
Journal of Mathematical Cryptology 2025; 19(1): 20240029

Research Article

Adarsh Srinivasan and Ayan Mahalanobis*

A McEliece cryptosystem using permutation
codes

https://doi.org/10.1515/jmc-2024-0029

Received August 26, 2024; accepted July 14, 2025; published online November 21, 2025

Abstract: This paper is an attempt to build a new public-key cryptosystem, similar to the McEliece cryptosys-

tem, using permutation error-correcting codes.We study a public-key cryptosystem built using two permutation

error-correcting codes. We show that these cryptosystems are insecure. However, the general framework in

these cryptosystems can use any permutation error-correcting code and is interesting. We present an enhanced

McEliece cryptosystem, which subsumes the McEliece cryptosystem based on linear error correcting codes.

Keywords:McEliece cryptosystem; permutation error correcting codes; postquantum cryptosystems

MSC 2020: 94A60; 94B60

1 Introduction

McEliece and Niederreiter cryptosystems are very popular these days. One of the reasons behind this popular-

ity is that there are some instances of these cryptosystems that can resist quantum Fourier sampling attacks.

These make them secure against attacks by quantum computers. Such cryptosystems are called quantum-secure

cryptosystems.

McEliece and Niederreiter cryptosystems use linear error-correcting codes. Similar to linear error-

correcting codes, we can define permutation error-correcting codes. These codes use permutation groups

the same way linear codes use vector-spaces. This paper is an attempt to build secure public-key cryptosystems

using permutation codes in the same spirit as McEliece and Niederreiter cryptosystems were built using linear

error-correcting codes. Public-key cryptosystems that came out of permutation codes are not secure. However,

the journey we took to build these cryptosystems is interesting in its own right. Moreover, we were able to

enhance the original McEliece cryptosystem by embedding it into a permutation group. Unlike the case of

linear codes, there do not seem to exist families of permutation codes with enough combinatorial and algebraic

richness to resist simple attacks. However, we hope to motivate more research into permutation codes through

thiswork.We have used ideas and concepts from the theory of permutation groups freely, Seress [1, Section 1.2.2]

or Cameron [2] are good references for permutation groups.

In this paper, we ask two questions:

Q1 Can one build a secure public-key cryptosystem using permutation codes, similar to cryptosystems built

using linear error-correcting codes?

Q2 Are there any advantages of using permutation codes compared to linear codes in public-key

cryptosystems?

*Corresponding author: Ayan Mahalanobis, IISER Pune, Pune, India, E-mail: ayan.mahalanobis@gmail.com

Adarsh Srinivasan, Department of Computer Science, Rutgers University, New Brunswick, USA, E-mail: adarshsrinivasan256@gmail.com

Open Access. © 2025 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International

License.

https://doi.org/10.1515/jmc-2024-0029
mailto:ayan.mahalanobis@gmail.com
mailto:adarshsrinivasan256@gmail.com

2 — A. Srinivasan and A. Mahalanobis: A McEliece cryptosystem

We try to keep this paper as self-contained as possible. In the next section, we present a brief overview of permu-

tation codes. Most of it is a review of Bailey’s work [3–5] on permutation codes. We have performed some extra

computational analysis on alternate decoding in Section 2.3.1. The section after that presents a public-key cryp-

tosystem using permutation codes whose security depends on the hardness of decoding generic permutation

codes. We study this cryptosystem using two permutation codes – the symmetric group acting on 2-subsets and

a class of wreath product groups. We show that both these cryptosystems are insecure. The first one is insecure

due to an information set decoding attack and the latter due to an inherent structure in the wreath product. We

then present the enhanced McEliece cryptosystem in Section 3.5.

2 Permutation error-correcting codes

The use of sets of permutations in coding theory (also referred to as permutation arrays) was studied since

the 1970s. Blake et al. [6, 7] were the first to discuss using permutations this way. They had certain applications

in mind. One such example was powerline communications. However, permutation codes never got the level

of attention that linear codes did. Bailey [5] describes a variety of permutation codes and presents a decoding

algorithm, which works for arbitrary permutation groups using a combinatorial structure called uncovering-by-

bases. They were also the first to exploit the algebraic structure of groups, to come up with decoding algorithms

for several families of groups.

In this section, we explore the use of permutation groups as error-correcting codes. Let [n] be the set

{1, 2,… , n}. A permutation on [n] is defined to be a bijection from [n] to itself. The set of all permutations

form a group called the symmetric group and is denoted by Sn and e its identity element. Subgroups of Sn are

called permutation groups. For a permutation 𝜋 ∈ Sn, we define its support Supp(𝜋) :={i ∈ [n]:𝜋(i) ≠ i} and set
of fixed points Fix(g) :={i ∈ [n]:𝜋(i) = i}. A permutation can be represented in two ways. The first is by listing
down all its images. This is called the list form of a permutation. For example, [2, 3, 1] is a permutation 𝜋 acting

on {1, 2, 3} such that 𝜋(1) = 2, 𝜋(2) = 3, 𝜋(3) = 1. The other way to represent permutations is product of disjoint

cycles. In this paper, we will use the list form more often than the product form. We now define the Hamming

distance between two permutations.

Definition 2.1 (Hamming Distance). For 𝜎, 𝜋 ∈ Sn, the Hamming distance between them, d(𝜎, 𝜋) is defined to

be the size of the set {i ∈ [n]|𝜎(i) ≠ 𝜋(i)}.

The Hamming distance between two permutations 𝜋, 𝜎 can be expressed using support and fixed points of

𝜎𝜋−1.

Proposition 2.1. For any two permutations 𝜎, 𝜋 ∈ Sn, d(𝜎, 𝜋) = |Supp(𝜎𝜋−1)| = n− |Fix(𝜎𝜋−1)|.
Definition 2.2 (Permutation code). A permutation code with minimum distance d is a set C ⊆ Sn such that d =
min𝜎,𝜋∈Cd(𝜎, 𝜋).

In this paper, we assume that the permutation code C forms a subgroup. We call such a permutation code

a permutation group code. A permutation group is generated by a finite set called a set of generators.1 For a

permutation group code C, we can relate its minimum distance to supports of all nonidentity elements in C.

Definition 2.3 (Minimal degree). The minimal degree of a permutation group G ⊆ Sn is defined to be

m(G) = min
𝜎∈G, 𝜎≠e

|Supp(𝜎)| = n− max
𝜎∈G, 𝜎≠e

|Fix(𝜎)|.

1 Every permutation in the permutation group can be expressed as a product of permutations from the set of generators.

A. Srinivasan and A. Mahalanobis: A McEliece cryptosystem — 3

The quantity r =
⌊
m(G)−1

2

⌋
is called the correction capacity of the code. The distance between a permutation

𝜎 and a group G, d(𝜎,G) is the distance between 𝜎 and the permutation in G closest to it. That is, d(𝜎,G) =
ming∈Gd(𝜎, g). There is an ambient group in which both 𝜎 and G belong. For a proof of the next theorem, see

Bailey [3, 5].

Proposition 2.2. The minimal degree of a permutation group code is equal to its minimum distance.

The security of public-key cryptosystems rests on some hardness assumption. Our hardness assumption is

based on the subgroup distance problem [8].

Problem 2.1 (Subgroup distance problem).

Input: A set of generators S for a permutation group G ⊆ Sn, a permutation 𝜎 ∈ Sn.

Output: A permutation 𝜋 ∈ Gminimizing d(𝜋, 𝜎).

We can also generalize this problem to consider inputs 𝜎 to be lists of length nwith symbols from [n], which

do not necessarily form a permutation. A nearest neighbor of 𝜎 in G is defined to be a permutation g in G such

that d(g, 𝜎) = d(G, 𝜎). This permutation exists because d(g, 𝜎) = ming∈Gd(g, 𝜎). If the distance between 𝜎 and

G is greater than the correction capacity of the group, this nearest neighbor need not be unique. However, if

d(𝜎,G) ≤ r, the nearest neighbor of 𝜎 in G is unique. The subgroup distance was shown to be NP-complete

[8]. In fact, even the decision version of this problem, which is easier than the search version, is NP-complete.

For the purpose of building cryptosystems, the average-case hardness of a problem is more important than the

worst-case complexity. While there does not exist a worst case to average case reduction, it is believed that the

problem of linear error correcting codes is hard for several families of random linear codes. As we formally

prove in Section 3.5, the subgroup distance problem is a generalization of the linear code decoding problem,

indicating that the average case hardness of the subgroup distance problem for some families of permutation

codes may be a reasonable security assumption for developing public key cryptosystems [9].

A permutation groupG can be used as an error-correcting code in the followingmanner. The informationwe

want to transmit is encoded as a permutation in G and transmitted as a list through a noisy channel. We assume

that when the message was received, r or fewer errors were introduced. Such a channel is called a Hamming

channel. The received message is a list𝑤 of length nwith symbols from [n]. Note that𝑤 need not be a permuta-

tion. Because the correction capacity ofG is r, the nearest neighbor of𝑤 inG is uniquely determined to be g. The

decoder can now solve the subgroup distance problemwith the word𝑤 and the group G as input to recover the

original message g. However, while decoding is possible in theory, because of the fact that the subgroup distance

problem is NP-complete, generic algorithms cannot be used to decode permutation codes efficiently. We need a

specific algorithm tailor-made for a particular family of permutation codes.

2.1 A decoding algorithm using uncovering-by-bases

In this section, we review Bailey’s work on decoding algorithms for permutation codes. Consider a permutation

group G ⊆ Sn with correction capacity r acting on the setΩ = [n]. For a permutation 𝜎 and i∈Ω, we use i ⋅ 𝜎 to

denote the element 𝜎(i). We start with defining a base for a permutation group, which is the analogue of a basis

of a vector space. For more information, we refer to Seress [1, Chapter 4].

Definition 2.4 (base). A base for a permutation group G acting on Ω is B = {b1, b2,… , bm}, such that, B ⊆ Ω
with the property that all elements in B is fixed only by the identity element of G.

Given a base B = {b1, b2,… , bm}, define subgroups G = G[0] and G[1],… ,G[m], such that,

G[i] :=
{
𝜎 ∈ G|𝜎(b j) = b j for all j ≤ i

}
where i = 1, 2,… ,m. It is easy to see that

G = G[0] ≥ G[1] ≥ … ≥ G[m] = {e}. (1)

4 — A. Srinivasan and A. Mahalanobis: A McEliece cryptosystem

We say that a base B is irredundant ifG[i] ≠ G[i+1] for all i. A generating set S ofG is called a strong generating

set if
⟨
S ∩ G[i]

⟩
= G[i] for 1 ≤ i ≤ m, where ⟨S⟩ is the group generated by the set S. Given a group G, a base

and a strong generating set for it can be constructed in nearly linear time in the size of the input using the

Schreier–Sims algorithm. The orbits bi ⋅ G
[i−1] are called the fundamental orbits, and the (right) transversals Ri

are the set of (right) coset representatives for G[i] mod G[i+1], with the requirement that the representative for

the coset G[i+1] in G[i] is the identity for all i. They can be computed by keeping track of the permutations of

G[i−1] that take bi to each point in the orbit. It follows from the definition of a base that every permutation in G

is uniquely defined by its action on the elements of a base. There exists an algorithm (Algorithm 1), called the

element reconstruction algorithm that can reconstruct the permutation from its action on all the elements in

the base.

Corresponding to the base B, we construct the fundamental orbits and the right transversals using the

Schreier–Sims algorithm. Initially, we set 𝜎 to be the identity. We then find the permutation r1 in R1 such that

b1 ⋅ r1 = x1. If x1 does not lie in the fundamental orbit of b1, that means no such 𝜎 exists and we can exit the pro-

cedure. We then replace (x1,… , xm) with
(
x1 ⋅ r

−1
1
,… , x1 ⋅ r

−1
m

)
. In the i-th iteration, we check if xi ⋅ r

−1
1
r−1
2
… r−1

i−1
lies in the orbit ofGbi . If it does not, we exit the procedure; elsewe replace𝜎 with𝜎ri; where ri is the permutation

in the transversal Ri that takes bi to xi ⋅ r
−1
1
r−1
2
… r−1

i−1. More details on the Schreier–Sims algorithm is available

in Seress [1, Chapter 4].

Definition 2.5 (UBB). An uncovering-by-bases (UBB) to fix r errors in a permutation group acting on Ω is a set

of bases for the group, such that, for each r-subset of Ω (an r-subset of Ω is a subset of Ω of size r); there is at

least one base in the UBB that is disjoint from the r-subset.

It is known that every permutation group has an uncovering-by-bases [3, Proposition 7]. However, they have

been constructed only for a few permutation groups. There is no known procedure to construct a small UBB for

an arbitrary permutation group. Uncovering-by-bases can be used to decode as follows:

LetGbe a permutation group acting onΩ. Consider a permutation g ∈ G in the list formand𝑤was obtained

after r or fewer errors were introduced to g. Note that𝑤 can have repeated entries and need not be a permuta-

tion. Let R be a subset ofΩ of size less than or equal to r. Errors were introduced in positions from R. The set R is

not known to the decoder a priory. Let be a UBB for G. It is a consequence of the definition of a UBB that there

exists a base B in , which is completely disjoint from R. Thus, in the positions indexed by B, the lists𝑤 and g

are identical. As B is a base, we can reconstruct the entire permutation g from just its action on the points in B.

While the decoder does not know which base in  is the appropriate base B, it can just repeat this procedure

for every base in .

A. Srinivasan and A. Mahalanobis: A McEliece cryptosystem — 5

This algorithm is similar to permutation decoding for linear codes proposed by MacWilliams and Sloane

[10], which involves using a subset of the automorphism group of the code that moves any errors out of the

information positions.

2.2 Some constructions of uncoverings-by-bases

There are only a few examples of UBB that were constructed by Bailey. One of them is a symmetric group acting

on 2-subsets, and the other is a wreath product of a regular permutation group with a symmetric group. We

discuss them next.

2.2.1 Symmetric group acting on 2-sets

Letm be a positive integer. LetΩ be the set of all subsets of [m] of size 2.

Any permutation 𝜎 ∈ Sm acts on a set {i, j}∈Ω as {i ⋅ 𝜎, j ⋅ 𝜎}. Now the groupG is Sm acting onΩ, and it has
minimal degree 2(m− 2) and correction capacitym− 3 [3, Proposition 21]. The set of all 2-subsets of {1, 2,… ,m}
can also be viewed as the edge set of the complete graphKm. Thus, we can use graph theoretic results to construct

bases for G, which we will use to construct a UBB.

A spanning subgraph of Km, which has at most one isolated vertex and no isolated edges, forms a base

for G. A Hamiltonian circuit of Km is a circuit in Km containing each vertex exactly once. From a Hamiltonian

cycle of Km, we can obtain such a spanning graph (called a V-graph) by deleting every third edge [3, Fig. 2]. A

Hamiltonian decomposition of a graph is a partition of the edge set of the graph into disjoint Hamiltonian circuits

and at most one perfect matching. In the 1890s, Walecki [11] showed that Km can be decomposed into (m− 1)∕2
Hamiltonian cycles when m is odd. If m is even, it can be decomposed into (m− 2)∕2 Hamiltonian cycles and

one perfect matching. Using Walecki’s decomposition, we can construct a UBB for G. The UBB is the set of all

V-graphs, which can be obtained from the Hamiltonian decomposition of Km, and it can be proved that any r-

subset of edges ofKm avoids at least one of these V-graphs. Formore on this topic, the reader is referred to Bailey

[3]. This UBB is of size O(m), and each base is of size O(m). Thus, we can use this UBB in the decoding algorithm,

whichwould have time complexityO(m4) = O(n2). This is because n is the number of edges inKm, which is equal

tom(m− 1)∕2.

2.2.2 Wreath product of regular groups

Let H be a group acting on a set Δ where m = |Δ|. The action of H on Δ is said to be regular if, for every

x, y ∈ Δ, there exists exactly one h ∈ H such that x ⋅ h = y. Having defined the action of H on Δ, we can view
H as a subgroup of Sm, and such a permutation group is called a regular permutation group. We now define the

permutation group code G = H ≀ Sn to be the wreath product of H, a regular permutation group acting on m

points with the symmetric group Sn. The group G acts imprimitively onmn points.

6 — A. Srinivasan and A. Mahalanobis: A McEliece cryptosystem

We define elements of G as all tuples of the form (h1, h2,… , hn, 𝜎), where hi ∈ H and 𝜎 ∈ Sn. We use the

symbol 1 to denote the identity element of H and e for the identity element of Sn. In this section, we redefine

Ω = [m] × [n] consisting of n copies of the set [m] as n columns each withm rows.

Wenowdefine the action of an element g = (h1, h2,… , hn, 𝜎) on (i, j) to be (i ⋅ hi⋅𝜎, j ⋅ 𝜎). The group Sn acts on
the columns and the groupH acts on the rows. Thus, the group G can be defined as a subgroup of the symmetric

group acting onΩ. As a regular group acting onm points has sizem, |G| = mnn!. See [2] for a proof of |H| = m.

Theorem 2.1. The minimal degree of the wreath product group G is m and its error correction capacity is
⌊
m−1
2

⌋
.

Proof. Consider the group element (h, 1,… , 1, e) for some h ∈ H. This permutation moves all the points in the

first column and fixes all the other points. Thus, the minimal degree of H is less than or equal to m. We now

show that any nonidentity permutation in Gmoves at leastm points. Consider a permutation (h1, h2,… , hn, 𝜎).

If 𝜎 is not the identity, it must move all the points in one of the columns to another column and thus moves at

leastm points. If 𝜎 is the identity permutation, at least one of the hi must be a nonidentity element of H, which

will move allm points in that column. □

Theorem 2.2. Any subset of Ω forms an irredundant base for G if and only if it has exactly one point from each

column ofΩ.

Proof. Consider any set S, which does not contain any points from the first column. The permutation

(h, 1,… , 1, e) fixes every point in S. So, S cannot be a base for G. To prove the converse, consider the following

set {(x1, 1), (x2, 2),… , (xn, n)}with each xi belonging to the ith column. Suppose here exists g = (h1, h2,… , hn, 𝜎)

that fixes each of these points. As (xi, i) ⋅ g must lie in the ith column for each i, this implies that 𝜎 must be the

identity permutation. Thus, the action of g on xi is xi ⋅ hi. As the action of H on [m] is regular, this implies that

each hi is the identity. □

Using this theorem, we can now construct a UBB for G. Each row ofΩ forms a base and a collection of r + 1

rows form aUBB forG, where r =
⌊
m−1
2

⌋
. This is because any subset of size rwill intersect with atmost r of those

bases described in the UBB and is disjoint from at least one of those bases. The UBB can be used in Algorithm 2,

which runs in O(m2n2) complexity.

2.3 An alternative decoding algorithm for wreath product

In this section, we present a simple decoding algorithm introduced by Bailey and Prellberg [12], which uses

majority logic principles for the wreath product groups and compare its performance to the original UBB

algorithm. For simplicity, we assume H to be the cyclic group Cm of order m, this algorithm can be extended

to any regular group.

Input: For some g ∈ Cm ≀ Sn,𝑤 is constructed from g by introducing r or less errors. The list𝑤 is the input.

Output:We aim to recover the permutation g. Because d(g,𝑤) ≤ r, there is a unique permutation inGwith

distance at most r from𝑤.

The algorithm: To recover the permutation g = (h1, h2, . . . , hn, 𝜎) ∈ H ≀ Sn, it suffices to recover h and 𝜎.

1. For each i ∈ [n], define 𝜎(i) be the majority value of the second coordinates of 𝑤((j, i)), for each j ∈ [m].

This way, we can recover the permutation 𝜎 ∈ Sn.

2. For each i ∈ [n], let𝑤i, j be the first coordinate of𝑤((j, i)), for each j ∈ [m], and let𝑤′
i, j
= 𝑤i, j −𝑤i, jmodm.

Let𝑤′
i
be the majority value of these𝑤′

i, j
’s for all j ∈ [m], and we define the permutation hi ∈ Cm to be the

permutation associated with the cyclic shift by𝑤′
i
.

We refer to ref. [12] for a proof of correctness of the above algorithm.

Complexity analysis: We now estimate the complexity of this algorithm. The first part of the algorithm

involves splitting the word into blocks and rewriting each symbol. This could be done in constant time for each

A. Srinivasan and A. Mahalanobis: A McEliece cryptosystem — 7

position. Computing the value of the block label and the cyclic shift for each position involves some integer

arithmetic, which would take a constant amount of time for each position. Thus, it takes O(mn) time. The second

part of the algorithm involves finding the most frequently occurring value of the block value and cyclic shift

in each block. Let’s consider the part where we find the most frequently occurring value of the cyclic shift. We

maintain an auxiliary list of size m, with each position corresponding to the frequency of that cyclic shift. We

iterate through the block, compute the cyclic shift for each location of the block, and update its frequency in the

auxiliary list. This procedure takes O(m) time. We then go through the auxiliary list to find the most frequently

occurring cyclic shift. We do a similar procedure for finding the action of 𝜎 on the block using an auxiliary

list of size n and that would take O(n) time. This procedure is repeated for each block. For the final part of the

algorithm, which involves converting the reconstructed word back to a permutation can be done with O(mn)

arithmetic operations. Thus, the algorithm takes O(mn) time ifm > n and O(n2) time if n > m. This is faster than

the UBB algorithm for the same group, which would take O(m2n2) time.

2.3.1 Decoding more than r errors

In fact, the algorithm described above can correct more than r errors, as long as the majority of elements

in each block are correct. There are some error patterns with up to nr errors, which can be decoded using

this algorithm. An error pattern is a certain set of positions where the errors are induced. Bailey obtained

the following expression for the number of error patterns of a certain length, which can be corrected by this

algorithm.

Let k be a positive integer. Let Pn,r(k) be the set of all partitions of k into at most n parts where each part is

of size at most r. We write such a partition in the form 𝜋 =
{
(i, fi)|∑ii fi = k

}
, where fi is the number of times

the number i appears in the partition. For a partition 𝜋, we define the quantity ci to be ci =
∑i−1

j=1 fi, which is the

number of parts in 𝜋 of size strictly less than i.

Theorem 2.3. For an integer k ≤ nr, the following number of patterns of k errors can be corrected:

En,r(k) =
∑

𝜋∈Pn,r(k)

r∏
i=1

(
n− ci
fi

)(
m

i

) fi

Proof. For a proof, we refer to Bailey [5, Section 6.7]. □

We ran simulations to find the proportion of error patterns, which can be corrected for the case m = 5. In

this case, the minimal degree is 5 and has correction capacity 2. In practice, a much larger number of errors can

be corrected, with a high probability of success.

Figure 1: Plot of fraction of errors that can be corrected for

n = 100, m = 5.

8 — A. Srinivasan and A. Mahalanobis: A McEliece cryptosystem

Figure 2: Plot of error correction capacity with 95% probability of success.

Using a computer program, we calculated the value of En,r(k) for different values of k and obtained the

value of
En,r(k)

mn
to obtain the probability that the alternate decoding algorithm succeeds. We plot this for n = 100

in Figure 1.

We can deduce from the data that the algorithm can decode 95 percent of error patterns of length up to 19,

90 percent of error patterns of length up to 24, 80 percent of error patterns of length up to 31, and 50 percent of

error patterns of length up to 46.

Interestingly, the number of errors that can be corrected increases with n (for a fixed probability of success).

This is despite the minimal degree (correction capacity) remaining the same. We plot the number of errors,

which can be plotted with 95 percent probability of success with respect to n, both in terms of absolute number

of errors, which can be corrected, and in terms of the error rate, which is the ratio of the error induced to the

degree of the permutation group. Unlike the correction capacity, which increases with n, the error rate seems to

decrease slightly as n increases (Figure 2).

3 A cryptosystem on permutation error-correcting codes

TheMcEliece cryptosystem is a very popular cryptosystem using linear codes, first proposed by Robert McEliece

[13] in 1978. Due to its large key sizes, it never gained a lot of popularity at that time. Recently with the rise of

quantum computing, it has gained a lot of attention alongwith its counterpart proposed by Neiderreiter [14] as a

postquantum alternative to currently used public-key cryptosystems. Fundamentally, theMcEliece cryptosystem

uses two linear codes, one kept private and another made public with the two codes being equivalent in the

following way:

Definition 3.1. Consider two [n, k] linear codes C1 and C2 generated by the generator matrices G1 and G2. These

codes are considered equivalent if, there exists a nonsingular k × k matrix S and an n × n permutation matrix

P such that G2 = SG1P.

Consider a linear code C generated by amatrixG. Premultiplying G by a nonsingular matrix will not change

the code. Postmultiplying G by a permutation matrix creates a new code, one whose codewords are obtained by

permuting the positions of the codewords in C by the permutation corresponding to the permutation matrix. In

other words, there is a distance preserving map, or isometry between two equivalent linear codes. The principle

behind the McEliece cryptosystem is that we have a map between an easy instance and a hard instance of the

closest vector problem in linear codes using this distance preservingmap. The private keymatrix is chosen from

a family of linear codes with a fast decoding algorithm. However, the public key matrix generates a linear code

A. Srinivasan and A. Mahalanobis: A McEliece cryptosystem — 9

do not have a fast decoding algorithm. The map between these easy and hard instance is known only to the

owner of the private key. This provides the one-way property, which is essential to all public-key cryptosystems.

In the previous section, we studied permutation groups as error-correcting codes. In this section, we inves-

tigate the following questions:

– Can we develop a public key cryptosystem similar to the McEliece cryptosystem using permutation codes

instead of linear codes?

– Is there any potential advantage of using permutation codes instead of linear codes from the standpoint of

cryptography?

The first step in this direction would be to investigate isometries of the symmetric group with the Hamming

metric. Assume that𝜙 is an isometry of the Hamming space. We can have the private key as a permutation code

H (which is a subgroup of Sn) with an efficient decoding algorithm and the public key as the permutation code

Ĥ = 𝜙(H) with no good decoding algorithm. The isometries in the symmetric group were studied and classified

by Farahat [15] who proved that they are of one of the following types:

– x ↦ gxh for g and h being fixed members of Sn
– x ↦ gx−1h for g and h being fixed members of Sn

However, the isometries that interest us should be homomorphisms. We would like both codes H and Ĥ to be

subgroups of Sn. This is because a permutation group can be represented efficiently using a generator set. A

permutation array without a group structure cannot be represented efficiently this way. Thus, we are interested

in isometries of Sn that are homomorphisms. We now combine these ideas to create a public-key cryptosystem.

Our ingredients are a permutation code with a fast decoding algorithm and a conjugation map.

3.1 A McEliece cryptosystem using permutation codes

In this section, we present a public-key cryptosystem using permutation codes that is similar to the McEliece

cryptosystem. The private key is kept secret, and the public key is available to the public.

Private key Let G be a permutation group acting on n letters with a fast decoding algorithm. We choose a sub-

group H ≤ G ≤ Sn and a permutation g from Sn. The private key is a set of generators {h1,… , hs} of H and

g. We will use the decoding algorithm in G as a decoding algorithm for H.

Public key The public key is a set of elements {ĥi} =
{
g−1hig

}
, which generate the conjugate group Ĥ = g−1Hg.

Note that a security assumption is that Ĥ does not have a fast decoding algorithm. Note that Ĥ might not be

a subgroup of G.

Encryption The plaintext is ĥ of Ĥ. We introduce r errors in ĥ to create the ciphertext c.

Decryption Once we receive c, we compute gcg−1. We then use the fast decoding algorithm to obtain h, which

is its nearest neighbor in H. We then compute ĥ = g−1hg.

The conjugationmap is an isometry of theHamming space. The distance between h andH is equal to the distance

between ĥ and Ĥ. In the McEliece cryptosystem, the Hamming isometry is postmultiplication by a permutation

matrix. The secret scrambler scrambles the basis of a linear code to create a new basis. It does not change the

linear code. Here, the analogue to that would be the fact that we choose a random set of generators for the

conjugate group as the public key.

Remark 3.1. There is a possibility of using isometries other than the conjugationmap. However, the errors have

to be introduced more carefully. For example, suppose we have a group G ≤ Sn and a map from G to G, which

is an isometry on G. Our permutation code is a subgroup H ≤ G ≤ Sn. Thus, if we introduce errors in H so that

the ciphertext c lies in the group G, the cryptosystem using this isometry will work. We have not studied this

problem carefully and leave it for future work.

10 — A. Srinivasan and A. Mahalanobis: A McEliece cryptosystem

3.2 The security of our cryptosystem

3.2.1 Security assumptions

There are two security assumptions:

AS1 Solving the general decoding problem in Ĥ is hard. This means that Ĥ has no good decoding algorithm.

AS2 Inability to construct a subgroup H′ of Sn with generators
{
h′
1
,… , h′

s

}
and g ∈ Sn, such that g

−1H′g = Ĥ,

and there is an efficient decoding algorithm in H′ that can correct up to r errors.

In this paper, we present a cryptosystem that seems to satisfy (for known attacks) AS1 but not AS2 using the

symmetric group acting on 2-subsets. The cryptosystem using wreath product group falls apart on AS1 but is

resistant to ISD like attacks. Like the McEliece cryptosystem, attacks on this cryptosystem can broadly be clas-

sified into two types – unstructured and structural attacks. Unstructured attacks attempt to solve the nearest

neighbor problem in Ĥ directly without attempting to obtain the private key. A structural attack would attempt

to obtain the private key from the available public information.

For our cryptosystem to work, the groupHmust have an efficient decoding algorithm. For the cryptosystem

to be secure, the group Ĥ must not have an efficient decoding algorithm. Specifically, if the algorithm used to

decode inH can be modified to work for the conjugate group Ĥ, the cryptosystemwill not be secure. This would

be another type of attack, which would be specific to the cryptosystem using a particular permutation code. The

security of the cryptosystem depends on the structure of the permutation codeH used and its available decoding

algorithm, and not just on parameters like size, correction capacity, etc. This is especially true in the context of

structural attacks. Similar to McEliece cryptosystem, we cannot provide any theoretical basis for the claim that

a cryptosystem using a certain permutation code is secure. We construct a cryptosystem and then attempt to

come up with attacks to demonstrate its security. Due to the similarity of our cryptosystems with linear code

based cryptosystems, which are very well studied and believed to be secure, one good place to start would be to

try and extend the well-known attacks on the McEliece cryptosystem to our cryptosystem. One of the attacks we

consider in this section is the well-studied and powerful information set decoding (ISD) attacks on the McEliece

cryptosystem. For the case of permutation codes, we have designed an algorithm which is very similar in spirit

to the ISD attack, and we study its effectiveness.

We now present some generic attacks on our cryptosystem. Generic attacks are designed without taking

into account the choice of the permutation code. Their effectiveness depends only on public parameters, like the

correction capacity and size of the code. In Section 3.3, we demonstrate the existence of a code with parameters

that make the cryptosystem secure against these attacks.

3.2.2 Brute force attacks

One obvious method to solve the nearest neighbor problem in Ĥ is to enumerate all elements of Ĥ and calculate

their Hamming distance from the ciphertext. This implies that a necessary condition for b-bit security is that

|H| ≥ 2b.

Anotherway is to enumerate all possible permutationswithin a distance r from the codeword c and check if

they belong to Ĥ. The complexity of this attackwould be
(
n

r

)
(n− 1)r, wheren and r are the degree and correction

capacity of the group, respectively.

3.2.3 Information set decoding

Information set decoding is one of the more successful attacks on the McEliece cryptosystem. The original idea

was proposed by Prange [16] in 1962, and many improvements on this basic attack have been proposed [17, 18].

For a [n, k] linear code, it involves picking k coordinates at random and trying to reconstruct the codeword from

those positions. In this section, we recreate a version of Prange’s ISD attack for cryptosystems using permutation

A. Srinivasan and A. Mahalanobis: A McEliece cryptosystem — 11

codes. We note that there are several notable improvements to Prange’s original ISD algorithm. It is not clear

to us whether these improvements can translate to permutation codes as they extensively use the algebraic

structure of linear codes. We refer the reader to Weger et al. [9, Section 5] for an excellent survey of the ISD

algorithms. We prove a sufficient (but not necessary) condition for a permutation code based cryptosystem to

be resistant to ISD attacks.

This algorithm is similar to the uncovering-by-bases decoding algorithm proposed by Bailey, except that,

we do not know the UBB and thus the running time is not bounded by the size of the UBB. The correctness of

this algorithm follows from the proof in Bailey [3, Proposition 7] in which he shows that given any r-subset of

{1,… , n}, there exists a base forH disjoint from it. Each iteration is a success if none of the positions of c indexed

by the chosen base have an error. This occurs with a finite nonzero probability because such a base exists. The

performance of the ISD algorithm is identical for the groups H and Ĥ. This is because B is a base for H if and

only if g−1B is a base for Ĥ, and the algorithm picks a base at random where g is the secret conjugator.

Theorem 3.1. Let kmax be the size of the irredundant base of largest size of H. The ISD algorithm succeeds in

returning a plain text permutation h ∈ Ĥ with probability 1− o(1) in time O
(
2𝛼(kmax,r)n

)
, where 𝛼(k, r) = H2

(
r

n

)
−
(
1− k

n

)
H2

(
r

n−k

)
and H2(p) = −p log2p − (1 − p) log2(1 − p) is the binary entropy function.

Proof. The algorithm uses a procedure to choose an arbitrary base B for the group. At the same time, a set R

of size r is chosen uniformly at random, and errors are induced in those positions. Before making concrete

complexity estimates, we would like to make some observations. First, it is clear that if there are more error

positions, the probability that the information set does not have any error reduces and the complexity of the

attack increases with r. Also, if the size of the base chosen is small, the probability that the positions indexed

by this base do not have any error positions is high. Thus, the complexity of the attack increases with k, the

expectation of the length of the base.

Let EB denote the event that the algorithm chooses subsetB as a base for the group. Conditioned on the event

EB, an iteration of the algorithm succeeds if the sets R and B are disjoint. Because the set R is chosen uniformly

at random from {1,… , n},

Pr[Success|EB] ≥
(
n−|B|
r

)
(
n

r

) .

As this probability depends only on the size of B and not on the set B, we can obtain an expression for the

probability of an iteration of the algorithm succeeding:

Pr[Success] ≥
∑
k

Pr[Success‖B| = k] Pr[|B| = k] =
∑
k

(
n−k
r

)
(
n

r

) Pr[|B| = k].

12 — A. Srinivasan and A. Mahalanobis: A McEliece cryptosystem

Let kmax be the size of the irredundant base of largest size of H. As the Pr[Success|EB] decreases as the size
of the base increases, we can obtain the following lower bound on the probability of the algorithm succeeding:

Pr[Success] ≥

(
n−kmax

r

)
(
n

r

)

This is a Monte Carlo algorithm, which decodes correctly with probability Pr[Success], and otherwise

returns false. If we repeat the algorithm till it succeeds, we obtain a Las Vegas algorithm that always decodes

correctly but has a running time, which is a random variable with expectation 1∕Pr[Success]. It is also impor-
tant to note that as each iteration is independent, this attack can be effectively parallelized. Using the following

well-known formula for binomials, (
n

r

)
= Θ

(
2
H2

(
r

n

)
n
)

we can show that this algorithm has expected complexity

O
(
2𝛼(kmax,r)n

)
. (2)

□

The running time of this algorithm increases with both error rate and information rate. The value of kmax,

which is the size of the largest irredundant base ofH, is the analogue of the rank of the permutation codeH. For

example, it can be shown that the value of kmax for the symmetric group Sn acting on 2-subsets of [n] is n − 1

or n − 2, depending on the parity of n [19, Theorem 1.1]. The security level of a cryptosystem is measured from

the amount of computational resources needed to break it. A cryptosystem is said to be b-bit secure if it requires

2b operations to be broken. For asymmetric cryptosystems, this security level is upper bounded by the running

time of the best known attacks on them. Using the ISD attack, a necessary condition for our cryptosystem to have

b-bit security is 𝛼(kmax, r)n ≥ b. If we want a cryptosystem with b-bit security, we need to choose a permutation

code with the appropriate parameters.

So far, we have described a framework to develop cryptosystems using permutation codes and outlined

generic attacks on those cryptosystems, whose effectiveness depend on the parameters of the chosen permuta-

tion code H. Next, we attempt to use the permutation codes described in Section 2.2 in our cryptosystems.

3.3 Our cryptosystem using wreath product groups

The security and the performance of our cryptosystem depend on the choice of the group H and its decoding

algorithm. In this section,we explore using thewreath product groupswith the alternate decoding algorithmdis-

cussed in Section 2.3.We show that it canbemade resistant to information set decoding attacks using appropriate

parameters. However, the decoding algorithm can be modified to work in the conjugate group Ĥ as well, which

makes the cryptosystem insecure. Although this cryptosystem is insecure, it does provide a concrete example

of a permutation code with an efficient decoding algorithm, which cannot be efficiently attacked using the ISD

algorithm.

Let H be the wreath product group Cm ≀ Sn (more generally, we can take H to be a subgroup of Cm ≀ Sn with
suboptimal decoding). We consider the case of m = 5 for different values of n, for different probabilities of

correct decoding. Because the actual minimal degree of this group is 5, there will be cases in which the receiver

of the encrypted word cannot decode correctly and will receive a wrong word. In these cases, the receiver will

be able to tell that the decoding is wrong (possibly by using an appended hash function) and ask the sender to

resend the message. Consider the case for which the probability of correct decoding is 0.9 and 0.95. We find the

largest such value of r for which r errors are introduced and can be corrected for at least 0.9 or 0.95 fraction of

the cases for different values of n, and estimate the amount of computational resources required for an ISDbased

attack to break the cryptosystemby plugging in this value of r into Equation (2). Aswe can see, the computational

A. Srinivasan and A. Mahalanobis: A McEliece cryptosystem — 13

Figure 3: Security levels form = 5.

resources needed to break this cryptosystem are nontrivial and increase with n, although it is still not close to

commercial levels of security. We also repeat this exercise for the case of m = 7. For m = 7, we can attain

higher security levels for smaller values of n compared with m = 5. These results mean that, by increasing

m and n to an appropriate amount, we can reach commercial levels of security such as 128 or 256 bits. Our

analysis of larger values of m and n were limited by our computational resources, as our computer program

for calculating the proportion of error patterns that can be corrected involves iterating over integer partitions,

which is computationally intensive. Judging by the trend in the graphs, however, we can conclude that the values

of m and n can be appropriately increased to attain larger levels of security. For example, we can attain 128 bit

security using the algorithm 95 percent success rate with n = 1, 645, and with 95 percent success rate, we can

achieve the same with n = 1, 257 (Figures 3 and 4).

3.3.1 Attack using block systems

For a permutation group G acting onΩ, a complete block system is a partition ofΩ into disjoint sets B1,… ,Bk
called blocks, such that, if two points x and y are in a block, then for all permutations g ∈ G, x ⋅ g and y ⋅ g are
also in a block. It can be shown that every block in  have the same cardinality if G is transitive.

The first property of block systems that we shall prove is that conjugation preserves the block structure of

a permutation group.

Figure 4: Security levels form = 7.

14 — A. Srinivasan and A. Mahalanobis: A McEliece cryptosystem

Theorem 3.2. Consider a permutation group Gwith a block system = {B1,… ,Bk}. The conjugate permutation
group G′ = 𝜎−1G𝜎 has the block system ′ = {B1 ⋅ 𝜎,… ,Bk ⋅ 𝜎}.

Proof. Every permutation in G′ is of the form 𝜎−1g𝜎 where g is a member of G. Consider any two points x and y

in the set Bi ⋅ 𝜎. Then, x ⋅ 𝜎
−1g𝜎 = x′ ⋅ g𝜎 and y ⋅ 𝜎−1g𝜎 = y′ ⋅ g𝜎. As x′ and y′ are in the same block Bi, x

′ ⋅ g
and y′ ⋅ g are in the same block of , which means that x ⋅ 𝜎−1g𝜎 and y ⋅ 𝜎−1g𝜎 are in the same clock of ′ □

For the wreath product group Cm ≀ Sn acting onmn points, it is easy to see that the columns form amaximal

block system, with the group H acting on the blocks and the group Sn permuting them. The public key group

Ĥ = 𝜎−1H𝜎 has a corresponding block structure. First, we observe that the alternative decoding algorithm can

be modified for a more generic type of group with a block system, such that, the group acts regularly on each

block. Let ′ = {[m] × {1} ⋅ 𝜎, [m] × {2} ⋅ 𝜎,… , [m] × {n} ⋅ 𝜎} be the maximal block system of G′.

Input and output. For h ∈ H ⊆ Cm ≀ Sn. Let ĥ: [m] × [n]→ [m] × [n] be a function obtained by introducing

at most r errors to 𝜎−1h𝜎. The aim is to recover the permutation h (𝜎 and h are hidden).

Step 1: recovering the block system. The first step is to recover the block system ′ of the permutation

groupG′. There exist standard algorithms for this that run in linear time [1].We then compute a set of generators

for a subgroup of G′, which stabilizes this block system. This subgroup will act regularly on each block. We

call these regular subgroups H1,H2,… ,Hn (each of these are conjugate to Cm) and store their generators. An

element of a regular subgroup is uniquely determined just by its action on one point. This element can also be

computed using the Schreier–Sims algorithm, given the action on one point. We note that each element of Ĥ

can be described using the permutations h1,… , hn ∈ H′, where hi ∈ Hi and a permutation 𝜏 ∈ Sn. Thus, it is

enough to recover h1,… , hn and 𝜏 .

Step 2: Recovering 𝜏. For each i ∈ [n], let i ⋅ 𝜎 be the label of the block that themajority of elements within
the block Bi is moved to by ĥ. Thus, we have recovered the permutation 𝜏 .

Step 3: Recovering h1,… , hn. As noted above, for each Hi, an element in Hi can be recovered given just

the action on a single point. For every point in i, consider the action of ĥ on it. This way, we can recover m

permutations, and we set hi to be the majority value among all these permutations.

3.4 Our cryptosystem using the symmetric group acting on 2-subsets

We now examine the use of a group whose decoding algorithm will not work on its conjugates. Because of its

parameters, however, it can be trivially broken using ISD attacks.

Let G be the symmetric group Sm acting onΩ the set of all two subsets of {1,… ,m}. Let n = m(m−1)
2

and we

choose H to be a subgroup of G. However, H is also a subgroup of Sn. For that there is a relabeling of the two

subsets of {1, 2,… ,m} by elements of {1, 2,… , n}. This labeling is not publicly available. Thus publicly we see
H ≤ G ≤ Sn.

We use the decoding algorithm using the UBB described in Section 2.2.1. As H is a subgroup of G, the same

decoding algorithm can be used, although the decoding might be suboptimal because the minimal degree of H

might be greater thanG. Unlike the case of the alternative decoding algorithm for thewreath product groups, we

cannot easily construct a UBB for the conjugate group Ĥ ≤ Sn using the same techniques used to construct one

for G. To recall, the UBB is constructed using the Hamiltonian cycles of a complete graph. Now the conjugation

map is just relabeling. When this relabeling happens, the V-graphs changes arbitrarily making them not bases.

There seems to be no way of constructing a UBB without finding the conjugator. Furthermore, note that, since

H is a subgroup of G, there is insufficient information on the action of the G on the complete graph from which

the UBB is constructed.

3.4.1 Conjugator search attack

The next thing we attempt to do is attack the second security assumption. That is, we attempt to find a conju-

gator g and a subgroup H′ of Sn with an efficient decoding algorithm. We assume that these subgroups are all

A. Srinivasan and A. Mahalanobis: A McEliece cryptosystem — 15

subgroups of G, as we can employ the UBB algorithm for them. We do manage to come up with an attack, which

is better than a brute force search for g. To recall, we are given a sequence of generators {ĥi} for the group Ĥ.
We attempt to construct a set of generators for a subgroupH′ ofG and g ∈ Sn such that gĤg

−1 = H′. We provide

a sketch of the attack:

Conjugacy in Sn vs. Sm. Consider any element of Sm. Its cycle type in the permutation image acting on

2-subsets is entirely determined by its cycle type acting naturally.2 It is possible for two different cycle types

acting naturally to lead to the same cycle type acting on 2-sets. Two elements, which are conjugate in Sm, are also

conjugate in Sn, but two elements can be conjugate in Sn but not in Sm.

Determining cycle-type in Sm. Consider the elements h1 and ĥ1. The crucial thing to note is that it is enough

to find the cycle type of the pullback ĥ1 in Sm. This is because any element of the same cycle type of h1 is conjugate

to h1 in Sm, andwe can conjugate all the other generators also by the same element to obtain a different subgroup

H′ of Sm, which would also have an efficient decoding algorithm.

Searching in cosets of the centralizer. Let us say we find an element of Sm with the same cycle type as h1
(cycle type in Sn). The conjugator is unique up to a coset of the centralizer of ĥ1 in Sn. Among all the elements in

this coset, we need to find a conjugator that takes each ĥi into Sm. The only way to do that (to our knowledge)

would be by an exhaustive search. The bottleneck in the algorithm is this step. Finding g ∈ Sn that conjugates

an element a ∈ Sn to an element b ∈ Sn is not considered a difficult problem in practice and neither is comput-

ing the centralizer of an element as there are very effective backtracking methods to solve these problems [1,

Section 9.1.2]. Thus, taking g ∈ Sn does not help with the security of the cryptosystem.

3.4.2 ISD attacks

The size of a base for H is less than log2(m!) ≤ mlog2m. The number of bit operations required to break the

cryptosystem using information set decoding is less than

(
H2

(
m− 3

m(m− 1)∕2

)
−
(
1− m log2m

m(m− 1)∕2

)
H2

(
m− 3

m(m− 1)∕2−m log2m

))
m(m− 1)

2
,

which is upper bounded by a polynomial in m. Hence, we can use information set decoding to break this cryp-

tosystem in polynomial time. To demonstrate this more clearly, we plotted this as a function ofm (Figure 5), and

we can see that the security level of even 80-bits is not attainable for reasonable values ofm.

Figure 5: Security of cryptosystem using 2-sets.

2 We remind the reader that any permutation can be expressed as a product of different cycles, and this decomposition depends on

the action.

16 — A. Srinivasan and A. Mahalanobis: A McEliece cryptosystem

The key reason why the cryptosystem using this code is insecure is the parameters of the code. Both the rate

of the code and the correction capacity are too low. What we are aiming for is a code where the quantities k∕n
(on average) and r∕n are asymptotically constant, like the binary Goppa codes. This requirement is satisfied by
the wreath product groups using the alternative probabilistic decoding algorithm.

3.5 An enhanced McEliece cryptosystem

Permutation codes are permutation groups, which have less structure than linear codeswhich are vector spaces.

Linear codes can also be seen as permutation codes. Let q = pt where p is a prime and t a positive integer. A

linear code of block size n over the field 𝔽q is an additive subgroup of 𝔽 nq , and a permutation code of block size
n is a subgroup of Sn. We now enhance the classical McEliece cryptosystem over linear codes using permutation

codes. For this, we describe an embedding.

Embedding a linear code into the symmetric group.We start with a monomorphism from the abelian

group of 𝔽q to the symmetric group Stp where q = pt and p is a prime. The representation for 𝔽q is the poly-
nomial representation. This means that 𝔽q ≡ 𝔽 p[x]∕𝜙(x) where 𝜙(x) is an irreducible polynomial of degree

t. This says that every element of 𝔽q is a polynomial 𝛼0 + 𝛼1x + 𝛼2x
2 + · · · + 𝛼t−1x

t−1. Now, we fix t dis-

joint cycles c0, c1,… , ct−1 of length p in Spt and order them. One can choose c0 = (1, 2,… , p) as the first cycle,

c1 = (p + 1,… , 2p) as the second, and so on. Note that disjoint cycles commute. Now we define a map, which

we call the basis map, from the additive group of 𝔽q to Spt:

0 ↦ (), 𝛼0 ↦ c
𝛼0

0
and 𝛼ix

i ↦ c
𝛼i

i
for i = {1, 2,… , t − 1}.

Thus, 𝛼0 + 𝛼1x + 𝛼2x
2 + · · · + 𝛼t−1x

t−1 ↦ c
𝛼0

0
c
𝛼1

1
… c

𝛼t−1
t−1 . It is easy to check that this map is an embedding

– a monomorphism. Note that the map depends on the choice of the cycles. Now if we have a vector space V of

dimension n over the field 𝔽q, corresponding to a fixed ordered basis  of V , every element of V is a vector of

size n over 𝔽q – the coordinate vector. These coordinate vectors depend on the fixed ordered basis of the vector
space. Then, the embedding of this vector space in the symmetric group Sn

pt
is done in the obvious way. A vector

in V = ⟨𝑣1,… , 𝑣n⟩, where the basis is  = (𝑣1,… , 𝑣n), is of the form 𝜈1𝑣1 + · · · + 𝜈n𝑣n where 𝜈i are field

elements – the coordinates. Then, 𝑣 corresponds to the ordered tuple (𝜈1,… , 𝜈n) of field elements. This ordered

tuple is thenmapped to an ordered tuple (𝜈1,… , 𝜈n) in S
n
pt
a direct product of n copies of Spt in the obvious way,

using the basis map already defined. This embedding respects addition in the field and then in the vector space.

It also respects scalar multiplication as long as the scalar is in the prime subfield. Thus, a linear code S being a

subspace of the vector space V can be embedded as an elementary abelian subgroup of the symmetric group

– a permutation group.

Let S = ⟨s1, s2,… , sd⟩ be a d-dimensional subspace of a n-dimensional vector spaceV , which is a codewith a
good decoding algorithm. This code has a d × n generator matrix. This basis matrix depends on a fixed ordered

basis  of V . One can define a classical McEliece cryptosystem based on this code S. As in a McEliece cryp-

tosystem, we define the public key as S′ = ASP where A and P are the scrambler and permutation matrices,

respectively. Now S′ is also a d × n matrix over 𝔽q. One can use the basis map defined earlier to transfer this

matrix to a matrix S1 over Spt. Here, S1 is constructed by taking the embedding of each element in S′. Then,

each element of S1 is conjugated by g an element of the symmetric group Spt and denoted by S1 as well. Thus,

S1 = g−1S1g. Recall that this conjugation is just a relabeling of the permutations.

In this enhanced McEliece cryptosystem, the public key is the rows of the matrix S1. The whole structure of

the classical McEliece cryptosystem S and S′ is secret and so is the basis map and the conjugator g. The plaintext

is [a1,… , an] where each ai is in the 𝔽 p the prime subfield of 𝔽q. Then, one computes a =
∏n

i=1(S1[i])
ai where

S1[i] is the ith row of S1. Then, we introduce errors in a. This is the ciphertext.

On receiving the ciphertext, use the conjugator g to restore the original labeling. Then, one decomposes it

as product of cycles. Then, one computes most of the ai from the exponent. Then that gives rise to a vector of

length n over 𝔽q via the embedding. Assume that this is the ciphertext for the classical McEliece cryptosystem.
Decrypt it using the classical McEliece cryptosystem. We will get the plaintext [a1,… , an] back.

A. Srinivasan and A. Mahalanobis: A McEliece cryptosystem — 17

There are few things to note. First, since the basis map is a secret, it enhances the classical McEliece cryp-

tosystem. Thus, one might be able to use linear codes for the enhanced McEliece cryptosystem that is otherwise

not secure. When it comes to cycles, computing the exponent has a lot of redundancy. Say, in a cycle after intro-

ducing errors, there is one point that gets repeated. Then, we can simply ignore the repeated points and compute

the exponent. It is the action on one point that determines the exponent, when it comes to a cycle. Furthermore,

a field element now has a permutation representation. Based on this representation, we might be able to intro-

duce much more errors than is possible to fix for a permutation error correcting code. This topic, what is the

right way to introduce errors and howmany errors we can introduce, is left unsettled in this paper. Lastly, there

is no need for thematrix S′. One can just move from S to S1 directly without using S
′. In this case, use a scrambler

matrix over the prime subfield. Then, the extra step in decoding can be avoided.

Assume now there is a classical McEliece cryptosystem over linear codes that is secure. Then, for a suitable

ciphertext of the originalMcEliece cryptosystem, one canmap it to S1 by the basismap. If the original plaintext is

recovered from the ciphertext in the permutation setting, then that breaks the original McEliece cryptosystem.

Note, we assume that the basis map is known in this case. The McEliece cryptosystem using Goppa codes has

been remarkably resilient to both classical and quantum attacks. However, this McEliece cryptosystem is an

enhanced version of the classical McEliece cryptosystem. It might be secure for other linear codes on which the

original McEliece cryptosystem is not secure. Thus, this enhancement is bit more than a mere academic interest

and deserves further study. However, at our present state of knowledge, it provides no respite from large key

sizes that plagues the original McEliece cryptosystem.

3.6 Why use permutation codes?

So far, we have described a framework for using permutation codes in public-key cryptography and explored

this framework using two particular permutation codes. The cryptosystem using wreath product groups can be

made resistant to ISD attacks, but its decoding algorithm can be adapted for use in any of its conjugates too,

which makes it unsuitable. On the other hand, for the symmetric group acting on 2-sets, the decoding algorithm

cannot be modified for use in its conjugates, nor can the conjugator be uncovered easily from H and Ĥ. This

is because the decoding algorithm depends on some very specific graph theoretical properties of the complete

graph, and the conjugates of H cannot be modeled as the symmetric group acting on a complete graph. The

parameters of this code mean that any cryptosystem using this is susceptible to ISD attacks. The question is,

can we come up with a permutation code with parameters that make it resistant to ISD attacks and a decoding

algorithm that cannot be modified for its conjugates? Our cryptosystem using such a permutation code would

be secure against both kinds of attacks demonstrated earlier.

Permutation groups differ from vector spaces in their noncommutativity, and it is an interesting question

to ask if this would lead to any significant improvements in key size, speed, etc. over traditional linear code

based cryptosystems. For example, a rank k subspace of 𝔽 n
q
needs k basis vectors to describe, each of length

n. On the contrary, very large permutation groups can be generated by a very small number of generators [2,

Theorem 1.13]. For example, the symmetric group can be generated by two of its elements (the transposition (1,

2) and the cycle (1, 2,… , n)). This is a characteristic shared by many nonabelian permutation groups. Thus, a

cryptosystem using permutation codes can potentially achieve a quadratic reduction in key size compared to

its linear code counterparts for the same level of security! A linear code based cryptosystem using a code of

length n over 𝔽q would require a key of O(n2) as one of the components of the public key is a k × n matrix.

By contrast, consider a permutation group of comparable size that is a subgroup of Sn, which can be generated

using just two generators. The space needed to store these generators would be just O(n). One of the common

complaints against the McEliece cryptosystem is its very large key size. So, this would be a direction of research

worth pursuing.

Funding Information: AM was partially supported by an NBHM research grant and AS was supported by a

INSPIRE fellowship. Both these fundings were from the Govt. of India.

Author contribution: Both authors contributed equally and approve the final version of the manuscript.

Conflict of Interest: Both authors report no conflict of interest.

18 — A. Srinivasan and A. Mahalanobis: A McEliece cryptosystem

Acknowledgments: This paper was part of the first author’s Master’s thesis at IISER Pune. Both authors thank

Upendra Kapshikar for stimulating discussions. Both anonymous referees deserve a special mention for their

detailed report, which has benefited this manuscript immensely. We used GAP [20] for our computations.

References

1. Seress Á. Cambridge tracts in mathematics. In: Permutation group algorithms. Cambridge: Cambridge University Press; 2003.

2. Cameron PJ. London mathematical society student texts. In: Permutation groups. Cambridge: Cambridge University Press; 1999.

3. Bailey RF. Error-correcting codes from permutation groups. Discret Math 2009;309:4253−65..
4. Bailey RF. Uncoverings-by-bases for base-transitive permutation groups. Des Codes Cryptogr 2006;41:153−76..
5. Bailey RF. Permutation groups, error-correcting codes and uncoverings [Ph.D. thesis]. University of London; 2006.

6. Blake I. Permutation codes for discrete channels. IEEE Trans Inf Theor 1974;20:138−40..
7. Blake IF, Cohen G, Deza M. Coding with permutations. Inf Control 1979;43:1−19..
8. Buchheim C, Cameron PJ, Wu T. On the subgroup distance problem. Discret Math 2009;309:962−8..
9. Weger V, Gassner N, Rosenthal J. A survey on code-based cryptography. [Online]; 2022. Available from: https://arxiv.org/abs/2201

.07119.

10. Macwilliams J. Permutation decoding of systematic codes. The Bell Syst Tech J 1964;43:485−505..
11. Alspach B. The wonderful Walecki construction. Bull Inst Comb Appl 2008;52.

12. Bailey RF, Prellberg T. Decoding generalised hyperoctahedral groups and asymptotic analysis of correctible error patterns. Contrib

Discrete Math 2012;7. https://doi.org/10.55016/ojs/cdm.v7i1.62080.

13. McEliece RJ. A public-key cryptosystem based on algebraic coding theory. In: The deep space network progress report, DSN PR

42−44; 1978:114−16 pp.
14. Niederreiter H. Knapsack-type cryptosystems and algebraic coding theory. Probl Control Inf Theor 1986;15:159−66.
15. Farahat HK. The symmetric group as a metric space. J Lond Math Soc 1960;35:215−20.
16. Prange E. The use of information sets in decoding cyclic codes. IEEE Trans Inf Theor 1962;8:5−9..
17. Peters C. Information-set decoding for linear codes over 𝔽q. In: International workshop on post-quantum cryptography. Springer;

2010:81−94 pp.
18. Bernstein DJ, Lange T, Peters C. Attacking and defending the McEliece cryptosystem. In: International workshop on post-quantum

cryptography. Springer; 2008:31−46 pp.
19. Gill N, Lodà B. Statistics for Sn acting on k-sets. J Algebra 2022;607:286−99.
20. The GAP Group. GAP − groups, algorithms, and programming, version 4.11.0; 2020. Available from: https://www.gap-system.org/.

https://arxiv.org/abs/2201.07119
https://arxiv.org/abs/2201.07119
https://doi.org/10.55016/ojs/cdm.v7i1.62080
https://www.gap-system.org/

	1 Introduction
	2 Permutation error-correcting codes
	2.1 A decoding algorithm using uncovering-by-bases
	2.2 Some constructions of uncoverings-by-bases
	2.2.1 Symmetric group acting on 2-sets
	2.2.2 Wreath product of regular groups

	2.3 An alternative decoding algorithm for wreath product
	2.3.1 Decoding more than r errors

	3 A cryptosystem on permutation error-correcting codes
	3.1 A McEliece cryptosystem using permutation codes
	3.2 The security of our cryptosystem
	3.2.1 Security assumptions
	3.2.2 Brute force attacks
	3.2.3 Information set decoding

	3.3 Our cryptosystem using wreath product groups
	3.3.1 Attack using block systems

	3.4 Our cryptosystem using the symmetric group acting on 2-subsets
	3.4.1 Conjugator search attack
	3.4.2 ISD attacks

	3.5 An enhanced McEliece cryptosystem
	3.6 Why use permutation codes?

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Euroscale Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1000
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.10000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /DEU <FEFF00280073006500650020006700650072006d0061006e002000620065006c006f00770029000d005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f002000700072006f006400750063006500200063006f006e00740065006e00740020007000720069006e00740069006e0067002000660069006c006500730020006100630063006f007200640069006e006700200074006f002000740068006500200064006100740061002000640065006c0069007600650072007900200072006500710075006900720065006d0065006e007400730020006f00660020004400650020004700720075007900740065007200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e002900200044006100740065003a002000300033002f00300031002f0032003000310035002e0020005400720061006e00730070006100720065006e0063006900650073002000610072006500200072006500640075006300650064002c002000520047004200200069006d0061006700650073002000610072006500200063006f006e00760065007200740065006400200069006e0074006f002000490053004f00200043006f0061007400650064002000760032002e002000410020005000440046002f0058002d0031006100200069007300200063007200650061007400650064002e000d005f000d000d00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e002c00200075006d00200044007200750063006b0076006f0072006c006100670065006e0020006600fc0072002000640065006e00200049006e00680061006c0074002000670065006d00e400df002000640065006e00200044006100740065006e0061006e006c006900650066006500720075006e0067007300620065007300740069006d006d0075006e00670065006e00200076006f006e0020004400450020004700520055005900540045005200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e00290020005300740061006e0064003a002000300031002e00300033002e00320030003100350020007a0075002000650072007a0065007500670065006e002e0020005400720061006e00730070006100720065006e007a0065006e002000770065007200640065006e00200072006500640075007a0069006500720074002c0020005200470042002d00420069006c006400650072002000770065007200640065006e00200069006e002000490053004f00200043006f00610074006500640020007600320020006b006f006e00760065007200740069006500720074002e00200045007300200077006900720064002000650069006e00650020005000440046002f0058002d00310061002000650072007a0065007500670074002e>
 /ENU ()
 /ENN ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (ISO Coated v2 \(ECI\))
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 8.503940
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

