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Abstract: Bidoux and Gaborit introduced a new general technique to improve zero-knowledge (ZK) proof-of-
knowledge (PoK) schemes for a large set of well-known post-quantum hard computational problems such as
the syndrome decoding, the permuted kernel, the rank syndrome decoding, and the multivariate quadratic
(MQ) problems. In particular, the authors’ idea in the study of Bidoux and Gaborit was to use the structure of
these problems in the multi-instance setting to minimize the communication complexity of the resulting ZKPoK
schemes. The security of the new schemes is then related to new hard problems. In this article, we focus on the
new multivariate-based ZKPoK and the corresponding new underlying problem: the so-called DiffMQ

H
.

We present a new efficient probabilistic algorithm for solving the DiffMQ
H

which is polynomial-time
if − ∈m n O 1( ). We also present experimental results showing that the algorithm is efficient in practice.
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1 Introduction

With the advent of post-quantum cryptography [1] following the development of Shor’s algorithm, many
cryptographers have focused on finding quantum-resistant public-key systems. Multivariate cryptography
is one of the main families of post-quantum primitives. The security of these systems is based on the difficulty
of solving a set of randomly chosen nonlinear multivariate polynomials over a finite field. So far, there is
no evidence that quantum computers can solve such sets of multivariate polynomials efficiently.

Motivated by this, Bidoux and Gaborit, in [2,3], introduced a novel general technique to enhance zero-
knowledge (ZK) proof-of-knowledge (PoK) schemes for a broad class of well-known computational problems
that are difficult in the post-quantum setting. In particular, they focused on the multivariate quadratic (MQ)
problem, for which the definition is provided below. In the following, we denote as q� a finite field with
q elements, where =q p

s, p is a prime, and s is a positive integer.

Definition 1.1. (MQ problem) Let m and n be positive integers. We define by n mMQ , , q�( ) the family of systems
of m multivariate quadratic polynomials = ∈p p x x, …, , …,

m q n

m
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Given ∈ n mMQ , , q�� ( ) and = ∈v v v, …, m q

m

1 �( ) , the MQ problem asks to find ∈s
q

n� such that

= =s sp v p v,…, .
m m1 1( ) ( )

We will call the MQ
H
the restriction of the MQ to homogeneous polynomials.

The solution of the MQ remains computationally challenging, as it is known to be NP-hard [4]. This hardness
forms the foundation of various cryptographic schemes, particularly in the field of post-quantum crypto-
graphy, where the security of multivariate public-key cryptosystems relies on the difficulty of solving large
instances of the MQ. In fact, these problems are widely used as the basis for many proposed post-quantum
digital signature schemes, for example, Biscuit signature scheme [5], GeMSS [6], UOV signature scheme [7],
and MAYO signatures [8].

In this article, we investigate the security of a new ZKPoK based on the MQ introduced in the studies of
Bidoux and Gaborit [2,3]. The ZKPoK schemes are significant due to their practical applications in cryptography
[9–11]. One of the key reasons to study these schemes is that they provide a foundation for constructing highly
efficient digital signature schemes, [12–14]. By leveraging the properties of zero-knowledge proofs, it is possible
to design digital signatures that offer both strong security guarantees and improved performance. This makes
ZKPoK particularly attractive for real-world implementations where efficiency and security are crucial.

One way to construct a signature scheme is to first construct a ZKPoK scheme and then transform it to
a non-interactive signature scheme with a transformation such as the Fiat-Shamir transform [14] or the Unruh
transform [15]. Looking at the NIST Post-Quantum Standardization project, three of the Round II signature
schemes, MQDSS, Picnic, and Dilithium, use this approach [16].

Considering the significance of ZKPoK, Bidoux and Gaborit [2,3] presented a new ZKPoK scheme, which we
will call MQBG, which is related to new variants of the MQ

H
such as the +

MQ
H
. This problem occurs in the multi-

instance setting and it is defined as follows.

Definition 1.2. ( +
MQ

H
problem) Let m and n be positive integers, we define by n mMQ , , qH

�( ) the family
of systems of m multivariate quadratic homogeneous polynomials = ∈p p x x, …, , …,
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Given ∈ n mMQ , , qH
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Bidoux and Gaborit [2,3] claimed that the security of this MQBG relies on a new intermediate problemwhich
is called the differential multivariate quadratic homogeneous ( +

DiffMQ
H
) problem in a multi-instance version

that follows.

Definition 1.3. ( +
DiffMQ

H
problem) Let ≥M 1, m n, be positive integers, ∈ n mMQ , , qH
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with ∈μ μ M, 1, …,
1 2

[ ].

More precisely, the +
DiffMQ

H
is related to the special soundness of MQBG, that is the property of a cryptographic

protocol, which ensures that if an adversary can convince a verifier of a false statement with some probability,
then there exists an efficient algorithm that can extract a witness from any such convincing interaction.
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1.1 Organization of the article and main results

This article is structured as follows. In Section 2, we describe MQBG. Section 3 presents the main result of this
work, that is, a probabilistic polynomial-time algorithm for solving the +

DiffMQ
H
, in particular, we will prove

the following theorem:

Theorem 1.1. Let ∈ n mMQ , , qH
�� ( ), where m and n are positive integers. Then, there exists a probabilistic

polynomial-time algorithm that solves the +
DiffMQ

H
with probability ∕ −

O q1 m n( ).

To do so, we show that the +
DiffMQ

H
reduces to solving a linear system generated from the polar form of

multivariate public-key quadratic polynomials. In Section 3.1, we report the experimental results obtained in
Magma V2.20-3 that confirm our claim, that is the algorithm is efficient and succeeds with probability

∕ −
O q1 m n( ), where m denotes the number of polynomials and n the number of variables. Note that Bidoux
and Gaborit [3] only proposed parameters of the MQ with =m n; in this case, our algorithm returns a solution
with probability one.

It was initially claimed that the +
DiffMQ

H
is not easier than the +

MQ
H
(see [3, Theorem 8]), i.e., if there exists a

polynomial-time algorithm solving the +
DiffMQ

H
with success probability p, then there exists a polynomial-time

algorithm solving the +
MQ

H
with probability ⎛

⎝ − ⎞
⎠− p1

q

1

m n
. This statement was then revisited in the updated version

[2]. However, the +
DiffMQ

H
was still defined and the complexity was not known until now. The contribution of this

work is to show that the problem on which the proof of the special soundness of MQBG is based, see [3, Appendix G],
can be solved in polynomial time, meaning that the security of MQBG needs to be improved.

2 Description of the protocol and security analysis

The MQ-based ZKPoK introduced in the study of Bidoux and Gaborit [3], which we will call MQBG, is inspired by
the recent ZKPoK proposed by Wang [12]. In particular, these protocols use the polar form associated with a set
of quadratic equations:

Definition 2.1. (Polar form) Let m n, be positive integers and ∈ n mMQ , , qH
�� ( ). The polar form ′ ∈�

x x y y, …, , , …,q n n

m

1 1
� [ ] associated with � is defined as follows:

′ = + − −x y x y x y, ,� � � �( ) ( ) ( ) ( ) (4)

with =x x x, …, n1( ) and =y y y, …,
n1

( ) being variables.

Note that the polar form of a multivariate quadratic map is symmetric and bilinear.
We can now quickly recall the basics of MQBG from the study of Bidoux and Gaborit [3], which is depicted in

Figure 1.
Let ∈ n mMQ , , qH

�� ( ) be a system of m multivariate quadratic homogeneous polynomials in n variables,
and ′ × →:

q

n

q

n

q

n� � �� be its polar form. We can rewrite (4) as follows:

− − = ′ − +x x y y x y y, .� � � �( ) ( ) ( ) ( )

The specificity of MQBG is to use an instance of the MQ
H
with >M 1 solutions. The secret key sk is given

by ∈∈xi i M q

n M

1, �( ) ( )[ ] and the public key pk is composed by ∈ n mMQ , , qH
�� ( ) and = ∈∈ ∈y x

i i M i i M1, 1,�( ) ( ( ))[ ] [ ]

q

m M�( ) . The challenge chstruct from the verifier V is a tuple ∈ × ×μ κ α M N, , 1, * 1,
q

�( ) [ ] [ ].
A trick of this protocol is the introduction of a technique to split the secret using ′� . If ∈k *

q
� is one of

the challenges chosen by the verifier V and ∈xμ q

n� the secret corresponding to the challenge ∈μ M1,[ ], then
the element ∈xk μ q

n� is divided into

= + ∈k s u s ux where , .μ q

n

0 0 �
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In a preprocessing phase, the prover P generates additive shares ∈ui q

n� and ∈vi q

m� for random ∈u
q

n�

and ∈u
q

m��( ) respectively. During protocol execution,P begins with −x uk μ and locally computes ′ +u s v,i i0� ( )

which constitute shares of −x sk μ 0� �( ) ( ). These are recombined and V replaces xk μ�( ) with yk
μ

2 to check
the knowledge of the secret by the prover P.

Regarding the security of MQBG, an analysis is provided in [3, Appendix G].

Figure 1: The MQBG.
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3 Polynomial-time algorithm for solving the ++
DiffMQ

H

In this section, we present a polynomial-time algorithm that solves the +
DiffMQ

H
with probability ∕ −

O q1 m n( ).
The main idea here is that the +

DiffMQ
H
can be reduced to the problem of finding a collision on the quadratic

system ∈ n mMQ , , qH
�� ( ). Although the MQ

H
is hard, the problem of finding a collision is much easier in the

case of quadratic equations [17,18].

Theorem 3.1. Let ∈ n mMQ , , qH
�� ( ), where m and n are positive integers. Then, there exists a probabilistic

polynomial-time algorithm that solves the +
DiffMQ

H
with probability ∕ −

O q1 m n( ).

Figure 1: (Continued)
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Proof. The idea is to consider the polar form ′ × →:
q

n

q

n

q

m� � �� associated with � (see Definition 4). There-
fore, this polar form is bilinear and equal to

′ = + − −x y x y x y, .� � � �( ) ( ) ( ) ( ) (5)

Let ∈ ×s v s v, ,…, ,M M q

n

q

m

1 1 � �( ) ( ) and = =s v s v,…, M M1 1� �( ) ( ) and ∈κ κ, *
q1 2 � . We present now an algorithm

that recovers ∈ × ×c d d, ,
q

m

q

n

q

n

1 2 � � �( ) such that

+ = + =d c v d c vκ κand .1 1

2
1 2 2

2
2� �( ) ( ) (6)

Note then that we restrict (3) to =μ 1
1

and =μ 2
2

.
The algorithm has two main steps. First, we eliminate ∈c

q

m� and recover ∈ ×d d,
q

n

q

n

1 2 � �( ) by solving
a linear system. We then recover the ∈c

q

n� that fits the d d,1 2( ) recovered in the first step.
Recovering d1 and d2 using the polar form

Let ∈Δ d,
q

n

1 � and set = + ∈d d Δ
q

n

2 1 � . We consider the difference of the two equations of (6). This allows
eliminating c and yields

+ − = −d d v vΔ κ κ .1 1 2

2
2 1

2

1
� �( ) ( )

From (5), we obtain that + −d dΔ1 1� �( ) ( )

′ + = −d Δ Δ v vκ κ, .1 2

2
2 1

2

1
� �( ) ( ) (7)

Recall that ′� is bilinear. By randomly sampling Δ, we can recover d1 by solving a linear system ofm equations
in n variables. The success probability of this step is ∕ −

q1 m n. Remark that this step is independent from c.
Recovering c

Let ∈d
q

n

1 � be a solution of the linear system (7). From the very definition of a +
DiffMQ

H
solution and (6),

we set c as

− + ∈d vκ .μ q

m

1 1

2

1
��( ) (8)

Correctness of d2

It remains to show that = +d d Δ2 1 found at the first step is correct, i.e.,

+ =d c vκ .μ2 2

2

2
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+ = + ′ + +
= + − + − +

=
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d v v d v

v

Δ Δ

κ κ κ

κ

,

.
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μ
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2
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2
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2
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□

3.1 Experimental results

The following tests were run on a MacBook Air with Apple chip M2, 8 GB, SSD 512 GB and using Magma V2.20-3
(STUDENT). For each n, 100 tests were run with a timeout of 24 h per test. We fix =n m, =q 31, =M 2, =μ 1

1
,

=μ 2
2

, and k1, k2 are chosen randomly in *
q

� .

n Successful
tests

Failed tests Time to generate
matrix (s)

Time to compute
solution (s)

Time to
verify (s)

10 99 1 0.420 0.001 0.000
15 95 5 3.165 0.002 0.000
20 98 2 13.839 0.009 0.001
25 97 3 44.607 0.017 0.002
30 94 6 118.949 0.028 0.004
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The following tests were run with <m n, i.e. = −m n 2 and the same setting we used before:

n m Successful
tests

Failed tests Time to generate
matrix (s)

Time to compute
solution (s)

Time to
verify (s)

10 8 100 0 0.269 0.001 0.000
15 13 100 0 2.344 0.002 0.001
20 18 100 0 11.222 0.009 0.001
25 23 100 0 37.736 0.016 0.002
30 28 100 0 103.552 0.029 0.002

From these tables, we can see that the polynomial-time algorithm that solves the +
DiffMQ

H
works very fast,

in polynomial-time as we expected. There are some cases where the algorithm failed, but most of the time it
succeeded especially when the number of equations is smaller than the number of variables. Hence, the above
tests confirm our Theorem 1.1.
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