
Journal of Mathematical Cryptology 2025; 19(1): 20240026

Research Article

Roberto La Scala* and Alessio Meneghetti

Inner product functional encryption based on
the UOV scheme

https://doi.org/10.1515/jmc-2024-0026

Received June 20, 2024; accepted September 12, 2025; published online November 21, 2025

Abstract: We analyze the efficiency and security of the inner product functional encryption (IPFE) protocol

introduced in 2021 by Debnath, Mesnager, Dey, and Kundu, specifically when instantiated with UOV. While the

scheme offers several advantages, including improvements in key generation and encryption/decryption algo-

rithms, along with compact key sizes, the decryption algorithm remains exponential in complexity with respect

to the security parameter. To address this limitation, we propose a variant aimed at reducing the decryption

cost. However, this alternative remains impractical at present due to the resulting large ciphertext size.

Keywords:multivariate cryptography; functional encryption; finite fields

MSC 2020: 94A60; 11T06; 11T71

1 Introduction

In recent years, with the progressive improvement in the speed and reliability of data networks, we have wit-

nessed a growing diffusion of “cloud computing”. This practice involves entrusting storage functions, software

applications, and computation to powerful remote servers capable of meeting the needs of millions or even bil-

lions of users. In this context, ensuring the confidentiality of individual user data is of fundamental importance,

making the use of specific cryptographic tools indispensable. To allow providers to deliver services through data

processingwhile preserving confidentiality, the paradigms that are emerging as particularly promising are func-

tional encryption [1, 2] and homomorphic encryption [3], briefly FE and HE. These approaches pursue distinct

objectives: in HE, the value of functions applied to plaintext data is calculated as a function of the encrypted

data and returned to the owner in encrypted form. Only the data owner has the capability to use it, unless they

decide to share it with the provider through an additional encryption system. Conversely, in FE, by using spe-

cific “functional keys” the provider can directly compute the value of the required functions on plaintext data

starting from encrypted data, which are never fully decrypted. These features allow the provider to deliver

services to users without requiring further actions from them, except for distributing the necessary functional

keys.

*Corresponding author: Roberto La Scala, Dipartimento di Matematica, Università degli Studi di Bari “AldoMoro”, Via Orabona 4, 70125,

Bari, Italy, E-mail: roberto.lascala@uniba.it

Alessio Meneghetti, Dipartimento di Matematica, Università degli Studi di Bari “Aldo Moro”, Via Orabona 4, 70125, Bari, Italy,

E-mail: alessio.meneghetti@uniba.it

Open Access. © 2025 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International

License.

https://doi.org/10.1515/jmc-2024-0026
mailto:roberto.lascala@uniba.it
mailto:alessio.meneghetti@uniba.it


2 — R. La Scala and A. Meneghetti: Inner product functional encryption

To illustrate the paradigm of functional encryption, we provide a couple of examples of its applications.

Consider a hospital that records the medical data of its patients. For research purposes, it could be useful to

perform data analysis on these records. Using FE, the hospital can delegate the storage of the records to a cloud

service without compromising their confidentiality because the data are encrypted before being sent to the

server. At the same time, the hospital can distribute functional keys to researchers, enabling them to conduct

medical statistical analyses on the records stored in the cloud for purposes such as evaluating a therapy, without

accessing the actual content of the records.

Another common application of FE is performing machine learning on encrypted data while ensuring

confidentiality. Specifically, after training a classifier on standarddata, the data owner can generate specific func-

tional keys for the functions required by the classifier. In other words, the classifier can perform classification

on encrypted data without knowing its plaintext content.

If such computations require knowledge of linear functions of the plaintext data, we refer to the FE scheme

as an inner product functional encryption, briefly IPFE, protocol. Some examples of inner products widely used

in data analysis are the expected value and the convolution product. Recently, in [4], the authors introduced

an IPFE protocol based on multivariate cryptography. We recall that this type of post-quantum cryptographic

primitives achieves security through the challenge of computing preimages of generic quadratic polynomial

maps F: 𝔽 n → 𝔽m where 𝔽 is a finite field. These primitives are typically digital signatures where signing a vector
𝑣 ∈ 𝔽m corresponds to compute a preimage u ∈ F−1(𝑣) ⊂ 𝔽 n. The signer holds a secret that allows for efficient

computation of such a preimage.

In the present paper, we discuss the possibility of designing multivariate IPFE schemes. We start by dis-

cussing the efficiency and security of the IPFE protocol in [4] modified by leveraging the UOV digital signature

[5–8]. In this version of the protocol, the property that the quadratic map F: 𝔽 n → 𝔽m is an “oil-vinegar map”

corresponds to the existence of a secret vector subspace O ⊂ F−1(0). Using this subspace one can obtain ele-

ments in the preimages of F without the need for any linear change of coordinates. If otherwise the subspace

O is unknown, an opponent faces a problem currently considered indistinguishable from the NP-hard problem

of solving a quadratic polynomial system over a finite field. For a recent paper on solving polynomial systems

over finite fields, see for instance [9].

Our analysis of the IPFE scheme reveals that the protocol’s decryption algorithm incurs a computational cost

exponential in the scheme’s parameters. To address this inefficiency, we propose a variant aimed at mitigating

the issue. However, it appears that circumventing the exponential decryption cost necessitates an increase in

ciphertext size, which once again leads to inefficiency. The challenge of developing a practical multivariate IPFE

scheme remains an open problem and requires further investigation.

2 Oil-vinegar maps

We start presenting the modern concept of an oil-vinegar map and its corresponding algorithms for the UOV

digital signature. References include [5–7].

Let 𝔽 be a finite field and denote by S = 𝔽 [x1,… , xn] the algebra of the polynomials with coefficients in the

field 𝔽 and variables x1,… , xn. For all 1 ≤ k ≤ m, let fk ∈ S be a quadratic form, that is, a homogeneous poly-

nomial of degree 2. Let F = ( f1,… , fm) ∈ Sm. By abuse of notation, we also denote by F: 𝔽 n → 𝔽m the quadratic

map such that, for all 𝑣 = (𝑣1,… , 𝑣n ) ∈ 𝔽 n

F(𝑣) = ( f1(𝑣),… , fm(𝑣)).

Note that each quadratic form fk (1 ≤ k ≤ m) corresponds to a matrix Ak =
(
A
i j

k

)
∈ Mn(𝔽 ) such that, if x =

(x1,… , xn) ∈ Sn then

fk(x) = xAkx
T ∈ S.

To avoid issues arising from the characteristic of the field F, we make the assumption that all the matrices Ak
are upper triangular, that is, A

i j

k
= 0 whenever i > j. We have hence that



R. La Scala and A. Meneghetti: Inner product functional encryption — 3

fk =
∑
i≤ j

A
i j

k
xix j.

Consider another variable set {y1,… , yn} which is disjoint from the set {x1,… , xn} and

let S̄ = 𝔽 [x1,… , xn, y1,… , yn]. The polar form of the quadratic form fk is by definition the bilinear form

f̄ k(x, y) = fk(x + y)− fk(x)− fk(y) ∈ S̄.

In matrix terms, we have that

f̄ k(x, y) = xAk y
T + yAkx

T = x
(
Ak + AT

k

)
yT

that is

f̄ k =
∑
i, j

(
A
i j

k
+ A

ji

k

)
xi y j.

Note thatAk + AT
k
is a symmetricmatrixwith elements along themain diagonal that are divisible by 2. Hence, the

monomials xiyi (1 ≤ i ≤ n)will not appear in the polar forms f̄ k whenever char(𝔽 ) = 2.We call F̄ = ( f̄ 1,… , f̄ m ) ∈
S̄m the polar map of the quadratic map F = ( f1,… , fm) ∈ S. By abuse of notation, we denote by F̄: 𝔽 n × 𝔽 n → 𝔽m

the bilinear map such that, for all u, 𝑣 ∈ 𝔽 n

F̄(u, 𝑣) = ( f̄ 1(u, 𝑣),… , f̄ m(u, 𝑣)).

Let 𝔽 = GF(q) be the finite field with q elements and consider the ideal E = ⟨xq
1
− x1,… , x

q
n − xn⟩ ⊂ S.

If J ⊂ S is an ideal and 𝔽 is the algebraic closure of the field 𝔽 , we denote

V( J ) = {𝑣 ∈ 𝔽 n ∣ f (𝑣) = 0 for all f ∈ J}

and V𝔽 ( J ) = V( J ) ∩ 𝔽 n. The Nullstellensatz over finite fields [10] implies the following result.

Proposition 2.1. Let J ⊂ S be an ideal. We have V(E) = 𝔽 n and V𝔽 ( J ) = V( J + E)where J + E is a radical ideal of

S.

Definition 2.2. Let F = ( f1,… , fm) be a quadratic map and consider the corresponding ideal IF = ⟨ f1,… , fm⟩.
We call F an oil-vinegar map if there exists a vector subspace 0 ≠ O ⊂ 𝔽 n such that O ⊂ V𝔽 (IF ) = F−1(0). We call

O the oil subspace and r = dim𝔽O the oil dimension of F.

Let l1,… , ln−r ∈ S be linear forms and put L = (l1,… , ln−r) ∈ Sn−r. By abuse of notation, we also denote

L: 𝔽 n → 𝔽 n−r the corresponding linearmap. IfO = V𝔽 (IL ) where IL = ⟨l1,… , ln−r⟩, then the inclusionO ⊂ V𝔽 (IF )

is equivalent to the inclusion

IF ⊂ IL + E

due to the fact that IF + E, IL + E are radical ideals. By assuming that the linear forms lk are linearly independent

we have that r = dim𝔽O.

Observe that the condition IF ⊂ IL + E is equivalent to require that each quadratic form fi (1 ≤ i ≤ m) can

be written in the form

fi =
∑

1≤ j≤n−r
gi jl j mod E

where gij ∈ S are linear forms.

3 Preimages of oil–vinegar maps

The computation of a preimage of a quadratic map is generally a difficult task because it corresponds to solve

a quadratic polynomial system over a finite field. Indeed, it is well-know that the solution to such a general



4 — R. La Scala and A. Meneghetti: Inner product functional encryption

problem is NP-hard [11]. We show now that computing a preimage of an oil-vinegar map becomes efficient once

the oil-subspace is known.

Let 𝑤 = (𝑤1,… ,𝑤m ) ∈ 𝔽m. If F = ( f1,… , fm) is a quadratic map, computing 𝑣 = (𝑣1,… , 𝑣n ) ∈ 𝔽 n such
that F(𝑣) = 𝑤 is equivalent to solve, over the base field 𝔽 , the following system of quadratic equations

⎧⎪⎨⎪⎩

f1(x) =𝑤1,

...

fm(x)=𝑤m.

In other words, the vector 𝑣 is a preimage of𝑤 under the map F. We denote this by writing 𝑣 ∈ F−1(𝑤). Assume

now that F is an oil–vinegar map and we have knowledge of its oil subspace O ⊂ V𝔽 (IF ) = F−1(0). In particular,

let O = V𝔽 (IL ) = L−1(0) where L = (l1,… , ln−r) and lk ∈ S are linear independent linear forms. Fix a random

vector u ∈ 𝔽 n. If o ∈ O and hence F(o) = 0, then

𝑤 = F(u+ o) = F(u)+ F(o)+ F̄(u, o) = F(u)+ F̄(u, o).

To compute a preimage 𝑣 = u+ o ∈ F−1(𝑤) it is sufficient therefore to solve the system of linear equations

L(x) = 0, F̄(u, x) = 𝑤− F(u) which is explicitly

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

l1(x) = 0,
...

ln−r(x) = 0,

f̄1(u, x) =𝑤1 − f1(u),
...

̄fm(u, x)=𝑤m − fm(u).

Note that if m = r we have a system of n linear equations in exactly n variables. In this case, the matrix of

its coefficients has no maximal rank (determinant is zero) with probability 1∕q. If we do not obtain maximal

rank, it is sufficient to choose a new random vector u ∈ 𝔽 n. Moreover, by assuming that the equations f1(x) =
𝑤1,… , fm(x) = 𝑤m are sufficiently generic (complete intersection), one has that the preimage F−1(𝑤) ⊂ 𝔽 n is
an affine variety of dimension n−m.

The signing algorithm of the UOV protocol corresponding to the oil-vinegarmap F: 𝔽 n → 𝔽m is, by definition,
the computation of a preimage 𝑣 ∈ F−1(𝑤) ⊂ 𝔽 n for a document𝑤 ∈ 𝔽m. More precisely, the vector𝑤 is gener-

ally the hash value of a document, so the parameterm is fixed and not very large. The cryptanalysis of the UOV

protocol [12] implies that the condition n > 2m is necessary to achieve a secure signature. As we have just seen,

an efficient signing algorithm is made possible by the knowledge of the oil subspaceO ⊂ F−1(0). The verification

of the signature 𝑣 simply consists in checking that F(𝑣) = 𝑤which involves the cost of evaluating the quadratic

map F. Therefore, the public key of UOV is the map F and the private key is the pair (F,O).

4 Generation of oil–vinegar maps

We address now the task of the key generation in the UOV protocol, that is, how to construct an oil–vinegar

map F = ( f1,… , fm) from any subspace O ⊂ 𝔽 n of dimension r. Up to permutating the coordinates of the vector
space 𝔽 n, we can assume that O is the subspace generated by the rows of a block matrix (H I ) ∈ Mr×n(𝔽 ) where
H ∈ Mr×n−r(𝔽 ) is anymatrix and I ∈ GLr(𝔽 ) is the identity matrix. Consider the upper triangular matrices Ak ∈
Mn(𝔽 ) corresponding to each quadratic form fk (1 ≤ k ≤ m), that is

fk(x) = xAkx
T .

We consider Ak as a block upper triangular matrix of type



R. La Scala and A. Meneghetti: Inner product functional encryption — 5

Ak =
(
A′
k

A′′
k

0 A′′′
k

)

where A′
k
∈ Mn−r(𝔽 ),A′′

k
∈ Mn−r×r(𝔽 ),A′′′

k
∈ Mr(𝔽 ) and A′

k
,A′′′

k
are upper triangular matrices. To enforce O ⊂

F−1(0), or equivalently F(O) = {0}, corresponds to impose, for each 1 ≤ k ≤ m, the following matrix equations

(H I )Ak(H I )T = 0.

From the above equations, one obtains that

HA′
k
HT + HA′′

k
+ A′′′

k
= 0

and hence

A′′′
k

= −HA′′
k
− HA′

k
HT .

In other words, by arbitrarily assigning the matrixH that defines the oil subspace O ⊂ 𝔽 n and arbitrarily choos-
ing thematricesA′

k
,A′′

k
(1 ≤ k ≤ m), it is always possible to define thematricesA′′′

k
(1 ≤ k ≤ m) in such away that

the quadraticmap F = ( f1,… , fm) corresponding to the block upper triangularmatricesA1,… ,Am ∈ Mn(𝔽 ) sat-
isfies O ⊂ F−1(0). It is worth noting that the randommatrix A′

k
∈ Mn−r(𝔽 ) can be directly generated as an upper

triangular matrix, whereas the matrix A′′′
k

∈ Mr(𝔽 ) is defined as the upper triangular matrix that yields the

same quadratic form as the matrix −HA′′
k
− HA′

k
HT .

5 Efficient secret key and signature for UOV

In order to reduce the key sizes and make the signing process more efficient in UOV, we observe the following.

Assume as before that the oil subspace O ⊂ 𝔽 n is the subspace generated by the rows of a block matrix (H I ) ∈
Mr×n(𝔽 ) where I is the identity matrix of order r. Under this assumption, note that the last r entries of a vector
o′ ∈ O can be arbitrarily chosen.

Let𝑤 ∈ 𝔽m and u ∈ 𝔽 n. We have shown that the knowledge of the oil subspaceO implies that a vector u+ o

(o ∈ O) such that F(u+ o) = 𝑤 can be computed by solving a system of linear equations. Let now o′ ∈ O. Note

that if o ∈ O is such that L(o) = 0, F(u+ o) = 𝑤, then o− o′ ∈ O clearly satisfies L(o− o′) = 0, F(u+ o′ + (o−
o′)) = 𝑤. In otherwords, the computation of a preimage in F−1(𝑤) can be obtained in the sameway if we replace

the arbitrary vector u ∈ 𝔽 n with a vector of the form u+ o′ where o′ ∈ O.

Due to the assumption that a basis of the oil subspace O is provided by the rows of a block matrix of type

(H I), replacing u with u+ o′ offers the advantage that one can require that the last r entries of the vector o′

are precisely the opposite of the corresponding entries of the vector u. In other words, we can assume that the

vector u+ o′ has its last r coordinates all equal to zero.

Let u = (u′ 0) ∈ 𝔽 n with u′ ∈ 𝔽 n−r. Recall that fk(x) = xAkx
T (1 ≤ k ≤ m) where

Ak =
(
A′
k

A′′
k

0 A′′′
k

)

with A′
k
∈ Mn−r(𝔽 ),A′′

k
∈ Mn−r×r(𝔽 ),A′′′

k
∈ Mr(𝔽 ). We have therefore that

fk(u) = u′A′
k
u′T .

Moreover, recall that f̄ k(x, y) = x
(
Ak + AT

k

)
yT . Since we are assuming thatO admits as a basis the row vectors of

a blockmatrix of the form (H I), any vector o ∈ O can be obtained as o = c(H I) = (cH c) where c = (c1,… , cr ) ∈
𝔽 r. By computing f̄ k(u, o) one obtains hence



6 — R. La Scala and A. Meneghetti: Inner product functional encryption

f̄ k(u, o) = (u′ 0)

(
A′
k
+ A′T

k
A′′
k

A′′T
k

A′′′
k
+ A′′′T

k

)
(cH c)T

= u′(
(
A′
k
+ A′T

k

)
HT + A′′

k
)cT .

By putting

Ck =
(
A′
k
+ A′T

k

)
HT + A′′

k
∈ Mn−r×r(𝔽 )

we finally obtain that

f̄ k(u, o) = u′Ckc
T .

Once a vector u = (u′ 0) ∈ 𝔽 n is fixed, we recall that the UOV signature of 𝑤 = (𝑤1,… ,𝑤m ) ∈ 𝔽m consists in

solving the following system of linear equations

⎧⎪⎨⎪⎩

f̄1(u, o) =𝑤1 − f1(u),
...

̄fm(u, o)=𝑤m − fm(u)

where the vector o ∈ O is unknown. Since such a vector is parametrized by a vector c ∈ 𝔽 r, once the matrices(
A′
1
, C1,… ,A′

m
, Cm

)
along with thematrixH are stored as the secret key, the signing process involves solving the

corresponding linear system, namely ⎧⎪⎨⎪⎩

u′C1c
T =𝑤1 − u′A′

1
u′T ,

...

u′Cmc
T =𝑤m − u′A′

m
u′T

where the vector c ∈ 𝔽 r is the unknown. After computing c, we put o = c(H I) and the signature is defined as

the preimage 𝑣 = u+ o ∈ F−1(𝑤).

6 Formal description of UOV algorithms

Henceforth, we assume thatm = r = dim𝔽O and n > 2m. Note that in order to set and decrease the value of the

parameterm, the vector𝑤 ∈ 𝔽m typically represents a hash value of the message to be signed.



R. La Scala and A. Meneghetti: Inner product functional encryption — 7

7 Key sizes in the UOV scheme

The public key of UOV is given by an oil–vinegar map F: 𝔽 n → 𝔽m, that is, by m upper triangular matrices

A1,… ,Am ∈ Mn(𝔽 ). Since each element of the finite field 𝔽 = GF(q) is represented by ⌈ log2(q)⌉ bits, it follows
that the size of the public key is

size( pk) = m
n(n+ 1)

2
⌈log2(q)⌉.

Recall that the matrices Ak (1 ≤ k ≤ m) are block matrices of the form

Ak =
(
A′
k

A′′
k

0 A′′′
k

)

where A′
k
,A′′

k
are randommatrices and A′′′

k
is determined by these matrices along with the oil subspace O ⊂ 𝔽 n

(dim𝔽O = m). By generating the matrices A′
k
,A′′

k
(1 ≤ k ≤ m) using a pseudorandom number generator initial-

ized with a public seed, we have that for the public key pk = (A1,… ,Am) we only need to store the upper

triangular matrices A′′′
k

∈ Mm(𝔽 ) (1 ≤ k ≤ m) in addition to the public seed. We conclude that the size of the

compact public key is

size( pkc) = m2(m+ 1)

2
⌈log2(q)⌉+ |seedpub|.

For the secret key, we need to store the matrix H ∈ Mm×n−m(𝔽 ) such that the rows of the block matrix

(H I ) ∈ Mm×n(𝔽 ) are a basis of the oil subspace. In addition to the matrix H, the UOV signing process requires

the upper triangularmatricesA′
k
∈ Mn−m(𝔽 ) alongside thematrices Ck ∈ Mn−m×m(𝔽 ), for all k = 1, 2,… ,m. The



8 — R. La Scala and A. Meneghetti: Inner product functional encryption

total size of the secret key is hence

size(sk) =
(
m(n−m)+m

(n−m)(n−m+ 1)

2
+m2(n−m)

)
⌈log2(q)⌉

= m(n+m+ 3)(n−m)

2
⌈log2(q)⌉.

Aswith the public key, we can avoid storing the randommatricesA′
k
(1 ≤ k ≤ m) andH by using a pseudorandom

number generator initialized with the public seed used for the public key, along with an additional secret seed.

We conclude that the size of the compact secret key is

size(skc) = m2(n−m)⌈log2(q)⌉+ |seedpub|+ |seedsec|.
Note that by including the computation of the matrices Ck =

(
A′
k
+ A′T

k

)
HT + A′′

k
in the UOV signing algorithm,

then the size of the compact secret key can be further reduced to

|seedpub|+ |seedsec|.
In this case, however, the signing process would result in less efficiency.

The size of the UOV signatures is clearly n⌈ log2(q)⌉. If the vector𝑤 ∈ 𝔽m for which we compute a preimage
𝑣 ∈ F−1(𝑤) is a hash of the message to be signed and the hashing process includes a random number salt, then

the size of the signature is precisely

size(sign) = n⌈log2(q)⌉+ |salt|.

8 Functional encryption

In this section,we briefly recall the formal notion of Functional Encryption. LetX be the set of plaintexts andY be

the set of ciphertexts. Denote byK the set of functional keys and by V the set of functional values. Then, a function

F:K × X → V is given. We also introduce a set Ksec of the secret keys, a set Kpub of the public keys and finally a

set Kusr of the user secret keys. Then, we have a function keygen:K × Ksec → Kusr, that is, for any functional key

k ∈ K and for each secret key sk ∈ Ksec, we have a user secret key uskk = keygen(k, sk) ∈ Kusr. For any public

key pk ∈ Kpub, there is a functional encryption mapping encpk :X → Y . For each user secret key uskk , we have a

functional decryption mapping decuskk : Y → V such that if y = encpk(x), then decuskk (y) = F(k, x).

In practice, the secret key sk and the public key pk are owned by a Master user, a central authority, who

distributes pk to Alice to enable them to functionally encrypt the plaintext x, that is, to compute y = encpk(x).

If Bob is a user corresponding to the functional key k, then the Master distributes to Bob the user secret key

uskk = keygen(k, sk). With this key, Bob can decrypt the functional value decuskk (y) = F(k, x) of the plaintext

belonging to Alice.

In addition to these algorithms, a protocol of functional encryption, briefly FE, involves a setup function

such that for each value of appropriate parameters, it returns a pair (sk, pk) chosen arbitrarily from those

satisfying the required parameters. It is assumed that all functions of an FE protocol can be computed efficiently.

If K = X = 𝔽 d and V = 𝔽 where 𝔽 is a finite field, we have an inner product functional encryption, briefly

IPFE, if F(k, x) = ⟨k, x⟩ = ∑
ikixi ∈ V where k = (k1,… , kd) ∈ K and x = (x1,… , xd) ∈ X.

9 An IPFE protocol based on the UOV scheme

In this section we introduce an IPFE protocol that leverages modern UOV algorithms, inspired by the protocol

introduced by Debnath, Mesnager, Dey and Kundu in [4] (See Algorithms 9.1, 9.2, 9.3, and 9.4). As previously

explained for general IPFE schemes, the set of plaintexts and the set of functional keys coincide with a vector

space 𝔽 d over a finite field 𝔽 . The set of functional values is thus 𝔽 .



R. La Scala and A. Meneghetti: Inner product functional encryption — 9

Let {t1,… , td} and {x1,… , xn} be two disjoint sets of variables and consider the polynomial algebras R =
𝔽 [t1,… , td] and S = 𝔽 [x1,… , xn]. We put

P = R[x1,… , xn] = 𝔽 [t1,… , td, x1,… , xn].

Moreover, let 𝕂 = 𝔽 (t1,… , td ) denote the field of rational functions corresponding to R = 𝔽 [t1,… , td]. We con-

siderm quadratic forms in the variables x1,… , xn whose coefficients are polynomials in the variables t1,… , td.

Precisely, if we put t = (t1,… , td) ∈ Rd and x = (x1,… , xn) ∈ Sn, for each 1 ≤ k ≤ m we define

f (t)
k
(x) = xA(t)kx

T ∈ P

where A(t)k = (A(t)
i j

k
) ∈ Mn(R) is an upper triangular matrix. By evaluating the variable vector t = (t1,… , td)

at a vector a = (a1,… , ad ) ∈ 𝔽 d, we obtain a quadratic form f (a)
k

∈ S associated with thematrix A(a)k ∈ Mn(𝔽 ),
which in turn is obtained by evaluating the matrix A(t)k . By setting F

(a) = ( f (a)
1

,… , f (a)m ), we have a quadratic

map F(a): 𝔽 n → 𝔽m for every vector a = (a1,… , ad ) ∈ 𝔽 d. This set of maps is clearly obtained by evaluating the
quadratic map F(t) = ( f (t)

1
,… , f (t)m ), where we can assume that F(t):𝕂n → 𝕂m.

Let now {y1,… , yn} be a set of variables disjoint from the sets {x1,… , xn} and {t1,… , td}. We consider

the polynomial algebra P̄ = R[x1,… , xn, y1,… , yn]. The polar form of the quadratic map f (t)
k

is by definition the

bilinear form

f̄ (t)
k
(x, y) = f (t)

k
(x + y)− f (t)

k
(x)− f (t)

k
(y) ∈ P̄.

In other words, we have

f̄ (t)
k
(x, y) = x(A(t)k + A(t)T

k
)yT .

Observe that A(t)k + A(t)T
k
∈ Mn(R) is a symmetric matrix with even elements along the main diagonal. By eval-

uating the variable vector t = (t1,… , td) at a vector a = (a1,… , ad ) ∈ 𝔽 d, we obtain the polar form f̄ (a)
k

of f (a)
k

from the polar form f̄ (t)
k
of f (t)

k
.

By setting F̄(t) = ( f̄ (t)
1
,… , f̄ (t)m ) ∈ P̄m, we call F̄(t) the polar map of the quadratic map F(t). Clearly, F̄(a) is the

polar map of the quadratic map F(a), for all a = (a1,… , ad ) ∈ 𝔽 d.

Definition 9.1. We call F(t) = ( f (t)
1
,… , f (t)m ) an oil–vinegar map if F(a) is an oil–vinegar map, for each a =

(a1,… , ad ) ∈ 𝔽 d. If O(a) ⊂ 𝔽 n is the oil subspace of F(a), we assume that dim𝔽O(a) = m, for all a ∈ 𝔽 d.

We now illustrate how to construct an oil–vinegar map F(t) = ( f (t)
1
,… , f (t)m ). Let H(t) ∈ Mm×n−m(R) be a

matrix whose entries are linear forms in the variables t1,… , td and consider the blockmatrix (H(t)I) ∈ Mm×n(R)

where I is the identity matrix of orderm. Denote by O(t) ⊂ Rn the vector subspace generated by the rows of the

matrix (H(t)I). Note that if O(a) ⊂ Fn is the vector subspace generated by the rows of the matrix (H(a) I ) ∈
Mm×n(𝔽 ), then dim𝔽O(a) = m for every a = (a1,… , ad ) ∈ 𝔽 d.

Let A(t)′
k
∈ Mn−m(R),A(t)

′′
k
∈ Mn−m×m(R) (1 ≤ k ≤ m) be matrices whose entries are linear forms in R and

assume thatA(t)′
k
is an upper triangularmatrix. Denote byA(t)′′′

k
∈ Mm(R) the upper triangularmatrix defining

the same quadratic form of the matrix

−H(t)A(t)′′
k
− H(t)A(t)′

k
H(t)T .

Since the entries of A(t)′
k
, A(t)′′

k
and H(t) are linear forms, it is important to note that the entries of A(t)′′′

k
are

cubic polynomials with homogeneous components of degrees 2 and 3.

We finally define the block upper triangular matrices

A(t)k =
(
A(t)′

k
A(t)′′

k

0 A(t)′′′
k

)
∈ Mn(R)

and the corresponding quadratic forms f (t)
k

= xA(t)kx
T (1 ≤ k ≤ m). By defining F(t) = ( f (t)

1
,… , f (t)m ), it is clear

that F(a) is an oil–vinegar map with O(a) as its oil subspace.



10 — R. La Scala and A. Meneghetti: Inner product functional encryption

We present now a direct instantiation of the IPFE protocol in [4] with the modern UOV scheme and discuss

its limitations. Up to optimizations in key generation similar to those used for UOV, we have that the secret

key sk held by the Master consists of an oil–vinegar map F(t) = ( f (t)
1
,… , f (t)m ) along with the corresponding oil

subspace O(t) ⊂ Rm. The public key pk given to Alice is the oil–vinegar map F(t) alone, and the user secret key

uska given to Bob consists of the oil–vinegar map F
(a) = ( f (a)

1
,… , f (a)m ) along with the oil subspace O(a) ⊂ 𝔽m.

We observe that the subspaces O(t) and O(a) are assigned using matrices H(t) ∈ Mm×n−m(R) and H(a) ∈
Mm×n−m(𝔽 ). To prevent a collusion attack on the protocol that could, for example, determineH(t) from the knowl-

edge of variousmatricesH(a1),… ,H(al), it is essential to limit the number s of functional keys {a1,… , as} ⊂ 𝔽 d

allowed by the protocol relative to the dimension d of the plaintexts b ∈ 𝔽 d.
We will now illustrate how Alice performs the functional encryption of their plaintext b = (b1,… , bd ) ∈ 𝔽 d

using the public key F(t) and how Bob can perform the functional decryption using the user secret key uska =
(F(a),O(a)). We recall that the goal of the (inner product) functional decryption is to determine the inner product

F(a, b) = ⟨a, b⟩ = ∑
iaibi.

Following the general framework, the functional encryption is defined for any functional key a =
(a1,… , ad). We will see that this implies that the corresponding ciphertext is generally a large data. Alterna-

tively, Alice could construct different ciphertexts for different functional keys. Nonetheless, we will examine the

general scheme in the following algorithms.



R. La Scala and A. Meneghetti: Inner product functional encryption — 11

Observe that each component of the vectors ū(t), 𝑣̄(t) ∈ Rn is a polynomial of type

ū(t)k =
∑
i≤ j

A(t)
i j

k
u(t)iu(t) j, 𝑣̄(t)k =

∑
i≤ j

A(t)
i j

k
𝑣(t)i𝑣(t) j.

The (inner product) functional decryption performed by Bob, namely the computation of ⟨a, b⟩, involves
the following operations.

According to the UOV protocol, Bob’s knowledge of the oil subspace O(a) enables him to efficiently compute

an element of any preimage of the oil-vinegar map F(a). In fact, we recall that such a computation reduces

to solving a system of n linear equations in n variables. Moreover, assuming that the polynomial map F(a) is

sufficiently generic, the dimension of a preimage, as an algebraic variety, is n−m. Consequently, the dimension

of the product of preimages (F(a) )−1(ū) × (F(a) )−1(𝑣̄) is d = 2n− 2m. Under the assumption thatn is slightly larger

than 2m, we obtain that d ≈ n. If we impose the n linear equations corresponding to the condition 𝑣− u = c on

the pairs (u, 𝑣) ∈ (F(a) )−1(ū) × (F(a) )−1(𝑣̄), we obtain essentially a unique solution that coincides with the pair

(u(a), 𝑣(a)). In other words, the probability of finding this pair in the product set (F(a) )−1(ū) × (F(a) )−1(𝑣̄) is one

out of its number of elements, which can be approximately estimated as 1∕qn. This explains the correctness of
the functional encryption-decryption algorithms described above.

Note that the protocol described in Decryption Algorithm 9.3 has a computational cost of the order of qn−m.

This (exponential, and thus infeasible) approach is directly derived from [4], with whom it shares the trial-

and-error decryption algorithm: Bob continues to generate valid preimages u and 𝑣 for ū and 𝑣̄ until the check

𝑣− u = c is satisfied. Looking back at UOV Signature Algorithm 6.2, this method turns out to be equivalent to

keep generating random vectors u′ ∈ 𝔽 n−m, until the correct preimage u is found.



12 — R. La Scala and A. Meneghetti: Inner product functional encryption

To solve this issue we consider here a variant in which Alice encodes their information in a particular

subspace of Rn, so that, when the ciphertext is specialized by Bob by using their functional key, the decryption

algorithm can be speed-up. Before providing the details of the protocol we present the general idea.

Consider a vector subspace V ⊂ 𝔽 n of dimension 𝓁 such that its intersection O′ with Bob’s Oil subspace O

has dimension klt𝓁. Without loss of generality, we can assume that V is defined via a linear map

 : 𝔽 𝓁 → 𝔽 n

such that its restriction to the first 𝓁 coordinates of the co-domain is a bijection. If Alice is given  , they can

proceed similarly to Algorithm 9.3, with the difference that Steps 2 and 3, used to compute the vector u(t) =
(u(t)1,… , u(t)n) ∈ Rn, are replaced by the following:

2. u′(t) = (u′(t)1,… , u′(t)𝓁) consists of linear forms in the variables t1,… , td such that
∑𝓁

i=1u
′(t)i = ⟨t, b⟩.

3. u(t) = (u(t)1,… , u(t)n) is computed as (u
′(t)).

Thus, Bob performs the functional decryption using Algorithm 9.4, with the slight modification that the search is

confined to the subspace V . In this way, the algorithm runs inO(q𝓁−k), in which 𝓁 − k can be fixed of the order of

log(n). In this way, the computational cost of the decryption algorithm is polynomial in n instead of exponential

in n−m.

It is important to note that the variant just described cannot directly be used. Indeed, an attacker can easily

guess an element of Bob’s Oil subspace by looking at . To solve this issue, we considerV to be a parametric space

V (t), so that, at the cost of increasing the ciphertext’s size, an attacker is not capable of guessing the subspace V

associated to Bob’s oil subspace (which, with this newly introduced notation, is V (a)) and thus to directly attack

the scheme.

Finally, to further improve the decryption algorithm 9.4, instead of searching for two preimages satisfying

the check 𝑣− u = cwemodify the scheme so that Bob can directly checkwhether u is correctwithout generating

a corresponding 𝑣.

Remark 9.2. A key difference with respect to the IPFE protocol described in Section 9 is the necessity of know-

ing in advance the user’s functional keys. In Section 9 the key-generation is composed by two algorithms run

by the authority: Algorithm 9.1 used to obtain the parametric public key pk and the master secret key sk, and

Algorithm 9.2 used to specialize the master key sk to obtain users’ secret keys usk. In this section instead, dur-

ing the key generation, the authority generates all the user’s secret keys usk1,… , usks and the corresponding

unique parametric public key pk. No further users can be added after the key-generation, so there is no need

to store che master key. This results in the key-generation algorithm 9.5. This choice has been made to mitigate

key-recovery attacks that could leverage on the knowledge of  (t) (which is part of the public key and is linked

to users’ secret keys).

In Algorithms 9.5, 9.6, and 9.7 we describe in details the key-generation, encryption, and decryption of our

variant of the IPFE protocol based on [4] and UOV.



R. La Scala and A. Meneghetti: Inner product functional encryption — 13



14 — R. La Scala and A. Meneghetti: Inner product functional encryption

10 Key and ciphertext sizes in the IPFE protocol

The public key pk possessed by Alice is composed by two parts:

1) a parametric oil–vinegar map F(t) = ( f (t)
1
,… , f (t)m );

2) a parametric linear map  (t).

Recall that the map F(t) = ( f (t)
1
,… , f (t)m ) where f (t)

k
= xA(t)kx

T ∈ P is a quadratic form defined by the matrix

A(t)k =
(
A(t)′

k
A(t)′′

k

0 A(t)′′′
k

)

with A(t)′
k
,A(t)′′

k
being random matrices whose entries are linear forms in R and A(t)′′′

k
is determined by these

matrices and the oil subspace O(t) ⊂ Rn. By generating the random matrices A(t)′
k
,A(t)′′

k
(1 ≤ k ≤ m) using a

pseudorandom generator from a public seed, for the public key pk we only need to store the upper triangular

matrices A(t)′′′
k

∈ Mm(R) (1 ≤ k ≤ m) in addition to the public seed. We recall that the entries of A(t)′′′
k
are cubic

polynomials with homogeneous components of degree 2 and 3. Since each element of the finite field 𝔽 = GF(q)

is represented by ⌈ log2(q)⌉ bits, each entry of the upper triangular matrix A(t)′′′k is represented by the following

number of bits (
d(d + 1)

2
+ d(d + 1)(d + 2)

6

)
⌈log2(q)⌉ = d(d + 1)(d + 5)

6
⌈log2(q)⌉,

so that we have

size(F(t) ) = m2(m+ 1)

2

d(d + 1)(d + 5)

6
⌈log2(q)⌉+ |seedpub|.

The second part of the public key is  (t). Recall that  (t) = ∑d

i=1tii where i: 𝔽 𝓁 → 𝔽 n are randomly generated
maps. This implies that it is sufficient to store the seed used. In particular, the set {i} can be obtained again by
using seedpub, which has been already accounted for. Putting everything together we have

size( pk) = m2(m+ 1)

2

d(d + 1)(d + 5)

6
⌈log2(q)⌉+ |seedpub|.

The user secret key usk j owned by Bob is given by a j,A(a j )
′
k
,A(a j )

′′
k
(1 ≤ k ≤ m), H(aj), and (a j ). Using

the public seed, Bob can obtain A(t)′
k
,A(t)′′

k
and  (t) which can be transformed into A(a j )

′
k
,A(a j )

′′
k
and  (a j ) by



R. La Scala and A. Meneghetti: Inner product functional encryption — 15

evaluation. However, thematrixH(t) in the secret key skmust remain unknown to Bob, so thematrixH(aj) must

be explicitly provided to them. We therefore have

size(usk j ) = m(n−m)⌈log2(q)⌉+ |seedpub|.
Note that in Algorithm 9.5 Bob is also provided with the matrices

C(a)k = (A(a)′
k
+ A(a)′T

k
)H(a)T + Ak(a)4

′′

aiming to speed up the computation of preimages. In this case the size becomes

(m(n−m)+m2(n−m))⌈log2(q)⌉+ |seedpub|
= m(m+ 1)(n−m)⌈log2(q)⌉+ |seedpub|.

Finally, we calculate the size of the plaintext and ciphertext. A plaintext is a vector b = (b1,… , bd ) ∈ 𝔽 d,
which means it consists of d elements from the field 𝔽 . We therefore have

size(b) = d⌈log2(q)⌉.
The corresponding ciphertext CT(t)(b) = (ū(t), 𝑣̄(t), c) consists of the vectors ū(t) = (ū(t)1,… , ū(t)m ) = F(t)(u(t))

and 𝑣̄(t) = (𝑣̄(t)1,… , 𝑣̄(t)m ) = F(t)(𝑣(t)) where u(t) =  (t)(u′(t)) and 𝑣(t) = u(t)+ c are each 𝓁 quadratic forms
in d unknowns. Thus, we have that ū(t)k = u(t)kA(t)ku(t)

T
k
∈ R and 𝑣̄(t)k = 𝑣(t)kA(t)k𝑣(t)

T
k
∈ R (1 ≤ k ≤ m)

where

A(t)k =
(
A(t)′

k
A(t)′′

k

0 A(t)′′′
k

)

and A(t)′
k
∈ Mn−m(R),A(t)

′′
k
∈ Mn−m×m(R) are matrices whose entries are linear forms and A(t)′

k
is an upper

triangular matrix. Moreover, A(t)′′′
k

∈ Mm(R) is an upper triangular matrix whose entries are cubic polynomi-

als with homogeneous components of degree 2 and 3. We therefore have that ū(t)k, 𝑣̄(t)k are polynomials in d

variables of degree 7. We conclude that the size of the ciphertext CT(t)(b) is

size(CT(t)(b)) = (2m

(
d + 7

7

)
+ n)⌈log2(q)⌉.

11 Security and parameters

We start by considering the security of [4] specialized with UOV (Algorithms 9.1, 9.2, 9.3, and 9.4). A first issue

when studying the security of a Functional Encryption protocol is that such a protocol is naturally exposed to

“collusion attacks” where different functional decryptors, different Bobs, agree to share the information avail-

able to them. Specifically, the decryptors could exchange their functional keys a and thus the values of the

functions F(a, b), in order to determine the plaintext b that Alice has functionally encrypted. This type of attack

is particularly risky in the case of IPFE, where different functional keys a1,… , al ∈ 𝔽 d determine a system of

linear equations in the variables t1,… , td of type

⎧⎪⎨⎪⎩

⟨a1, t⟩= ⟨a1, b⟩
...⟨al, t⟩ = ⟨al, b⟩

The plaintext b is clearly one of the solutions of this linear system. It is therefore absolutely essential that the

number of functional keys allowed in the protocol is not too high compared to the dimension d of the plaintexts.



16 — R. La Scala and A. Meneghetti: Inner product functional encryption

In particular, if l is less than d, than the linear system is underdetermined. Fortunately, this assumption is not

too restrictive in practical applications of IPFE.

To perform a security analysis of an FE protocol, the notion of security commonly employed is the paradigm

of “simulation-based security”. Specifically, let b ∈ 𝔽 d be a plaintext generated by a challenger CH who possesses
the public key, and let a1,… , al ∈ 𝔽 d be the functional keys owned by an adversary AD. We can identify the

challenger CH as Alice and the adversary AD as multiple Bobs who collaborate on a collusion attack.

We denote by GAME(0) the so-called “real experiment” of simulation-based security, which is the activity of

AD attempting to distinguish different ciphertexts generated by CH from different plaintexts.

Now we consider another activity, denoted by GAME(1), which we consider intermediate between the real

experiment GAME(0) and the so-called “ideal experiment” GAME(2) of simulation-based security. We will explain

later what the activity of GAME(2) consists of. Indeed, we recall that security in this paradigm is achieved when

GAME(0) andGAME(2) are computationally indistinguishable by the adversary ADwith only a negligible probability

of success.

Starting from the same public key pk, the activity of the challenger CH is replaced in GAME(1) by that of a

simulator SIM1. Given an original plaintext b, the agent SIM1 generates a distinct plaintext b
∗
≠ b such that its

corresponding ciphertext CT(t)(b∗ ) = (ū∗(t), 𝑣̄∗(t), c∗ ) satisfies, for each i = 1, 2,… , l

⟨ai, b⟩ = ⟨ai, b∗⟩. (1)

In other words, AD observes the same functional decryption for the plaintexts b and b∗ when using the different

functional keys ai it possesses. Hence, functional decryption does not help AD to distinguish between b and b
∗.

Note that the vector b∗ can be efficiently computed by SIM1 from the vectors b and a1,… , al by using the linear

equations (1).

Assuming that the randomly selected public key pk consists of a generic quadratic map F(t), the ciphertexts

CT(t)(b) andCT(t)(b∗) generatedby the activities ofGAME(0) andGAME(1) respectively, share equal probabilitywithin

the ciphertext space. Therefore, the adversary AD is left only to try to compute the plaintexts b and b∗ in order

to distinguish the corresponding ciphertexts. Precisely, if {ek}1≤k≤d is the canonical basis of the vector space 𝔽 d,
observe that ∑

i

u(ek )i = ⟨ek, b⟩ = bk,
∑
i

u∗(ek )i = ⟨ek, b∗⟩ = b∗
k
.

In otherwords, by computing the preimagesu(ek ) ∈ 𝔽 n of the vectors ū(ek ) ∈ 𝔽m under themap F(ek ) (1 ≤ k ≤ d),

the adversaryAD obtains the plaintext b. In a similarway, AD can compute b∗. Observe that computing a preimage

of a generic quadratic map over a finite field is an NP-hard problem. Thus, AD can distinguish the ciphertexts

CT(t)(b) and CT(t)(b∗) by computing b and b∗, respectively, with a negligible probability of efficiently solving such

a problem. We denote this negligible probability by 𝜖1. Using the language of simulation-based security, we then

write

| Pr(GAME(1))− Pr(GAME(0))| ≤ 𝜖1.

Similarly to the activity of GAME(1), the ideal experiment GAME(2) consists in replacing the challenger CH with

a simulator SIM2 who computed a third plaintext b
∗∗ such that, for each i = 1, 2,… , l, we have

⟨ai, b⟩ = ⟨ai, b∗⟩ = ⟨ai, b∗∗⟩.
Therefore, the adversary AD cannot distiguish b, b∗ and b∗∗ using the functional keys he owns. The agent SIM2
differs from SIM1 in that the former can use a different public key pk, that is, a distinct polynomial map F

(t) from

the one used in the real experiment. Since the ciphertextC(t)(b∗∗) is computed by the generic polynomialmap F(t),

this ciphertext is probabilistically uncorrelated with those generated by GAME(0) and GAME(1). This implies that

the only way to distinguish the outcomes of these activities from that of GAME(2) is by determining the plaintexts



R. La Scala and A. Meneghetti: Inner product functional encryption — 17

Table 1: Parameters.

𝝀 d n m k 𝓵 q CT(t)(b)

128 20 112 44 19 20 256 78.1MB

b, b∗ and b∗∗ in order in order to identify the corresponding ciphertexts. Again, this implies the ability of AD to

solve generic systems of quadratic equations over a finite field, which is a known NP-hard problem.

Consequently, distinguishing GAME(2) from activities GAME(1) and GAME(0) can be achieved by AD with negli-

gible probability. Specifically, we have

| Pr(GAME(2))− Pr(GAME(1))| ≤ 𝜖2

and thus | Pr(GAME(2))− Pr(GAME(0))| ≤ | Pr(GAME(2))− Pr(GAME(1))|
+| Pr(GAME(1))− Pr(GAME(0))| ≤ 𝜖1 + 𝜖2 = 𝜖

where 𝜖 is still a negligible probability.

The security of the proposed IPFE scheme (Algorithms 9.5, 9.6, and 9.7) relies on one hand of the security of

[4] instantiated with UOV, and on the other hand on the inability of the attacker to determine (part of) Bob’s Oil

subspace by looking at the public key (t). By construction, (t) and O(t) are generated randomly: the only link

is that, for any aj in the predetermined set {a1,… , as},(a) is a subspace of Bob’s oil subspaceO(a). This implies
that, if ã ∉ {a1,… , as}, then (ã) is a random vector subspace of 𝔽 n, thus unrelated to the hypothetical corre-
sponding oil subspace O(ã). In other words, an attacker have to guess Bob’s functional key aj, but a wrong guess

ã ≠ a j will lead to a specialized public key (A(ã)1,… ,A(ã)m,(ã)) where O(ã) and (ã) are random and not

linked together, thus preventing its ability to decrypt due to the security of UOV. To achieve the required security

it is necessary that the number s of valid functional keys (those associated to UOV secret keys) is negligible with

respect to qd, for example
qd

|s| ≥ 2𝜆

with 𝜆 the security parameter. Note that this assumption is in line with the already discussed limitation on the

number of functional keys to resist against collusion attacks.

In this case, a functional key recovery attack implies the solution of nonlinear system in d + n variables of

degree 7 obtained by searching for zeros of the map F(t) ⚬ (t)(x).

In Table 1 we show an example of parameters set corresponding to the instantiation UOV-Ip.

As we can see from Table 1, the main open problem is to determine a more efficient encryption algorithm.

In particular, the large ciphertext is a set of polynomial of degree 7 in d variables, and a possibility is to design

a method to lower this degree. For example, with the presented parameters, by lowering the degree from 7 to 5

we would obtain a compression of the ciphertext of the order of 94%, resulting, for the parameters choices in
Table 1, in a ciphertext of 4.7MB.

A possibility is to change the key-generation algorithm to obtain a linear (in t) public key F(t). In Algorithm

11.1 we propose a variant of Algorithm 9.5 with this feature, whose security is however still under investigation.



18 — R. La Scala and A. Meneghetti: Inner product functional encryption

Observe that in Algorithm 11.1 the public key is linear in t. By using a public key obtained from Algorithm

11.1 instead of 9.5, Alice will obtain a degree 5 ciphertext, thus mitigating the computational cost and mem-

ory requirements of both our encryption and decryption algorithms. We remark however that, even if from a

security point of view this last approach seems to be comparable with our proposal, more analyses should be

conducted to exclude any vulnerability.



R. La Scala and A. Meneghetti: Inner product functional encryption — 19

12 Conclusions and further directions

In this paper we discuss the properties and limitations of inner product functional encryption (IPFE) protocols

using a state-of-art version of the UOV digital signature. Even though this approach improves the key generation

and encryption–decryption algorithms, as well as their security foundations, the decryption algorithm remains

exponential. We then propose a variant to mitigate this limitation, whose main drawback is the dimension of

the ciphertext. We conclude by proposing a modification which would allow for a more compact public key and

smaller ciphertext, whose security is however still under investigation.

Acknowledgments: The authors would like to thank the reviewers for their valuable comments and sugges-

tions, which have significantly contributed to improving the clarity and readability of the manuscript.

Author contribution: All authors accept full responsibility for the entire content of this manuscript, have

reviewed all results, approved the final version, and consented to its submission to the journal. The manuscript

was prepared collaboratively by all authors.

Conflict of interest: Authors state no conflict of interest.

Research funding: The first author acknowledges the partial support of PNRR MUR projects “Security and

Rights in the CyberSpace”, Grant ref. CUP H93C22000620001, Code PE00000014, Spoke 3, and “National Center

for HPC, Big Data and Quantum Computing”, Grant ref. CUP H93C22000450007, Code CN00000013, Spoke 10.

The same author was co-funded by PRIN MUR project “Algebraic Methods in Cryptanalysis”, Grant ref. CUP

H53C24000830006, Code 2022RFAZCJ, and by Università degli Studi di Bari, “Fondo acquisto e manutenzione

attrezzature per la ricerca”, Grant ref. DR 3191. Both authors acknowledge membership in INdAM – GNSAGA

and UMI – Crittografia e Codici.

References

1. Boneh D, Sahai A, Waters B. Functional encryption: definitions and challenges. In Theory of cryptography. Lecture Notes in

Comput. Sci., 6597. Heidelberg: Springer; 2011:253−73 pp.
2. Mascia C, Sala M, Villa I. A survey on functional encryption. Adv Math Commun 2023;17:1251−89..
3. Gentry C. Homomorphic encryption: a mathematical survey. Proc Int Cong Math 2022;2:956−1006..
4. Debnath SK, Mesnager S, Dey K, Kundu N. Post-quantum secure inner product functional encryption using multivariate public key

cryptography. Mediterr J Math 2021;18, Paper No. 204:15..

5. Beullens W, Chen M-S, Ding J, Gong B, Kannwischer MJ, Patarin J, et al. UOV: unbalanced oil and vinegar algorithm specifications

and supporting documentation, Version 1.0; 2023. https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/

spec-files/UOV-spec-web.pdf.

6. Beullens W, Chen M-S, Hung S-H, Kannwischer MJ, Peng B-Y, Shih C-J, et al. Oil and vinegar: modern parameters and

implementations. IACR Trans Cryptogr Hardw Embed Syst 2023;2023:321−65..
7. Gringiani A. Multivariate-based cryptography: a revision of MAYO parameters [Master thesis]. Trento: University of Trento; 2022.

8. Kipnis A, Patarin J, Goubin L. Unbalanced oil and vinegar signature schemes. In: Stern J, editor. Advances in Cryptology

− EUROCRYPT ’99. EUROCRYPT 1999. Lecture Notes in Computer Science. Berlin, Heidelberg: Springer; 1999, vol 1592:206−22 pp.
9. La Scala R, Pintore F, Tiwari SK, Visconti A. A multistep strategy for polynomial system solving over finite fields and a new algebraic

attack on the stream cipher trivium. Finite Fields Appl 2024;98, Paper No. 102452:33..

10. Ghorpade SR. A note on Nullstellensatz over finite fields. In: Contributions in Algebra and Algebraic Geometry, Contemp. Math.,

738. Providence, RI: Amer. Math. Soc.; 2019:23−32 pp.
11. Garey M R, David S J. Computers and intractability. New York: Wh Freeman; 2002, vol 29.

12. Kipnis A, Shamir A. Cryptanalysis of the oil and vinegar signature scheme. In: Advances in Cryptology − CRYPTO ’98, Lecture Notes

in Comput. Sci., 1462. Berlin: Springer-Verlag; 1998:257−66 pp.

https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/UOV-spec-web.pdf
https://csrc.nist.gov/csrc/media/Projects/pqc-dig-sig/documents/round-1/spec-files/UOV-spec-web.pdf

	1 Introduction
	2 Oil-vinegar maps
	3  Preimages of oiltnqx2013;vinegar maps
	4  Generation of oiltnqx2013;vinegar maps
	5 Efficient secret key and signature for UOV
	6 Formal description of UOV algorithms
	7 Key sizes in the UOV scheme
	8 Functional encryption
	9 An IPFE protocol based on the UOV scheme
	10 Key and ciphertext sizes in the IPFE protocol
	11 Security and parameters
	12 Conclusions and further directions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (Euroscale Coated v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.7
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 35
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 10
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1000
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.10000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /DEU <FEFF00280073006500650020006700650072006d0061006e002000620065006c006f00770029000d005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f002000700072006f006400750063006500200063006f006e00740065006e00740020007000720069006e00740069006e0067002000660069006c006500730020006100630063006f007200640069006e006700200074006f002000740068006500200064006100740061002000640065006c0069007600650072007900200072006500710075006900720065006d0065006e007400730020006f00660020004400650020004700720075007900740065007200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e002900200044006100740065003a002000300033002f00300031002f0032003000310035002e0020005400720061006e00730070006100720065006e0063006900650073002000610072006500200072006500640075006300650064002c002000520047004200200069006d0061006700650073002000610072006500200063006f006e00760065007200740065006400200069006e0074006f002000490053004f00200043006f0061007400650064002000760032002e002000410020005000440046002f0058002d0031006100200069007300200063007200650061007400650064002e000d005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f005f000d000d00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e002c00200075006d00200044007200750063006b0076006f0072006c006100670065006e0020006600fc0072002000640065006e00200049006e00680061006c0074002000670065006d00e400df002000640065006e00200044006100740065006e0061006e006c006900650066006500720075006e0067007300620065007300740069006d006d0075006e00670065006e00200076006f006e0020004400450020004700520055005900540045005200200028004a006f00750072006e0061006c002000500072006f00640075006300740069006f006e00290020005300740061006e0064003a002000300031002e00300033002e00320030003100350020007a0075002000650072007a0065007500670065006e002e0020005400720061006e00730070006100720065006e007a0065006e002000770065007200640065006e00200072006500640075007a0069006500720074002c0020005200470042002d00420069006c006400650072002000770065007200640065006e00200069006e002000490053004f00200043006f00610074006500640020007600320020006b006f006e00760065007200740069006500720074002e00200045007300200077006900720064002000650069006e00650020005000440046002f0058002d00310061002000650072007a0065007500670074002e>
    /ENU ()
    /ENN ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName (ISO Coated v2 \(ECI\))
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName <FEFF005B0048006F006800650020004100750066006C00F600730075006E0067005D>
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 8.503940
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /UseName
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [595.276 841.890]
>> setpagedevice


