
Research Article

Andrew Mendelsohn*, Edmund Dable-Heath, and Cong Ling

A small serving of mash: (Quantum)
algorithms for SPDH-Sign with small
parameters

https://doi.org/10.1515/jmc-2024-0025
received June 10, 2024; accepted January 13, 2025

Abstract: We find an efficient method to solve the semidirect discrete logarithm problem (SDLP) over finite
nonabelian groups of order p3 and exponent p2 for certain exponentially large parameters. This implies an
attack on SPDH-Sign,1 a signature scheme based on the SDLP, for such parameters. In particular, SDLP
instances over such groups are parameterised by an ()< −n p p1 6: we develop a method to solve instances
when ()≤ ⋅n p ppoly log . Letting λ be the security parameter of SPDH-Sign, which is taken =p λexp , we find we
may solve instances of SDLP corresponding to SPDH-Sign instances with exponentially large p. However, for
≈n p2 and larger, our method no longer completely solves the SDLP instances. We also study the linear hidden

shift problem for a group action corresponding to SDLP and take a step towards proving the quantum
polynomial time equivalence of SDLP and the semidirect computational Diffie–Hellman problem.

Keywords: semidirect product, discrete logarithm, signatures, group actions, cryptanalysis

MSC 2020: 11T71, 94A60, 68Q12

1 Introduction

In [1], the authors introduced a key exchange protocol. The security of their scheme was based on a discrete
logarithm problem (DLP): given a group element g that generates a finite groupG, and the element gx for some

�∈x , can one recover x? Efficient classical solutions to the general DLP remain elusive, but Shor [2] gave an
efficient quantum algorithm to solve the aforementioned problem. Thus, cryptography relying on the afore-
mentioned discrete logarithm assumption is not post-quantum secure. However, the fruitfulness of the dis-
crete logarithm assumption for classical cryptography has led to widespread use of diverse protocols relying
on DLPs.

The field of post-quantum cryptography comprises several distinct topics: lattices, isogenies of elliptic
curves, multivariate polynomials, and codes have all been used to develop cryptosystems believed no more
vulnerable to attack by quantum adversaries than by classical adversaries. Another line of work refers back to
the DLP above, asking: can the DLP be tweaked to yield a quantum-hard cryptographic problem? If this were
possible, such a “tweaked” DLP may perhaps allow a large number of existing discrete logarithm-based
protocols to be ported into a post-quantum setting.



* Corresponding author: Andrew Mendelsohn, Department of Electrical and Electronic Engineering, Imperial College London,
SW7 2AZ, United Kingdom, e-mail: am3518@ic.ac.uk
Edmund Dable-Heath: The Alan Turing Institute, London, NW1 2DB, United Kingdom, e-mail: edable-heath@turing.ac.uk
Cong Ling: Department of Electrical and Electronic Engineering, Imperial College London, SW7 2AZ, United Kingdom,
e-mail: c.ling@imperial.ac.uk



1 Pronounced “SPUD-Sign”.

Journal of Mathematical Cryptology 2025; 19: 20240025

Open Access. © 2025 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.

https://doi.org/10.1515/jmc-2024-0025
mailto:am3518@ic.ac.uk
mailto:edable-heath@turing.ac.uk
mailto:c.ling@imperial.ac.uk

One contribution into this direction is the semidirect discrete logarithm problem (SDLP). This problem
replaces the underlying finite cyclic group of [1] with a noncommutative group, constructed as the semidirect
product of two groups, in an effort to boost the hardness of the problem. Informally, for some �∈x , some
finite group element ∈g G, and an element in the automorphism group of G, ()∈ϕ GAut , given the element

() () () ()≔ ⋅ ⋅ ⋅ ⋅− −s x ϕ g ϕ g ϕ g g… ,g ϕ
x x

,
1 2

the problem asks an adversary to recover x . Moving to this setting prevents an adversary from straightfor-
wardly running the algorithm of Shor, which appears not to apply to such groups. Without loss of generality,
x may be considered to be sampled from some finite group � �∕n for some integer n dividing the order
of the group, ∣ ∣G . Note when ϕ is the identity map, we recover the standard DLP.

This problem was recently analysed by Battarbee et al. [3,4]. In the former article, the authors gave
a subexponential- (but not polynomial-) time algorithm for SDLP. In the latter article, the authors develop
a signature scheme, SPDH-Sign, based on the hardness of the SDLP problem. In particular, the authors use
the group

�= ≔ ⎧⎨⎩
⎛
⎝

⎞
⎠ ∈ ≡ ⎫⎬⎭G G

a b
a b a p

0 1
: , , 1 modp p

2

to instantiate the SDLP problem, where � � �≔ ∕pp
2

2 . To ensure a suitable level of security, one takes p

to be a “cryptographic”-sized prime.
In this study, we contribute to the cryptanalysis of that scheme by performing further analysis

on the SDLP problem using Gp.

1.1 Contributions

In this work, we provide four contributions to the study of SDLP. The first of these is to show that the structure
of Gp enables an adversary to recover ()−x pmod 1 from ()s xg ϕ, in SDLP instances defined on elements of Gp.
This allows one to recover x when x is defined modulo a small multiple of p. This is because of the semidirect
product isomorphism

� � � �≅ ∕ ⋊ ∕G p p ,p
2

which is efficiently computable. We obtain

Theorem 4. Let () ()∈ ⋊g ϕ G G, Autp p , where ()= ∈g a φ G, p, and � �∈ ∕x n , where () =s n 1g ϕ, . Then, given
()s xg ϕ, , there is a quantum polynomial time algorithm to find ()−x pmod 1 .

The intuition behind this result is that the second coordinate of multiplication in the semidirect product
� � � �≅ ∕ ⋊ ∕G p pp

2 behaves like multiplication in � �∕p , and this enables one to extract information about
x from the second coordinate of the element ()s xg ϕ, .

We have a simple implementation of our attack, which can be made available upon request of the authors.
In a different approach, we then show that one can recover ()ϕ gx from the publicly available

data ()g ϕ s x, , g ϕ, and that this also leaks information on x due to the structure of the automorphisms of Gp.
In both of the aforementioned cases, we can recover x only when it is defined modulo a small multiple of p.
When the security parameter of a scheme is denoted by λ, one has ()=p λexp ; so our attacks hold against
exponentially large parameter sizes. However, the element x may be defined modulo a larger integer than p,
prima facie modulo an integer up to the size of the group used to instantiate the SDLP problem. Since
∣ ()∣ ()⋊ = −G G p pAut 1p

6, in the case of SPDH-Sign, one may take x to be defined in general as large as
(())− ∕ ⋅p p p1 ,

i
6 where p

i
is the smallest prime factor of −p 1 (see Theorem 3 for more details), and in these

larger parameter instances, say � �()∈ ∕ −x p p1 i j for + ≥i j 2, we do not currently see how to recover all of x .
After this, we turn to abstract properties of the SDLP problem, which we consider as a group action

problem. The action is of the abelian group � �∕n acting on the set � �� { () }≔ ∈ ∕s i i n:g ϕ g ϕ, , ; more details

2  Andrew Mendelsohn et al.

can be found below. We consider the “linear hidden shift” (LHS) problem and find that, as a corollary to our
cryptanalytic attack, we can solve a special case of the LHS in quantum polynomial time. The particular LHS
problem we consider in Gp, informally, is given () ()∈ ⋊g ϕ G G, Autp p , � �()ℓ∈ ∕nxi , and ()∑ +s s x yg ϕ j j i, j

for
=i m1,…, and some unknown y, to recover () { }ℓ

ℓ= ←s s ss … 0, 1T
1 2 . The assumption of the hardness of the

LHS problem has been used to build advanced functionalities from group actions such as key-dependent
message public key encryption [5], trapdoor claw-free functions [6], and pseudorandom generators [7].
We have

Theorem 5. Let ∈g Gp and ()∈ϕ GAut p . Let ℓ≥ +m 1. Then, there is a quantum polynomial time algorithm
to solve � � �∕LHS n ys, , ,g ϕ,

.

It may thus be the case that it is not possible, or significantly more difficult, to build the advanced
functionalities mentioned earlier from the SDLP, and it would be of interest to show that such functionalities
can be built, since it would imply that the LHS property is stronger than necessary to realise group action-
based protocols with those properties.

We then turn to an open problem from the study of Battarbee et al. [4]. In addition to SDLP, another
problem, semidirect computational Diffie-Hellman (SCDH), was considered. This is the problem, given

()g ϕ s x, , g ϕ, and ()s yg ϕ, , of computing ()+s x yg ϕ, . Of course, if one can solve SDLP, one may simply compute
x from ()s xg ϕ, and y from ()s yg ϕ, and then compute ()+s x yg ϕ, directly; but it is unknown if a solution to SCDH
implies a solution to SDLP. We partially resolve this problem by demonstrating a quantum algorithm, which,
given an oracle for a particular form of SCDH, which returns ()s a2g ϕ, when given ()s ag ϕ, for any a (denoted
SCDHg ϕ x, ,

2), reduces SDLP to a hidden subgroup problem (HSP) instance, which can be efficiently solved with
Shor’s period finding algorithm:

Theorem 6. There is a quantum polynomial-time reduction from SDLPg ϕ x, , to SCDHg ϕ x, ,

2 .

We close by discussing the obstacles to a direct solution to SDLP via Shor’s algorithm.

1.2 Prior work

There is a burgeoning literature on noncommutative variants of the DLP, or schemes based on similar
problems [3,4,8–11]. Attacks on variants of this problem can be found in previous studies [12–14]. The literature
on cryptographic group actions includes refs [5,15–18].

We note the result [3, Theorem 6], which gives a method to solve SDLP, given access to a group action
discrete logarithm oracle. This contrasts our work insofar as we merely require a discrete logarithm oracle for
finite abelian groups.

In a concurrent and independent work (uploaded to the IACR Eprint server shortly prior to this article), Imran
and Ivanyos [19] also provided cryptanalysis of the SDLP problem, in the idealised setting of black-box groups with
unique labellings. We note the similarity to our work and note the greater generality of their approach, which
applies to a variety of finite groups. However, our article includes results (on outer automorphisms, and relating
SDLP and SCDH, for example) not covered by Imran and Ivanyos [19], and we consider our methods tailored to the
choice of group suggested for SPDH-Sign a valuable contribution to the study of SDLP.

2 Preliminaries

2.1 Notations

We may write []n to denote the set { }n1, …, . The arrow “←” may denote sampling from a set or sampling

according to a distribution over a set; context will make which clear. If we write “←
$

,” we mean sampling
uniformly at random. The identity element of a group G will be denoted by e.

Algorithms for SPDH-sign  3

2.2 Group endomorphisms

To any finite group G are attached endomorphisms:

Definition 1. An endomorphism →ϕ G G: is a homomorphism of groups from G to G.

If a group endomorphism ϕ is an isomorphism, we call ϕ an automorphism. The collection of all auto-
morphisms of a finite group G forms a group, denoted ()GAut . The set of endomorphisms of G is
denoted ()GEnd .

2.3 Group actions

We define and give properties of group actions.

Definition 2. (Group action) A group action of a finite group G on a set X (sometimes called a G-set) is a map
⋆ × →G X X: satisfying
(1) for any ∈x X , ⋆ =e x x , and
(2) for any ∈g h G, and any ∈x X , () ()⋆ = ⋆ ⋆gh x g h x .

A group action is effective if ∣ ∣ < ∞G and standard group-theoretic operations can be performed
in polynomial time. The following are standard properties of group actions:

Definition 3. A group action of G on X is
(1) transitive, if for any ∈x x X,1 2 , there exists a ∈g G satisfying = ⋆x g x2 1;
(2) faithful, if one has ⋆ =g x x for all ∈x X if and only if =g e;
(3) free, if one has =g e if and only if there exists an ∈x X such that = ⋆x g x .

A free and transitive group action is called regular.

2.4 Semidirect product

We define the semidirect prodcuct of two groups.

Definition 4. (Semidirect product) Let G and H be finite groups. If there is an injective homomorphism

()↪ρ H G: Aut ,

then we can form a product of G and H , ⋊G Hρ , defined by the following multiplication rule: for ()g ϕ, ,

() ∈ ×h ψ G H, ,

() () (()())⋅ = ⋅g ϕ h ψ ρ ψ g h ϕψ, , , ,

where ()()⋅ρ ψ is the action of the automorphism; this could be exponentiation (gψ) or conjugation (−ψgψ 1) or
something more complicated. Note that this new group is noncommutative, i.e., swapping the order of multi-
plication can change the resulting group element on the right-hand side. If ()⊆H GAut , we can take ρ as the
identity map and write ⋊G H . In the literature, the product ()⋊G GAut is sometimes called the holomorph of
G, and denoted ()GHol . This construction is called the external semidirect product of G and H . It is a standard
fact that ∣ ∣ ∣ ∣∣ ∣⋊ =G H G H .

4  Andrew Mendelsohn et al.

2.5 SDLP and SCDH

Recall the DLP in a finite abelian group G. Fix ∈g G, which we will consider to be public. A challenger selects
an integer x , computes =h gx , and gives h to an adversary. The adversary has to recover x , which is defined
modulo the order of ∈g G. This can be solved in quantum polynomial time via Shor’s algorithm [2], but is
classically only solvable in exponential time.

Battarbee et al. [4] replace G with ⋊G H . Let () ∈ ⋊g ϕ G H, . Select, for instance, =x 2, and compute

() () () (())= ⋅ =g ϕ g ϕ g ϕ ϕ g g ϕ, , , , .2 2

If a challenger gave an adversary the resulting group element, they could take the second component ϕ2, solve
the (abelian) DLP in H , and find that =x 2. Alternatively, they could solve a DLP in the cyclic group generated
by ()g ϕ, , denoted ⟨()⟩g ϕ, . More generally, for an arbitrary choice of x , we have

() (() ())= ⋅ ⋅−g ϕ ϕ g ϕ g g ϕ, … , .x x x1

Clearly, if ∣ ∣<x H , an adversary could always solve an abelian DLP to find x . If ∣ ∣≥x H , they could solve
an abelian discrete logarithm to find ∣ ∣x Hmod . So one cannot release the second coordinate of ()g ϕ, x

and maintain secrecy of x . This leads to

Definition 5. (SDLP) The semidirect product DLP, SDLPg ϕ x, , , is given

() () ()≔ ⋅ ⋅−s x ϕ g ϕ g g… ,g ϕ
x

,
1

for some �∈ +x and () ∈ ⋊g ϕ G H, , to find x .

One can see that x is only defined modulo ∣ ∣ ∣ ∣ ∣ ∣⋊ = ×G H G H . Moreover, it is in fact only defined modulo
the order of the group element chosen, ()o g ϕ, , since if ()>x o g ϕ, , then () () ()=g ϕ g ϕ, ,x x o g ϕmod , . As a con-
sequence, we may take � �∈ ∕x n for some ∣ ()n o g ϕ, . When one fixes a choice of ()g ϕ, and sets n to be
the smallest integer such that () =s n 1g ϕ, , the corresponding group action has particularly useful properties.
We denote such a problem instance by SDLPg ϕ x, , .

A related problem to SDLP is the SCDH problem:

Definition 6. (SCDH). Let G be a finite group, and let () ()∈ ⋊g ϕ G G, Aut . Let �∈x y, and suppose we are
given () ()g ϕ s x, , ,g ϕ, and ()s yg ϕ, . The SCDH problem, SCDHg ϕ x y, , , , is to compute ()+s x yg ϕ, .

In the study of Battarbee et al. [3], a subexponential quantum algorithm was given for SDLP over semi-
groups. In the following, a family of (semi)groups indexed by κ is “easy” if for a fixed κ, pairs
() () ()′ ′ ∈ ⋊g ϕ g ϕ G G, , , Endκ κ , and values () ()′f κ f κ, (resp. () ()′g κ g κ,) denoting the number of operations
required to solve SDLP (resp. SCDH) for ()g ϕ, and ()′ ′g ϕ, , respectively, then we have () (())= ′f κ O f κ

(resp. () (()))= ′g κ O g κ . Then:

Theorem 1. [3, Theorem 10] Let { }Gκ κ be an easy family of semigroups, and fix κ. For any pair () ()∈ ⋊g ϕ G G, Endκ κ ,
there is a quantum algorithm solving SDLP with respect to ()g ϕ, with time and query complexity ()2O κlog .

In this work, we consider groups, rather than semigroups. We also note a group action interpretation
of SDLP. Define

� �� { () }≔ ∈ ∕s i i n: .g ϕ g ϕ, ,

Then,

Definition 7. Let () ∈ ⋊g ϕ G H, and n be the smallest integer such that () =s n 1g ϕ, . Define a group action
of � �∕n on �g ϕ, by

� � � () ()∕ ↻ ∗ = +n x s y s x y: .g ϕ g ϕ g ϕ, , ,

This group action is free and transitive. We call this group action the semidirect product group action
(SDPGA).

Algorithms for SPDH-sign  5

2.6 SPDH-sign

In the study of Battarbee et al. [4], a signature scheme was designed based on SDLP. The key generation
and signing algorithms require multiple instances of SDLP to be published; we denote the number of samples
by N , and refer to SPDH- ()NSign

g ϕ,
below. The key generation and signing algorithms are given by

Algorithm 1 Key generation algorithm

()NGen :
for ←i N1,…, do

�←Xi g ϕ

$

,

�←si n

$

← ⋆Y s Xi i i

end for
()←sk s s, …, N1

(() ())←pk X X Y Y, …, , , …,N N1 1

return ()sk pk,

Algorithm 2 Signing algorithm

(())m sk pkSg , , :
for ←i N1,…, do

�←ti n

$

← ⋆I t Xi i i

end for
()←I I I, …, N1

()←c H I m,

for ←i N1,…,

if =c 0i then
←p t

i i

else
← −p t s

i i i

end if
end for

()←p p p, …,
N1

() ()←σ σ I p, ,1 2

return ()σ σ,1 2

Note that it suffices to solve SDLP to break the scheme: if one can solve the SDLP problem, one can take
the public key (() ())=pk X X Y Y, …, , , …,N N1 1 of SPDH-Sign and extract the si, which comprise the secret key.
For more on the security of SPDH-Sign, we refer the reader to the study of Battarbee et al. [4].

For the use of SPDH-Sign, one has to pick a particular group with which the scheme will be instantiated;
the authors propose the use of the group

�= ≔ ⎧⎨⎩
⎛
⎝

⎞
⎠ ∈ ≡ ⎫⎬⎭G G

a b
a b a p

0 1
: , , 1 mod .p p

2

We note that we have � � � �≅ ∕ ⋊ ∕G p pp
2 , where � �∕p acts on � �∕p2 via ⋆ = +a b b pa1 . This isomorphism

and its inverse are plainly efficiently computable.

6  Andrew Mendelsohn et al.

When using such a group, p would be chosen to be a cryptographic prime, i.e., ()=p λexp , where λ

is the security parameter of a SLDP-based scheme, such as SPDH-Sign.
Finally, in this section, we note an incorrect statement in the study of Battarbee et al. [4]. The authors

write:

Theorem 2. [4, Theorem 9] Let () ()∈ ⋊g ϕ G G, Autp p , where p is an odd prime. Suppose n is the smallest integer
for which () =s n 1g ϕ, . Then,

{ () () () () () ()}∈ − − − − − −n p p p p p p p p p p p p p p p p p, , , , , , 1 , 1 , 1 , 1 , 1 , 1 .2 3 4 5 6 2 3 4 5

The reasoning runs as follows. Since ∣ (())n g ϕord , , and (())∣ ()⋉g ϕ G Gord , Autp , we must have ∣()−n p p1 6

for some odd prime p, and ()≠ −n p p1 6 since this would imply ()⋊G GAutp p were cyclic.
The reasoning is sound; the conclusion of the theorem statement, however, is false when ≠p 3: since p

is prime, −p 1 is not prime, and thus, the set of possibilities for n includes all elements of the set of divisors
of −p 1 multiplied by powers of p, up to p6 – not just the 12 values stated earlier. For instance, =n p2

is a possibility for all p. The statement should read:

Theorem 3. Let () ()∈ ⋊g ϕ G G, Autp p , where p is an odd prime. Suppose n is the smallest integer for which
() =s n 1g ϕ, . Let { }p p, …,

t1
be the set of prime divisors of −p 1. Then,

∏∈
⎧
⎨
⎩

⎫
⎬
⎭∈

n p p ,j

i S

i

j S,

where []⊂S t runs over multisets S such that∏ ∈ pi S i
denotes the products of the p

i
indexed by a subset of possible

indices such that ∣∏ −∈ p p 1i S i
, and j satisfies []∈j 5 if S satisfies ∏ = −∈ p p 1i S i

and []∈j 6 otherwise.

We point this out for its relevance to our results in Section 4. If the number of prime factors of −p 1

is bounded, one can compute n efficiently (quantumly) given p, g , and ϕ, using the methods of [4, Section 5]
or [3, Algorithm 1].

3 On Gp and its automorphisms

In this section, we discuss properties of Gp, which we will exploit in the following, and in particular, give
an explicit form for its automorphisms. Any finite group G has a set of automorphisms, denoted ()GAut ,
which form a group under composition. The structure of ()GAut comprises two factors: the inner and outer
automorphisms. These each form a subgroup of ()GAut .

Inner automorphisms are defined by conjugation: if ∈g G is an arbitrary group element, the map
↦ −c g hgh:h

1 can be checked to be an automorphism. The group formed by such maps is denoted ()GInn .
Clearly, if h commutes with all other group elements, ch is the trivial map; thus, when counting the number of

inner automorphisms, we find that there are
�

∣ ()∣
∣ ∣

∣ () ∣
=GInn

G

G
of them, where �() {= ∈ =G g G gh hg:

}∈h Gfor all denotes the centre of the group.
The group of outer automorphisms, ()GOut , is defined as

() () ()≔ ∕G G GOut Aut Inn .

Hence, there are ∣ ()∣ ∣ ()∣ ∣ ()∣= ∕G G GOut Aut Inn outer automorphisms. We are interested in determining explicit
forms of elements of these groups when =G Gp, for our subsequent cryptanalysis of SPDH-Sign. In the

following, we let ∈g Gp and write = ⎛⎝
+ ⎞

⎠g
pm b1

0 1
for some � �∈ ∕m p and � �∈ ∕b p2 . As in the study of

Conrad [20], Gp is generated by elements r and s, where

= ⎛⎝
+ ⎞

⎠ = ⎛⎝
⎞
⎠r

p
s

1 0

0 1
and

1 1

0 1
.

Algorithms for SPDH-sign  7

So a generic group element = ⎛⎝
+ ⎞

⎠g
pm b1

0 1
may be written =g s rb m, and group multiplication

can be expressed

⋅ = + + +′ ′ ′ ′ ′
s r s r s r .b m b m b b pmb m m

3.1 Inner automorphisms of Gp

We first consider inner automorphisms. Note that () () ()= = =− − − − − − −s r r s r s s s rc n n c n c pcn c n1 1 1 , since
⋅ =− −s s r s rpcn c n c n =−s s r 1pcn pcn 0 . The inner automorphisms act on s rb m by conjugation; i.e., if ()∈ϕ GInn p , then

for some c and n,

() () () ()

()

()

= =
= =
=
=

− − + + +

− − + + + + − +

+ + − −

+ −

ϕ s r s r s r s r s r s r

s s r s r s s r

s r

s r .

b m c n b m c n c n b c pmc m n

pcn c n b c pmc m n pcn b pmc pn b c m

pnc b pmc pnb pnc m

b p mc nb m

1 1

We summarise this as

Lemma 1. Let ϕ be an inner automorphism of Gp corresponding to conjugation by s rc n. Then, the action of ϕ

on a generic group element =g s rb m is given by

() ()= + −ϕ g s r .b p mc nb m

We note that there are
�

∣ ()∣
∣ ∣

∣ () ∣
= = =G pInn p

G

G

p

p

2p

p

3

inner automorphisms, since the centre of Gp is

� ��() = ⎧⎨⎩
⎛
⎝

⎞
⎠ ∈ ∕ ≡ ⎫⎬⎭ =

⎛
⎝

⎞
⎠G

b
b p b p

p
p

1

0 1
: , 0 mod

1

0 1
mod .p

2 2

3.2 Outer automorphisms of Gp

The form of the outer automorphisms is less obvious than that of the inner automorphsims; we have

Proposition 1. The outer automorphisms of Gp are given by the maps

() = +ϕ s r s r ,b m bw pmu m

where ϕ corresponds to a pair � � � �() ()∈ ∕ ⋊ ∕ ×u w p p, .

Proof. Clearly, we have →ϕ G G: p p such that () =ϕ e e. Let =g s rb m and ′ = ′ ′
g s r

b m . Observe

() () () () ()′ = ⋅ = =′ ′ + ′+ ′ + ′ + ′+ ′ + + ′ + ′
ϕ gg ϕ s r s r ϕ s r s rb m b m b b pmb m m w b b pmb p m m u m m

and

() ()

()

′ =
=
=

+ ′ + ′ ′

+ + ′ + ′ + ′ + ′ + ′

+ + ′ + ′ + ′ + ′

ϕ g ϕ g s r s r

s r

s r .

bw pmu m b w pm u m

bw pmu b w pm u pm b w pm u m m

bw pmu b w pm u pmb w m m

So ϕ is indeed multiplicative. Moreover, these are not inner automorphisms, which can be seen by inspecting
the “twist” of b in the exponent byw. Note that there are ∣ ()∣GOut p = ∣ ()∣ ∣ ()∣∕G GAut Innp p = ()− ∕p p p1 3 2 = ()−p p1

outer automorphisms, and since the automorphisms mentioned earlier are obtained by pairs from
� � � �()∕ ⋊ ∕ ×p p , and � � � �∣ () ∣ ()∕ ⋊ ∕ = −×p p p p 1 , we conclude we have found all the outer automorph-
isms. □

8  Andrew Mendelsohn et al.

We conclude this section with the important observation.

Corollary 1. Let ()∈ϕ GAut p . Then, for any =g s rb m,we have () = ′
ϕ g s r

b m for some ′b ; i.e.,ϕ leaves rm unchanged.

Proof. Observation of the results of Lemma 1 and Proposition 1. □

4 “Making Mash” when ≤≤ (())n p ppoly log

Here, we outline an attack on SPDH when n is “small” (although still exponential in the security parameter). The
attack uses the structure of Gp to extract information on x from g ϕ, , and ()s xg ϕ, . We begin with a proposition:

Proposition 2. Let = ⋊G M N be a semidirect product of finite groups with N acting on M via automorphisms.
Consider the holomorph of G, () ()⋊ ⋊M N GAut . Then, if N is simple, the maps induced on N by elements
of ()GAut are either the constant map { }→N e or automorphisms.

Proof. Let ()∈ϕ GAut . Writing () ()= ′ ′ϕ m n m n, , , consider the induced map → ↦ ′ψ N N n n: , . Since

(()) (()) (()()) ((()))′ ′ = ′ ′ = ′ ′ ′ϕ m n ϕ m n ϕ m n m n ϕ n m m nn, , , , , ,

we have () () ()′ ′ = ′ψ n ϕ n ψ nn . Moreover,

(()) (()) (()()) ()′ = ′ = ′ϕ m e ϕ m e ϕ m e m e ϕ mm e, , , , , ,

so () () () ()= =ψ e ψ e ψ e ψ e2 and ()ψ e is an idempotent in a finite group; hence, () =ψ e e. Thus, ψ is an endo-
morphism of N .

Since the image of a group under an endomorphism is a subgroup, we find that either () =ψ N N or
() { }=ψ N e . In the latter case, every element is mapped to e, and in the former, we have a homomorphism

between finite groups of trivial kernel and thus an automorphism. □

We note that when � �= ∕N p , � � � �()∕ = ∕p pEnd .
We now give a general method to recover x when n is at most a small multiple of ∣ ()∣NAut , subject to

a constraint on the group element () ()∈ ⋊g ϕ G G, Aut , where = ⋊G M N is a semidirect product with M

and N finite abelian, and N simple as in the previous proposition, and ()= ∈g a φ G, . We then specialise
to the particular case of Gp.

Theorem 4. Let = ⋊G M N be a semidirect product with M and N finite abelian, and N simple. Suppose
∣ ()∣ = ∏N pAut i i

for distinct primes p
i
. Let () ()∈ ⋊g ϕ G G, Aut , where ()= ∈g a φ G, . Suppose that ϕ acts

on φ as an automorphism ψ, sending ↦φ φα for some ≠α 0. Then, given ()s xg ϕ, for any � �∈ ∕x n , there is
a quantum polynomial time algorithm to find ∣ ()∣x Nmod Aut .

Proof. The SDLP instance is to recover x from ()s xg ϕ, , which we may write

() (()) (()) ()()= − −s x ϕ a φ ϕ a φ ϕ a φ a φ, , … , , ,g ϕ
x x

,
1 2

where ()= ∈ ⋊g a φ M N, . Ifϕ acts as an induced automorphismψ onφ sendingφ toφα for some α, then since
()g ϕ, is public, evaluating ()ϕ g for φα and appealing to an abelian discrete logarithm oracle yields α. We can
write ()s xg ϕ, as

(()) (()) (())() (() () ())= ⋅− − − −ϕ a φ ϕ a φ ϕ a φ a φ ψ φ ψ φ ψ φ φ, , … , , , … ,x x x x1 2 1 2

for some unspecified first entry. The second entry above can be rewritten

()() () = + + + +− − − −
φ φ φ φ φ… .α α α α α α… 1

x x x x1 2 1 2

Algorithms for SPDH-sign  9

Another appeal to an abelian discrete logarithm oracle obtains the exponent

∣ ()∣+ + + +− −α α α N… 1 mod Aut .x x1 2

We now split into two cases: if =α 1, then ∣ ()∣+ + + + =− −α α α x N… 1 mod Autx x1 2 and we are done.
So suppose we are in the case of ≠α 1.

By the chinese remainder theorem, it suffices to recover x pmod
i
from

≔ + + + +− −b α α α p… 1 mod ,x x
i

1 2

for all prime factors p
i
of ∣ ()∣NAut (which can be found efficiently with a quantum algorithm). To do this,

rewrite

= + + + + =
−
−

− −b α α α
α

α
p… 1

1

1
modx x

x

i
1 2

and rearrange for

()= − +α b α p1 1 mod ,x
i

which can be done since we assumed ≠α 1. A third appeal to an abelian discrete logarithm oracle gives
x pmod

i
, and hence, ∣ ()∣x Nmod Aut . □

Corollary 2. Let ()=n p ppoly log and () ()∈ ⋊g ϕ G G, Autp p . Then, there is a quantum polynomial time algo-
rithm to solve SDLPg ϕ x, , .

Proof. We apply the theorem with � �= ∕M p2 and � �= ∕N p , since as noted above, we have � �≅ ∕ ⋊G pp
2

� �∕p , and note that by Corollary 1, any automorphism leaves the r component of a group element fixed, and so
in the notation of the theorem, we always have =α 1. We then obtain ∣ ()∣ =x Nmod Aut ()−x pmod 1 as in the
proof of the theorem. If ()=n p ppoly log , we can then find the true value of x by exhaustion in polynomial time,
since there are () () () ()∕ − = ∕ − =n p p p p p1 poly log 1 poly log options for the true value of x . □

We note that such values for n are possible by Theorem 3.
The consequence of all this is that when instantiating SPDH-Sign with =G Gp, one should choose n to be

at least ≈n p2.

5 Attack in the style of Brown et al. [14]

In the study of Brown et al. [14], the scheme “MAKE” [8] was cryptanalysed, and Monico [21] extended the
attack to the scheme “MOBS” [22]. The scheme uses square matrices whose entries are bitstrings of k bits
equipped with the logical operations of OR and AND. Brown et al. [14] found (in the notation of Battarbee et al.
[23]) that, given such a matrix M and an automorphism h of the space of such matrices, and writing

() ()≔ −A h M h M M…x 1 , one could obtain () ()=h A M h M Ax . From this, it was argued that MAKE and MOBS
were insecure, since by linear algebra ()h Mx , and then hx and finally, x , could be computed (although
the efficacy of the attack was disputed in the study of Battarbee et al. [23]).

We note that one can obtain ()ϕ gx given g ϕ, and ()s xg ϕ, , by computing

() (()) ()= ⋅ −ϕ g ϕ s x g s x ,x
g ϕ g ϕ, ,

1

somewhat in the style of the attacks on MAKE and MOBS. It was known prior to this work that this element could
be computed. Here, however, we observe that since we know g , one can then obtain further information on x .

In more detail and for =G Gp, suppose we have ∈g Gp. Write = ⎛⎝
+ ⎞

⎠g
pa b1

0 1
for some � �∈ ∕a p

and � �∈ ∕b p2 . We then compute () = ⎛⎝
+ ′ ′ ⎞

⎠ϕ g
pa b1

0 1

x for some � �′ ∈ ∕a p and � �′ ∈ ∕b p2 . Here,

we consider the case of inner automorphisms ()GInn p and of elements in () () ()≔ ∕G G GOut Aut Innp p p .

10  Andrew Mendelsohn et al.

First, consider inner automorphisms. Recall that the inner automorphisms act on s rb m by conjugation,
and that by Lemma 1 if ()∈ϕ GInn p , then

() ()= + −ϕ s r s r .b m b p mc nb m

We then compute

() ()= + −ϕ s r s r .x b m b xp mc nb m

We can multiply by −r m to obtain ()+ −sb xp mc nb , use a discrete logarithm oracle to find ()+ −b xp mc nb pmod 2,
and then if − ≢mc nb p0 mod rearrange to find x pmod .

In the case of outer automorphisms, we found in Proposition 1 that these are given by the maps

() = +ϕ s r s r ,b m bw pmu m

where ϕ corresponds to a pair � � � �() ()∈ ∕ ⋊ ∕ ×u w p p, . We then compute

() ()= + + + +−
ϕ g s r .x bw pmu w w m… 1

x x 1

We can cancel the rm, since it is public, for

()+ + + +−
s ,bw pmu w w… 1

x x 1

and we can hence recover ()+ + + +−bw pmu w w p… 1 modx x 1 2 by solving the DLP instance. If we apply this
to ()−ϕ gx 1 as well, we may compute

() ()

() ()

()

⋅
=
=

+ + + + − − + + +

− + + + + − + + +

− +

− − −

− − −

− −

s s

s

s ,

bw pmu w w bw pmu w w

bw bw pmu w w pmu w w

bw w pmuw

… 1 … 1

… 1 … 1

1

x x x x

x x x

x x

1 1 2

1 1 2

1 1

andwe can then obtain () (())− + = − +− − −bw w pmuw p w b w pmu p1 mod 1 modx x x1 1 2 1 2. If ()− ≢b w p1 0 mod ,
we can cancel the righthand factor for −wx 1 and recover −x p1 mod from a discrete logarithm oracle.

We summarise the above as

Proposition 3. Suppose � �∈ ∕x n , () ()∈ ⋊g ϕ G G, Autp p , =g s rb m, and ()s xg ϕ, is a SDLP instance. Then, if ϕ is
an inner automorphism, there is a quantum polynomial time algorithm to compute x pmod , and if ϕ is an outer
automorphism corresponding to a pair � � � �() ()∈ ∕ ⋊ ∕ ×u w p p, such that ()− ≢b w p1 0 mod , then there is
also a quantum polynomial time algorithm to recover x pmod .

Finally, we note all automorphisms are obtained from composing inner and outer automorphisms.

6 SPDH and the LHS problem

In this section, we show that Theorem 4 implies a solution to a special case of the LHS problem defined in the
study of Alamati et al. [5]. We begin by defining this problem formally. Let ⟨ ⟩ ≔ ∏ gg s,

i j i

s

j

j, where ∈g G
ij

and G

is written multiplicatively.

Definition 8. The search LHS problem LHSG X s, , is hard over a regular group action ()⋆G X, , if for any =m

()λpoly , { }ℓ←s 0, 1 , and for any PPT attacker � , we have

�[({((⟨ ⟩))})] ()[]⋆ ≤∈x x λg g s sPr , , , outputs negl ,i i i i i m

where ℓ← Gg
i

and ←x Xi are sampled independently, over all random coins in the experiment.

For SDPGA: the search LHS problem is hard over � � �()∕ ⋆n , ,g ϕ, if for any ()=m λpoly and for any PPT
attacker � , we have

�[({(() (⟨ ⟩) ())})] ()[]⋆ ≤∈s y s y λx x s sPr , , , outputs negl ,g ϕ i i i g ϕ i i m, ,

Algorithms for SPDH-sign  11

where � �() { } () ()ℓ ℓ← ∕ ← ← ⋊n g ϕ G Gx s, 0, 1 , , Auti p p , and �() ←s yg ϕ i g ϕ, , are sampled independently,
over all random coins in the experiment. Note that additively,

(⟨ ⟩) () ()∑ ∑⋆ =
⎛

⎝
⎜

⎞

⎠
⎟⋆ =

⎛

⎝
⎜ +

⎞

⎠
⎟s y s x s y s s x yx s, .i g ϕ i

j

j i g ϕ i g ϕ

j

j i i, , ,j j

We consider the special case in which the same ()s yg ϕ, is used for all ()s yg ϕ i, , ℓ=i 1,…, . We denote this case
by LHS� � �∕n ys, , ,g ϕ,

. We now prove our result:

Theorem 5. Let () ()∈ ⋊g ϕ G G, Autp p and let ℓ≥ +m 1. Then, there is a quantum polynomial time algorithm
to solve � � �∕LHS n ys, , ,g ϕ,

.

Proof.Write ′ = ∑x s xj j ij
. We are given the ()g ϕ, , xi, and ()′ +s x yg ϕ, . We therefore use the method of Theorem 4

to find ()≔ ′ + −b x y pmod 1i , for =i m1,…, . This gives us the m equations

()

()

∑

∑

= + −

⋮
= + −

b s x y p

b s x y p

mod 1

mod 1 .

j

j

m

j

j m

1 1j

j

This is m equations in the ℓ + 1 unknown values of ℓs s y,…, ,1 with known coefficients ()−x pmod 1ij
. We may

set =+x 1ij 1
for all i as the “coefficient” of y. Since { }∈s 0, 1i for all i the modulo operation leaves si unchanged.

Thus, when ℓ≥ +m 1, we can solve this system of equations for the (())−s y pand mod 1i , and so solve
the search LHS instance. □

7 On the equivalence of SCDH and SDLP

Here, we reduce SDLP to the SCDH problem via an efficient quantum algorithm. Since SCDH reduces to SDLP
trivially, this establishes the quantum polynomial equivalence of the two problems, stated as an open problem
in [4]. We note the results of previous studies [24,25] on the corresponding problem in the commutative case;
our result is analogous to [24, Theorem 1]. We do this by transforming SDLP instances into HSP instances,
assuming the presence of a SCDH oracle. Recall:

Definition 9. (HSP) Let →f G S: be a function from finite group G to a set S that is constant on the cosets
of some ≤H G; i.e. () ()= ′f g f g if and only if = ′gH g H . Given f G S, , , find a generating set of H .

We refer below to SCDHg ϕ x, ,

2 , which is the general SCDH problem restricted to the task of doubling in

the argument of ()s xg ϕ, ; i.e., one solves SCDHg ϕ x, ,

2 if given g ϕ, , and ()s xg ϕ, , one computes () ()+ =s x x s x2g ϕ g ϕ, , .
Note that this is weaker than a general SCDH oracle, which returns ()+s a bg ϕ, given ()s ag ϕ, and ()s bg ϕ,

for any � �∈ ∕a b n, .

Theorem 6. There is a quantum polynomial-time reduction from SDLPg ϕ x, , to SCDHg ϕ x, ,

2 .

Proof. Let � �∈ ∕x n , () ()∈ ⋊g ϕ G G, Aut , and suppose we are given ()s xg ϕ, . We assume that given ()g ϕ, ,
()s xg ϕ, , and ()s yg ϕ, , we are able to compute ()+s x yg ϕ, in the case =x y. In particular, we can then compute
()s axg ϕ, for any a in (classical) polynomial time by computing () ()= +s x s x x2g ϕ g ϕ, , , writing a in base 2,

and then repeatedly doubling and adding in the argument of ()⋅sg ϕ, appropriately.
We then define a map � � � � �∕ × ∕ →f n n: g ϕ, , () (()) ()↦a b ϕ s ax s b, b

g ϕ g ϕ, , . This can be rewritten
() ()= +f a b s ax b, g ϕ, . Observe that if () ()= ′ ′f a b f a b, , , then we must have + = ′ + ′ax b a x b nmod , since

12  Andrew Mendelsohn et al.

the group action of � �∕n on ()⋊G GAut is regular. We then find that () ()= ′ ′f a b f a b, , if and only if
() () ()= ′ ′ + −a b a b λ x, , 1, . This is an HSP instance, which can be solved in quantum polynomial time via
Shor. □

We note that our result assumes a perfect SCDH g ϕ x, ,

2 oracle; we leave for future work the adaptation of the
results of Montgomery and Zhandry [25], which hold for algorithms solving CDH with non-negligible
advantage.

8 Relation of SDLP to HSP

In this final section we explain why, we could not solve the SDLP problem via a reduction to an HSP instance
in an analogous manner to the abelian DLP.

DLP is reduced to HSP via the map () =f a b s g, a b, where =g sx , with � �∈ ∕a b n, . Then, () = +f a b g, ax b,
and () ()= ′ ′f a b f a b, , if and only if () () ()= ′ ′ + −a b a b λ x, , 1, .

In that spirit, one might try setting () (()) ()=f a b c s x ϕ g ϕ, , , ,g ϕ
a c b

, . Then, if =a x , we have
() ()= +f a b c g ϕ, , , cx b, and we would have defined a map from an abelian group into the cyclic group

⟨()⟩g ϕ, , as is done for DLP. The condition =a x seems problematic, however. Note () ()= ′ ′ ′f a b c f a b c, , , ,

if () () ()= ′ ′ + −a b c x b c λ x, , , , 0, , 1 , as (some) solutions have the form () ⟨()⟩+ −x x, 0, 0 0, , 1 , which is an affine
line in � �()∕n 3. This, however, is not a “period” in the sense of Shor that Shor’s algorithm for the HSP
requires. Thus, an obstacle for defining the required map is the “hiding” of ϕx , which prevents an adversary
for defining a map into ⟨()⟩g ϕ, .

One might observe that we are not given a group element, but merely an element of the orbit �g ϕ, of
()g ϕ, under the action of � �∕n . This might prompt one to attempt to define a map � � � � �∕ × ∕ →f n n: g ϕ,

in the spirit of the aforementioned map. This would seek to define a map () ()= +f a b s ax b, g ϕ, . Then, since
the group action is regular, () ()= ′ ′f a b f a b, , if and only if () () ()= ′ ′ + −a b a b λ x, , 1, , and we could use Shor’s
period finding algorithm. Since we can add b in the argument, to define such a map, one would first have to
define a map () ()′ =f a s axg ϕ, . Referring to the previous section, one can see that this is in fact how Theorem
6 was proved, since the possibility of defining such a map follows from assuming SCDH. However, it seems
that without the SCDH assumption, one cannot compute ()s axg ϕ, given the available information. This thus
can be seen as an obstacle to a complete quantum solution to SDLP.

Funding information: This work was supported in part by the Engineering and Physical Sciences Research
Council (EPSRC), Grant Numbers EP/X037010/1 and EP/Y037243/1.

Author contributions: All authors have accepted responsibility for the entire content of this manuscript and
approved its submission.

Conflict of interest: The authors state no conflict of interest.

Algorithms for SPDH-sign  13

References

[1] Diffie W, Hellman M. New directions in cryptography. IEEE Trans Inform Theory. 1976;22(6):644–54.
[2] Shor PW. Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on

Foundations of Computer Science; 1994. p. 124–34.
[3] Battarbee C, Kahrobaei D, Perret L, Shahandashti SF. A subexponential quantum algorithm for the semidirect discrete logarithm

problem; 2022. Presented at NIST’s Fourth PQC Standardization Conference. Cryptology ePrint Archive, Paper 2022/1165. https://
eprint.iacr.org/2022/1165.

[4] Battarbee C, Kahrobaei D, Perret L, Shahandashti SF. SPDH-sign: towards efficient, post-quantum group-based signatures.
In: Johansson T, Smith-Tone D, editors. Post-quantum cryptography. Switzerland: Springer Nature; 2023. p. 113–38.

[5] Alamati N, De Feo L, Montgomery H, Patranabis S. Cryptographic group actions and applications. In: Moriai S, Wang H, editors.
ASIACRYPT 2020. Cham: Springer International Publishing; 2020. p. 411–39.

[6] Alamati N, Malavolta G, Rahimi A. Candidate trapdoor claw-free functions from group actions with applications to quantum
protocols. In: Kiltz E, Vaikuntanathan V, editors. TCC 2022. vol. 13747 of LNCS. Switzerland: Springer Nature; 2022. p. 266–93.

[7] Alamati N, Patranabis S. Cryptographic primitives with hinting property. In: Agrawal S, Lin D, editors. ASIACRYPT 2022. vol. 13791 of
LNCS. Switzerland: Springer Nature; 2022. p. 33–62.

[8] Rahman N, Shpilrain V. MAKE: A matrix action key exchange. J Math Cryptol. 2022;16(1):64–72.
[9] Habeeb M, Kahrobaei D, Koupparis C, Shpilrain V. Public key exchange using semidirect product of (semi)groups. In: Jacobson M,

Locasto M, Mohassel P, Safavi-Naini R, editorsApplied u. Berlin Heidelberg: Springer; 2013. p. 475–86.
[10] Kahrobaei D, Shpilrain V. Using semidirect product of (semi)groups in public key cryptography. In: Beckmann A, Bienvenu L,

Jonoska N, editors. Pursuit of the Universal. Cham: Springer International Publishing; 2016. p. 132–41.
[11] Battarbee C, Kahrobaei D, Shahandashti SF. Semidirect product key exchange: the state of play; 2023. Cryptology ePrint Archive,

Paper 2023/594. https://eprint.iacr.org/2023/594.
[12] Roman’kov V. Linear decomposition attack on public key exchange protocols using semidirect products of (semi)groups. CoRR.

2015; http://arxiv.org/abs/1501.01152.
[13] Battarbee C, Kahrobaei D, Shahandashti SF. Cryptanalysis of semidirect product key exchange using matrices over non-commu-

tative rings. Math Cryptol. 2022 March;1(2):2–9. https://journals.flvc.org/mathcryptology/article/view/130528.
[14] Brown DRL, Koblitz N, LeGrow JT. Cryptanalysis of MAKE. J Math Cryptol. 2022;16(1):98–102.
[15] Couveignes JM. Hard Homogeneous Spaces; 2006. Cryptology ePrint Archive, Paper 2006/291. https://eprint.iacr.org/2006/291.
[16] Gnilke OW, Zumbrägel J. Cryptographic group and semigroup actions. J Algebra Appl. 2024;23(07):2530001.
[17] Castryck W, Vander Meeren N. Two remarks on the vectorization problem. In: Isobe T, Sarkar S, editors. INDOCRYPT 2022.

vol. 13774 of LNCS. Cham: Springer International Publishing; 2022. p. 658–78.
[18] D’Alconzo G, Di Scala AJ. Representations of group actions and their applications in cryptography. Finite Fields Appl.

2024;99:102476.
[19] Imran M, Ivanyos G. Efficient quantum algorithms for some instances of the semidirect discrete logarithm problem. Designs Codes

Cryptography. 2024 May;92:2825–43.
[20] Conrad K. Groups of order p3; https://kconrad.math.uconn.edu/blurbs/grouptheory/groupsp3.pdf.
[21] Monico C. Remarks on MOBS and cryptosystems using semidirect products; 2021. Cryptology ePrint Archive, Paper 2021/1114.

https://eprint.iacr.org/2021/1114.
[22] Rahman N, Shpilrain V. MOBS: matrices over bit strings public key exchange. La Matematica. 2024 June;3:1198–206.
[23] Battarbee C, Kahrobaei D, Tailor D, Shahandashti SF. On the efficiency of a general attack against the MOBS cryptosystem. J Math

Cryptol. 2022;16(1):289–97.
[24] Galbraith S, Panny L, Smith B, Vercauteren F. Quantum equivalence of the DLP and CDHP for group actions. Math Cryptol. 2021

June;1(1):40–4. https://journals.flvc.org/mathcryptology/article/view/122741.
[25] Montgomery H, Zhandry M. Full quantum equivalence of group action DLog and CDH, and more. In: Agrawal S, Lin D, editors.

ASIACRYPT 2022. vol. 13791 of LNCS. Switzerland: Springer Nature; 2022. p. 3–32.

14  Andrew Mendelsohn et al.

https://eprint.iacr.org/2022/1165
https://eprint.iacr.org/2022/1165
https://eprint.iacr.org/2023/594
http://arxiv.org/abs/1501.01152
https://journals.flvc.org/mathcryptology/article/view/130528
https://eprint.iacr.org/2006/291
https://kconrad.math.uconn.edu/blurbs/grouptheory/groupsp3.pdf
https://eprint.iacr.org/2021/1114
https://journals.flvc.org/mathcryptology/article/view/122741

	1 Introduction
	1.1 Contributions
	1.2 Prior work

	2 Preliminaries
	2.1 Notations
	2.2 Group endomorphisms
	2.3 Group actions
	2.4 Semidirect product
	2.5 SDLP and SCDH
	2.6 SPDH-sign

	3 On Gp and its automorphisms
	3.1 Inner automorphisms of Gp
	3.2 Outer automorphisms of Gp

	4 “Making Mash” when n≤poly(logp)p
	5 Attack in the style of Brown et al. [14]
	6 SPDH and the LHS problem
	7 On the equivalence of SCDH and SDLP
	8 Relation of SDLP to HSP
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

