . Let ∣ ∣()← ←ζ ZmaxZ B k y, for any ←k K and ←y Rk .
Therefore, the total advantage of �V is

() ((∣ ∣)) ()

(()) ()

≥ − + ∕ ⋅

≥ − + ∕ ⋅

-

-

O Z q q A

ζ q q A

ADV 1 2 ADV

1 2 ADV ,

f V h p

δ
P V

h p

δ
P V

VDHA
,

IMP CA

,
IMP CA

which is non-negligible.

Algorithm 14. Verifier V simulator �V .

Input: A element ()←y f x
k

1 Choose { }←w 0, 1 δ
$

2 Send ()y w, to A

3 if A sends the abort signal

4

5

{ } ()∈ =q h T f q y

qreturn

Search , such that
i i k i

i

6 else

7

8

z A

zreturn

Receive from

□

Theorem 7.2. The CSH1 protocol is secure against active-intruder attacks in the random oracle model.

Proof. The proof is similar to Theorem 5.2, and thus, we only point out the differences. In this case, the, strings
to indicate which of ()y w z, , are not fatefully relayed, instead of ()′y w v, , . Let ȳ , w̄, and z̄ denote the altered
items. We distinguish the following possible cases:
case 001: If Victor accepts the proof, that means that A has found an element ′ ≠z z such that ()′ =h z w. Since
h is random oracle, that happens with probability ∕1 2δ.
case 010: The prover will not reject with the negligible probability (∣ ∣)− ∕Z 1 2δ. If this happens, then the
prover will reject since ()′ = ′ ≠w h z w. Otherwise, if the prover rejects, then the prover will also reject.
case 011: As in the case of Theorem 5.2, A becomes a concurrent impersonator, and according to Theorem 7.1,
the prover will reject.
case 100: Let ∈y Z¯ ¯. Since h is random oracle, the probability of obtaining a collision such that

() ()=h x h x̄ is (∣ ∣)∕Z̄ 2 k , where () =f x y
k

and () = ∈f x z Z¯ ¯ ¯
k

. This implies that the prover will reject with
non-negligible probability.
case 101: As in the case of Theorem 5.2, A becomes a concurrent impersonator, and according to Theorem 7.1,
the prover will reject.
case 110: In this case, the prover will reject with overwhelming probability since the probability of obtaining
a correct hash is ∣ ∣∕Z̄ 2δ. Therefore, the prover will also reject.
case 111: As in the case, Theorem 5.2, A becomes a concurrent impersonator, and according to Theorem 7.1,
the prover will reject.

To summarize, if adversary A becomes active in a session, then the verifier will most certainly reject the
proof. □

22  George Teşeleanu

8 Computational protocol – second variant

8.1 Description

Using a different functional requirement (see Definition 8.1), we describe in Figure 10 a protocol that is more
efficient than CSH1 for some computational problems, while remaining secure against sequential and active-
intruder attacks.

Definition 8.1. (Unique computational hardness assumption) A function f is a unique computational hard
function if in Definition 2.1, Item 3 is changed to
(3) there exists a PPT algorithm B such that

[∣ () ()]= ← ← ← ← =z x k K x D y f x z B k yPr ; ; ; , 1.k k

$ $

Remark. Two classes of computational problems that satisfy the uniqueness property are gap 2κ-residuosity
problems and eth root problems for which e is coprime with ()φ N . Note that functions that satisfy the
completeness property can be transformed into unique computational hard function by imposing a special
format on the correct solution.

Remark. Amore efficient version of the Stinson-Wu protocol [5] was introduced in previous studies [16, 28]. We
further denote it by DHCSH2. In this variant, Victor sends y, while Peggy sends ()h z instead of z. The authors
[16,28] show that the scheme achieves the same security as their previously proposed protocol. We refer the
reader to previous studies [16,28] for the details.

8.2 Security analysis

Theorem 8.1. The CSH2 protocol is secure against sequential impersonation attacks in the random oracle model.

Proof. The proof is similar to Theorem 5.1, and thus, we only provide a sketch. In the first phase, we must
simulate the hash oracle (Algorithm 15) and the prover (Algorithm 16). Note that in Algorithm 16, the listTc starts
empty. We can see that simulators �h and �P trick A into believing that this is a real interaction with P.
Therefore, phase one always ends with success.

Figure 10: Second variant of the computational Sherlock Holmes (CSH2) protocol.

Sherlock Holmes zero-knowledge protocols  23

Algorithm 15. Hashing oracle �h simulation for h.

Input: A hashing query q
i
from A

1 if ∃ hi such that { } ∈q h T,
i i then

2 ∣ ←e hi

3 else if { }∃ ∈y w T,
i i c such that () =f q y

k i i
then

4

5 { }

←e w

q w TAppend , to

i

i i

6 else

7

8

{ }

{ }

←e

q e T

0, 1

Append , to

δ

i

$

9 return e

Algorithm 16. Prover P simulator �P.

Input: A challenge query y
i
from A

1 if { }∃ ∈q h T,
i i such that () =f q y

k i i
then

2 ∣ ←w hi i

3 else

4

5

{ }

{ }

←w

y w T

0, 1

Append , to

i
δ

i i c

$

6 return wi

In the second phase of the attack, A interacts with the prover and tries to impersonate P . A PPT algorithm �V

is described in Algorithm 17. There is a case when �V does not return the correct answer: A guesses the correctw

without consulting �h. The probability of this happening is ∕1 2δ. Therefore, the total advantage of �V is

() () ()≥ − ∕ ⋅ -
O AADV 1 1 2 ADV ,f V

δ
P V

VDHA
,

IMP CA

which is non-negligible.

Algorithm 17. Verifier V simulator �V .

Input: A element ()←y f x
k

1 Send y to A

2 Receive z from A

3 Search { } ∈q h T,
i i such that =h zi and () =f q y

k i

4 return q
i

Theorem 8.2. The CSH2 protocol is secure against active-intruder attacks in the random oracle model.

□

Proof. In this case, we use two-bit strings to indicate which of ()y w, are not fatefully relayed. Let ȳ and w̄

denote the altered items. We distinguish the following possible cases:
case 01: Since ()≠ =w w h x¯ , the verifier will automatically reject.
case 10: Let x̄ such that () =f x y¯ ¯k

. The prover will send ()′ =w h x̄ , which with probability − ∕1 1 2δ is not equal
to w. Therefore, Victor rejects the proof.
case 11: The prover will reject as in the previous case, and thus, A will not get any useful information from
interacting with P. If A manages to make the verifier accept w̄, then he can do the same thing without interacting
with P. This contradicts Theorem 8.1.

To summarize, if adversary A becomes active in a session, then the verifierwillmost certainly reject the proof. □

24  George Teşeleanu

9 Performance of the Sherlock Holmes protocols

In this section, we compare the Sherlock Holmes protocols to some classical zero-knowledge protocols such as
Schnorr [8], Guillou-Quisquater [9], and Fiat-Shamir [17].

We further assume the same setup as in the case of CDH. From Figure 11, we can see that the bandwidth
requirement for Schnorr’s protocol is �(∣ ∣)+ qlog 2

2 bits. Similarly, for the Diffie-Hellman version of the CSH0
and CSH2 protocols, we obtain a requirement of �(∣ ∣)log 2

2
and �(∣ ∣) + δlog

2 bits. In practice, � is either �*
p,

where ()= − ∕q p 1 2 is a prime or an elliptic curve �()E p such that �∣ ()∣ =E hqp , where ≤h 4. Also, in the case
of�*

p, we have ()=δ qlog
2 , and for elliptic curves, we have �(∣ ∣)=δ log

2 . Thus, in the modulo p case, we obtain
+q4 1 versus +q4 2 or +q3 1 and in the elliptic curve case ()+h q2 versus hq2 . Thus, in most cases, our

protocol’s requirements are either the same or slightly lower. From a computational point of view, it is easy
to see that both protocols have their complexity dominated by three exponentiations.

Remark. Okamoto’s protocol [7] can be seen as a vectorized version of Schnorr’s protocol with =n 2. Thus,
we can conclude that a vectorized version of DHCSH0 has slightly lower requirements as Okamoto’s pro-
tocol. If we consider the security provided by Okamoto’s protocol and DHCSH2, we see that both are secure
against concurrent attacks. Therefore, vectorizing DHCSH2 is not necessary, and thus, we obtain a speed-up of 2x.

Using Figure 11 as a reference, we further describe the Guillou-Quisquater (GQ) protocol. Assuming the

setup from ER we set ≡r k Nmode . In the first phase, Peggy chooses �←x *
N

$

and computes ≡y x Nmode .

Then, Victor randomly selects []← −c e0, 1
$

. The third step consists of Peggy computing ≡s xk Nmodc . Then,
Victor accepts the proof if an only if ≡s yr Nmode c .

The bandwidth requirement for the GQ protocol is ()+N elog 2
2 , while for the eth root instantiation of

CSH0 and CSH2 are ()Nlog 2
2 and () +N δlog

2 . In practice, we have ()Nlog
2 , which is ∕ ∕12 20 30 times larger than

δ. Hence, the requirements are similar to CSH0 only if e is small and almost two times higher compared to
CSH2. From a computational point of view, CSH0 and CSH2’s time is dominated by two exponentiations, while
GQ’s time by four. So, our protocol is twice as fast. Also, note that the probability of impersonating Peggy
is ∕e1 for GQ, while for our protocols is in the worse case ()∕e φ N2 9.

The Fiat-Shamir protocol [17] considers =e 2. Let =n 2. If we consider MDSH instantiated with DDH,
we obtain a bandwith requirement of �(∣ ∣)log

2 , a complexity dominated by three exponentiations and

Figure 11: Schnorr’s protocol.



9 According to Lagrange’s theorem the polynomial xe has at most e solution modulo p.

Sherlock Holmes zero-knowledge protocols  25

a probability of impersonating Peggy of 1/2. Let � �= ′*
p , when ′p is prime10. Using the reasoning from the GQ

protocol, we obtain that the MDSH protocol has a better performance that the Fiat-Shamir, while having the
same security.

10 Conclusions

Our two main zero-knowledge protocols, decisional and computational Sherlock Holmes protocols, represent
two new large classes of protocols. The presented list of examples is by no means exhaustive. Our next
challenge is to see how we can adapt these protocols in order to obtain new cryptographic primitives
(e.g., non-interactive zero-knowledge proofs or digital signatures).

Funding information: Author states no funding involved.

Author contributions: The author confirms the sole responsibility for the conception of the study, presented
results and manuscript preparation.

Conflict of interest: Author states no conflict of interest.

References

[1] Grigoriev D, Shpilrain V. No-leak authentication by the Sherlock Holmes method. Groups Complexity Cryptol. 2012;4(1):177–89.
[2] Goldreich O. Zero-knowledge twenty years after its invention. IACR Cryptology ePrint Archive. 2002;2002/186.
[3] Bellare M, Palacio A. GQ and Schnorr identification schemes: proofs of security against impersonation under active and concurrent

attacks. In: CRYPTO 2002. vol. 2442 of Lecture Notes in Computer Science. Springer; 2002. p. 162–77.
[4] Stinson DR. Cryptography: Theory and practice. Boca Raton: Chapman and Hall/CRC; 2006.
[5] Stinson DR, Wu J. An efficient and secure two-flow zero-knowledge identification protocol. J Math Cryptol. 2007;1(3):201–20.
[6] Feige U, Fiat A, Shamir A. Zero-knowledge proofs of identity. J Cryptol. 1988;1(2):77–94.
[7] Okamoto T. Provably secure and practical identification schemes and corresponding signature schemes. In: CRYPTO 1992. vol. 740

of Lecture Notes in Computer Science. Springer; 1992. p. 31–53.
[8] Schnorr CP. Efficient identification and signatures for smart cards. In: CRYPTO 1989. vol. 435 of Lecture Notes in Computer Science.

Springer; 1989. p. 239–52.
[9] Guillou LC, Quisquater JJ. A practical zero-knowledge protocol fitted to security microprocessor minimizing both transmission and

memory. In: EUROCRYPT 1988. vol. 330 of Lecture Notes in Computer Science. Springer; 1988. p. 123–8.
[10] Schnorr CP. Efficient signature generation by smart cards. J Cryptol. 1991;4(3):161–74.
[11] Guillou LC, Quisquater JJ. A “Paradoxical” indentity-based signature scheme resulting from zero-knowledge. In: CRYPTO 1988. vol.

403 of Lecture Notes in Computer Science. Springer; 1988. p. 216–31.
[12] Feige U, Shamir A. Witness indistinguishable and witness hiding protocols. In: STOC 1990. ACM; 1990. p. 416–26.
[13] Maurer U. Unifying zero-knowledge proofs of knowledge. In: AFRICACRYPT 2009. vol. 5580 of Lecture Notes in Computer Science.

Springer; 2009. p. 272–86.
[14] Maimuţ D, Teşeleanu G. A generic view on the unified zero-knowledge protocol and its applications. In: WISTP 2019. vol. 12024 of

Lecture Notes in Computer Science. Springer; 2019. p. 32–46.
[15] Bellare M, Fischlin M, Goldwasser S, Micali S. Identification protocols secure against reset attacks. In: EUROCRYPT 2001. vol. 2045 of

Lecture Notes in Computer Science. Springer; 2001. p. 495–511.
[16] Wu J, Stinson DR. An efficient identification protocol and the knowledge-of-exponent assumption. IACR Cryptology ePrint Archive.

2007; 2007/479.
[17] Fiat A, Shamir A. How to prove yourself: practical solutions to identification and signature problems. In: CRYPTO 1986. vol. 263 of

Lecture Notes in Computer Science. Springer; 1986. p. 186–94.



10 In practice, for security reasons, N and ′p have similar lengths.

26  George Teşeleanu

[18] Teşeleanu G. Sherlock Holmes zero-knowledge protocols. In: ISPEC 2022. vol. 13620 of Lecture Notes in Computer Science.
Springer; 2022. p. 573–88.

[19] Bellare M, Rogaway P. Introduction to modern cryptography; 2005. https://web.cs.ucdavis.edu/rogaway/classes/227/spring05/
book/main.pdf.

[20] Bellare M, Goldwasser S. Lecture notes on cryptography; 2008. https://cseweb.ucsd.edu/ mihir/papers/gb.pdf.
[21] Ostrovsky R. Foundations of cryptography; 2010. http://web.cs.ucla.edu/rafail/PUBLIC/OstrovskyDraftLecNotes2010.pdf.
[22] Feige U, Shamir A. Zero knowledge proofs of knowledge in two rounds. In: CRYPTO 1989. vol. 435 of Lecture Notes in Computer

Science. Springer; 1989. p. 526–44.
[23] Goldreich O, Oren Y. Definitions and properties of zero-knowledge proof systems. J Cryptol. 1994;7(1):1–32.
[24] Barak B, Lindell Y, Vadhan S. Lower bounds for non-black-box zero knowledge. J Comput Syst Sci. 2006;72(2):321–91.
[25] Goldreich O, Krawczyk H. On the composition of zero-knowledge proof systems. SIAM J Comput. 1996;25(1):169–92.
[26] Damgard I. Towards practical public key systems secure against chosen ciphertext attacks. In: CRYPTO 1991. vol. 576 of Lecture

Notes in Computer Science. Springer; 1991. p. 445–56.
[27] Sahai A, Vadhan S. A complete problem for statistical zero knowledge. J ACM. 2003;50(2):196–249.
[28] Wu J, Stinson DR. An efficient identification protocol secure against concurrent-reset attacks. J Math Cryptol. 2009;3(4):339–52.
[29] Cocks C. An identity based encryption scheme based on quadratic residues. In: IMACC 2001. vol. 2260 of Lecture Notes in Computer

Science. Springer; 2001. p. 360–3.
[30] Benhamouda F, Herranz J, Joye M, Libert B. Efficient cryptosystems from 2k th power residue symbols. J Cryptol. 2017;30(2):519–49.
[31] Okamoto T, Pointcheval D. Gap-problems: A new class of problems for the security of cryptographic schemes. In: PKC 2001. vol.

1992 of Lecture Notes in Computer Science. Springer; 2001. p. 104–18.
[32] Chatterjee S, Sarkar P. Practical hybrid (hierarchical) identity-based encryption schemes based on the decisional bilinear Diffie-

Hellman assumption. IJACT. 2013;3(1):47–83.
[33] Niven I, Zuckerman HS, Montgomery HL. An introduction to the theory of numbers. Hoboken, New Jersey: John Wiley & Sons; 1991.
[34] Teşeleanu G. Lightweight swarm authentication. In: SecITC 2021. vol. 13195 of Lecture Notes in Computer Science. Springer; 2021.

p. 248–59.
[35] Girault M. An identity-based identification scheme based on discrete logarithms Modulo a composite number. In: EUROCRYPT

1990. vol. 473 of Lecture Notes in Computer Science. Springer; 1990. p. 481–6.
[36] Chaum D, Evertse JH, Van De Graaf J. An improved protocol for demonstrating possession of discrete logarithms and some

generalizations. In: EUROCRYPT 1987. vol. 304 of Lecture Notes in Computer Science. Springer; 1987. p. 127–41.
[37] Teşeleanu G. Unifying Kleptographic attacks. In: NordSec 2018. vol. 11252 of Lecture Notes in Computer Science. Springer; 2018.

p. 73–87.

Sherlock Holmes zero-knowledge protocols  27

https://web.cs.ucdavis.edu/rogaway/classes/227/spring05/book/main.pdf
https://web.cs.ucdavis.edu/rogaway/classes/227/spring05/book/main.pdf
https://cseweb.ucsd.edu/ mihir/papers/gb.pdf
http://web.cs.ucla.edu/rafail/PUBLIC/OstrovskyDraftLecNotes2010.pdf

Appendix

A Active-intruder attacks

In this section, we provide an active-intruder attack for the zero-knowledge protocol introduced in Maimuţ
and Teşeleanu [14]. This protocol is a generalization of Maurer’s unified zero-knowledge protocol [13], which,
depending on the instantiation, can be transformed into either the Schnorr protocol [8]11 or the Okamoto
protocol [7] or the Fiat-Shamir protocol [17] or the Guillou-Quisquater protocol [9]. Note that the protocol from
Maimuţ and Teşeleanu [14], also generalizes Feige-Fiat-Shamir’s [6] and Chaum-Everste-Van De Graaf’s [36]
protocols. More instantiations can be found in previous studies [13,14,37]. A direct consequence of our attack is
that it supersedes the active-intruder attacks introduced in Stinson and Wu [5] for the Schnorr, Fiat-Shamir,
Okamoto, and Guillou-Quisquater protocols.

A.1 Groups

Let �()⋆, and �()⊗, be two groups. We assume that the group operations ⋆ and ⊗ are efficiently computable.
Let � �→f : be a function that is one-way12 and not necessarily one-to-one. We say that f is a homo-

morphism if () () ()⋆ = ⊗f x y f x f y . We further denote by []x the value ()f x . Note that given []x and []y , we can
efficiently compute [] [] []⋆ = ⊗x y x y , due to the fact that f is a homomorphism.

A.2 Protocol

Let n be a positive integer, and let []∈i n1, . In Figure A1, we present the protocol introduced in Maimuţ
and Teşeleanu [14] that enables Peggy to prove to Victor that she knows a vector {[]} []∈xi i n1, such that []=z xi i ,
where { } []∈zi i n1, is a public vector. Note that � denotes the challenge space for the elements ci and is an
arbitrary subset of �.

Figure A1: A unified generic zero-knowledge (UGZK) protocol.



11 And its variation introduced by Girault [35].
12 That is, it is infeasible to compute x from ()f x .

28  George Teşeleanu

A.3 Attack

In order to succeed, the attackerMallory first chooses at random �′ ←k
$

and computes []′k . When Peggy sends
her first message, Mallory intercepts it and forwards []′ = ⊗ ′t t k to Victor (Figure A2). The second message
is simply forwarded by Mallory. In the case of the third message, Mallory intercept it and forwards ′ = ⋆ ′r r k .
We can see that Mallory’s attack succeeds since

[] [] [] [] () [] ()′ = ⋆ ′ = ⊗ ′ = ⊗ ⊗ ⊗ ′ = ′ ⊗ ⊗= =r r k r k t z k t z ,i
n

i

c

i
n

i

c

1 1
i i

just as required by Victor.

Figure A2: Active-intruder attack against UGZK.

Sherlock Holmes zero-knowledge protocols  29

	1 Introduction
	1.1 Attack models for identification protocols
	1.1.1 Adversaries
	1.1.2 Sequential attacks
	1.1.3 Parallel attacks
	1.1.4 Concurrent attacks
	1.1.5 Active-intruder attack
	1.1.6 Reset attacks

	1.2 Our contributions
	1.2.1 Previous work
	1.2.2 Structure of this article

	2 Preliminaries
	2.1 Hardness assumptions
	2.2 Zero-knowledge protocols

	3 Multi-decisional protocol
	3.1 Description
	3.2 Security analysis
	3.3 Examples
	3.3.1 Quadratic residuosity assumption
	3.3.2 Least significant bit of the eth root assumption
	3.3.3 Decisional Diffie-Hellman assumption
	3.3.4 Decisional bilinear Diffie-Hellman assumption

	4 Basic vectorized multi-decisional protocol
	4.1 Description
	4.2 Security analysis

	5 Vectorized multi-decisional protocol variant
	5.1 Description
	5.2 Security analysis

	6 Basic computational protocol
	6.1 Description
	6.2 Security analysis
	6.3 Examples
	6.3.1 eth root assumption
	6.3.2 Gap 2κ-residuosity assumption
	6.3.3 Computational Diffie-Hellman
	6.3.4 Computational bilinear Diffie-Hellman assumption

	7 Computational protocol - first variant
	7.1 Description
	7.2 Security analysis

	8 Computational protocol - second variant
	8.1 Description
	8.2 Security analysis

	9 Performance of the Sherlock Holmes protocols
	10 Conclusions
	References
	Appendix ��A Active-intruder attacks
	A.1 Groups
	A.2 Protocol
	A.3 Attack

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

