DE GRUYTER Journal of Mathematical Cryptology 2025; 19(1): 20240026 a

Research Article

Roberto La Scala* and Alessio Meneghetti
Inner product functional encryption based on
the UOV scheme

https://doi.org/10.1515/jmc-2024-0026
Received June 20, 2024; accepted September 12, 2025; published online November 21, 2025

Abstract: We analyze the efficiency and security of the inner product functional encryption (IPFE) protocol
introduced in 2021 by Debnath, Mesnager, Dey, and Kundu, specifically when instantiated with UOV. While the
scheme offers several advantages, including improvements in key generation and encryption/decryption algo-
rithms, along with compact key sizes, the decryption algorithm remains exponential in complexity with respect
to the security parameter. To address this limitation, we propose a variant aimed at reducing the decryption
cost. However, this alternative remains impractical at present due to the resulting large ciphertext size.

Keywords: multivariate cryptography; functional encryption; finite fields

MSC 2020: 94A60; 11T06; 11T71

1 Introduction

In recent years, with the progressive improvement in the speed and reliability of data networks, we have wit-
nessed a growing diffusion of “cloud computing”. This practice involves entrusting storage functions, software
applications, and computation to powerful remote servers capable of meeting the needs of millions or even bil-
lions of users. In this context, ensuring the confidentiality of individual user data is of fundamental importance,
making the use of specific cryptographic tools indispensable. To allow providers to deliver services through data
processing while preserving confidentiality, the paradigms that are emerging as particularly promising are func-
tional encryption [1, 2] and homomorphic encryption [3], briefly FE and HE. These approaches pursue distinct
objectives: in HE, the value of functions applied to plaintext data is calculated as a function of the encrypted
data and returned to the owner in encrypted form. Only the data owner has the capability to use it, unless they
decide to share it with the provider through an additional encryption system. Conversely, in FE, by using spe-
cific “functional keys” the provider can directly compute the value of the required functions on plaintext data
starting from encrypted data, which are never fully decrypted. These features allow the provider to deliver
services to users without requiring further actions from them, except for distributing the necessary functional
keys.

*Corresponding author: Roberto La Scala, Dipartimento di Matematica, Universita degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125,
Bari, Italy, E-mail: roberto.lascala@uniba.it

Alessio Meneghetti, Dipartimento di Matematica, Universita degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125, Bari, Italy,

E-mail: alessio.meneghetti@uniba.it

3 Open Access. © 2025 the author(s), published by De Gruyter. (T2 This work is licensed under the Creative Commons Attribution 4.0 International
License.

https://doi.org/10.1515/jmc-2024-0026
mailto:roberto.lascala@uniba.it
mailto:alessio.meneghetti@uniba.it

2 = R.laScalaand A. Meneghetti: Inner product functional encryption DE GRUYTER

To illustrate the paradigm of functional encryption, we provide a couple of examples of its applications.
Consider a hospital that records the medical data of its patients. For research purposes, it could be useful to
perform data analysis on these records. Using FE, the hospital can delegate the storage of the records to a cloud
service without compromising their confidentiality because the data are encrypted before being sent to the
server. At the same time, the hospital can distribute functional keys to researchers, enabling them to conduct
medical statistical analyses on the records stored in the cloud for purposes such as evaluating a therapy, without
accessing the actual content of the records.

Another common application of FE is performing machine learning on encrypted data while ensuring
confidentiality. Specifically, after training a classifier on standard data, the data owner can generate specific func-
tional keys for the functions required by the classifier. In other words, the classifier can perform classification
on encrypted data without knowing its plaintext content.

If such computations require knowledge of linear functions of the plaintext data, we refer to the FE scheme
as an inner product functional encryption, briefly IPFE, protocol. Some examples of inner products widely used
in data analysis are the expected value and the convolution product. Recently, in [4], the authors introduced
an IPFE protocol based on multivariate cryptography. We recall that this type of post-quantum cryptographic
primitives achieves security through the challenge of computing preimages of generic quadratic polynomial
maps F: F" — F™ where [is a finite field. These primitives are typically digital signatures where signing a vector
v € F™ corresponds to compute a preimage u € F~!(v) C F. The signer holds a secret that allows for efficient
computation of such a preimage.

In the present paper, we discuss the possibility of designing multivariate IPFE schemes. We start by dis-
cussing the efficiency and security of the IPFE protocol in [4] modified by leveraging the UOV digital signature
[5-8]. In this version of the protocol, the property that the quadratic map F: F" — F™ is an “oil-vinegar map”
corresponds to the existence of a secret vector subspace O C F~1(0). Using this subspace one can obtain ele-
ments in the preimages of F without the need for any linear change of coordinates. If otherwise the subspace
O is unknown, an opponent faces a problem currently considered indistinguishable from the NP-hard problem
of solving a quadratic polynomial system over a finite field. For a recent paper on solving polynomial systems
over finite fields, see for instance [9].

Our analysis of the IPFE scheme reveals that the protocol’s decryption algorithm incurs a computational cost
exponential in the scheme’s parameters. To address this inefficiency, we propose a variant aimed at mitigating
the issue. However, it appears that circumventing the exponential decryption cost necessitates an increase in
ciphertext size, which once again leads to inefficiency. The challenge of developing a practical multivariate IPFE
scheme remains an open problem and requires further investigation.

2 Oil-vinegar maps

We start presenting the modern concept of an oil-vinegar map and its corresponding algorithms for the UOV
digital signature. References include [5-7].

Let F be a finite field and denote by S = F[x, ..., x,] the algebra of the polynomials with coefficients in the
field F and variables x,, ..., x,. For all 1 < k < m, let f, € S be a quadratic form, that is, a homogeneous poly-
nomial of degree 2. Let F = (f}, ..., f,,) € S™. By abuse of notation, we also denote by F: F* — F™ the quadratic
map such that, forall v = (vy, ..., v,) € F"

F(v) = (fi(0), ..., fn(0)).

Note that each quadratic form f; (1 < k < m) corresponds to a matrix 4; = <A;(’> € M, (F) such that, if x =
(xy, ..., X,) € S™ then

fi(x) =xAx" €S.
To avoid issues arising from the characteristic of the field F, we make the assumption that all the matrices 4,
are upper triangular, that is, A;’ = 0 whenever i > j. We have hence that

DE GRUYTER R. La Scala and A. Meneghetti: Inner product functional encryption == 3

fi= ZAZXin'

i<j

Consider another variable set {y,,...,y,} which is disjoint from the set {xi,...,x,} and
let S =FIx,, ..., Xy Y15 .- » Y,l. The polar form of the quadratic form f, is by definition the bilinear form

fr6y) = filk+y) — fix) — fiy) €.

In matrix terms, we have that
F1r06y) = xAY" + yAx" = x(A, + A])y"

that is

Fo_ ij Jt

fi= Z (Ak +A,)x,yj.

ij

Note that4; + A]f is a symmetric matrix with elements along the main diagonal that are divisible by 2. Hence, the
monomials x;y; (1 < i < n)will not appear in the polar forms f, whenever char(F) = 2.We callF = (f,, ..., f,) €
S™ the polar map of the quadratic map F = (f;, ... , f,,) € S. By abuse of notation, we denote by F: F" X F" — F™
the bilinear map such that, for all u, v € F"

F(u,v) = (F,(u,), ..., fru(u, 0)).

Let F = GF(q) be the finite field with g elements and consider the ideal E = (x{ — x;, ..., X§ — X;) C S.
If J C Sis an ideal and F is the algebraic closure of the field F, we denote

V()={veF"| f(v)=0forall fe]}

and Vi(J) = V(J) N F". The Nullstellensatz over finite fields [10] implies the following result.

Proposition 2.1. Let | C S be an ideal. We have V(E) = F" and Vi(J) = V(J + E) where] + E is a radical ideal of
S.

Definition 2.2. Let F = (f}, ..., f,,) be a quadratic map and consider the corresponding ideal I = (f3, ..., f)-
We call F an oil-vinegar map if there exists a vector subspace 0 # O C F" such that O C V(I;) = F~1(0). We call
O the oil subspace and r = dim O the oil dimension of F.

Let l,...,l,_, € S be linear forms and put L = (,, ..., 1,_,) € S"". By abuse of notation, we also denote
L:F" — F*" the corresponding linear map. If O = V.(I;) whereI; = (l;,...,1,_,), thentheinclusion O C V(I)
is equivalent to the inclusion

I CI,+E
due to the factthat I + E, I, + E areradical ideals. By assuming that the linear forms [, are linearly independent
we have that r = dim;O.

Observe that the condition I C I; + E is equivalent to require that each quadratic form f; (1 < i < m) can
be written in the form

1<j<n—-r

where g;; € S are linear forms.

3 Preimages of oil-vinegar maps

The computation of a preimage of a quadratic map is generally a difficult task because it corresponds to solve
a quadratic polynomial system over a finite field. Indeed, it is well-know that the solution to such a general

4 = R LaScalaandA. Meneghetti: Inner product functional encryption DE GRUYTER

problem is NP-hard [11]. We show now that computing a preimage of an oil-vinegar map becomes efficient once
the oil-subspace is known.

Letw = (wy, ..., w,) € F". I F =(f}, ..., f,) is a quadratic map, computing v = (vy, ..., v,) € F" such
that F(v) = w is equivalent to solve, over the base field F, the following system of quadratic equations

[=wy,

£ 00 = Wy

In other words, the vector v is a preimage of w under the map F. We denote this by writing v € F~!(w). Assume
now that F is an oil-vinegar map and we have knowledge of its oil subspace O C Vi(I;) = F -1(0). In particular,
let 0 = Vi(I;) = L71(0) where L = (!, ..., ,_,) and [, € S are linear independent linear forms. Fix a random
vector u € F*. If o € O and hence F(0) = 0, then

w = F(u+ 0) = F(u) + F(0) + F(u,0) = F(u) + F(u, 0).

To compute a preimage v = u + o0 € F~'(w) it is sufficient therefore to solve the system of linear equations
L(x) = 0, F(u, x) = w — F(u) which is explicitly

L) =0,

] b0 =0,
filw, x) =w, — f,(w),

Fnu, x) - Wy — frn(W0).

Note that if m = r we have a system of n linear equations in exactly n variables. In this case, the matrix of
its coefficients has no maximal rank (determinant is zero) with probability 1/q. If we do not obtain maximal
rank, it is sufficient to choose a new random vector u € F". Moreover, by assuming that the equations f;(x) =
Wy, ..., [0 = w,, are sufficiently generic (complete intersection), one has that the preimage F~!(w) C F" is
an affine variety of dimension n — m.

The signing algorithm of the UOV protocol corresponding to the oil-vinegar map F: F* — F™is, by definition,
the computation of a preimage v € F~(w) C F" for a document w € F™. More precisely, the vector w is gener-
ally the hash value of a document, so the parameter m is fixed and not very large. The cryptanalysis of the UOV
protocol [12] implies that the condition n > 2m is necessary to achieve a secure signature. As we have just seen,
an efficient signing algorithm is made possible by the knowledge of the oil subspace O C F~1(0). The verification
of the signature v simply consists in checking that F(v) = w which involves the cost of evaluating the quadratic
map F. Therefore, the public key of UOV is the map F and the private key is the pair (F, 0).

4 Generation of oil-vinegar maps

We address now the task of the key generation in the UOV protocol, that is, how to construct an oil-vinegar
map F = (f}, ..., f,,) from any subspace O C F" of dimension r. Up to permutating the coordinates of the vector
space ", we can assume that O is the subspace generated by the rows of a block matrix (H I) € M,,(F) where
H € M,,,_,(F)is any matrix and I € GL,.(F) is the identity matrix. Consider the upper triangular matrices 4; €
M, (F) corresponding to each quadratic form f;, (1 < k < m), thatis

filx) = xAxT.

We consider A4, as a block upper triangular matrix of type

DE GRUYTER R. La Scala and A. Meneghetti: Inner product functional encryption == 5

' "

A, = Ak Ak

k= "
0 Ay

where A € M,_,(F), A} € M,_,,(F),A/"” € M,(F) and A}, A" are upper triangular matrices. To enforce O C
F~Y(0), or equivalently F(0) = {0}, corresponds to impose, for each 1 < k < m, the following matrix equations

(H DA(H DT = 0.
From the above equations, one obtains that
T —
HA,’(H +HA,’(’ +A,’(” =0

and hence
n _ " ! T
A" =—-HA/ —HAH".

In other words, by arbitrarily assigning the matrix H that defines the oil subspace O C F" and arbitrarily choos-
ing the matrices A}, A}/ (1 < k < m), itis always possible to define the matrices A}” (1 < k < m) in such away that
the quadraticmap F = (f, ..., f;;) corresponding to the block upper triangular matrices 4,, ... ,4,, € M, (F) sat-
isfies O C F~!(0). It is worth noting that the random matrix A;{ € M,_,(F) can be directly generated as an upper
triangular matrix, whereas the matrix Af{’ " € M,(F) is defined as the upper triangular matrix that yields the
same quadratic form as the matrix —~HA) — HA,H'.

5 Efficient secret key and signature for UOV

In order to reduce the key sizes and make the signing process more efficient in UOV, we observe the following.
Assume as before that the oil subspace O C F" is the subspace generated by the rows of a block matrix (H I) €
M,,,(F) where I is the identity matrix of order r. Under this assumption, note that the last r entries of a vector
0’ € O can be arbitrarily chosen.

Let w € F™and u € F". We have shown that the knowledge of the oil subspace O implies that a vector u + o
(0 € 0) such that F(u + 0) = w can be computed by solving a system of linear equations. Let now o’ € O. Note
that if o € O is such that L(0o) = 0, F(u + 0) = w, then 0 — o’ € O clearly satisfies L(o — 0’) = 0, F(u+ 0o’ + (0 —
0")) = w. In other words, the computation of a preimage in F~(w) can be obtained in the same way if we replace
the arbitrary vector u € F" with a vector of the form u + o’ where o’ € O.

Due to the assumption that a basis of the oil subspace O is provided by the rows of a block matrix of type
(H D), replacing u with u + o’ offers the advantage that one can require that the last r entries of the vector o’
are precisely the opposite of the corresponding entries of the vector u. In other words, we can assume that the
vector u + o’ has its last r coordinates all equal to zero.

Letu = (v 0) € F* with v’ € F"". Recall that f,(x) = xA,xT (1 < k < m) where

’ "

A = Ak Ak
k— 0o A"
k

with A} € M,_,(F), A €M (F), A} € M,(F). We have therefore that

n—rxr
— T
firw) = u'Au".

Moreover, recall that £, (x, y) = x(Ak + Alf) yT. Since we are assuming that O admits as a basis the row vectors of

a block matrix of the form (H I), any vector o € O can be obtained as 0 = ¢(HI) = (cH ¢) wherec = (¢, ..., ¢,) €
F". By computing f,(u, 0) one obtains hence

6 = R.LlaScalaandA. Meneghetti: Inner product functional encryption DE GRUYTER

. A+ AT A}
frlwoy =@ of X o |eH o
Al A+ A

=u'((A +AT)H" + A"

By putting
Co= (A, + A)H" + A € M, (F)
we finally obtain that
felu,0) = u'C,ct.
Once a vector u = (v’ 0) € F" is fixed, we recall that the UOV signature of w = (wy, ..., w,,) € F™ consists in

solving the following system of linear equations

fitw,0) = w; — fi(w),

fu(t, 0) = wy, — fr(w)

where the vector o € O is unknown. Since such a vector is parametrized by a vector ¢ € F', once the matrices
(A;, G, ..., AL, Cm) along with the matrix H are stored as the secret key, the signing process involves solving the
corresponding linear system, namely

ue el =w, —u AU,

W Cpc" = w,, —uA u'"

where the vector ¢ € F" is the unknown. After computing ¢, we put o = c¢(H I) and the signature is defined as
the preimage v = u+ 0 € F ' (w).

6 Formal description of UOV algorithms

Henceforth, we assume that m = r = dim;0 and n > 2m. Note that in order to set and decrease the value of the
parameter m, the vector w € F™ typically represents a hash value of the message to be signed.

Algorithm 6.1 Key generation for UOV

Input: n,m > 0 integers.

Output: the key pair (sk, pk).
1: choose at random a matrix H € M, xn—m (F);
2: for k=1 tom do

3: choose at random an upper triangular matrix A} € M,,_, (F);

4 choose at random a matrix A} € M,,_p,xm (F);

5: A}’ := the upper triangular matrix defining the same quadratic form
6 of the matrix —HA} — HA, . HT € M,,(F);

A/ A//
7: A = k k);
g < 0 Ay

8: Cr = (A, + ADYHT + Al;
9: end for;
10: sk := (A},C4,..., A, Cp, H);

11: pk = (A17 ceey Am)7
12: return (sk, pk);

DE GRUYTER R. La Scala and A. Meneghetti: Inner product functional encryption === 7

Algorithm 6.2 Generation of the UOV signature

Input: the secret key sk and a vector w € F™.
Output: the signature v € F" of w.

1: (A}, Ch, .. AL Cry H) = sk;

2: flag := true;

3: while flag = true do

4: choose at random a vector v = (u/,0) € F” where v’ € F"~™.
5: b= (AT, u AL u'T);

6: A := the matrix with rows v/C1,...,u'C,,;
7 if Ac’ = w — b has a solution ¢ € F™ then
8: flag := false;

9: end if;
10: end while
11: 0:=c(H I);
12: v :=u + o;
13: return v;

Algorithm 6.3 Verification of the UOV signature

Input: the public key pk and the vectors v € F", w € F™.
Output: true or false.

1 (Ay,..., An) = pk;

2. w' = (AT, vAT);

3: return the boolean value of w = w’;

7 Key sizes in the UOV scheme

The public key of UOV is given by an oil-vinegar map F:F" — F™, that is, by m upper triangular matrices
Ay, ..., A, € M, (F). Since each element of the finite field F = GF(q) is represented by [log,(¢q)] bits, it follows

that the size of the public key is
nn+1)
2

size(pk) =m [log,(q)].

Recall that the matrices A (1 < k < m) are block matrices of the form

(3 5)
0 A

where A}, A)/ are random matrices and A;” is determined by these matrices along with the oil subspace O C F"
(dimzO = m). By generating the matrices A’ ,A;’ (1 < k < m) using a pseudorandom number generator initial-
ized with a public seed, we have that for the public key pk = (4,, ..., 4,,) we only need to store the upper
triangular matrices A;"” € M,,(F) (1 < k < m) in addition to the public seed. We conclude that the size of the
compact public key is

m2(m+1)

size(pkc) = 5

[10g2(q)] + |Seedpub|-

For the secret key, we need to store the matrix H € M,,;,_,(F) such that the rows of the block matrix
(H I) € M,,,,(F) are a basis of the oil subspace. In addition to the matrix H, the UOV signing process requires
the upper triangular matrices A; € M,,_,,(F) alongside the matrices C;, € Mj,_(F), forallk = 1,2, ..., m. The

8 = R.laScalaandA. Meneghetti: Inner product functional encryption DE GRUYTER

total size of the secret key is hence

m—mn-m+1)
2

size(sk) = <m(n —m)+m +mi(n— m)> [log,(q)]

_ mn+m+3)(n—
2

™ [1og,(q)].

Aswith the public key, we can avoid storing the random matrices A;{ (1 < k < m) and H by using a pseudorandom
number generator initialized with the public seed used for the public key, along with an additional secret seed.
We conclude that the size of the compact secret key is

size(skc) = m*(n — m)[logy(q)] + |seed,y, | + |seede|.

Note that by including the computation of the matrices C, = (4} + A;")H" + A}/ in the UOV signing algorithm,
then the size of the compact secret key can be further reduced to

|seed,,,p| + [seedge|-

In this case, however, the signing process would result in less efficiency.

The size of the UOV signatures is clearly n[log,(q)]. If the vector w € F™ for which we compute a preimage
v € F~Y(w) is a hash of the message to be signed and the hashing process includes a random number salt, then
the size of the signature is precisely

size(sign) = n[log,(q)] + |salt|.

8 Functional encryption

In this section, we briefly recall the formal notion of Functional Encryption. Let X be the set of plaintexts and Y be
the set of ciphertexts. Denote by K the set of functional keys and by V the set of functional values. Then, a function
F:K X X — V is given. We also introduce a set K, of the secret keys, a set K, of the public keys and finally a
set K, of the user secret keys. Then, we have a function keygen: K X K. — K, that is, for any functional key
k € K and for each secret key sk € K., we have a user secret key usk, = keygen(k, sk) € K. For any public
key pk € K, there is a functional encryption mapping enc,;: X — Y. For each user secret key usk,, we have a
functional decryption mapping dec,q :Y — V such that if y = enc, (x), then dec,q () = F(k, X).

In practice, the secret key sk and the public key pk are owned by a Master user, a central authority, who
distributes pk to Alice to enable them to functionally encrypt the plaintext x, that is, to compute y = enc,, (x).
If Bob is a user corresponding to the functional key k, then the Master distributes to Bob the user secret key
usk,. = keygen(k, sk). With this key, Bob can decrypt the functional value dec,q (y) = F(k, x) of the plaintext
belonging to Alice.

In addition to these algorithms, a protocol of functional encryption, briefly FE, involves a setup function
such that for each value of appropriate parameters, it returns a pair (sk, pk) chosen arbitrarily from those
satisfying the required parameters. It is assumed that all functions of an FE protocol can be computed efficiently.

If K =X =FYand V = F where F is a finite field, we have an inner product functional encryption, briefly
IPFE, if F(k,x) = (k,x) = Y ,;kx; € Vwhere k = (k, ..., k) € Kand x = (x;, ..., X) € X.

9 An IPFE protocol based on the UOV scheme

In this section we introduce an IPFE protocol that leverages modern UOV algorithms, inspired by the protocol
introduced by Debnath, Mesnager, Dey and Kundu in [4] (See Algorithms 9.1, 9.2, 9.3, and 9.4). As previously
explained for general IPFE schemes, the set of plaintexts and the set of functional keys coincide with a vector
space [F? over a finite field . The set of functional values is thus F.

DE GRUYTER R. La Scala and A. Meneghetti: Inner product functional encryption == 9

Let {t,...,t;} and {xy, ..., X, } be two disjoint sets of variables and consider the polynomial algebras R =
Flt;,...,t;l and S = Flxy, ..., x,]. We put

P=RIX,....x] =Flty,tz Xq5 ..., Xp].

Moreover, let K = F(t,, ..., t;) denote the field of rational functions corresponding to R = F[¢,, ... , t;]. We con-
sider m quadratic forms in the variables xi, ... , x,, whose coefficients are polynomials in the variables t;, ... , t;.
Precisely, if we put t = (¢, ..., t;) € R?and x = (x,, ..., x,) € S", for each 1 < k < m we define

P00 =xAWx" € P

where A(t), = (A(t)j{j) € M, (R) is an upper triangular matrix. By evaluating the variable vector t = (¢, ..., t,)
atavectora = (ay,...,a,) € F4, we obtaina quadratic form f,f“) € Sassociated with the matrix A(a), € M,(F),
which in turn is obtained by evaluating the matrix A(t),. By setting F(@ = (fl(“), cees ,f{”), we have a quadratic
map F@:F" — F™ for every vector a = (ay, ... ,a;) € F%. This set of maps is clearly obtained by evaluating the
quadratic map F® = (fl‘”, ..., fV), where we can assume that FO: K — K™,

Let now {y,,...,y,} be a set of variables disjoint from the sets {x;, ..., x,} and {¢,...,t;}. We consider
the polynomial algebra P = R[xy, ... , X, V1, - - »). The polar form of the quadratic map f,f‘) is by definition the
bilinear form

FOx) = fP0x +y) - fP00 - Oy € .

In other words, we have
F0x,y) = XA, + ADDY".

Observe that A(t), + A(t)lf € M, (R) is a symmetric matrix with even elements along the main diagonal. By eval-
uating the variable vector ¢ = (t;, ..., t,) at a vector a = (ay, ..., a;) € F¢, we obtain the polar form f of £\
from the polar form /1" of £{".

By setting FO = (f*, ..., F\) € P, we call F® the polar map of the quadratic map F©. Clearly, F(® is the

polar map of the quadratic map F@, foralla = (a,, ..., a,;) € F4.
Definition 9.1. We call F©¥ = (fl(”, ooy f,ff)) an oil-vinegar map if F® is an oil-vinegar map, for each a =

(aj,...,a,) € FLIf O(a) C F" is the oil subspace of F”, we assume that dim;O(a) = m, for all a € F¢.

We now illustrate how to construct an oil-vinegar map F® = (fl“), s £9), Let H() € Myysn_m(R) be a
matrix whose entries are linear forms in the variables ¢;, ... , t; and consider the block matrix (H(t)I) € M,,;,,(R)
where I is the identity matrix of order m. Denote by O(t) C R" the vector subspace generated by the rows of the
matrix (H(t)I). Note that if O(a) C " is the vector subspace generated by the rows of the matrix (H(a) I) €
M, 5n(F), then dimgO(a) = m for every a = (ay, ..., a,) € F4.

Let A(), € M,,_,(R), A(8)}) € My_piym(R) (1 < k < m) be matrices whose entries are linear forms in R and
assume that A(¢), is an upper triangular matrix. Denote by A(¢);” € M,,(R) the upper triangular matrix defining
the same quadratic form of the matrix

—HDA®)! — HOAW®H®)T.

Since the entries of A(t);, A(t);’ and H(t) are linear forms, it is important to note that the entries of A(t);(” are
cubic polynomials with homogeneous components of degrees 2 and 3.
We finally define the block upper triangular matrices

A, A
awy =% A%) emm
0 AW

and the corresponding quadratic forms f,f” = xA(),x" (1 < k < m). By defining F© = (£, ..., f), itis clear
that F@ is an oil-vinegar map with O(a) as its oil subspace.

10 = R.LlaScalaand A. Meneghetti: Inner product functional encryption DE GRUYTER

We present now a direct instantiation of the IPFE protocol in [4] with the modern UOV scheme and discuss
its limitations. Up to optimizations in key generation similar to those used for UOV, we have that the secret

key sk held by the Master consists of an oil-vinegar map F® = (f{”, ..., f") along with the corresponding oil
subspace O(t) C R™. The public key pk given to Alice is the oil-vinegar map F® alone, and the user secret key
usk, given to Bob consists of the oil-vinegar map F@ = (f{?, ..., f\") along with the oil subspace O(a) C F™.

We observe that the subspaces O(t) and O(a) are assigned using matrices H(t) € M,,;,_,(R) and H(a) €
M, xn—m(F). To prevent a collusion attack on the protocol that could, for example, determine H(t) from the knowl-
edge of various matrices H(ay), ... , H(a), it is essential to limit the number s of functional keys {a;, ... ,a,} C F¢
allowed by the protocol relative to the dimension d of the plaintexts b € F¢.

We will now illustrate how Alice performs the functional encryption of their plaintext b = (b, ..., b;) € F¢
using the public key F” and how Bob can perform the functional decryption using the user secret key usk, =
(F@, 0(a)). We recall that the goal of the (inner product) functional decryption is to determine the inner product
F(a,b) = (a,b) = Y,;a;b;.

Following the general framework, the functional encryption is defined for any functional key a =
(aj, ..., a;). We will see that this implies that the corresponding ciphertext is generally a large data. Alterna-
tively, Alice could construct different ciphertexts for different functional keys. Nonetheless, we will examine the
general scheme in the following algorithms.

Algorithm 9.1 IPFE protocol [4] specialized with UOV - Master’s Key generation

Input: d,n,m > 0 integers.
Output: the key pair (sk, pk).
1: Generate at random the m x n —m matrix H(t) € M, xn—m(R) whose entries
are linear forms in t1,...,tq;
2: for k=1tomdo
3 choose at random an upper triangular matrix A(t)}, € M,,_, (R);
4: choose at random m matrices A(t)}, € My —xm (R);
5 A(t)}) := the upper triangular matrix defining the same quadratic form
6: of the matrix —H (t)A(t)} — H(t)A(t), H ()T € M,,(R);
! 1"
T Al = (A(g)k ﬁ((f))f’) € M, (R);
8: define Ci(t) := (A(t)}, + AQ)TYH()T + A(t)y;
9: end for;
10: sk := (A(t)},C1(t),..., A(t),,
11: pk:= (A(t)1,. .., A(t)m);
12: return (sk, pk);

Cm (f)) H(t)> ;

Algorithm 9.2 TPFE protocol [4] specialized with UOV - User’s Key generation

Input: Master’s secret key sk, Bob’s functional key a = (aq, ..., aq).
Output: Bob’s secret key usk,.
1: Evaluate the elements A(t)}, C1(¢),..., A(t)),, Cm(t), H(t) in sk at Bob’s func-
tional key a:
2: usky := (A(a)y, Ci(a),..., A(a),,,Cna), H(a));

m?
3: return usk,;

DE GRUYTER R. La Scala and A. Meneghetti: Inner product functional encryption == 11

Algorithm 9.3 IPFE protocol [4] specialized with UOV - Encryption

Input: a message b € F¢, the public key pk.

Output: the cyphertext CT® (b).

: compute the linear form (t,b) = >, t;b; € R;

generate at random the linear forms (u(t)1,...,u(t)n-1);

define u(t), = (t,b) — > 11 u(t); = (¢,b) and call u(t) = (u(t)1,...,u(t)n);
choose at random ¢ € F” and define v(t) = u(t) + ¢;

compute %(t) = F® (u(t)) and o(t) = F® (v(t));

return CTY (b) = (a(t), v(t), c);

Observe that each component of the vectors u(t), 0(t) € R" is a polynomial of type

() = Y AOJuO), 0ty = Y ABJ B0,

i<j i<j

The (inner product) functional decryption performed by Bob, namely the computation of (a, b), involves
the following operations.

Algorithm 9.4 TPFE protocol [4] specialized with UOV - Decryption

Input: a ciphertext CT® (b), the keys (uskq, pk).
Output: (a,b).
1: evaluate CT(b) at a, obtaining (u := a(a), v := v(a), ¢);
2: flag := false;
3: while flag := false do
4: run Algorithm 6.2 on @ obtaining v’ = (uf,...,u,);
5: run Algorithm 6.2 on @ obtaining v' = (v}, ..., v});
6 if v/ — v’ = ¢ then
7 flag := true;
8 end if;
9: end while
10: return (a,b) := > 1" ul;

According to the UOV protocol, Bob’s knowledge of the oil subspace O(a) enables him to efficiently compute
an element of any preimage of the oil-vinegar map F(a). In fact, we recall that such a computation reduces
to solving a system of n linear equations in n variables. Moreover, assuming that the polynomial map F@ is
sufficiently generic, the dimension of a preimage, as an algebraic variety, is n — m. Consequently, the dimension
of the product of preimages (F(¥)~1(&1) X (F{9)~(o) isd = 2n — 2m. Under the assumption that n is slightly larger
than 2m, we obtain that d = n. If we impose the n linear equations corresponding to the condition v — u = c on
the pairs (u, v) € (F@W)~1(&1) X (F)~Y(o), we obtain essentially a unique solution that coincides with the pair
(u(a), v(a)). In other words, the probability of finding this pair in the product set (F{9)~1(&) X (F{¥)~1(7) is one
out of its number of elements, which can be approximately estimated as 1/¢". This explains the correctness of
the functional encryption-decryption algorithms described above.

Note that the protocol described in Decryption Algorithm 9.3 has a computational cost of the order of g"™.
This (exponential, and thus infeasible) approach is directly derived from [4], with whom it shares the trial-
and-error decryption algorithm: Bob continues to generate valid preimages u and v for # and o until the check
v — u = c is satisfied. Looking back at UOV Signature Algorithm 6.2, this method turns out to be equivalent to
keep generating random vectors u’ € F*™, until the correct preimage u is found.

12 = R.laScala and A. Meneghetti: Inner product functional encryption DE GRUYTER

To solve this issue we consider here a variant in which Alice encodes their information in a particular
subspace of R", so that, when the ciphertext is specialized by Bob by using their functional key, the decryption
algorithm can be speed-up. Before providing the details of the protocol we present the general idea.

Consider a vector subspace V C F" of dimension # such that its intersection O’ with Bob’s Oil subspace O
has dimension kltZ. Without loss of generality, we can assume that V is defined via a linear map

V:F > "

such that its restriction to the first # coordinates of the co-domain is a bijection. If Alice is given V, they can
proceed similarly to Algorithm 9.3, with the difference that Steps 2 and 3, used to compute the vector u(t) =
u(®y, ..., u(®),) € R", are replaced by the following:

2. u©®O=wW®,,...,u),) consists of linear forms in the variables t,, ..., t; such that Zf:lu’ (t); = (t,b).

3. ul®) = W), ..., u),) is computed as V(' (t)).

Thus, Bob performs the functional decryption using Algorithm 9.4, with the slight modification that the search is
confined to the subspace V. In this way, the algorithm runs in O(q”~¥), in which # — k can be fixed of the order of
log(n). In this way, the computational cost of the decryption algorithm is polynomial in n instead of exponential
inn—m

It is important to note that the variant just described cannot directly be used. Indeed, an attacker can easily
guess an element of Bob’s Oil subspace by looking at V. To solve this issue, we consider V to be a parametric space
v, so that, at the cost of increasing the ciphertext’s size, an attacker is not capable of guessing the subspace V
associated to Bob’s oil subspace (which, with this newly introduced notation, is V‘?) and thus to directly attack
the scheme.

Finally, to further improve the decryption algorithm 9.4, instead of searching for two preimages satisfying
the check v — u = c we modify the scheme so that Bob can directly check whether u is correct without generating
a corresponding v.

Remark 9.2. A key difference with respect to the IPFE protocol described in Section 9 is the necessity of know-
ing in advance the user’s functional keys. In Section 9 the key-generation is composed by two algorithms run
by the authority: Algorithm 9.1 used to obtain the parametric public key pk and the master secret key sk, and
Algorithm 9.2 used to specialize the master key sk to obtain users’ secret keys usk. In this section instead, dur-
ing the key generation, the authority generates all the user’s secret keys usk;, ..., usk, and the corresponding
unique parametric public key pk. No further users can be added after the key-generation, so there is no need
to store che master key. This results in the key-generation algorithm 9.5. This choice has been made to mitigate
key-recovery attacks that could leverage on the knowledge of V© (which is part of the public key and is linked
to users’ secret keys).

In Algorithms 9.5, 9.6, and 9.7 we describe in details the key-generation, encryption, and decryption of our
variant of the IPFE protocol based on [4] and UOV.

DE GRUYTER R. La Scala and A. Meneghetti: Inner product functional encryption

Algorithm 9.5 IPFE protocol - Key generation

Input: d,n,m,k,£ > 0 integers, list of users’ functional keys {ay,...,as}, where
a; = (aj71, cee ,aj7d).
Output: the list of users’ secret keys usky, ..., usks, the public key pk.
flag := false;
while flag := false do
choose at random d linear maps Vi, ..., V; : Ff — F":
define V() = Zle Vi
flag := true
for j =1to s do
Specialize V) in a; obtaining the space Vi) c F7,
if dim(V(%)) < ¢ then
flag := false;
end if;
end for;
: end while;
: for j=1to sdo
Generate randomly a subspace O’(a;) of V(a;) of dimension k
Generate randomly the Oil Subspace of the j-th user O(a;) of dimension m
s.t. O(a;) NV @) = O0'(ay);

e e e e
AN

16: end for;
17: Generate at random the m x n —m matrix H(t) € M, xn—m(R) whose entries
are linear forms in ¢4, ...,%4, such that the rows of (H(a;) I) span O(a;) for

any j=1,...,s
18: for k=1 to m do

19: choose at random an upper triangular matrix A(t)}, € My,—,, (R);

20: choose at random m matrices A(t)} € My,_psm(R);

21: A(t)} := the upper triangular matrix defining the same quadratic form
22: of the matrix —H (t)A(t)} — H(t)A(t); H(t)T € M, (R);

A(t), A@)Y
23: A(t)k = < (O)k A((t;;él) e M, (R)
24: define Ci(t) == (A@t)}, + A H)T + A(t)y;
25: end for;
26: for j =1 to s do
21 usky = (aj, Aay)), Cilag), - Aag)y, Cmlag), H(aj));

28: end for;
20: ph = (A1, A(t)m, VIO);
30: return (usky, ..., usky, pk);

Algorithm 9.6 IPFE protocol - Encryption

Input: a message b € F¢, the public key pk.
Output: the cyphertext CT(t)(b)

1: compute the linear form (¢,b) =", t;b; € R;

2: generate at random the linear forms (u'(t)1,...,u (t)e-1);

3: define u/(t), = (¢,b) — Ef;ll u'(t); = (t,b) and call v'(t) = (v (t)1,...,u (t)e);
4: define the quadratic form u(t) = VO (u'(t));

5: choose at random ¢ € F™ and define v(t) = u(t) +

6: compute @(t) = F® (u(t)) and 5(t) = F® (v(t));

7

return CTY (b) = (a(t), v(t), c);

13

14 = R LlaScalaand A. Meneghetti: Inner product functional encryption DE GRUYTER

Algorithm 9.7 IPFE protocol - Decryption

Input: a ciphertext CT(t)(b), the keys (usk;, pk).
Output: (a;,b).

1: evaluate CT(b) at a;, obtaining CT) (b) = (@ := a(aj), v :=v(aj),c);

2: flag := false;

3: while flag := false do

4: run Algorithm 6.2 on @ by limiting the preimages to V, obtaining u =
(Ur, ..., up);

5: if v; —u; = c(A; + AT)oT for i =1,...,m then

6: flag := true;

7 end if;

8: end while

9: determine v’ = (uf,.) from u by the equation V(@) (v/) = u;

10: return (a;,b) := Z

10 Key and ciphertext sizes in the IPFE protocol

The public key pk possessed by Alice is composed by two parts:
1) aparametric oil-vinegar map F©© = (£, ..., f0);
2) aparametric linear map V.

Recall that the map F© = (f”, ..., fi) where f{" = xA(t),x" € Pis a quadratic form defined by the matrix

Aty A

AD), = k k

0 AWy
with A(t);(,A(t);(’ being random matrices whose entries are linear forms in R and A(t)g{’ " is determined by these
matrices and the oil subspace O(t) C R". By generating the random matrices A(¢);, A(t), (1 <k <m) using a
pseudorandom generator from a public seed, for the public key pk we only need to store the upper triangular
matrices A(t);” € M, (R) (1 < k < m) in addition to the public seed. We recall that the entries of A(t);/” are cubic
polynomials with homogeneous components of degree 2 and 3. Since each element of the finite field F = GF(q)

isrepresented by [log,(q)] bits, each entry of the upper triangular matrix A(t);{’ "is represented by the following
number of bits

@] = d(d + 1é(d +5)

[log,(q)1,

<d(d2+ 1) " d(d + lé(d + 2)) Mlog,

so that we have
0y = M(m+1) d(d +1)(d +5)

2 6

The second part of the public key is V. Recall that V¥ = Z?=1tivi where V;: F¥ — F" are randomly generated
maps. This implies that it is sufficient to store the seed used. In particular, the set {V;} can be obtained again by
using seed, ;,,, which has been already accounted for. Putting everything together we have

size(F

[log,(q)] + [seed |-

pub’

m?(m + 1) d(d + 1)(d + 5)

size(pk) = 5 6

[log,(q)] + |seedpyp|.

The user secret key usk; owned by Bob is given by a;, A(a;);,A(q;); (1 < k < m), H(a;), and V(a;). Using
the public seed, Bob can obtain A(t);, A(t); and V' which can be transformed into A(a,);,A(a;);’ and V(@) by

DE GRUYTER R.La Scala and A. Meneghetti: Inner product functional encryption == 15

evaluation. However, the matrix H(t) in the secret key sk must remain unknown to Bob, so the matrix H (aj) must
be explicitly provided to them. We therefore have

size(usk;) = m(n — m)[log,(q)] + |seedp|.
Note that in Algorithm 9.5 Bob is also provided with the matrices
Ca), = (A(a), + Al@DH(@)" + Ai(a)4”
aiming to speed up the computation of preimages. In this case the size becomes
(m(n —m) + m*(n — m)[log,(q)] + |seed,,|
= m(m+1)(n — m)[log,(q)] + |seed,y,|.

Finally, we calculate the size of the plaintext and ciphertext. A plaintext is a vector b = (b, ..., b,) € F¢,
which means it consists of d elements from the field . We therefore have

size(b) = d[log,(q)].

The corresponding ciphertext CTO(b) = (@(t), B(t), c) consists of the vectors i(t) = @)y, ..., u®),) = FO(u(t))
and d(t) = (5(t),, ... , B(t),,) = FO(v(t)) where u(t) = VO(u'(t)) and v(t) = u(t) + ¢ are each # quadratic forms
in d unknowns. Thus, we have that u(t), = u(t) A(t),u(t); € R and (1), = v(t) A(t)v(D); ER (1 <k <m)

where . .
A(t), A(t)
Alt), = « /Ij/
0 A(t),

and A(t), € M,_,,(R), A(1);! € M,_p,n(R) are matrices whose entries are linear forms and A(t), is an upper
triangular matrix. Moreover, A(t);(’ " € M,,,(R) is an upper triangular matrix whose entries are cubic polynomi-
als with homogeneous components of degree 2 and 3. We therefore have that u(t),, 0(t), are polynomials in d
variables of degree 7. We conclude that the size of the ciphertext CT?(b) is

d+7
size(CT (b)) = (Zm(;) + n)[log,(q)].

11 Security and parameters

We start by considering the security of [4] specialized with UOV (Algorithms 9.1, 9.2, 9.3, and 9.4). A first issue
when studying the security of a Functional Encryption protocol is that such a protocol is naturally exposed to
“collusion attacks” where different functional decryptors, different Bobs, agree to share the information avail-
able to them. Specifically, the decryptors could exchange their functional keys a and thus the values of the
functions F(a, b), in order to determine the plaintext b that Alice has functionally encrypted. This type of attack
is particularly risky in the case of IPFE, where different functional keys aj, ... ,a, € F? determine a system of
linear equations in the variables ¢, ... , t; of type

(a, t) =(a;,b)

(@, t) = (a b)

The plaintext b is clearly one of the solutions of this linear system. It is therefore absolutely essential that the
number of functional keys allowed in the protocol is not too high compared to the dimension d of the plaintexts.

16 = R.LlaScalaand A. Meneghetti: Inner product functional encryption DE GRUYTER

In particular, if [is less than d, than the linear system is underdetermined. Fortunately, this assumption is not
too restrictive in practical applications of IPFE.

To perform a security analysis of an FE protocol, the notion of security commonly employed is the paradigm
of “simulation-based security”. Specifically, let b € F? be a plaintext generated by a challenger Ci who possesses
the public key, and let a, ... ,a, € F? be the functional keys owned by an adversary Ap. We can identify the
challenger Cu as Alice and the adversary Ap as multiple Bobs who collaborate on a collusion attack.

We denote by Game(0) the so-called “real experiment” of simulation-based security, which is the activity of
Ap attempting to distinguish different ciphertexts generated by Cu from different plaintexts.

Now we consider another activity, denoted by Game(1), which we consider intermediate between the real
experiment Game(0) and the so-called “ideal experiment” Game(2) of simulation-based security. We will explain
later what the activity of Game(2) consists of. Indeed, we recall that security in this paradigm is achieved when
Game(0) and Game(2) are computationally indistinguishable by the adversary Ap with only a negligible probability
of success.

Starting from the same public key pk, the activity of the challenger Cu is replaced in Game(1) by that of a
simulator Smv;. Given an original plaintext b, the agent Sm, generates a distinct plaintext b* # b such that its
corresponding ciphertext CTO(b*) = (@*(t), 0*(t), ¢*) satisfies, for eachi = 1,2, ..., 1

(a;, b) = (a;, b"). O

In other words, Ap observes the same functional decryption for the plaintexts b and b* when using the different
functional keys q; it possesses. Hence, functional decryption does not help Ab to distinguish between b and b*.
Note that the vector b* can be efficiently computed by S, from the vectors b and a;, ... , @, by using the linear
equations (1).

Assuming that the randomly selected public key pk consists of a generic quadratic map F®, the ciphertexts
CT®(b) and CT®(b*) generated by the activities of Game(0) and Game(1) respectively, share equal probability within
the ciphertext space. Therefore, the adversary Ab is left only to try to compute the plaintexts b and b* in order
to distinguish the corresponding ciphertexts. Precisely, if {e; },;4 is the canonical basis of the vector space ¢,
observe that

> ule,); = (€. b) = by, Y u(e); = (e b*) = b}
1 1

In other words, by computing the preimages u(e,) € F" of the vectors éi(e;,) € F™ under the map Fé) (1 < k < d),
the adversary Ap obtains the plaintext b. In a similar way, Ap can compute b*. Observe that computing a preimage
of a generic quadratic map over a finite field is an NP-hard problem. Thus, Ap can distinguish the ciphertexts
CT®(b) and CT®(b*) by computing b and b*, respectively, with a negligible probability of efficiently solving such
a problem. We denote this negligible probability by ¢,. Using the language of simulation-based security, we then
write

| Pr(Game(1)) — Pr(Game(0))] < .

Similarly to the activity of Game(1), the ideal experiment Game(2) consists in replacing the challenger Cu with
a simulator Siv, who computed a third plaintext b** such that, for eachi=1,2,...,[, we have

(a;, by = (a;, b*) = (a;, b*").

Therefore, the adversary Ao cannot distiguish b, b* and b** using the functional keys he owns. The agent Siv,
differs from Sy, in that the former can use a different public key pk, that is, a distinct polynomial map F® from
the one used in the real experiment. Since the ciphertext C(b**) is computed by the generic polynomial map F®,
this ciphertext is probabilistically uncorrelated with those generated by Game(0) and Gawme(1). This implies that
the only way to distinguish the outcomes of these activities from that of Game(2) is by determining the plaintexts

DE GRUYTER R. La Scala and A. Meneghetti: Inner product functional encryption == 17

Table 1: Parameters.

A d n m k 4 q CT®(b)

128 20 12 44 19 20 256 78.1MB

b,b* and b** in order in order to identify the corresponding ciphertexts. Again, this implies the ability of Ap to
solve generic systems of quadratic equations over a finite field, which is a known NP-hard problem.

Consequently, distinguishing Game(2) from activities Game(1) and Game(0) can be achieved by Ap with negli-
gible probability. Specifically, we have

| Pr(Game(2)) — Pr(Game(1))| < e,

and thus
| Pr(Game(2)) — Pr(Game(0))| < | Pr(Game(2)) — Pr(Game(1))]

+| Pr(Game(1)) — Pr(Game(0))| < e, + e, =€

where € is still a negligible probability.

The security of the proposed IPFE scheme (Algorithms 9.5, 9.6, and 9.7) relies on one hand of the security of
[4] instantiated with UOV, and on the other hand on the inability of the attacker to determine (part of) Bob’s Oil
subspace by looking at the public key V(t). By construction, V(t) and O(t) are generated randomly: the only link
is that, for any a; in the predetermined set {a,, ..., a,}, V(a) is a subspace of Bob’s oil subspace O(a). This implies
that, if @ & {a,, ..., a,}, then V(@) is a random vector subspace of F", thus unrelated to the hypothetical corre-
sponding oil subspace O(a). In other words, an attacker have to guess Bob’s functional key a;, but a wrong guess
a# a; will lead to a specialized public key (A(@),, ... ,A(ad),, V(@) where O(a) and V(a) are random and not
linked together, thus preventing its ability to decrypt due to the security of UOV. To achieve the required security
it is necessary that the number s of valid functional keys (those associated to UOV secret keys) is negligible with
respect to ¢4, for example

with A the security parameter. Note that this assumption is in line with the already discussed limitation on the
number of functional keys to resist against collusion attacks.

In this case, a functional key recovery attack implies the solution of nonlinear system in d + n variables of
degree 7 obtained by searching for zeros of the map F© o VO (x).

In Table 1 we show an example of parameters set corresponding to the instantiation UOV-Ip.

As we can see from Table 1, the main open problem is to determine a more efficient encryption algorithm.
In particular, the large ciphertext is a set of polynomial of degree 7 in d variables, and a possibility is to design
a method to lower this degree. For example, with the presented parameters, by lowering the degree from 7 to 5
we would obtain a compression of the ciphertext of the order of 94 %, resulting, for the parameters choices in
Table 1, in a ciphertext of 4.7MB.

A possibility is to change the key-generation algorithm to obtain a linear (in ¢) public key F©. In Algorithm
11.1 we propose a variant of Algorithm 9.5 with this feature, whose security is however still under investigation.

18

=== R.LaScala and A. Meneghetti: Inner product functional encryption

Algorithm 11.1 IPFE protocol - Key generation (variant)

Input: d,n,m,k,¢ > 0 integers, list of users’ functional keys {a1,...,as}, where
aj; = (CLj71, ey ajd).

Output: the list of users’ secret keys skq, ..., sk, the public key pk.

1: flag := false;

2: while flag := false do

3 choose at random d linear maps Vi, ...,V : Ff — F";

4 define Y = Z?Zl tiVi;

5: flag := true

6 for j =1to s do

7 Specialize V) in a; obtaining the space Vi) ¢ Fr,

8 if dim(V(%)) < ¢ then

9: flag := false;

10: end if;

11: end for;

12: end while;

13: for j =1 to s do

14: Generate randomly a subspace O’(a;) of V(a;) of dimension k

15: Generate randomly the Oil Subspace of the j-th user O(a;) of dimension m
s.t. O(a;) N V(@) = 0'(a;);

16: end for;

17: Generate at random the m X n —m matrix H(t) € M,,,xn—m(R) whose entries
are linear forms in ¢1,...,tq, such that the rows of (H(a;) I) span O(a;) for
any 7 =1,...,s.

18: for j =1 to s do

19: for k =1tom do

20: choose at random an upper triangular matrix A;) & € My_p (F);

21: choose at random m matrices A;{k € My, —mxm (F);

22: A;{’k := the upper triangular matrix defining the same quadratic form

23: of the matrix —H(a;) A7, — H(aj)Ag’kH(aj)T € M,,(F);

24: Ajp = < A Ap > € M, (F);

: i,k - 0 A;Hk n 5

25: define Cjj, == (4]}, + A;’Tk)H(aj)T + A7y

26: end for;

27: US]CJ‘ = (aj, Aé,l’ Cj,la ey A;’,m7 Cj,’m7 H(a])),

28: end for;

29: choose at random m upper triangular matrices A(t); in M, (F) whose entries
are linear forms in t¢q,...,tq4, such that, for any 7 = 1,...,s and for any k =
1,...,m, it holds A(a;)r = Aj;

30: pk = (A()1,. .., A(t)m, VD);

31: return (uskq, ..., usk;, pk);

DE GRUYTER

Observe that in Algorithm 11.1 the public key is linear in t. By using a public key obtained from Algorithm
11.1 instead of 9.5, Alice will obtain a degree 5 ciphertext, thus mitigating the computational cost and mem-
ory requirements of both our encryption and decryption algorithms. We remark however that, even if from a
security point of view this last approach seems to be comparable with our proposal, more analyses should be
conducted to exclude any vulnerability.

DE GRUYTER R. La Scala and A. Meneghetti: Inner product functional encryption == 19

12 Conclusions and further directions

In this paper we discuss the properties and limitations of inner product functional encryption (IPFE) protocols
using a state-of-art version of the UOV digital signature. Even though this approach improves the key generation
and encryption—decryption algorithms, as well as their security foundations, the decryption algorithm remains
exponential. We then propose a variant to mitigate this limitation, whose main drawback is the dimension of
the ciphertext. We conclude by proposing a modification which would allow for a more compact public key and
smaller ciphertext, whose security is however still under investigation.

Acknowledgments: The authors would like to thank the reviewers for their valuable comments and sugges-
tions, which have significantly contributed to improving the clarity and readability of the manuscript.

Author contribution: All authors accept full responsibility for the entire content of this manuscript, have
reviewed all results, approved the final version, and consented to its submission to the journal. The manuscript
was prepared collaboratively by all authors.

Conflict of interest: Authors state no conflict of interest.

Research funding: The first author acknowledges the partial support of PNRR MUR projects “Security and
Rights in the CyberSpace”, Grant ref. CUP H93C22000620001, Code PE00000014, Spoke 3, and “National Center
for HPC, Big Data and Quantum Computing”, Grant ref. CUP H93C22000450007, Code CN00000013, Spoke 10.
The same author was co-funded by PRIN MUR project “Algebraic Methods in Cryptanalysis”, Grant ref. CUP
H53C24000830006, Code 2022RFAZC], and by Universita degli Studi di Bari, “Fondo acquisto e manutenzione
attrezzature per la ricerca”, Grant ref. DR 3191. Both authors acknowledge membership in INAAM — GNSAGA
and UMI - Crittografia e Codici.

References

1. Boneh D, Sahai A, Waters B. Functional encryption: definitions and challenges. In Theory of cryptography. Lecture Notes in
Comput. Sci., 6597. Heidelberg: Springer; 2011:253—73 pp.

2. Mascia C, Sala M, Villa I. A survey on functional encryption. Adv Math Commun 2023;17:1251—89.

3. Gentry C. Homomorphic encryption: a mathematical survey. Proc Int Cong Math 2022;2:956—1006.

4. Debnath SK, Mesnager S, Dey K, Kundu N. Post-quantum secure inner product functional encryption using multivariate public key
cryptography. Mediterr | Math 2021;18, Paper No. 204:15.

5. Beullens W, Chen M-S, Ding J, Gong B, Kannwischer M|, Patarin J, et al. UOV: unbalanced oil and vinegar algorithm specifications
and supporting documentation, Version 1.0; 2023. https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/
spec-files/UOV-spec-web.pdf.

6. Beullens W, Chen M-S, Hung S-H, Kannwischer MJ, Peng B-Y, Shih C-J, et al. Oil and vinegar: modern parameters and
implementations. IACR Trans Cryptogr Hardw Embed Syst 2023;2023:321—65.

7. Gringiani A. Multivariate-based cryptography: a revision of MAYO parameters [Master thesis]. Trento: University of Trento; 2022.

8. Kipnis A, Patarin J, Goubin L. Unbalanced oil and vinegar signature schemes. In: Stern J, editor. Advances in Cryptology
— EUROCRYPT ’99. EUROCRYPT 1999. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer; 1999, vol 1592:206 —22 pp.

9. LaScalaR, Pintore F, Tiwari SK, Visconti A. A multistep strategy for polynomial system solving over finite fields and a new algebraic
attack on the stream cipher trivium. Finite Fields Appl 2024,98, Paper No. 102452:33.

10. Ghorpade SR. A note on Nullstellensatz over finite fields. In: Contributions in Algebra and Algebraic Geometry, Contemp. Math.,
738. Providence, RI: Amer. Math. Soc.; 2019:23—32 pp.

11. Garey M R, David S J. Computers and intractability. New York: Wh Freeman; 2002, vol 29.

12. Kipnis A, Shamir A. Cryptanalysis of the oil and vinegar signature scheme. In: Advances in Cryptology — CRYPTO *98, Lecture Notes
in Comput. Sci., 1462. Berlin: Springer-Verlag; 1998:257—66 pp.

https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/UOV-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/UOV-spec-web.pdf

	1 Introduction
	2 Oil-vinegar maps
	3 Preimages of oiltnqx2013;vinegar maps
	4 Generation of oiltnqx2013;vinegar maps
	5 Efficient secret key and signature for UOV
	6 Formal description of UOV algorithms
	7 Key sizes in the UOV scheme
	8 Functional encryption
	9 An IPFE protocol based on the UOV scheme
	10 Key and ciphertext sizes in the IPFE protocol
	11 Security and parameters
	12 Conclusions and further directions

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Euroscale Coated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 35
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness false
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages false
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages false
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages false
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1000
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.10000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /DEU <FEFF00280073006500650020006700650072006d0061006e002000620065006c006f00770029000d005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f002000700072006f006400750063006500200063006f006e00740065006e00740020007000720069006e00740069006e0067002000660069006c006500730020006100630063006f007200640069006e006700200074006f002000740068006500200064006100740061002000640065006c0069007600650072007900200072006500710075006900720065006d0065006e007400730020006f00660020004400650020004700720075007900740065007200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e002900200044006100740065003a002000300033002f00300031002f0032003000310035002e0020005400720061006e00730070006100720065006e0063006900650073002000610072006500200072006500640075006300650064002c002000520047004200200069006d0061006700650073002000610072006500200063006f006e00760065007200740065006400200069006e0074006f002000490053004f00200043006f0061007400650064002000760032002e002000410020005000440046002f0058002d0031006100200069007300200063007200650061007400650064002e000d005f000d000d00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e002c00200075006d00200044007200750063006b0076006f0072006c006100670065006e0020006600fc0072002000640065006e00200049006e00680061006c0074002000670065006d00e400df002000640065006e00200044006100740065006e0061006e006c006900650066006500720075006e0067007300620065007300740069006d006d0075006e00670065006e00200076006f006e0020004400450020004700520055005900540045005200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e00290020005300740061006e0064003a002000300031002e00300033002e00320030003100350020007a0075002000650072007a0065007500670065006e002e0020005400720061006e00730070006100720065006e007a0065006e002000770065007200640065006e00200072006500640075007a0069006500720074002c0020005200470042002d00420069006c006400650072002000770065007200640065006e00200069006e002000490053004f00200043006f00610074006500640020007600320020006b006f006e00760065007200740069006500720074002e00200045007300200077006900720064002000650069006e00650020005000440046002f0058002d00310061002000650072007a0065007500670074002e>
 /ENU ()
 /ENN ()
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AllowImageBreaks true
 /AllowTableBreaks true
 /ExpandPage false
 /HonorBaseURL true
 /HonorRolloverEffect false
 /IgnoreHTMLPageBreaks false
 /IncludeHeaderFooter false
 /MarginOffset [
 0
 0
 0
 0
]
 /MetadataAuthor ()
 /MetadataKeywords ()
 /MetadataSubject ()
 /MetadataTitle ()
 /MetricPageSize [
 0
 0
]
 /MetricUnit /inch
 /MobileCompatible 0
 /Namespace [
 (Adobe)
 (GoLive)
 (8.0)
]
 /OpenZoomToHTMLFontSize false
 /PageOrientation /Portrait
 /RemoveBackground false
 /ShrinkContent true
 /TreatColorsAs /MainMonitorColors
 /UseEmbeddedProfiles false
 /UseHTMLTitleAsMetadata true
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /BleedOffset [
 0
 0
 0
 0
]
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName (ISO Coated v2 \(ECI\))
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /ClipComplexRegions true
 /ConvertStrokesToOutlines false
 /ConvertTextToOutlines false
 /GradientResolution 300
 /LineArtTextResolution 1200
 /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
 /PresetSelector /HighResolution
 /RasterVectorBalance 1
 >>
 /FormElements true
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MarksOffset 8.503940
 /MarksWeight 0.250000
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /UseName
 /PageMarksFile /RomanDefault
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [595.276 841.890]
>> setpagedevice

