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Abstract: This article aims to speed up (the precomputation stage of) multiscalar multiplication (MSM) on
ordinary elliptic curves of j-invariant 0 with respect to specific “independent” (also known as “basis”) points.
For this purpose, the so-called Mordell–Weil lattices (up to rank 8) with large kissing numbers (up to 240) are
employed. In a nutshell, the new approach consists in obtaining more efficiently a considerable number (up to
240) of certain elementary linear combinations of the “independent” points. By scaling the point (re)generation
process, it is thus possible to obtain a significant performance gain. As usual, the resulting curve points can be
then regularly used in the main stage of an MSM algorithm to avoid repeating computations. Seemingly, this is
the first usage of lattices with large kissing numbers in cryptography, while such lattices have already found
numerous applications in other mathematical domains. Without exaggeration, MSM is a widespread primitive
(often the unique bottleneck) in modern protocols of real-world elliptic curve cryptography. Moreover,
the new (re)generation technique is prone to further improvements by considering Mordell–Weil lattices
with even greater kissing numbers.

Keywords: elliptic curves of j-invariant 0, kissing number, minimal points, Mordell–Weil lattices, multiscalar
multiplication
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1 Introduction

It is not a secret that elliptic curves E over finite fields �q of huge characteristics p are actively used in discrete
logarithm cryptography. Multiscalar multiplication (MSM) in the �q-point group �( )E q is widely recognized as a

very slow operation. To be more precise, it is about computing the sum ∑ = n Pi
N

i i1 for given “basis” points
�( )∈P Ei q and integers �∈ni . At the same time, MSM is actually a ubiquitous primitive in advanced protocols

of elliptic curve cryptography. Therefore, there is a vital need among implementers to speed it up.
As a confirmation of these words, one can mention the relatively recent ZPRIZE 2022 competition [1] (see

also ZPRIZE 2023 [2]). Among its objectives was accelerating MSM on certain elliptic �q-curves = +E y x b:b
2 3

(of j-invariant 0). The money rewards of this competition were quite tempting (the total prize was $4,415,000),
which indicates the importance of the topic. As is well known, =j 0 curves are the most attractive in pairing-
based cryptography. Furthermore, they enjoy the most efficient group operation (at least among prime-order
curves). That is why curves Eb are a popular choice for implementation of discrete logarithm-based protocols,
even if they do not deal with pairings.
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There are numerous algorithms of MSM (see [3–5] and the references therein). All of them in one way or
another are reduced to precomputing auxiliary points of the form ≔ ∑ =P v Pv i

N
i i1 with various integer vectors

( )= =v vi i
N

1. The points Pv are then utilized (depending on the concrete ni) in the main part of an MSM algorithm,
allowing to avoid a lot of repeating elliptic curve additions. By the way, =P Pi ei

, where ( )=e 0, …,0, 1, 0, …,0i

are the standard basis vectors of the lattice �N .
In fact, the points Pv become less useful whenever the vectors v are long with respect to a certain norm on

�N . In this situation, Pv seem to be too redundant points in the sense that we cannot often apply them during
MSM. The author decided to work with the 1-norm ∣ ∣ ∣ ∣= ∑ =v vi

N
i1 1 to stay with small naturals. Besides, it is the

most suitable to reflect the “complexity” of the points Pv. Indeed, if ∣ ∣ ⩽v 2i and more frequently ∣ ∣ ⩽v 1i (as it
turns out in this paper), then the 1-norm almost coincides with the minimal number of additions on E

necessary for computing Pv given vi and Pi. Thus, it is sufficient to focus on vectors �∈v N that lie in the
ball of some small radius �∈R , i.e., ∣ ∣ ⩽v R1 . In particular, they have to possess maximum R nonzero
coordinates.

For elliptic curves having an �q-endomorphism τ of degree close to 1, the famous GLV (Gallant–Lambert–
Vanstone) decomposition can be applied in addition to accelerate MSM even more. As a consequence, MSM
algorithms exploiting GLV are based rather on the auxiliary points

( ) ( )( ) ∑≔ + = +
=

P P τ P v P u τ Pv u v u

i

N

i i i i,

1

with coefficients �∈ui that equally constitute the short vector ( )≔ =u ui i
N

1. By abuse of notation, instead
of ( )P v u, , let’s write just Pv with �∈v N2 such that =+v uN i i.

Of course, having a huge amount of available memory or a wide communication channel, the desired
points Pv can be found once and for all to regularly restore them from the given memory or channel. However,
this solution is vulnerable to the constant danger that a malicious entity will perform a fault attack, somehow
replacing one or several points in such a way that this breaks a cryptosystem. On the other hand, it is much
easier to protect only basic information storing in a small piece of memory (or establish it over a reliable, but
slow channel) from which every point Pv can be safely (re)generated. It is clear that the described strategy,
applied directly to the points, is too expensive in any sense of the word.

The recent works [6,7] are devoted to the problem of generating efficiently the “basis” points Pi. In these
works, it is suggested to express ( ) ( )= +N N n n N ndiv mod for a little �∈n . Besides, we are given n linearly
independent points ( )P ti from the Mordell–Weil (MW) group �( )F of a certain nontrivial twist � of E over the
function field � ( )≔F tq . In the literature, � is often called isotrivial elliptic surface. Then, n “basis” points can
be obtained at once as the specialization of ( )P ti at an element �∈t q. Transparently changing �∈t q, nothing
prevents us from applying the same procedure N ndiv (plus one if ∤n N ) times to obtain N points. In fact, �( )F

has the structure of a Euclidean lattice modulo the torsion subgroup �( )F tor . The corresponding (positive
definite) quadratic form  ��( ) → ⩾h F: 0 is said to be canonical height. However, this lattice structure pre-
viously played only a minor role in the cryptographic context under consideration.

The present work extends the aforementioned generation method to a considerable proportion of the
points Pv, not exclusively Pi. It is proposed to pick MW lattices (of rank r) with large kissing (also known as
Newton) number k . By definition, it is the number of the shortest (i.e., minimal) nonzero lattice points. The
norm of the F -point ( ) ( )≔ ∑ =P t v P tv i

r
i i1 , where �( )= ∈=v vi i

r r
1 , is an indicator of how quickly ( )P tv can be

evaluated at elements of �q. Indeed, the degrees of the point coordinates are proportional to the norm. And
the more minimal points we have, the greater performance gain takes place. That is why we are interested in
large k with respect to r , that is, in maximizing the quantity ( )≔ ∕δ k rlog

2
. It can be seen that the generation of

Pi from [6,7] corresponds to the case when �( )F is realized as the trivial lattice �r, because ei are its unique
minimal vectors up to sign.

The task of constructing arbitrary lattices having large kissing numbers is one of the most classical tasks in
mathematics. It has been carefully studied for several centuries. Established lower and upper bounds on k in
the first dimensions can be found in any lattice database like [8,9]. In turn, asymptotic results as → ∞r are well
surveyed in [10,11]. In these articles, Vlăduţ constructs a k-asymptotically good family of lattices for which the
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kissing number grows exponentially, that is, >→∞δlim sup 0r . Unfortunately, this inequality probably does not
hold for families of MW lattices, making them always k-asymptotically bad.

The last drawback is slightly mitigated for supersingular elliptic surfaces �, because for them, δ decreases
more slowly. In a series of articles [12–14], Elkies thoroughly studies MW lattices of such surfaces in char-
acteristic 2. For moderate ranks, he (re)discovers lattices with the greatest known kissing numbers. Among the
obtained lattices, there is in particular the 24-dimensional Leech lattice Λ24 whose =k 196,560, the optimal
kissing number for =r 24. Regarding an odd characteristic p, it is worth mentioning Shioda’s remarkable
article [15] about certain supersingular surfaces � +p 1 of j-invariant 0. Their MW lattices have the nonconstant
parameters ( )=r Θ p and ( )=k Ω p2 . Therefore, for p of a cryptographic size, k is an order of magnitude
greater than r . However, we cannot employ the given results in discrete logarithm cryptography, because
supersingular elliptic curves E are known to be weaker than ordinary ones, especially for little p.

Fortunately, at least for even ranks ⩽r 8, it is still possible to achieve the optimal kissing numbers through
the MW lattices of ordinary elliptic surfaces, although we are forced to restrict ourselves to =j 0. By the way,
in the extreme case =r 8, the largest =k 240. It is about the classical root lattice E8, which is wonderful (in
many senses) to the same extent as Λ24. For other constant ordinary j-invariants, the author does not find in
the literature examples of elliptic surfaces whose MW lattices enjoy quite large kissing numbers, not to
mention the optimal ones. The situation when k is not substantially greater than r does not merit separate
attention. As a consequence, we do not lose much, dealing hereafter only with curves Eb.

2 Preliminaries

We will freely use the basic notions and facts on MW lattices recalled in the previous studies [6,7], because it is
assumed that the reader is aware of those articles, especially of the second. In turn, abstract lattices have
already become paramount objects of (postquantum) cryptography, so they do not need any special introduc-
tion. Nonetheless, there may be some aspects of lattice theory that are not in widespread use by the crypto-
graphy society. If necessary, such knowledge gaps can be filled with the help of the manual book [16].

The notation ( )k r will stand for the maximal kissing number among all (not necessarily MW) lattices of
rank r . For convenience, Table 1 exhibits lower and upper bounds on ( )k r for the first four even values r . Odd
ranks are out of our interest, because MW ranks of isotrivial elliptic surfaces over finite fields are always even.

For the sake of simplicity, elliptic �q-curves = +y x b2 3 (of j-invariant 0) will be referred to just as E , i.e.,
without the index b. For the role of τ in the GLV decomposition on such curves, one usually chooses the order 3
automorphism [ ]( ) ( )=ω x y ωx y, , , where + + =ω ω 1 02 . Recall that �∈ω p whenever 0 is an ordinary j-invar-
iant as in the article context.

As well as in [7, Sections 4, 5], we will work exclusively with the (rational) elliptic surfaces

� = + +y x t c: ,m
m2 3

where ⩽ ⩽m2 6 and �∈c q* is a certain constant depending on m. We will suppose everywhere without
reminders that ∣ −m q 1. This condition guarantees that �q is the splitting field of �m, i.e., �� �( ) ( ( ))=F tm m q ,
where �q is the algebraic closure of �q. In principle, it is possible to consider alternative =j 0 elliptic surfaces.

Table 1: Bounds on the optimal kissing
numbers in small even dimensions
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Attractive candidates are briefly discussed in Section 5.2. They will be perhaps considered during further
research, but the surfaces �m are quite enough to demonstrate the article idea.

It is convenient that � ( )Fm does not contain nonzero torsion points, that is, �� ( ) ≃Fm
r as a group. We will

refer to � ( )Fm by means of Lm if it is necessary to stress the lattice structure. The fact is that Lm is never
the trivial lattice �r. As is conventional in lattice theory, the minimal norm of Lm is denoted by �∈ >λ1 0. As
it turns out, each minimal point ∈P Lm (i.e., such that ( ) =h P λ1) is integral, i.e., ( ( ) ( ))=P x t y t, is a pair
of polynomial coordinates, not just rational ones. Some useful information on the lattices Lm is collected in
Table 2 (cf. [7, Table 1]). Be careful, the symbol ≃ here stands for the congruence (also known as isometry)
relation rather than the equivalence one as in the study by Conway and Sloane [16].

Note that ≃ LA*
2 2 and ≃ LD*

4 3 (along with their root sublattices A2, D4) possess the maximal kissing
numbers in their dimensions. The situation is different for the case =m 4, because the value k of the lattice

≃E L*
6 4 (in contrast to E6) is not maximal for =r 6. That is why the sublattice E6 is represented in a separate

row of the table. Of course, we can likewise realize A2, D4 as sublattices of L2, L3, respectively. However, the
minimal norm of the former is slightly greater (namely, =λ 21 ), which negatively influences the coordinate
degrees of minimal points. Unlike E6, the lattices A2, D4 thus do not provide any advantage in our context.
Finally, ≃ ≃E L L8 5 6 is simply a self-dual (also known as unimodular) lattice.

As is well known, the automorphism group of both E , �m is generated by the order 6 automorphism
[ ] [ ]− = −ω ω of the form [ ]( ) ( )− = −ω x y ωx y, , . Given a point P on E or �m, we lack the notation {[ ] }≔ − =P ω Pi

i 0

5

for the orbit of P with respect to [ ]−ω . It is straightforward that the norm of � ( )∈P Fm is invariant under [ ]−ω .
Therefore, the automorphisms also act on the set of minimal points. This action is free, since the nonzero fixed
points of [ ]−ω i (for which =xy 0) are obviously outside � ( )Fm regardless of �∈ ∕i 6 and m. Thereby, =P# 6

unless P is the infinity point (0:1:0). In particular, always ∣k6 .
Like in [7, Section 5], everywhere in this article, a basis of � ( )Fm will be taken in the form ∕P P,…, r1 2,

[ ] [ ] ∕ω P ω P,…, r1 2 and, moreover, all its points will be minimal. After identifying �� ( ) ≃Fm
r with respect to such

a basis, we obtain the following action of [ ]−ω induced on �r:

[ ]( ) ( )− = − −∕ + ∕ + ∕ω v v v v v v v v, …, , …, , , …, .r r r r r r1 2 1 2 1 1 2

Here, the equality = − −ω ω 12 is utilized. Similarly, denote by v the orbit of �∈v r under the given action.
Evidently, for the point

[ ]∑≔ +
=

∕

∕ +P v P v ω P ,v

i

r

i i r i i

1

2

2

its orbit { }= ∈P Pv u u v .
The coordinates x , y of the six orbit representatives Pu coincide up to multiplication by ω, −1, respectively.

Consequently, for computing all the points ∈P Pu v , it is essentially sufficient to determine only one of them. To
simplify this process as much as possible, it is necessary to define the “lightest” point Pu in a sense. One of the
reasonable ways (adopted in the next section) is to take a vector ∈u v with the smallest 1-norm ∣ ∣ ∣ ∣= ∑ =u ui

r
i1 1 . We

will equally call this number the 1-norm of Pu, which has nothing to do with the other norm ( )h Pu . As an example,
the basis points Pi, [ ]ω Pi are actually the “lightest”, because they (along with their inverse ones) are of 1-norm 1.

Table 2: Some parameters of the MW lattices � ( )=L Fm m
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3 Minimal points of the lattices Lm

This section is heavily based on [7, Section 5]. From there, we will borrow the concrete bases Pi, [ ]ω Pi

depending on m. Be careful, the below points ∕ +Pr i2 are different from [ ]ω Pi in contrast to that article. We
will tacitly resort to the computer algebra system Magma. The corresponding code is loaded on the web page
[17]. We will consider step by step the remaining minimal points ∈P Li m, where ∕ < ⩽ ∕r i k2 6. For compact-
ness, their explicit formulas are omitted in the text (except for the degenerate case =m 2), but they are
momentarily obtained by launching the Magma code.

3.1 The case ==m 2

Without loss of generality, one can choose the coefficient =c 1. Then, the point ( )≔ −P t1,1 generates � ( )F2 over
the ring�[ ]ω . Furthermore, the set of all minimal points is nothing but the orbit of P1, since =k 6 for the lattice L2.

3.2 The case ==m 3

In addition to the basis points P1, P2 from [7, Section 5.2], orbit representatives among the remaining minimal
points in the lattice L3 are the points

[ ] ( ) [ ] ( ) [ ]≔ = + ≔ = −P ω P ωt ω P P P P ω t ω P P,3 2 1 2 4 2
2

2 1

of the smallest 1-norm 2.

3.3 The case ==m 4

3.3.1 The subcase ≃≃E L*
6 4

In addition to the basis points P1, P2, P3 from [7, Section 5.3], orbit representatives (of the smallest 1-norm)
among the remaining minimal points in the lattice L4 are

Points of 1-norm 2:

[ ]≔ + ≔ + ≔ +P P P P P P P ω P P, , ;4 1 2 5 1 3 6 2 3

Points of 1-norm 3:

[ ] [ ] [ ]≔ + − ≔ − +P P P ω P P ω P P ω P, ;7 1 2 3 8 1 2 3

Points of 1-norm 4:

[ ] [ ]≔ + + +P ω P ω P P1 .9 1 2 3

Moreover, the points of 1-norm ⩾n 3 are expressed via the points of 1-norm < n as follows:

[ ] [ ] [ ]= − = − = +P P ω P P ω P P P ω P P, , .7 4 3 8 5 2 9 4 5

3.3.2 The subcase ↪↪E L6 4

The lattice L4 contains the sublattice ′L4 generated over �[ ]ω by the points

[ ] [ ] [ ]′ ≔ − ′ ≔ − ′ ≔ −P P ω P P P ω P P P ω P, , .1 1 2 2 1 3 3 2 3

Application of MW lattices to acceleration of MSM on elliptic curves  5



The Gram matrix of h with respect to the order ′P1 , ′P2 , ′P3 , [ ] ′ω P1 , [ ] ′ω P2 , [ ] ′ω P3 has the following form:

⎛

⎝

⎜
⎜
⎜
⎜

− −
− − −

−
− −

−
− − −

⎞

⎠

⎟
⎟
⎟
⎟

2 1 0 1 0 1

1 2 0 1 1 1

0 0 2 1 1 1

1 1 1 2 1 0

0 1 1 1 2 0

1 1 1 0 0 2

.

Its determinant and minimal norm are equal to =Δ 3 and =λ 21 , respectively. Recall that ( )= ∕∕δ λ Δ2
r r
1

2

is the center density [16, Section 1.1] of an arbitrary r-dimensional lattice. Therefore, the center density of our
lattice ′L4 is equal to ( )= ∕δ 1 8 3 as well as for E6. At the same time, as stated in [16, Section 4.8.3], there is the
unique (up to an isometry) lattice of rank 6 with the given value δ. Consequently, ′ ≃L E4 6 as we wanted.

In addition to the basis points ′P1 , ′P2 , ′P3 , orbit representatives (of the smallest 1-norm) among the
remaining minimal points in the lattice ′L4 are

Points of 1-norm 2:

[ ] [ ]

[ ] [ ] [ ]

′ ≔ ′ − ′ ′ ≔ ′ − ′ ′ ≔ ′ − ′
′ ≔ ′ + ′ ′ ≔ ′ + ′ ′ ≔ ′ + ′

P P P P ω P P P ω P P

P ω P P P P ω P P P ω P

, , ,

, , ;

4 1 2 5 1 3 6 2 3

7 1 2 8 1 3 9 2 3

Points of 1-norm 3:

[ ] [ ] [ ]′ ≔ ′ + ′ − ′ ′ ≔ ′ + ′ + ′P ω P P P P ω P P ω P, ;10 1 2 3 11 1 2 3

Points of 1-norm 4:

[ ] [ ]′ ≔ + ′ + ′ + ′P ω P P ω P1 .12 1 2 3

Moreover, the points of 1-norm ⩾n 3 are expressed via the points of 1-norm < n as follows:

[ ]′ = ′ − ′ ′ = ′ + ′ ′ = ′ + ′P P P P ω P P P P P, , .10 7 3 11 3 7 12 1 11

3.4 The case ==m 5

In addition to the basis points P1, P2, P3, P4 from [7, Section 5.4], orbit representatives (of the smallest 1-norm)
among the remaining minimal points in the lattice L5 are

Points of 1-norm 2:

[ ] [ ] [ ]

≔ + ≔ + ≔ +
≔ − ≔ − ≔ −

P P P P P P P P P

P P ω P P P ω P P P ω P

, , ,

, , ;

5 1 2 6 2 3 7 3 4

8 1 2 9 2 3 10 3 4

Points of 1-norm 3:

[ ]

[ ] [ ] [ ] [ ] [ ]

≔ + + ≔ + + ≔ + −
≔ + − ≔ − − ≔ − −

P P P P P P P P P P P ω P

P P P ω P P P ω P ω P P P ω P ω P

, , ,

, , ;

11 1 2 3 12 2 3 4 13 1 2 3

14 2 3 4 15 1 2 3 16 2 3 4

Points of 1-norm 4:

[ ]

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ]

≔ + + + ≔ + + −
≔ + − − ≔ − − −
≔ + − − ≔ + + +
≔ + − − ≔ + + +

P P P P P P P P P ω P

P P P ω P ω P P P ω P ω P ω P

P P ω P ω P P ω P ω P P

P P ω P ω P P ω P ω P P

, ,

, ,

1 , 1 ,

1 , 1 ;

17 1 2 3 4 18 1 2 3 4

19 1 2 3 4 20 1 2 3 4

21 1 2 3 22 1 2 3

23 2 3 4 24 2 3 4
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Points of 1-norm 5:

[ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

[ ] [ ] [ ] [ ] [ ]

≔ + + − − ≔ − − + −
≔ + − − − ≔ + + + −
≔ + + + + ≔ + + + +

P P P ω P ω P P P ω P ω P P

P P ω P ω P ω P P ω P P P ω P

P ω P ω P P P P ω P ω P ω P P

1 , 1 ,

1 , 1 ,

1 , 1 ;

25 1 2 3 4 26 1 2 3 4

27 1 2 3 4 28 1 2 3 4

29 1 2 3 4 30 1 2 3 4

Points of 1-norm 6:

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ]

≔ + + − −
≔ + − − −
≔ + − + − −
≔ + − − − +
≔ + + + − −

P P P ω P ω P

P P ω P ω P ω P

P P ω P ω P ω P

P P ω P ω P ω P

P ω P P ω P ω P

2 1 ,

1 2 ,

1 1 ,

1 1 ,

1 1 ;

31 1 2 3 4

32 1 2 3 4

33 1 2 3 4

34 1 2 3 4

35 1 2 3 4

Points of 1-norm 7:

[ ] [ ] [ ]

[ ] [ ] [ ] [ ]

≔ + − − − +
≔ + + + − −

P P ω P ω P ω P

P ω P P ω P ω P

1 2 1 ,

1 2 1 ;

36 1 2 3 4

37 1 2 3 4

Points of 1-norm 8:

[ ] [ ] [ ]

[ ] [ ] [ ]

[ ] [ ] [ ] [ ]

≔ + − − − +
≔ + + + + +
≔ + + + − −

P P ω P ω P ω P

P ω P ω P ω P P

P ω P P ω P ω P

1 2 1 2 ,

1 2 2 ,

2 2 1 .

38 1 2 3 4

39 1 2 3 4

40 1 2 3 4

Moreover, the points of 1-norm ⩾n 3 are expressed via the points of 1-norm < n as follows:

Points of 1-norm 3:

[ ] [ ]

= + = + = +
= + = − = −

P P P P P P P P P

P P P P P ω P P P ω P

, , ,

, , ;

11 3 5 12 4 6 13 1 9

14 2 10 15 8 3 16 9 4

Points of 1-norm 4:

[ ] [ ]

[ ]

= + = + = +
= − = + = +
= + = +

P P P P P P P P P

P P ω P P P P P ω P P

P P P P ω P P

, , ,

, , ,

, ;

17 5 7 18 5 10 19 1 16

20 15 4 21 2 15 22 5 6

23 3 16 24 6 7

Points of 1-norm 5:

[ ] [ ]

= + = − = +
= + = + = +

P P P P P P P P P

P ω P P P P P P P ω P

, , ,

, , ;

25 3 19 26 15 7 27 2 20

28 1 18 29 4 22 30 7 11

Points of 1-norm 6:

[ ]

[ ]

= + = + = −
= − = −

P P P P P P P P ω P

P P P P P ω P

, , ,

, ;

31 11 16 32 15 16 33 11 12

34 27 4 35 28 3
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Points of 1-norm 7:

[ ]= − = +P P ω P P P P, ;36 34 3 37 2 35

Points of 1-norm 8:

[ ] [ ]= − = + = +P P ω P P ω P P P P P, , .38 36 4 39 9 29 40 1 37

3.5 The case ==m 6

This case is similar to the previous one because of the isometry ≃L L5 6. Indeed, the aforementioned linear
relations remain the same if a basis [ ]P ω P,i i of L6, where ⩽i 4, has the Gram matrix exactly as in [7, Section
5.4]. Clearly, this can be ensured with the help of an appropriate coordinate change. The main difference
consists in other formulas of the minimal points Pi, where ⩽i 40. In [7], formulas of the basis points Pi are not
derived when =m 6, because in the context of that article (unlike the current one), the L6-based generation
method is not faster than the L3-based one.

By our assumption, ∣ −m q 1. The condition ∣ −q5 1 sometimes may not hold. In turn, ∣ −q6 1 or, equiva-
lently, ∣ −q3 1 holds automatically for all ordinary curves of j-invariant 0. Therefore, it is actually useful to
possess formulas for the points ∈P Li 6. Nevertheless, deriving such formulas is a much less ambitious task
than the research project from Section 5.2 whose outcomes promise to substantially outperform the case under
consideration. That is why the author decided not to dwell on it (at least now). Besides, as explained in the next
section, the L5-based generation method (when applicable) is still a little bit more efficient on average than the
L6-based one. Thus, the case =m 5 does not completely lose relevance at the moment.

Perhaps, explicit formulas of ∈P Li 6 are not represented anywhere in the literature for the abstract coefficient
c from the equation of �6. The author succeeded to find only [18] handling the special case = −c 1, although its
reasoning is in parallel with [19] dealing with the general c when { }∈m 4, 5 . Recall that the latter article underlies
[7, Sections 5.3, 5.4]. Therefore, the former article appears to be generalized to the other values �∈c *q . In particular,

for an appropriately chosen c, the splitting field of �6 probably can be reduced from � ( )1 , 2q
12 3 (when = −c 1)

to the expected field � ( )1q
6 , that is, to �q in our setting.

4 Generating the minimal points

Assume that �∈t q is a known element such that the reduction (also known as specialization) �m t, of the
surface �m at t is�q-isomorphic to the original curve E . As explained in [7, Section 3], we are able to obtain such
an element as some m-th root = ⋅t m when it is extracted over �q, that is, approximately with the probability
∕m1 . The associated isomorphism has the following form:

� ( ) ( )→ ↦φ E x y c x c y: , , ,t m t x y,

where the coefficients cx , �∈cy q depend on t .
To this moment, we are given (formulas of) the minimal points ∈P Li m from Section 3. All of the following

is equally true in the case of the points ′ ∈ ′P Li 4 . Therefore, this case will not be mentioned further to avoid
repetitions. Throughout the section, we will assume that the “basis” points �( ( )) ( )∈φ P t Et i q , where ⩽ ∕i r 2,
have already been generated by [7, Algorithm 1] with respect to �∈t q. Our purpose is to generate as fast as
possible the remaining “minimal” points ( ( ))φ P tt i , where ⩽ ∕i k 6. By abuse of notation, we will refer to
these points simply by Pi as well as for the initial lattice points. Let’s suppose for simplicity that multiplications
by ω, −1 (apart from additions in �q) are not taken into account in the below estimations of running time.
Thereby, once a “minimal” point Pi is determined, so is its full orbit Pi of 6 conjugates.
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A naive method of finding �( )∈P Ei q consists in performing successive curve additions of the form
= +P P Pi i i1 2

(up to the automorphisms of E) such that i1, i2, ∕ <r i2 . As shown in Section 3, such a minimal
addition chain takes place regardless of m. Thus, the total number of additions on E is equal to ≔ ∕ − ∕A k r6 2.
According to [20] and [21, Section 6.4.1], the general addition operation on an arbitrary curve = +E y x bz: 2 3 6

(in Jacobian coordinates) costs no less than 16 multiplications in �q. Sometimes, E can be transformed into
other forms enjoying faster addition formulas. The most efficient among them is widely recognized to be the
twisted Edwards form (in extended coordinates) on which + requires 10 multiplications. To sum up, the overall
running time of the naive generation method lies between A10 and A16 field multiplications.

From the geometric point of view, the minimal points are no different from the basis ones. As a result, we
have Algorithm 1 that generates all the “minimal” �q-points on E , supplementing [7, Algorithm 1] in a natural
way. Formally speaking, the corresponding vectors �∈v r (i.e., such that =P Pi v) have to be returned in the
new algorithm in parallel with the points. Otherwise, the latter are useless for subsequent MSM algorithms.
Note that reducing ( )P ti amounts to two Horner’s schemes applied to the coordinate polynomials ( )=x x Pi and

( )=y y Pi . In turn, each application of φt costs 2 multiplications in �q (by cx , cy). As a consequence, to obtain one
“minimal” point it is enough to perform ( ) ( )≔ + +M x ydeg deg 2 field multiplications. Therefore, MA is the
total number of multiplications in the new generation method.

Algorithm 1: New method of generating all the “minimal” points

Data: finite field �q of characteristic 7 or greater,
ordinary elliptic �q-curve E of j-invariant 0,
natural m such that ⩽ ⩽m2 6 and ∣ −m q 1,
element �∈t q such that �� ≃ Em t, q

and the �q-isomorphism � →φ E:t m t, ,

coordinate formulas for representatives � ( )∈∕P P F,…, k m1 6 of the orbits of minimal points;
Result: k “minimal” points in �( )E q ;
begin

∣ ( ( ))

≔ ∕
≔

∕

i k

P φ P t

P P

for to do

end

return

1 6

;

, …, .

i t i

k1 6

end

We see that the new approach is faster than the naive one whenever the cost of one addition on E is greater
than M . Interestingly, this is always the case, because ⩽M 7, that is, − ⩾M10 3 and − ⩾M16 9. Table 3 demon-
strates the exact numbers of multiplications (checked in Magma [17]) for all the cases ⩽ ⩽m2 6. As expected, the
performance gain (namely, the last two columns) increases when m does. In particular, we do not obtain any
benefit for =m 2, and the best result occurs for { }∈m 5, 6 . Curiously, there is one exception: the value ( )− M A10 is
equal to 30 for the lattice L4, but 27 for its sublattice ′L4 . Nevertheless, the situation is opposite ( <66 81) if the curve
E is in the short Weierstrass form.

It is impossible not to mention that the entries of Table 3 should be slightly recalculated under a deeper
complexity analysis. Indeed, there are several minor optimization possibilities not taken into account before,
but explained in the next paragraphs. For simplicity, such a detailed analysis is omitted in the present paper,
because it is more mathematical in nature than engineering. Undoubtedly, the table tendencies will remain
after recalculation. In other words, supremacy of the new generation method over the naive one is beyond
question. Ideally, the optimization tricks under consideration have to be used in the process of programming
Algorithm 1 (or some of its versions) in one of low-level languages. Nonetheless, in view of Section 5.2, it is
more logical at the beginning to conduct further research on the topic prior to proceeding with an optimized
implementation.
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First, the constant �∈ω p may be quite large (in absolute value) in contrast to −1. Hence, multiplication by
ω may not be completely free. Second, formulas of the minimal points ∈P Li m may sometimes have small or
repeating coefficients, at least for different indices i. As a result, with the same input argument �∈t q,
evaluating ( )P ti together (i.e., for all ⩽ ∕i k 6) may cost considerably less than separately. On the contrary,
repeating field multiplications are seemingly rare in the addition chains = +P P Pi i i1 2

and the majority of these
multiplications are general (i.e., not by a constant). The fact is that addition chains are inherently computed
successively (not in parallel as ( )P ti ), and hence, there is limited room for their optimization.

The operation + on E does not keep affine coordinates unless the inverse operation in �q* is used. Since the
latter is recognized to be much more expensive than multiplication, + must return (weighted) projective coordi-
nates. In particular, most instances of + in our addition chains are forced to receive such burdensome input
coordinates. As an exception, the points Pi of 1-norm 2 (unlike those of larger 1-norms) are the sums of two basis
points, which are usually given on the affine plane. Therefore, the 1-norm 2 points require fewer multiplications
than 10 and 16, respectively. However, the proportion of these points decreases with the growth of m. For the
cases { }∈m 5, 6 the most interesting for us, there are solely 6 such points among 36 nonbasis minimal points. By
the way, all the minimal points ∈P Li m are integral, hence reducing them always avoids inverting in �q*. This
circumstance no doubt leads to a slight acceleration of MSM algorithms based on Pi.

It has not yet been clearly justified for which value m the Lm-based generation method (let’s denote it by
Mm) is the best. So far, we have just made sure that this method is better than the naive one with the same m.
Evidently, the smaller the given parameter, the more efficient Algorithm 1, but at the price of fewer returned
points. It is important to remember that this algorithm is always preceded by much slower [7, Algorithm 1].
Recall that its complexity on average amounts to ( ) + ⋅⋅

m
q m

m (apart from several more multiplications),

where ( )
⋅
q m is the m-th power residue symbol and ⋅m is the m-th root in the field �q.

Specialists know (see [22, Sections 1, 2] and the references therein) that the symbol ( )
⋅
q m can be determined

(at least for ⩽m 6) by means of Euclidean-type algorithms. With proper implementation, their execution times
are close to that of several dozen multiplications. Thus, extracting ⋅m is an order of magnitude more laborious
operation (even for =m 2) than the others in �q that we encountered. Concrete complexity estimates heavily
depend onm and q. At best, ⋅m is expressed via one exponentiation in�q, which costs no less than ℓ ( )≔ ⌈ ⌉qlog

2

field multiplications. As an example, for the conventional 128-bit security level, ℓ ≳ 256, and this lower bound
on ℓ is known to be even higher for pairing-friendly curves E .

Let’s compare, e.g., the methods M5, M6 with the degenerate one M2. The following reasoning is mutatis
mutandis transformed for the cases { }∈m 3, 4 . The methods M5, M6 both give ∕ =k 6 40 points in �( )E q at the
cost of one radical, of ≈ 5, 6 residue symbols, respectively, and of ≈ 250 multiplications according to Table 3. In
turn, M2 generates only one “basis” point (apart from its conjugates by [ ]−ω ) after computing ≈ 2 Legendre
symbols and one square root (and a few auxiliary multiplications). Therefore, the latter needs to be launched
40 times (with different elements �∈t q) to obtain the identical number of points. At least when ⋅ , ⋅5 , ⋅6 are
all represented by exponentiations in �q, the 40-time method M2 is without doubt substantially slower than the
one-time M5, M6.

Table 3: Comparison (in terms of the numbers of multiplications in �q) of the naive
and new methods of generating all the “minimal” �q-points on E
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Besides, M2 does not return “dependent” points unlike M5, M6. This means that the total number of
�q-points on E generated by the multiple method M2 is still smaller. As given in Section 1, let N stand for
the number of all “basis” points, which must be generated in any case. We see that M2 generates exactly N

(“basis”) points with the same number of launches against ∕ =N N40 4 10 points returned by M5, M6 after ∕N 4

launches, where ∣ N4 for simplicity. Of course, a concrete MSM algorithm may not need certain “dependent”
points (e.g., those of higher 1-norms), hence for it, the efficiency of M5, M6 may be too exaggerated. Never-
theless, in general (i.e., abstracting from MSM algorithms), the methods M5, M6 are justified to be the best
among all the state-of-the-art generation methods. This is also consistent with the conclusions of [7, Section 4],
where “basis” points are the only resulting ones.

Finally, it remains to choose the winner between M5 and M6. As already said in Section 3.5, the first method
(unlike the second) suffers from an applicability restriction (of the form ∣ −q5 1). However, if both methods
are available, then M5 is a little more preferable than M6, because on average, the first has one residue symbol
less than the second. Certainly, we are under the pretty natural heuristic assumption that ( )

⋅
q 5 (resp., ⋅5 )

is implemented not slower than ( )
⋅
q 6 (resp., ⋅6 ).

5 Final remarks

5.1 Hybrid point generation

Special attention should be paid to the generation technique combined from the minimal points ∈P Li 4 and
′ ∈ ′P Li 4 simultaneously, that is, with one element �∈t q such that �� ≃ Et4, q

. This technique allows to obtain at
once more �q-points on E . A minor comment is that ′P1 , ′P2 , ′P3 are no longer considered as basis points, but as
points of 1-norm 2 with respect to P1, P2, P3 and their counterparts [ ]ω Pi. Therefore, none of the induced points

�( )′ ∈P Ei q are given in advance, and hence, they all need to be computed. It is also worth bearing in mind that
the 1-norm becomes greater for all the points ′Pi .

We lack the notion of the so-called everywhere integral points (in the sense of Shioda [23–25]) in the MW
lattice of an elliptic �q-surface �. By one definition, these are integral points �( ) ( )= ∈P x y F, for which
( ) ⩽h P χ2 or, equivalently, ( ) ⩽x χdeg 2 and ( ) ⩽y χdeg 3 , where �∈χ is the arithmetic genus of � . No worries,
χ is nothing but 1 whenever � is a rational surface, which is the case for �m with ⩽m 6. Be careful, in some
sources (but not here), such points are called just integral, while arbitrary points with polynomial coordinates
x , y are called ∞-integral or � [ ]tq -integral. For convenience, let e be the (finite) number of all everywhere
integral points in �( )F .

Note that ′L4 is an instance of what is known as the narrow MW lattice � ( )′ ≔ ∘L Fm m whose definition is
given in [15, Section 2]. By virtue of [15, Remark 3.5], the lattices ′Lm are root ones we have previously
encountered (not only for =m 4). It turns out (cf. [25, Section 3.1]) that the minimal points of Lm and those
of ′Lm (also known as roots) together constitute the set of all everywhere integral points in � ( )Fm . For

{ }∈m 2, 3 , the number { }= ∈e k2 12, 48 , since the kissing numbers of A2, A*
2 coincide, and this is equally

true for D4, D*
4 . Finally, =E E*8 8 , which implies the equality =e k (= 240) in the last cases { }∈m 5, 6 . For clarity,

these facts are translated into Table 4 supplementing Table 2. Among other things, the column “ind” contains
the indices [ ]′L L:m m .

The aforementioned hybrid generation is naturally generalized to the other cases ≠m 4 by exploiting
likewise all everywhere integral points in � ( )Fm . However, the maximal number =e 240 occurs for { }∈m 5, 6 ,
and hence, the original methods M5, M6 remain the best. Moreover, there is the fact [24, Theorem 2.1] that none
of rational elliptic surfaces � enjoys >e 240. Certainly, nothing prevents us from using other points from �( )F .
Nevertheless, it is desirable to keep the integrality property to be able to return affine points in �( )E q without
inverting in �q*. Extra integral points in � ( )Fm (of canonical height > 2) are succinctly surveyed in [26, Section
8]. There are only an insignificant number of such “sporadic” points, not to mention that ( ) >xdeg 2 or

( ) >ydeg 3 for them. Therefore, it is not expected that the efficiency of the generation process including these
points is so impressive to dwell on it.
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5.2 MW lattices of higher kissing numbers

This section briefly outlines a promising research direction on the topic. It is reasonable to wonder about
extending the article idea to MW lattices (of isotrivial ordinary elliptic surfaces) with kissing numbers >k 240.
Intuitively, they should provide a more impressive performance gain during point generation than the lattices
previously considered. As earlier, there is hope to identify desired lattices only for the j-invariant 0.
Unfortunately, all rational elliptic surfaces necessarily have the MW ranks ⩽r 8 (see [27]), which is somewhat
demotivating in view of Table 1. Therefore, we are forced to resort to elliptic surfaces of greater arithmetic
genus >χ 1. The next case =χ 2 corresponds to the so-called K3 surfaces. Already in this case, the theory of
MW lattices is significantly complicated.

In a series of works [28–31], Usui establishes the full classification (i.e., for all �∈m ) of the lattices Lm over
the algebraic closure �q. As explained in [7, Section 3], for each ⩾m 6, the cost of finding a necessary element

�∈t q is permanent and amounts just to ( ) + ⋅⋅
6

q 6
6 . Thereby, the kissing number or rather ≔ ∕δ k r is actually

the main indicator for running time of the Lm-based generation methods. The minimal norm λ1 (crucial for the
speed of point reduction) also plays a role, but appears to be secondary as we will see in the next noteworthy
examples ( =λ 41 for all of them).

According to Usui [31, Main Theorem], solely the lattice L12 merits attention, because it is easily seen that
L12 enjoys the largest value =δ 115.5 among all the lattices Lm. More precisely, L12 possesses the parameters

=r 16, =λ 41 , and =k 1,848 . Although the last value is pretty small compared to ( )⩽ ⩽k4,320 16 7,320 , it is
much greater than the kissing number × =2 240 480 of the 16-dimensional direct squares L5

2, L6

2. The latter
essentially underlie the methods M5, M6 applied twice, that is, with two different seeds �∈t q.

Recall that at the moment the maximal (in characteristic 0) MW rank =r 68, which is attained by the
lattice L360. For it, = ≫λ 120 41 and =k 2,472 , and hence, ≈ ≪δ 36.353 115.5. The inequalities ≫, ≪ confirm
that L360 (like the other lattices Lm for ≠m 12) loses to L12 based on a combination of factors. This opinion is
opposite to [7, Section 3], because for generating only “independent” points, the MW rank is the unique
important indicator.

In addition to the surfaces �m, the K3 ones

� = + +
′

+y x c t
c

t
c:m

m
m

2 3
1

1

0

deserve separate consideration, where similarly ⩽m 6 and c1, ′ ≠c 01 . Over arbitrary fields (including �q) the
MW lattices Λm of these surfaces are thoroughly studied in [32]. In particular, over �q, one can put = ′ =c c 11 1

without loss of generality. The coefficient c0 conversely matters even over �q (unlike c in the equation of �m),
and hence, it is more correct to indicate c0 as follows: � ( )cm 0 , ( )Λ cm 0 .

Obviously, if =c 11 , ′ =c c1 , then �� � ( )≃ 012 6q
, and hence, ( )≃L Λ 012 6 . In turn, ( )Λ 05 has the even better

parameters =r 16, =λ 41 , and =k 2,640 (i.e., =δ 165) by virtue of [31, Section 3]. The cases ⩽m 4 are less
remarkable, since the value δ of the lattice ( )Λ 0m diminishes by analogy with Lm. Thus, the family � ( )0m

remotely resembles �m. Finally, little is known about ( )Λ 0m for >m 6.

Table 4: Some parameters of the
narrow sublattices ⊂L L′m m
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It must be understood that, generally speaking, minimal and everywhere integral points are not at all the
same thing. In this connection, there is an independent task of maximizing the number e instead of k . As stated
in [25, Section 4], the record is =e 5,820 , at least in 2010 when that article was published. This record is due
to the MW lattice of the surface � = + − −−y x t t: 112 3 5 5 from [33] isomorphic to � ( )−11 15 as usual over
�q. For this lattice, =λ 41 , =r 18, and so ( )∕ = ≫e r 323. 3 165. By the way, 18 is the maximal possible MW rank
for ordinary elliptic K3 surfaces [32, Section 8]. In the literature, such surfaces are said to be singular.

It should be stressed that the splitting field of � is exactly � ( )1 , 10q
5 3 . Probably, there is not yet an article

dedicated to the twists of the surface �, in contrast to �m, � ( )0m with ⩽m 6. This subject is important if we
want to try to ease the restrictions on �q as much as possible. Currently, 1

5 , �⊂10 q
3 seem quite severe

conditions to be able to use � for generating �q-points on =j 0 elliptic curves. In other words, we are
interested in coefficients c0, c1, �′ ∈c q1 such that the surface �5 (with the given coefficients) is a twist of �

whose MW lattice is full already over �q under more mild conditions (e.g., without �⊂10 q
3 ).
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