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Abstract: Threshold signatures enable any subgroup of predefined cardinality ¢ out of a committee of n
participants to generate a valid, aggregated signature. Although several (t, n)-threshold signature schemes
exist, most of them assume that the threshold ¢ and the set of participants do not change over time. Practical
applications of threshold signatures might benefit from the possibility of updating the threshold or the
committee of participants. Examples of such applications are consensus algorithms and blockchain wallets.
In this article, we present Dynamic-FROST (D-FROST) that combines FROST, a Schnorr threshold signature
scheme, with CHURP, a dynamic proactive secret sharing scheme. The resulting protocol is the first Schnorr
threshold signature scheme that accommodates changes in both the committee and the threshold value
without relying on a trusted third party. Besides detailing the protocol, we present a proof of its security:
as the original signing scheme, D-FROST preserves the property of existential unforgeability under chosen-
message attack.
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1 Introduction

A threshold signature allows any subgroup of ¢ signers out of n participants to generate a signature which
cannot be forged by any subgroup with fewer than ¢ members. The signature is generated collaboratively
using a single group public key, which is the same size of a single-party public key. Threshold signature
schemes offer scalability and confidentiality: the length of the aggregated signature remains constant and
does not increase with t or n, and the identity of actual signers remains confidential, as it is not disclosed by the
aggregated signature.
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Schnorr threshold signatures and FROST. Among threshold signature schemes, FROST [1] leverages the additive
property of Schnorr signatures to produce a joint one that looks like a simple, single Schnorr signature. Although other
schemes have been proposed [2], e.g., based on Rivest-Shamir-Adleman (RSA) or elliptic curve digital signature algorithm
(CEDSA), the characteristics of Schnorr signatures facilitate more straightforward implementations; for this reason,
Schnorr signatures have been recently included in the Bitcoin codebase’. Furthermore, FROST has many desirable
properties for decentralized applications: it uses Perdersen’s Distributed Key Generation (DKG) algorithm and constructs
signatures in such a way that no central dealer is required to generate and distribute keys or to sign; it achieves
Existential Unforgeability under Chosen-Message Attack (EUF-CMA) [1]; it achieves efficient communication by reducing
the protocol to just two rounds. Some variants, like ROAST (RObust Asynchronous Schnorr Threshold signatures) [3], also
guarantee that the signing session eventually terminates successfully if at least ¢ participants cooperate.

Motivation for dynamic-FROST. FROST signatures have a fixed committee and a fixed threshold ¢. For some
applications, it might be interesting to allow the committee or the threshold to change. A naive solution to this
problem consists in simply generating a new group secret and distribute new shares among the updated
participants. However, changing the secret is not always practical, and we offer two examples of applications
where this is particularly relevant. First, advanced self-custodial cryptocurrency wallets might require a
FROST-powered dynamic threshold signature that enables users to alter the set of signers, but without moving
funds to a new address, i.e., without modifying the group public key through a blockchain transaction. In 2023,
the Human Rights Foundation announced it would award 1 bitcoin to any mobile wallet that successfully
implements such a feature?. Second, threshold signatures can be employed by a committee of validators in a
permissioned blockchain to authenticate new blocks, as outlined in the study of Benedetti et al. [4]. In this
scenario, the composition of the validators’ committee might evolve over time — due to governance adjust-
ments, security incidents, or simply to rotate members — and thus, the set of signers or the threshold would
need to be updated accordingly. In such cases, changing the group public key would require upgrading all
participants’ nodes to recognize the new one; failing to do so would mean that blocks signed with the new
group secret would not be considered valid by those participants who did not upgrade.

Proactive secret sharing (PSS). In principle, a dynamic committee or a dynamic threshold can be achieved by
addressing four simple sub-problems: (i) to remove a participant, (ii) to add a participant, (iii) to decrease the
threshold, or (iv) to increase the threshold. Some of the sub-cases can be tackled with different techniques
while allowing the group secret to remain unchanged. For example, decreasing the threshold is essentially
equivalent to having an additional share in the t-of-n scheme, which is exposed to all participants; adding a
participant is equivalent to jointly producing a new share, which can be obtained from previous shares, as in
repairable threshold schemes [5]. However, composing different techniques while still being able to assess the
security properties of the protocol is not an easy task. A more desirable approach would be to find a unified
solution that works for all the previously mentioned sub-cases. A possible starting point is PSS, introduced by
Herzberg et al. [6], which periodically updates the secret shares while leaving the group secret unchanged,
thus reinforcing Shamir’s secret sharing [7]. The idea behind this method is very straightforward: adding a
polynomial with zero constant term to the one used to generate the secrets will not change the group secret,
but only the secret shares. Indeed, in Shamir’s secret sharing, the group secret is the constant term of the
polynomial, while the secret shares are the values of the polynomial at various indices. PSS schemes build
upon this idea, but differentiate between each other along three main dimensions. First, they can be dynamic
when they support dynamic committees, namely, when they allow to change both the members and the
cardinality of the committee. Second, they can be either centralized or decentralized, depending on whether
the new shares are distributed with the aid of a central trusted dealer or not. Third, depending on the
assumption about the communication channels of participants, they can be synchronous (if message delays
are bounded), asynchronous (if message delays are unbounded), or partially synchronous (if communication
channels are asynchronous until a Global Stabilization Time event, and synchronous after). As described
in Section 2, we analyzed several PSS schemes and selected CHURP as our favorite candidate.

1 Schnorr Signatures for secp256k1: https://github.com/bitcoin/bips/blob/master/bip-0340.mediawiki.
2 Human Rights Foundation Bounties, accessed on April 07, 2024: https://hrfbounties.org/.
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CHURP PSS. CHURP is a dynamic PSS (DPSS) scheme, which does not rely on a trusted dealer, works in a
synchronous setting, and can be used to accommodate changes in both the committee and threshold as long as
t-1< % The basic idea is to generate a two-variable polynomial (instead of a one-variable one, like in
Shamir’s method) that has two different degrees in the two variables: the lower-degree variable is used to
distribute polynomial shares (called full shares), which will be used to perform signatures; the higher-degree
one is used to pass a set of polynomials (called reduced shares) to a new committee; specific points on these
polynomials can be used by the new committee to generate new full shares. In such a way, both the committee
and the threshold can be changed. In practice, this change is done by constructing and adding a two-variable
polynomial with a zero constant term, similarly to the study of Herzberg et al. [6]. More details can be found in
the study of Maram et al. [8] and in Section 3.3.

Our contribution. In this article, we introduce a novel protocol called Dynamic FROST (D-FROST), which
combines FROST with CHURP [8] to accommodate dynamic committees and threshold changes in a FROST
threshold signature. The idea behind CHURP is based upon a technique outlined in the study of Herzberg et al.
[6], which is based on two-variable polynomials and places it far away from FROST, which uses one-variable
polynomials. To combine these two approaches, we define a new scheme that provides a bridge between the
two protocols and we prove its security properties. To blend FROST and CHURP together, after FROST Key
Generation, we transition to a steady state, i.e., a state in which CHURP can be executed. This means that we
generate a bivariate polynomial that returns the previously generated secret shares and the group secret at
various indices. In practice, we generate a set of polynomials, whose constant terms are the secret shares, and
then, we interpolate them to create a bivariate polynomial. Once we are in a steady state, CHURP is executed,
and then, FROST signatures can be made with the newly generated shares. Then, periodically, at fixed intervals
called epochs, CHURP is executed again and new FROST signatures can be performed; there is no need to
repeat the key generation or the transition to a steady state. To the best of our knowledge, this is the first
protocol that allows Schnorr-based threshold signatures with a dynamic committee and a dynamic threshold,
without changing the group public key. We formally prove that the resulting protocol inherits both FROST’s
and CHURP’s properties: the signature is still EUF-CMA secure, and proactivizing the shares does not reveal
additional information to malicious participants.

Article organization. The rest of this article is organized as follows: after reviewing related works in Section 2,
we outline FROST and CHURP in Section 3; the description of our D-FROST protocol can be found in Section 4,
and a complete proof of its security can be found in Section 5.

2 Related work

2.1 Threshold signature schemes

As introduced in Section 1, a threshold signature scheme allows any subgroup of t signers out of n participants
to generate a signature for a message m. Formally, a threshold signature scheme can be defined as follows.

Definition 1. A threshold signature scheme (G, S, C, V) is a tuple of four efficient algorithms:
* G is a probabilistic key generation algorithm that is invoked as
$
(pka pka S1, ---)Sn) - G(n’ t)

to generate a (t, n) shared key. It outputs a public key pk, a combiner public key pk., and n signing key
shares, s4,..., S,.
* S is a (possibly) probabilistic signing algorithm that is invoked as

af < S(s;, m),

where s; is one of the key shares generated by G, m is a message, and g; is a signature share for m using s;.
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C is a deterministic combiner algorithm that is invoked as
g < C(pkL‘1 m:]; {O-]/}]E]))

where pk. is the combiner public key, m is a message, ] is a subset of [n] of size ¢, and each o7 is the signature
share for m of j € J. The algorithm either outputs a signature o, or outputs a special message blame(J*),
where J* is a nonempty subset of J.

Intuitively, the message blame(J*) indicates that the provided signature shares g; for j € J* are invalid.
V is a deterministic verification algorithm as in a signature scheme invoked as

V(pk, m, 0),

and outputs either accept or reject.
Correctness: the verification algorithm should accept a properly constructed signature; specifically, for all
possible outputs (pk, pke, S1, ...,Sn) of G(n, t), all messages m, and all t-size subsets J of [n], we have

Pr[V(pk, m, C(pk., m, J, {S(sj, m)}je;)) = accept] = 1.

Different threshold signature schemes have been defined so far. Shoup [9] defined one of the most used
threshold signature schemes, which is based on RSA [10-13]. It requires a trusted, centralized dealer for key
generation, and then uses non-interactive signature share generation and signature verification protocols.

Gennaro et al. [14] proposed a threshold DSA signature scheme, with n > 2t — 1, where a trusted centra-
lized dealer is adopted. The more general, threshold-optimal case is then presented in the study of Gennaro et al.
[15], where they propose a dealer-less approach supporting the case n > t. However, DKG is costly and imprac-
tical. Then, Gennaro and Goldfeder [16,17] presented an ECDSA-based protocol supporting efficient DKG, which
obtains faster signing than Gennaro et al. [15] and requires less data to be transmitted. In a closely related work,
Lindell et al. [18] proposed an efficient threshold ECDSA scheme, which employs different methods to neutralize
any adversarial behavior. Differently from the study of Gennaro and Goldfeder [16], this protocol revolves
around a modification of the ElGamal encryption scheme. Using an ElGamal signature scheme, Noack and Spitz
[19] propose a dynamic threshold signature scheme, which does not rely on a trusted third party. It has the nice
property of not changing the public key while adding or removing a certain number of nodes.

A detailed (and more extensive) review of threshold ECDSA schemes can be found in the study of
Aumasson et al. [20]. Although ECDSA is fast and secure, aggregated signatures cannot be easily obtained
with it.

Conversely, BLS [21] and Schnorr [22] schemes can be easily transformed into threshold schemes by
supporting the sum of partial signatures with no overhead [23]. In particular, Boldyreva [24] proposed the
most widely adopted approach for threshold BLS signatures. Here, the DKG does not require a trusted dealer,
and the signature generation does not require participant interaction (or any zero-knowledge proof). It can
only tolerate up to t — 1 < n/2 malicious parties, but it allows us to periodically renew the secret shares.

Recently, Tomescu et al. [25] proposed a more efficient BLS signature scheme, that improves signing and
verification time. Threshold BLS signature schemes rely on pairing-based cryptography [21] and can perform
signing operations in a single round among participants.

Schnorr signatures received increased interest recently, and they have been included in the Bitcoin
protocol’®. Komlo and Goldberg [1] proposed FROST, an efficient Schnorr-based threshold scheme, whereby
signing can be performed in two rounds, or optimized to a single round with preprocessing. FROST is currently
considered the most efficient scheme for generating Schnorr threshold signatures [26]. Ruffing et al. [3]
proposed ROAST, a wrapper protocol around FROST that provides liveness guarantees in the presence of
malicious nodes and asynchronous networks.

We prioritize efficiency over robustness, so we assume FROST as the starting point of our work. FROST’s
efficiency comes from another valuable feature, which is the ability to perform signing operations asynchronously.

3 https://en.bitcoin.it/wiki/BIP_0340.
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2.2 Possible solutions

To find the solution that best fits our problem, we consider many DPSS schemes, namely, PSS schemes that
involve dynamic committees. For the sake of clarity, we report here the formal definition of a DPSS,
as presented in the study of Hu et al. [27].

Definition 2. A DPSS protocol consists of the following three algorithms:

o (s, ;) plect < Sha re(t, n, s, 1°): This algorithm shares a secret to the initial committee C'. It takes as inputs
a threshold ¢, a committee size n, a secret value s, and a security parameter k in unary form. Each node
P! € C! outputs a share-proof tuple (s;, ;).

. (s, nj)P;zﬂECm < Handof f((s;, ;) prece): This algorithm allows the new committee C¢*! to obtain refreshed
shares from the old committee C¢. Each old node Pf € C¢ inputs a share-proof tuple (s;, ;), and each new
node P]»e+1 € C**! outputs a refreshed tuple (s7, 777).

* V < Reconstruct(t, (s;, m)icr): This algorithm reconstructs the secret. It takes as inputs a threshold ¢ and
a set of share-proof tuples (s;, 71;)ic;, Where I C [n] with |I] > t, and outputs a reconstructed secret v.

DPSS protocols can be classified into three categories, based on whether they use a synchronous, partially
synchronous, or asynchronous network.

In D-FROST, we suppose to be in a synchronous setting, since FROST works synchronously during KeyGen
and Preprocess. Thus, there is no need for a DPSS that operates in an asynchronous network, especially if it
weakens the protocol. In particular, all asynchronous and partially synchronous DPSS schemes in the litera-
ture (e.g., Schultz’s MPSS [28], COBRA [29], Robust Asynchronous DPSS [30]) require the presence of a dealer,
giving up decentralization. Moreover, they are less efficient than many synchronous techniques and have
lower threshold bounds. We therefore opt for a synchronous protocol.

To the best of our knowledge, the most recent and efficient synchronous PSS schemes with dynamic commit-
tees are CHURP [8], Benhamouda et al’s [31], and Goyal et al’s [32]. However, the protocol by Benhamouda et al.
involves a dealer and the one by Goyal et al. demands that the secret s is held by a client. Since we want the secret to
be hidden from everybody, none of these schemes suits our purpose. Thus, we select CHURP as the best solution,
which is a highly efficient and decentralized protocol with a large upper bound on the threshold.

As stated in Section 1, D-FROST is the first Schnorr-based threshold signature scheme that allows mod-
ifications to the committee and to the threshold, without changing the group public key.

The first scheme to achieve something similar is that in the study of Battagliola et al. [33], which enables a group
of t participants to add a new node to the committee. Thus, this system only achieves one of the properties we desire.

An improvement is accomplished by the SPRINT protocol [34], which allows both to remove and add
a participant. Even though this scheme tolerates dynamic committees, it does not allow threshold changes,
and therefore, it is less flexible than D-FROST.

3 Background

3.1 FROST

FROST [1] is a Schnorr threshold signature scheme that allows a group of t out of n nodes to sign a message m
with a signature that is indistinguishable from a single-party Schnorr signature. It is a decentralized protocol,
where each participant has the same power, except for the signature aggregator (SA). SA is a semi-trusted
node that has the ability to report misbehaving participants and to publish the group signature at the end of
the protocol. The SA role might also be assigned to an external party that has access to all public keys. In the
following, we provide an overview of the protocol. For the sake of completeness, we detail FROST’s KeyGen,
Preprocess(n), and Sign(m), respectively, in Algorithms 1-3.
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Algorithm 1 KeyGen

Input: committee C = {P;};c[y, threshold ¢.
Output: each P; holds a (t, n)-share s; of the secret s.
Round 1
.. $ .

1. Every participant P; samples t random values (@j, ...,@i¢-1)) < Z4 and uses these values as coefficients

to define a degree ¢ — 1 polynomial f(x) = Z;;loai,»xf .
2. Every P; computes a proof of knowledge to the corresponding secret a;, by calculating o; = (R;, 4;), such that

$ , . . .

k « Z4R = gk, ¢ = H(i, @, g%, R;), 1l; = k + ajo¢;, with @ being a context string to prevent replay attacks.
3. Every participant P; computes a public commitment Z‘: = (Dy, ..., Djt-1)), where &; = g%, 0<j<t -1
4. Every P; broadcasts a o; to all other participants.
5. Upon receiving a, 0; from participants 1 < I < n, [ # i, participant P; verifies o; = (Ry, 44;), aborting

? -

on failure, by checking R; = g“ICIJmCl, where ¢; = H(l, @, &y, R)).

6. Upon success, participants delete {g; : 1 < [ < n}.

Round 2
1. Each P; securely sends to each other participant P; a secret share (I, f;(1)), deleting f; and each share

afterward except for (i, f;(i)), which they keep for themselves.

i* mod q

2. Each P; verifies their shares by calculating g/® z Mco®i ™%, aborting if the check fails.

3. Each P; calculates their long-lived private signing share by computing s; = Y- f,(@), stores s; securely,
and deletes each f;(i).

4. Each P; calculates their public verification share ¥; = g%, and the group’s public key Y = I'I;l:ld)jo.
Any participant can compute the public verification share of any other participant by calcu-

- ik
lating Yl = n?=1|_|;<=10q)l]'km0d q.

Algorithm 2 Preprocess(1)

Let j be a counter for a specific nonce/commitment share pair, and 7 be the number of pairs generated at a time
Input: 7 = number of nonce/commitment share pairs
Output: each b; publishes (l, <(Dij, Eij»je[n])
1. Create an empty list L;. Then, for 1 < j < m, perform the following:
$

1.a Sample single-use nonces (dy, ;) < Zj x Z3.

Lb Derive commitment shares (Dy, Ej) = (g%, g%)

1.c Append (Dy, Ey) to L;. Store ((dy, Dy), (e, Eyj)) for later use in signing operations.
2. Publish (i, L;) to a predetermined location, as specified by the implementation.

Protocol details. Let G be a group of prime order g, and let g be a generator of G. Let {P;};c[,) denote the set of
participants, where [n] = {1, ...,n}. The protocol starts with a secret sharing scheme that distributes the secret
S € Z, inn secret shares s;, one for each P, such that ¢ shares are enough to reconstruct s and t - 1 participants
cannot learn any information about s. The key generation scheme used by FROST is a modified version of
Pedersen’s DKG. The idea behind this scheme is to generate a random polynomial f(x) € Z4[x] such that
deg, = ¢t - 1and f(0) = s. Each P is given the value f(i) = s;, which is its secret share of s, and thus can compute
its public key Y; = g. Every time a misbehaving node is detected, FROST aborts in order to avoid rogue-key attacks
[35]. To collectively reconstruct s, t nodes might perform Lagrange interpolation with their shares and obtain
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s = Zgzl)lisi, where 4; = I'Ijﬂ-#. However, the secret is never directly recovered by any node, as otherwise such a
node could sign messages independently from the others. Instead, Lagrange interpolation is indirectly used during
the signing operations. The group public key is Y = g5. The polynomial f(x) is generated in a decentralized way, by
adding polynomials f;(x) randomly generated by each participant, and each share s; is recovered by the corre-
spondent participant without help from a particular node. This is an important feature of Pedersen’s DKG, as FROST
values decentralization and there is no trusted dealer who knows the secret.

FROST’s KeyGen (Algorithm 1) is Pedersen’s DKG with a slight modification, which consists in a zero-knowledge
proof of knowledge, computed by each participant, of their corresponding secret a;o = f;(0). Thanks to this change, the

upper bound on the threshold ¢ is raised from % to n without losing security against rogue-key attacks. Once KeyGen is

completed, the protocol proceeds with Preprocess(r7), which is a preprocessing stage reported in Algorithm 2. Here,
each P; creates and publishes 77 pairs of commitments (Dy, Ej) = (g%, g%), where d;; and e; are the random elements
of Z ;. Each pair of commitments is used for a single signature and discarded afterwards. If the committee needs to
sign a new message and there are no more available commitments, the Preprocess(77) protocol is executed again.

The last part of the protocol is the signing phase. During Sign(m), which is described in Algorithm 3, SA selects
the set S of nodes that will sign the message m. This set is made of a signing nodes, where ¢ < a < n. Then, SA
obtains the next available commitment for each P; and creates B = {(i, D;, E;));es. Once all nodes have received B,
they validate m and compute p; = H;(I||m||B),l € S, where H, is a hash function mapping to Z7. Next, they derive
the group commitment R = [|,csD; - (E)? and the challenge ¢ = Hy(R||Y||m), where H, is also a hash function.
Then, each P; computes z; = d; + €; - p; + A; - §; - ¢ and returns it to SA. The SA verifies the validity of z;, fori € S.If
every response is correct, SA computes z = Y ;c¢z;. Finally, the signature ¢ = (R, z) is published.

Note that the way R is calculated binds the message, the set of signing participants, and the pairs (D;, E)ies
to each signature share. This binding method prevents the adversary from changing anything or combining
signature shares across disjoint signing operations, which makes the protocol resistant to the Drijvers attack.
Synchronicity assumptions. During the first two phases of the protocol (KeyGen and Preprocess(r)), FROST
requires a synchronous network, while the signing phase can be performed asynchronously.

Algorithm 3 Sign(m)

Let SA be the signature aggregator, S be the set of signers, and Y be the group public key. Let B = ((i, D;, E;))ies
be the ordered list of indices and commitment shares, corresponding to each participant P;, and let L; be the set
of commitment shares for P; that were published during the preprocess stage. Let Hy, H, be hash functions
whose outputs are in Z7.
Input: a message m and the list B = ((i, D;, E))ies
Output: a signature o = (R, z) and m
1. SA begins by fetching the next available commitment for each participant P; from L; and constructs B.
2. For eachi € S, SA sends P; the tuple (m, B).
3. After receiving (m, B), each P; first validates the message m and then checks D;, E; € G* for each
commitment in B, aborting if either check fails.
4. Each P; then computes the set of binding values p; = Hy(I||m||B), l € S. Each P; then derives the group
commitment R = [l,esD; - (E)? and the challenge ¢ = Hy(R||Y||m).
5. Each P; computes their response using their long-lived secret share s; by computing
zi=d;i+ (e-p)+A-si-c using S to determine the ith Lagrange coefficient A;.
6. Each P; securely deletes ((d;, D;), (e;, E;)) from their local storage and then returns z; to SA.
7. The signature aggregator SA performs the following steps:
7.a Derive p; = H(i||m||B) and R; = D;; - (Ej)” fori € S, and subsequently R = [1,csR; and ¢ = Hy(R||Y||m).

7.b Verify the validity of each response by checking g# z R; - Y£ for each signing share z;, i € S.
If the equality does not hold, identify and report the mishehaving participant and then abort.
Otherwise, continue.

7.c Compute the group’s response z =  ;csZ.

7.d Publish o = (R, z) along with m.
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3.2 Security of FROST

The protocol is proved to be EUF-CMA secure under the Discrete Logarithm (DL) assumption in the random
oracle model.

Definition 3. A signature scheme is existentially unforgeable under chosen message attack, or EUF-CMA secure,
if the adversary cannot forge a signature on a chosen message m that was not previously signed by the oracle.

The scheme is also secure against the Drijvers attack [36] and the ROS solver [37]. In particular, this means
that the protocol is secure against a concurrent adversary, i.e.,, an adversary that can open simultaneous
signing sessions at once. As stated in Section 3.1, the protocol is resistant to rogue-key attacks too.

FROST’s proof of security uses the general forking algorithm (see Algorithm 4), which we denote by GE,,
and the general forking lemma by Bellare and Neven [38]. The symbol $ indicates random sampling.

Theorem 1. (General Forking lemma) Fix an integer q 21 and a set O of size h > 2. Let A be a randomized
algorithm that on input X, hy, ..., hy returns a pair, the first element of which is an integer in the range0,..., q and
the second element of which we refer to as a side output. Let 1G be a randomized algorithm that we call the input
generator. The accepting probability of A, denoted acc, is defined as the probability that | > 1 in the experiment

X 416, hyei g © 07 (T, 0) < AKX, by, oo hy).
Let frk =Pr[b=1:x bl IG; (b, 0, 0") b GEy(x)]. Then,

frk = acc -

nl

acc 1]

Algorithm 4 GE(x)

1. Pick random coins p
$

2. h,..,hy < O

3. (J,o)or L < A(x,{h, ...,hg}; p)

4. If | =0, then return (0, €, €)

5. R, hy < 0

6. (J,0)0r L« AX,{hy, ...,hy, h]’, ...,h,;}; p)
7. Jj+]' V= h]’ then return (0, €, €)

8. Return (1, g, g’).

The adversary in FROST’s proof of security is supposed to be active and static with the power to corrupt up
to t — 1 nodes, including SA. In particular, a static adversary decides which nodes are corrupted at the
beginning of the protocol; thus, FROST does not achieve adaptive security, in which the adversary adaptively
selects corrupted nodes during the execution of the protocol.

3.3 CHURP

CHURP [8] is a DPSS scheme, started by a group C = {P;}ie[n) of nodes that (¢, n)-share a secret s. CHURP allows C
to go through a proactivization phase (handoff) in which the committee passes the secret to a new possibly
disjoint group C’ = {P/}ic[n1. Table 1 summarizes the main notation used throughout this article.
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Initially, the secret is shared among nodes in C via a bivariate polynomial B(x, y) such that B(0, 0) = s and
degy = (t — 1, 2t - 2). Each P; holds the (2t — 2)-degree polynomial B(i, y), which we refer to as full share. Then,
during the handoff, B(x, y) is proactivized into a new polynomial B’(x, y) such that B/(0, 0) = B(0, 0) = s. Here,
we suppose that the threshold is fixed for ease of exposition. Nevertheless, in this phase, both the threshold
and the number of participants can be changed, as long ast - 1 < % The reason behind this bound is that the
adversary is given the power to corrupt up to t — 1 nodes from each committee, so the total number of
corrupted nodes is at most 2t — 2; then, the previous inequality follows from the fact that 2t — 2 < n must hold.

To protect the secret during the handoff against 2t — 2 possibly corrupted nodes, the threshold is raised
to 2t — 1. This is the main reason for using a bivariate polynomial, as it allows to switch dimensions easily.
Indeed, s can be distributed both with the (¢, n)-shares s; = B(i, 0) and the (2t - 1, n)-shares s; = B(0, j).
In particular, during the handoff, the participants hold polynomial shares B(x, j), which we refer to as reduced
shares (since a higher threshold gives less power to a single share). These shares are used to distribute,
to all the members of the new committee, the new proactivized full shares B’(i, y), that are independent
of the old ones.

This protocol is executed periodically, at the beginning of a fixed interval of time called epoch.
Invariants. To preserve integrity of the secret while transmitting it to a new committee, CHURP makes use of
the Kate, Zaverucha, Goldberg (KZG) scheme [39], a polynomial commitment protocol: it allows a user to
commit to a polynomial P(x) and to prove that P(7) is the result of the evaluation of P(x) at some index i.

Definition 4. A polynomial commitment scheme consists of six algorithms:

+ Setup(1, t) generates an appropriate algebraic structure G and a commitment public—private key pair
(pk, sk) to commit to a polynomial of degree <t. For simplicity, we add G to the public key pk. Setup is
run by a trusted or distributed authority. Note that sk is not required in the rest of the scheme.
Commit(pk,®(x)) outputs a commitment C to a polynomial ®(x) for the public key pk, and some associated
decommitment information d. (In some constructions, d is null.)

Open(pk,C, ®(x), d) outputs the polynomial ®(x) used while creating the commitment, with decommitment
information d.

VerifyPoly(pk,C, ®(x), d) verifies that C is a commitment to ®(x), created with decommitment information d.
If so, the algorithm outputs 1; otherwise, it outputs 0.

CreateWitness(pk,®(x), i, d) outputs (i, (i), w;), where w; is a witness for the evaluation ®(i) of ®(x) at the
index i and d is the decommitment information.

VerifyEval(pk,C, i, ®(i), w;) verifies that ®(i) is indeed the evaluation at the index i of the polynomial
committed in C. If so, the algorithm outputs 1; otherwise, it outputs 0.

After a successful handoff, the system is in a steady state, which means that the following three invariants

must hold for the new committee {P;};c; and the new polynomial B(x, y):

 INV-SECRET: the secret s is the same across handoffs.

* INV-STATE: each node P; holds a full share B(i, y) and a proof to the correctness thereof. Specifically, the full
share B(i,y) is a (2t - 2)-degree polynomial, and hence can be uniquely represented by 2t - 1 points
{B(i, D}je2c-11.The proof is a set of witnesses {Wa( j)}jef2-1]-

+ INV-COMM: KZG commitments to reduced shares {B(x, j)}je[2-1 are available to all nodes.

These invariants ensure that some important properties are satisfied. In particular, INV-SECRET guarantees

that the secret remains the same throughout the whole protocol, while INV-STATE and INV-COMM guarantee

the correctness of the scheme. Indeed, during the handoff, nodes in the new committee can verify the
correctness of reduced shares (and, thus, the correctness of dimension-switching), using the commitments
and the witnesses.

Setup. First, the protocol selects an initial committee C(”’ and each participant is given a private/public key

pair, where public keys are known to all nodes in the system. Then, the generation of the secret and the setup

of KZG are executed by a trusted party or a committee with at least one honest participant.

Communication model. Nodes in CHURP have two ways to communicate with each other: a blockchain

available to everyone, on which nodes can publish and read messages, or peer-to-peer channels to send
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Table 1: Notation used in CHURP and D-FROST

DE GRUYTER

Notation Description

ceD c@© Old, new committee

B(x,y) Bivariate polynomial used to share the secret
(t, k) Degree of X,y terms in B

RS;i(x) = B(x, i) Reduced share held by P;

FSi(y) = B(i,y) Full share held by P;

G(x.j) KZG commitment to B(x, j)

Whi j) Witness to evaluation of B(x, ) at i

Whj) Witness to evaluation of B(i, y) at j

Q(x,y) Bivariate proactivization polynomial

U’ Subset of nodes chosen to participate in handoff
Ai Lagrange coefficients

and receive messages. Both communication methods are supposed to be synchronous, i.e., once a message is
sent, it is received within a finite period of time T. Synchronicity in peer-to-peer channels is required only for
performance, not for liveness, secrecy, or integrity. This kind of communication is used only in the optimistic
path, and if a message takes too long to deliver, the protocol switches to the pessimistic path, where all
communications happen on-chain, as explained below.

The use of a blockchain for communication is not strictly necessary, and it could be replaced with any
other kind of reliable bulletin board. However, this change would require additional work that goes beyond
the scope of our work, so we employ a blockchain for broadcast communication.

Protocol details. CHURP is made of three subprotocols: Opt-CHURP, Exp-CHURP-A, and Exp-CHURP-B. The first
one is the optimistic path, while the others are the pessimistic ones. When CHURP is started, Opt-CHURP is
executed by default. To speed up the protocol, most communications take place off-chain. If a fault is detected,
the protocol switches to Exp-CHURP-A: from this point forward, nodes communicate on-chain only. This allows
participants to perform verifiable accusations and expel corrupted nodes from the committee. If a breach in
the underlying assumptions of the KZG scheme is detected, the protocol switches to Exp-CHURP-B. This
pessimistic path is proved to be secure under the DL assumption, but it lowers the bound on the threshold
tot-1< % In D-FROST, we suppose all necessary assumptions hold, so we only consider the first two paths

and exclude Exp-CHURP-B. Moreover, since the difference between the two paths is only in the communication
model, the two protocols are largely the same, and we only explain Opt-CHURP in the next paragraph. More
details on Opt-CHURP and Exp-CHURP-A are included in Sections 3.3.1 and 3.3.2, respectively.

Algorithm 5 Opt-ShareReduce

Public Input: {Cax j)}jef2c-1]
Input: Set of nodes {Pi};c[n) where each node P; is given {B(i, j), Wa(j)}je[2-11- Set of nodes {P/}je[n)
such thatn” > 2t - 1
Output: Vj € [2t - 1], node P} outputs B(x, j).
1. Order {Pj} based on the lexicographic order of their public keys.
2. Choose the first 2t - 1 nodes, denoted as U’, without loss of generality, U’ = {P}{}je[zt—l]-
3. Node P;:
3.aVj € [2t - 1], send a point and witness (B({, j), Wa(,) to U; off-chain.
4. Node Uj:
4.a Wait and receive n points and witnesses, {(B(i, ), Wa( j)}ie[n]-
4.b Vi € [n], invoke VerifyEval(Cp.), I, B(1, J), Wa())-
4.c Interpolate any ¢t verified points to construct B(X, j).
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Opt-CHURP. Even though the protocol supports changes to both the threshold and the number of nodes in the
committee, in this section, we assume that the threshold is fixed and n can change. In particular, if ¢, is the
threshold in epoch e, we set t,-; = t, = t. In Section 3.3.3, we explain how threshold changes are managed.

Opt-CHURP is divided into three stages. The first one is Opt-ShareReduce (Algorithm 5), which allows a set
U’ of 2t - 1 members of the new committee C’ = {P,}c[n) to recover the reduced shares B(x, j). This is done
by interpolating ¢ verified points B(i, j). To check the validity of the points, nodes use the KZG commitments
and witnesses produced by members of the old committee.

Algorithm 6 Opt-Proactivize

Public Input: {Cax j)}jef2e-1-
Input: Set of nodes {P}ic(n. Let U” = {P{}je[2-15, €ach node U; is given B(x, j).
Output: Uj outputs success and B'(x, j) for a degree<t - 1, 2t - 2) bivariate polynomial B'(x, y) with
B’(0,0) = B(0,0) or fail.
Public Output: {Cp(x j)}jefae-1]-
1. Invoke (2t - 2,2t - 1)-UnivariateZeroShare among the nodes {U;}je[2-1) to generate shares {s}je[a-1).
2. Node Uj:
2.a Generate a random (¢ - 1)-degree polynomial R;(x) such that R;(0) = s;.
Denote the bivariate polynomial Q(x, y) where Q(x, ) = Ri(x) Vj € [2t - 1].
. Denote the bivariate polynomial B'(x, y) = B(x,y) + Q(x, y).
5. Node Uj:
5.a Compute B'(x, ) = B(x,j) + Q(x,j) and Zj(x) = Ri(x) - s;.
5.b Send {g9, Cz, Wz o), Cp(x,} Off-chain to all nodes in C’, where Cz = Commit(Z)), W) =
CreateWitness(Z;, 0), and Cg(y,jy = Commit(B'(x, j)).
5.c Publish hash of the commitments on-chain H; = H(g%||Cz||Wz0)l|Cp'x,j))-
6. Node P;:
6.a Vj € [2t - 1], retrieve on-chain hash H;. Also, receive {g9, Cz, Wz 0), Cg/(x,jy} off-chain.
6.b Vj € [2t - 1], if H; # H(g9]|Cz||Wz0)l|Cp(x,j)) Or VerifyEval(Cz, 0, 0, Wz q)) True or
Coxj) # Conjy X Czy % g%, output fail.
6.c If 175! (g5)%" # 1, output fail.
7. Node U;:

7.a Output success and B’(X, j).

Algorithm 7 Opt-ShareDist

Public Input: {Ca/(x j)}jef2e-1]-
Input: Set of nodes {P, }ic[n. Let U’ = {P/}je(z-1}, €ach node Uj is given B'(x, j).
Output: Vi € [n’], P/ outputs success and B’(i, y) or fail.
1. Node Uj:
la Vi € [n’], send a point and witness off-chain {B'(i, j), Wz )} to P/, where Wy ) =
CreateWitness(B'(x, )), D).
2. Node P/:
2.a Wait and receive points and witnesses {B'(i, ), Wx j)}je[2t-1]-
2.b Vj € [2t - 1], invoke VerifyEval(Cp(x,j, i, B'(i, j), Waj)-
2.c If all 2t - 1 points are correct, interpolate to construct B'(i, ).
2.d Output success and the full share B(i, y).
2.e In all other cases, output fail.
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The second phase of Opt-CHURP is Opt-Proactivize (Algorithm 6), during which the polynomial B(x, y)
obtains proactivized. The idea is to add a random zero-hole polynomial Q(x,y) to B(x,y), obtaining a
new polynomial B'(x, y) such that B’(0, 0) = B(0, 0) = s, degy. = (t - 1, 2t - 2) and B’ is independent from B.
To create Q(x,y), the algorithm generates a zero-hole polynomial P(x) of degree 2t - 2 and 2t - 1 zero-
shares s; such that s; = P(j). Then, each node in U’ generates a random polynomial R;(x) such that
R;(0) = 5. Q(x, y) is defined as the interpolation of {R;(x)}je2-1}, and therefore, Q(x, j) = Ri(x) Vj € [2t - 1].
Since Q(0,j) = P(j), it also follows that Q(0,0) as required. Then, Uj can proactivize its reduced
share, by defining B’(x,j) = B(x,j) + Q(x, j). Participants prepare all necessary information to allow the
others to verify validity of the updated shares. Specifically, each U; computes Z;(x) = R;j(x) - s; and sends
{g%, Cz, Wz 0), C/(x,jy} off-chain to all members of C’. This way, nodes can check correctness of new shares
without knowing either B'(x, j) or s;. Note that, after this step, the commitments {Cg-(xj)}je[2-1) are available
to all nodes in C’, as required by INV-COMM.

The last part of the protocol is Opt-ShareDist (Algorithm 7). In this phase, every Uj sends B'(i, j) to each
participant P/, along with the witness Wp; ;) to make it verifiable. P/ receives 2t - 1 points {B'(i, /)}je[zc-1]
and interpolates them to obtain the full share B’(i, y). If any of these points is not valid, the algorithm returns
fail. Otherwise, the process ends successfully and the committee is in steady state. Nodes in the old committee
are required to delete their full shares and nodes in U’ delete their reduced shares.

3.3.1 Details of Opt-CHURP

Full details of Opt-CHURP are provided here for ease of reading, but can also be found in the study of Maram

et al. [8]:

* In Algorithm 5, the set U’ of 2t — 1 members from the old committee reconstruct the polynomial
shares B(x, j);

o Algorithm 6 shows how nodes in U” proactivize their reduced shares;

+ Algorithm 7 describes the last phase of the handoff, in which members of the new committee recover their
full shares of the proactivized polynomial B'(x, y).

These algorithms refer to the following auxiliary functions:
* Commit and CreateWitness are part of the KZG scheme. They generate the commitment to a polynomial
and the witness to the evaluation of a polynomial at some point, respectively.
VerifyEval(Crexy, I, R(D), We(y) is also part of the KZG scheme, and it verifies that the evaluation
of the polynomial R(x) at i gives the value R(7).
* Given a set of nodes {Uj}jefz-13, (2t — 2, 2t — 1)-UnivariateZeroShare generates a random polynomial P(y)
such that degp,,) = 2t - 2, P(0) = 0 and each node Uj holds s; = P(j). Its functioning is shown in Algorithm 8.

Algorithm 8 (2t - 2, 2t - 1)-UnivariateZeroShare

Input: ¢, set of 2t — 1 nodes {Uj}je[z-1)-
Output: Each node U; outputs a share s; = P(j) for a randomly generated degree-(2t — 2) polynomial P(y)
with P(0) = 0.
1 Node U
l.a Generate a random (2t — 2)-degree polynomial P; such that P;(0) = 0.
1b Send a point P;(i) to node U; for each i € [2t - 1].

1.c Wait to receive points {Pi(j)}ie[z:-1) from all other nodes.

1.d Let P = 32,'P;, compute share P(j) = Y251 'Pi(}).
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3.3.2 Pessimistic path

Here, we detail the functioning of Exp-CHURP-A. Similar to Opt-CHURP, Exp-CHURP-A is composed by
three subprotocols: Exp-ShareReduce (Algorithm 9), Exp-Proactivize (Algorithm 10), and Exp-ShareDist
(Algorithm 11). They have the same roles as Opt-ShareReduce, Opt-Proactivize, and Opt-ShareDist, respec-
tively. The main difference is that in Exp-CHURP-A nodes do not have access to peer-to-peer channels. Thus,
when P; wants to send a private message to P, it encrypts the message with P;’s public key pk;. Then, P; is the
only node able to read the message by decrypting it with its secret key sk;.

All CHURP’s algorithms reported in this article are identical to the ones written in Maram et al. [8], except
for Exp-ShareReduce (Algorithm 9). The original version of Exp-CHURP-A uses Opt-ShareReduce instead, but
this contradicts the communication model, as P; and U’ communicate off-chain. We therefore build a revised
algorithm starting from Opt-ShareReduce and moving all communications on-chain.

Algorithm 9 Exp-ShareReduce

Public Input: {Cax j)}je[ae-1)-
Input: Set of nodes {Pi};c[n) where each node P; is given {B(i, j), Wp(}je[2-15- Set of nodes {P;}je(n)
such thatn’ > 2t - 1.
Output: Vj € [2t - 1], node P; outputs B(x, ).
1. Order {P;} based on the lexicographic order of their public keys.
2. Choose the first 2t - 1 nodes, denoted as U’, without loss of generality, U’ = {P]f}]-e[m_l].
3. Node P;:
3. Vj € [2t - 1], publish (Enc,(B(i, )), g% 7, W) on-chain.
4. Node U;:
4.a Decrypt the message on-chain to obtain {B(i, j), Wa( j)}je[zc-1}-
4.b Vi € U'\U¢orruptea> invoke VerifyEval(Cay, I, B(1, j), W j))- If any of the checks fail,
add i to Ulorrupted-

4.c Interpolate any ¢ verified points to construct B(X, j).

Algorithm 10 Exp-Proactivize

Public Input: {CB(x,j)}jE[Zt—l]-

Input: Set of 2t - 1 nodes {Uj}je(x-1)- Each node Uj is given B(x; j).

Output: U; outputs B'(x, j) for a degree<t - 1, 2t - 2) bivariate polynomial B'(x, y) with B(0, 0) = B(0, 0).
Public Output: {CB’(x,j)}jE[Zt—l]-

1. Node [;:

1.1 Generate {s;};e[2-1) that form a 0-sharing, i.e. 2

2t-2 —
j=1 /1] Sl‘j =0.

1.2 Publish {gi}jeac-1), {ENCpi[Sijl}je[2e-1), and zero-knowledge proofs of correctness of the encryptions

on-chain.
2. Node U;:

2.1 Decrypt Encyk[s;] from node i and verify s; using g% on-chain.
3. Node U;:

3.a If any adversarial node i is detected in step 2.1, add it to Uggprypreq @nd publish s;;.

3b Sets; = 2icpryr . Si.

corrupted

3.c Execute steps 2.a, 3, 4, 5.a and 5.b of Opt-Proactivize with messages posted on the chain in step 5.b.
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4. Node P/:
4.a Execute step 6.b of Opt-Proactivize. If it outputs fail, add j to Ugorryprea- Nodes in U” discard shares

by executing step 5.b again.

5. Node P;:
5.a For all malicious nodes j detected in step 2.1 and 4.a, publish point and witness {B(i, j), Wa( )}
on-chain.

Algorithm 11 Exp-ShareDist

Public Input: {C jy}jefae+1)-
Input: Set of nodes {P/}ie[n. Let U’ = {P}f }je2e-1) €ach node Ui is given B'(x, J).
Output: Vi € [n’], P/ outputs B'(i, y).
1. Node Uj:
l.a Vi € [n’], publish Encpki(B’(i,j)),gB'(i’j), wj; on-chain, where wjj = CreateWitness(B'(x, j), i).
Also, publish zero-knowledge proofs of correctness of the encryption.
2. Node P;:
2.a Decrypt the message on-chain to obtain {B'(i, j), Wy}je2c-1)-
2.b Vj € UN\U{orrupted> invoke VerifyEval(Cy v, L, B(i, j), wy). If any of the checks fail, add j to Ufqprupted-
3. Node P;:
3.a Publish B(i, j), w; for any new adversarial node j detected above.
4. Node U/:
4.a Publish s; for any new adversarial node j detected above and discard shares by executing step 3.b
in Exp-Proactivize.
5. Node P;:
5.a Vj € Ulorruprea» Validate their reduced shares posted by the old committee
by Vi € [n], V erifyEval(Cp(j), i, B(, j), wy).
50 Vj € Uforruprea interpolate any ¢ verified points to construct B(x, ). Set B'(i, j) = B(i, J) + ZichonestSij-
5.c Interpolate all B‘(i, j) for j € [2t - 1] to construct B'(i, y).
5.d Output the full share B‘(i, y).

3.3.3 Changing the threshold

Increasing the threshold. To increase the threshold from ¢,-; to t,, CHURP runs the proactivization phase with
parameter t = t,, i.e., during the proactivization protocol, a bivariate zero-hole polynomial Q(x, y) of degree
(te — 1,2t, - 2) is generated. Each node i holds a (t, — 1)-degree polynomial Q(x,i) and commitments to
{Q(X, D)}ie2r-1) are publicly available. The rest of the proactivization follows without modification, besides
the fact that now each node i holds two polynomials with different degrees: B'(x, i), i.e., (t.-1 — 1)-degree, and
Q(x, 1), i.e., (t, — 1)-degree. Thus, the proactivized global polynomial B’(x, y) is of degree {t, - 1, 2t, - 2), con-
cluding the threshold upgrade.

Decreasing the threshold. The idea is to create 2(t,-; — t,) virtual nodes, denoted as V, and execute the
handoff protocol between C = C™D and C’ = C®) U V, assuming the threshold remains t,;. Details are shown
in Algorithm 12.
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Algorithm 12 Decreasing the threshold.

1. Choose a subset U € C’ of 2t, — 1 nodes. For notational simplicity, suppose U = {1, ...,2t, — 1} and
V = {2t,, ...,2t,-1 — 1}. Each node i € U recovers a reduced share RSi(e_l)(x) = B(x. 1). In addition, C
publishes reduced shares for virtual nodes: RS}H)(X) = B(x,j),for jE V.

2. U executes the proactivization phase and collectively generates a (t, — 1, 2t, — 2)-degree bivariate zero-
hole polynomial Q(x, y). At the end of this phase, each node i € U has Q(x, i).

3. Letv= Z]-EVA}Zte‘l_Z)RS}e_D(O). Each node i € U incorporates virtual nodes’ state and updates its state as

/\l_(Zfeﬂ’Z)

RS0 = ~ gy (RSP0 +

A(Z‘“+)(2tl) + Q(x, i), where A@-1=2) and A%~ are Lagrange coefficients
j e”

for corresponding thresholds. One can verify that RSi(e)(x) are (2t, — 2)-sharing of the secret, i.e., B(0, 0)
can be calculated from any 2, - 1 of RS“(x).

4. Each nodei € U sends to every node j € C’ a point RSl-(e)( J). The full share of node j € C’ consists
of 2t, - 1 points {RSi(e)( J) = B'(i, Pliev, from which j can compute FS;(y) = B'(j, y).

3.4 Security of CHURP

CHURP’s proof of security is done under some non-standard assumptions. In particular, the protocol presumes
validity of the (t — 1)-SDH (Strong Diffie Hellman) assumption, as it is required by the KZG scheme.

Definition 5. (¢ - 1)-SDH: Let a € Z. Given as input a tuple (g, g%, ...,g“H> € G!, for every probabilistic
polynomial time (PPT) adversary A;-;, the probability Pr{4;-1(g, 8% ...,g"H) ={c, gﬁ)] = e(k) for any value
of ¢ € Z,\{-a}, where € is a negligible function and k is a security parameter.

Additionally, in order to guarantee verifiability of threshold changes, CHURP uses a modified version
of the KZG scheme based on the g-PKE assumption.

Definition 6. ¢-PKE (g-Power Knowledge of Exponent): Given values g, g%,..., g*, g%,..., g € G, it is infea-
sible to find (c, &) € G2 s.t. & = c® without knowing ay,..., a, s.t. ¢ = [TL(g*)% and ¢ = [TLy(g™)™.

The adversary A is therefore computationally bounded. A is supposed to be active and adaptive, which
means that nodes can be corrupted at any time. This kind of adversary is stronger than the one in FROST,
which is static and thus can corrupt only a fixed set of nodes.

Once a node is corrupted, it remains corrupted until the end of the current epoch. A can corruptup tot - 1
nodes of C¢¢™D and t - 1 nodes of C®.

Under the previous assumptions, CHURP satisfies the following properties:

* Secrecy: if A corrupts no more thant - 1 nodes in a committee of any epoch, A learns no information about
the secret s.

+ Integrity: if A corrupts no more thant - 1 nodes in each of the committees ¢~ and C®, after the handoff,
the shares for honest nodes can be correctly computed and the secret s remains intact.
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4 D-FROST signature scheme

D-FROST is the result of merging FROST and CHURP, obtaining a flexible and dynamic version of FROST. To the
best of our knowledge, this is the first protocol that allows us to change both the group of signers and the
threshold, without changing the secret, in a signature scheme with FROST (and, more generally, in a Schnorr-
based threshold scheme). The protocol is started by a group of n nodes that wish to sign messages with some
threshold t. Then, the committee performs CHURP’s handoff to enter the first epoch and begins to sign
messages. After a predetermined amount of time, which is the duration of an epoch, the group proactivizes
its shares and it potentially changes the threshold ¢t and/or the set and number n of participants. Note that
epochs should not last too long, in order to allow changes often enough. On the other hand, they should last
long enough to avoid unavailability of the system.
Setup. The setup phase selects an initial committee C = {P;};c[,) and a threshold t. Each P; is given a private/
public key pair, and public keys are known to all nodes. These keys are used to encrypt and decrypt messages
in the pessimistic path. All nodes have access to the blockchain on which messages are posted. To conform with
CHURP, we also suppose thatt - 1 < % The setup of the KZG scheme is performed by the committee in order to
build a totally decentralized scheme. D-FROST works in a synchronous setting, since FROST requires a syn-
chronous setting during KeyGen and Preprocess(r). The role of the SA is assigned to a random member of the
committee.
Protocol. The protocol (Figure 1) is composed as follows:
* KeyGen: FROST’s key generation scheme (Algorithm 1);
* SteadyState (Algorithm 13): sets the system to a steady state, so that the first committee is ready to enter

CHURP;
* In each epoch, perform:

— CHURP’s handoff: Opt-CHURP or Exp-CHURP-A;

— Until the current epoch ends or a malicious node is detected, repeat:

* Preprocess(rr) (Algorithm 2);
* Sign(m) (Algorithm 3).

The initial phase of the protocol happens before entering the first epoch, and it consists of the execution of
KeyGen and SteadyState. KeyGen generates (¢, n)-shares of the secret s for the first committee. The protocol
SteadyState creates the polynomials and commitments necessary to run CHURP. Details of the protocol
SteadyState are described in the next subsection. If a mishehaving participant is detected at any point during
the execution of these two algorithms, the protocol is immediately aborted to ensure system integrity.
Subsequently, the nodes can restart the procedure.

At the beginning of each epoch, the shares are proactivized by CHURP, and the threshold ¢ and/or the set
and number n of participants can be changed. The protocol executes the optimistic path by default, where we
suppose that there are no adversarial nodes. Then, if a participant mishehaves during Opt-CHURP, the protocol
switches to the pessimistic path Exp-CHURP-A.

Epoch 1 Epoch 2 ...| Epoch e

KeyGen | SteadyState | Handoff Handoff ... |...| Handoff

Sign

PECPRECCESS

Figure 1: Dynamic-FROST. At the beginning of the execution, D-FROST runs the KeyGen algorithm and transits to the steady state.
Then, it proceeds in epochs which consist of a single CHURP’s handoff and multiple rounds of Preprocess() and Sign(m).
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In each epoch, FROST’s Preprocess(r) and Sign(m) can be performed multiple times. If a participant
mishehaves during this phase, no more signing sessions are allowed until the end of the current epoch,
following FROST’s requirement to abort on mishehavior. Since we use the same signing process as FROST,
D-FROST signatures are Schnorr signatures. This is another valuable property of the scheme.

4.1 Transition to a steady state

The main difference between KeyGen and CHURP is that the former creates a one-variable polynomial, while
the latter uses a bivariate polynomial to share the secret. Moreover, in order to enter CHURP’s handoff, a
committee must be in a steady state, which means that the three invariants INV-SECRET, INV-STATE, and INV-
COMM must hold. In particular, the KZG commitments {Cy(x,j)}je[2¢-1] Should be published on-chain and each P;
should hold B(i, y) and { W j)}je[2-1). For this reason, we designed an additional protocol, called SteadyState,
that creates B(x, y) and gives every node the necessary information. Remember that B(x, y) isa(t — 1, 2t — 2)-degree
polynomial such that B(0, 0) = s and B(i, 0) = s; for each i € [n].

This phase is performed after a successful execution of KeyGen, so each P; in the first committee already
holds its (t, n)-share s; of the secret s.

SteadyState (Algorithm 13) works as follows. First, 2t — 1 members of the committee are chosen and
stored in the set U = {Uj}jez-15. Then, each U; € U’, where U’ = {U}ie;) € U, randomly creates a polynomial
B(i,y) such that degB(i,y) =2t -2 and B(i,0) = s;. The same node publishes the KZG commitment Cgy)
and sends (B(i, ), Wy j) to every U; € U, where Wy ;) = CreateWitness(B(i, y),j). Note that, in general,
Wiy # Wa,)- Note also that the protocol works even if this step is performed by a set U’ of nodes
not included in U . However, here, we use members of 2/ to place ourselves in the worst-case scenario for
the security proof.

In the next step of the scheme, U; verifies correctness of the received points and, if one them fails,
it returns fail. Otherwise, U interpolates the points in order to compute B(x, j) and publishes Cg ), along
with {Wp j)}ien). Then, U; sends B(i, j) to each P; € C.

At this stage, each node U; in U’ verifies the correctness of the points {B(i, j)}je[2-1 it received and checks
that they match the values it sent at the beginning of the protocol. At the same time, all other nodes P, € C\U’
verify the validity of the received points and interpolate them to construct B(¢, y). Additionally, they verify
that B(¢, 0) = s, to guarantee the integrity of the group secret.

Algorithm 13 SteadyState(C, {Si}ic[n)

Input: committee C = {Pi}ie[n}, (t, n)-shares {s;}ic[y) of the secret s for each P;.
Output: P; outputs success, {Wa( jj}je[2c-11 and B(i, y), or fail.
Public output: {Cyx j)}je[2t-1)-
1. Choose 2t - 1 nodes in C at random, denoted as U = {Uje[zc-1-
2. Foreachi € [t]:
2.a U; creates a random polynomial B(i, y) such that degB(i,y) =2t -2 and B(i, 0) = s;.
2.b U; computes the KZG commitment Cg(;y, and publishes it on-chain.
2.c U; sends off-chain (B(i, j), Wy j)) to Uj, where Wy, ;, = CreateWitness(B(i, y), j), for each j € [2t - 1].
3. Foreachje[2t - 1]
3.a U verifies that the points it received are correct using V erifyEval(Cgy, i, B(i, j), Wg(m).
3.b If any of the checks fail, return fail.
3.c U; interpolates {B(i, j)}ie[s) to construct B(x, j), then computes Cpy ;) and publishes it on-chain, along
with Wp(; jy = CreateWitness(B(x, j), i) for each i € [n].
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3.d U; sends off-chain B(i, j) to P, for each i € [n].

4. For eachU; € U’ = {Uliepey:
4.a U; verifies that the evaluation of B(x, j) at i returns B(i, j) via V erifyEval(Cp.j), I, B(1, J), Wh(,))-
U; also verifies that B(i, j) is the same point it originally sent to U;. If any of the checks fail return fail.
4.b U; returns success.

5. For each ¢ such that P, € C\U":
5.a P, verifies that the evaluation of B(x, j) at ¢ returns B(¢, j) via V erifyEval(Cg,j), €, B(4, J), Wa(e,))-
If any of the checks fail return fail.
5.b P, interpolates {B(¢, j)}je[2-1) to build B(¢,y) and verifies that B(¢, 0) = s,. If the check holds return
success, otherwise return fail.

5 Proof of security

We know that FROST is EUF-CMA secure under the random oracle model, so our goal is to prove that D-FROST
achieves the same kind of security. In Section 5.1, we prove that the transition to a steady state does not reveal
additional information on the group secret, and that the constant term of the generated polynomial equals the
group secret. Then, in Section 5.2, we prove that, in each epoch, the combination of CHURP with FROST
signatures is still secure. Finally, in Section 5.3, we bring it all together.

SteadyState is a new scheme, so we have to prove that it is secure first. In particular, we prove that the

properties of secrecy and integrity hold. We move on by proving that the combination of CHURP, Preprocess
(1), and Sign(m) in an arbitrary epoch is EUF-CMA secure. Finally, we claim that the whole protocol is secure
thanks to the independency of the shares in different epochs.
Assumptions. Since the key generation scheme and the signing phase are identical to the ones in FROST, our
protocol inherits its protection against some kinds of attacks: rogue-key attacks, the ROS solver, and the
Drijvers attack. In particular, we can assume a concurrent adversary because security against the last two
kinds of attack implies security against such an adversary. The attacker is also assumed to be active and static.
This type of adversary is the same as in FROST. While CHURP is secure against a stronger adversary, more
precisely an adaptive one, we assume a static one to preserve the security of FROST. Moreover, CHURP
requires some nonstandard assumptions, ie., (t —1)-SDH and ¢-PKE, so we suppose that these hold.
Therefore, D-FROST achieves the same level of security as FROST does, minus making some additional
assumptions caused by the integration of CHURP.

5.1 Steady state

To prove the security of SteadyState, we need to show that the following properties are satisfied:
* Secrecy: an adversary corrupting a set of at most ¢t — 1 parties cannot learn anything about the secret s;
* Integrity: it must hold that B(0, 0) = s.

By proving that these hold, we assure that nodes in the first committee enter the handoff phase with
the correct full shares and that no information leaks during this phase.

Note that, by corrupting t - 1 participants, an adversary A obtains the following information (other than
the public information that is available to everyone):
« for all corrupt U; € U’: {B(i, j), Wé(i,j)};e[m—l] and the full share B(i, y);
« for all corrupt U; € U: {B(i, j), Wy jytier) and the reduced share B(x, j);
+ for all corrupt P, € C\U": {B(¥, j)}je[z-1) and the full share B(¢,y).

The following two theorems prove secrecy and integrity, respectively.
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Theorem 2. If a PPT adversary A corrupts no more thant — 1 nodes in the committe, the information received
by A inSteadyStateis random and independent of the secret s.

Proof. In the worst case, when all ¢t - 1 corrupted nodes are in U’ = {U}ieps), A learns t — 1 shares B(i, y)
and ¢ - 1 shares B(x, j). For a (t — 1, 2t - 2)-degree bivariate polynomial, any ¢ — 1 shares of B(i, y) and ¢t - 1
shares of B(x, j) are random and independent of s = B(0, 0).

Moreover, based on the DL assumption, the witnesses Wy, are computationally zero-knowledge by
the KZG scheme, so the PPT adversary cannot learn additional information from them. O

Theorem 3. After SteadyState, either honest nodes in U = {U}je[2-1) hold the correct shares B(x, j) and honest
nodes in C hold the correct shares B(i,y) of B(x,y) such that B(0,0) = s, or at least t honest nodes in C
output fail.

Proof. Nodes U; € U verify the validity of the points {B(i, j)}ic(, received by nodes U; € ¢’. If any of the checks
fail and Uj is honest, then U; returns fail. In this case, at least ¢ honest members of ¢ will return fail, since
there are at most t — 1 corrupted nodes and || = 2t - 1.

If no member of U/ returned fail, then nodes U; verify that all the shares B(x, j) computed by nodes U; are
correct, in the sense that, evaluated at i, they give the original points B(i, j). If this is not the case, all honest
nodes in U’ return fail.

At the same time, all other members P, of C verify that the received points are correct. If all the checks are
satisfied, they interpolate the points to obtain a polynomial B(¢, y). Then, each P, verifies that B(¢, 0) = s,,
which holds if all nodes in 2/ are honest. The reason behind this is that the points {B(i, j)}ie[¢] je[2c-1) define a
unique (t - 1, 2t — 2)-degree polynomial B(x, y) such that B(i, 0) = s; for alli € [n]. Otherwise, honest nodes in
C\U’ output fail. Note that, if some corrupted nodes are in U/, then the integrity of the secret is still
preserved. Indeed, even if just one node U; uses a polynomial B(i, y) such that B(i, 0) # s; to share the points,
then for P, the equality B(¢, 0) = s, does not hold. There are at most t — 1 corrupted nodes in the whole
committee and we know that in case of mishehavior all honest nodes return fail. Since the number
of participants n satisfies n > 2t - 1, the number of honest nodes in C is at least t.

B(x,y) is generated using Lagrange interpolation:

2t-1 r-y
BOoy) = 2 B Pl
j=1 rej T 7]

where

t
. ..o k-x
B, j) = Y BGN[15—
i=1 k#i
If all nodes in U are honest, then for all j € [2t - 1], B(0, j) = s;, where {Sj}je[2-1) are (¢, n)-shares of s.
Thus, the equality B(0, 0) = s holds. O

5.2 Security in each epoch

We now prove EUF-CMA security for the combination of CHURP, Preprocess(r), and Sign(m) in an arbitrary
epoch. We want to show that any PPT adversary F that corrupts no more than ¢t - 1 participants cannot forge
D-FROST signatures. We prove this by contradiction: if F is able to forge D-FROST signatures, then it is possible
to compute the DL of the public key Y, revealing s and thus breaking CHURP’s property of secrecy.

The idea is to use F as a subroutine of a simulation that is forked by the general forking algorithm to forge
z-z'

two signatures g = (R, z), ¢’ = (R, z’) such that ¢ # ¢’. Then, the DL of Y can be computed as s =

c-c¢’’
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Theorem 4. If the property of secrecy in CHURP holds, then D-FROST is EUF-CMA secure against an active
adversary that corrupts no more thant - 1 nodes during an arbitrary epoch.

Assumptions. Let n = 2t - 1 and suppose w.L.o.g. that the corrupted nodes are {P;};c[;-1). Assume also that the
set U’ of nodes that participate in the handoff contains {P;};c[s and that the set of signers S during Preprocess
(1) and Sign(m) is {Pi}ie[s. Other nodes honestly follow CHURP’s protocol, and they do not take part in the
signing phase, so there is no need to further specify their behavior. Since this is the worst-case scenario (the
adversary has the most power possible, as there is only one honest node and the adversary controls the
others), this assumption is reasonable. We analyze security using the optimistic path of CHURP, but the proof
in the pessimistic case is essentially the same.

Proof. The algorithms used in our proof are the following:

* Fis a forger that, with non-negligible probability € and in polynomial time 7, can forge a signature for
a public key Y in one epoch of D-FROST by corrupting ¢t — 1 nodes, with the limitation of making at most
n, random oracle queries. One of the corrupted nodes has the role of SA;

* A simulates the honest participant P, and answers to random oracle queries made by F during the handoff
phase, Preprocess(m), and Sign(m);

* D is the coordination algorithm that, given the public key Y, invokes the others in order to com-
pute s = dlog(Y).

Let us take a closer look at how these algorithms work.

A. During the handoff phase, A simulates the honest participant P,. Note that P, is part of U’, so during Opt-

ShareReduce the old committee sends P, all the necessary information to take part in CHURP’s protocol

correctly. In particular, A obtains P;’s secret share s;. Then, A just needs to follow the scheme as an honest

node would do.

To answer F’s queries, the algorithm initializes an array T where it will store its responses and a counter
ctr = 0. Then, every time the forger asks for the value of H(g%||Cz||Wz)||Csxj)), A proceeds as follows:
it T@ICzIIWz0|Cxp) = L, set  T(gICzlIWzo)lCpx,j) = hewrs  ctr=ctr+1, then  return
T(g9|Cz||Wz0)l|Cp(x,»)- Note that, as in the general forking lemma, T(g%||Cz||Wz0)|Cpr,j) = L indicates
that the query with input g%|Cz||Wz;0)l|Cp(x,j has not been answered previously. If that is the case, A responds
with the first available value h;.

A also simulates P, during Preprocess(n) and Sign(m), knowing s;. The algorithm initializes a counter
ctr = 0 and two arrays T3, T, to keep track of the answers it already gave to F’s queries. If there is no value
stored in T; under key x, Ti(x) = L. A also initializes an array J, to memorize the index j of h; such
that (R||Y||m) = h;.

A answers F’s queries using random values hy, ..., hy,, given by the general forking algorithm GE, as follows:
* Hy(i||m||B): if Ty(i|jm||B) = L, set Ti(i||m||B) = h¢y, ctr = ctr + 1. Return Ti(i||m||B);

o Hy(R||Y|Im): if L(R||Y|jm) = L, set L(R||Y||m) = hew, J,(R||Y||m) = ctr, ctr = ctr + 1. Return T,(R||Y||m).

After running F, A verifies that F succeeded in forging a signature o = (R, z) on a message m. This happens
when F returns (R, z) such that R = Y g%, ¢ = Ty(R||Y||m). If this is the case, A returns (J, ), where ] is such
that h; = T,(R||Y||m). Otherwise, A outputs (L,0).

D. First, D (Algorithm 14) executes GEy(Y) to obtain two signatures with the required properties. Remember that F
forges a valid signature with non-negligible probability €, so A succeeds with the same probability. Therefore,

thanks to the general forking lemma, GE, outputs (1, hy, h]’, g, ¢’) with probability frk > € - (nir - %), where n, is
the number of random elements (hy, ...,h,,) € O™ given as input to A and h is the size of 0. Note that frk is non-
negligible, since ;_2 and % are both non-negligible, but the first term grows faster and therefore dominates.

With negligible probability 1 - frk, GE, outputs L and D returns L. Otherwise, D computes and returns
z'-z
hi - Ry

same commitment R. This is true because GE, returned ] = J’, which means that F forged two signatures on

s = . This value is the DL of Y. In fact, the signatures are g = (R, z) and ¢’ = (R, z’), so they both use the
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the same message mj, so in both executions R is calculated as R = I'IiesDijE;i, where p; = Hi(i||mj||B). The next
thing the protocol does after calculating R is to compute ¢ = Hy(R||Y||m;). The trick is that, starting exactly from
this query, the simulation gives different answers (h; # h’) to F’s queries in the two executions. This way,
we obtain gZ = RY" from the first run of A and g% = RY" from the second one. So, R = gZg™' = g¥g™>'"

holds, and it implies z - s - h; = z’ = s - h;. Thus, D can compute s as ;'}f : O
y—

Algorithm 14 D(Y)

Input: Group’s public key Y.
Output: s = dlog(Y).
L 4 h, h]’, ag,0’) or L« GE(Y)

If L, then return L.
Parse 0,0’ as (R, z), (R, z').

s = z'-z
hj-hy

S

Return s.

5.3 Security of D-FROST

The last step is to show that the whole protocol is secure, in the sense that it is EUF-CMA secure and it preserves
the secrecy and integrity of s.

Secrecy and integrity hold in KeyGen, thanks to Pedersen’s DKG, and in each epoch thanks to CHURP.
In Section 5.1, we proved that these properties are valid also in SteadyState, so they hold throughout
the duration of the protocol.

CHURP assures that the shares in one epoch are independent of the old ones, so the adversary does not
obtain any additional data by putting together information learned during different epochs. In particular,
information learned in previous epochs cannot be used for the purpose of forging signatures in the current
epoch. Therefore, proving the unforgeability of D-FROST signatures reduces to what is proved in Section 5.2,
concluding our proof of security.

6 Conclusion

Threshold signatures are applicable to a variety of use cases, and FROST works well for this purpose with its
Schnorr-based algebraic simplicity and its communication efficiency. In order to extend the possible applica-
tions to cases where both the committee and the threshold of signers are variable, in this work, we devised
a new protocol, which periodically updates the committee and, possibly, the threshold, using CHURP, a DPSS.
We also proved that combining the two protocols preserves their security.

Future work. Possible improvements to our work can be done in two directions: achieving robustness, i.e.,
guaranteeing that SteadyState and signing sessions end in a valid state, and adapting the protocol to epochs
of variable length. The lack of robustness in D-FROST stems from the presence of SteadyState and FROST,
both of which are non-robust schemes. When transitioning to a steady state, the protocol might abort due to a
misbehaving node, as outlined in Section 4: to prevent this, SteadyState might switch to a pessimistic path on
mishehavior, similar to CHURP (see Section 3.3), to expel corrupted nodes. On the other hand, the execution of
the protocol in each epoch might abort during the signing phase, ending with no valid signature. However, as
mentioned in Section 2.1, robust FROST variants, like ROAST, have been proposed. A possible extension to our
work is to join ROAST with CHURP, and include a pessimistic case Exp-SteadyState for the SteadyState
algorithm. While the merge of ROAST with CHURP is straightforward and does not provide a drastic change to
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the protocol, the design of Exp-SteadyState and the security of the resulting scheme remain to be assessed
precisely. Furthermore, since CHURP is periodically executed at fixed time intervals, it remains to see what
happens if committee and threshold changes are done only when requested (and not periodically), i.e.,
if the execution of CHURP is delayed and more FROST signatures are produced in the meantime. A possible way
to introduce this kind of flexibility is to use a consensus algorithm.
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