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Abstract: Homomorphic encryption allows for computations on encrypted data without exposing the under-
lying plaintext, enabling secure and private data processing in various applications such as cloud computing
and machine learning. This article presents a comprehensive mathematical foundation for three prominent
homomorphic encryption schemes: Brakerski-Gentry-Vaikuntanathan (BGV), Brakerski-Fan-Vercauteren
(BFV), and Cheon-Kim-Kim-Song (CKKS), all based on the ring learning with errors (RLWE) problem.
We align our discussion with the functionalities proposed in the recent homomorphic encryption standard,
providing detailed algorithms and correctness proofs for each scheme. In addition, we propose improvements
to the current schemes focusing on noise management and optimization of public key encryption and leveled
homomorphic computation. Our modifications ensure that the noise bound remains within a fixed function
for all levels of computation, guaranteeing correct decryption and maintaining efficiency comparable
to existing methods. The proposed enhancements reduce ciphertext expansion and storage requirements,
making these schemes more practical for real-world applications.

Keywords: homomorphic encryption, learning with errors, ring learning with errors, noise bounds, lattice
attacks

MSC 2020: 94A60

1 Introduction

Homomorphic encryption describes encryption schemes that allow for addition and multiplication operations
to be performed on ciphertexts without needing or leaking any information about the secret key or user
messages. Furthermore, the operations in the ciphertext space correspond to performing the same operations
on the original messages, which can be performed by any third party with knowledge of only the public
information. Homomorphic encryption has several modern applications, such as secure cloud computing and
private machine learning. With Craig Gentry’s work in 2009 [1], secure homomorphic encryption became
viable using ideal lattices. This construction closely relates to the commonly used learning with errors (LWE)
problem, with the hardness of LWE being a result proved by Regev in 2005 [2].

Three of the most common modern homomorphic encryption schemes are based on a ring version of LWE
problems, known as the ring learning with error (RLWE) problems [3]. These schemes are the Brakerski—Gen-
try-Vaikuntanathan (BGV) scheme [4,5], the Brakerski-Fan—-Vercauteren (BFV) scheme [6], and the Cheon-
Kim-Kim-Song (CKKS) scheme [7]. BGV and BFV allow for homomorphic computation for exact arithmetic,
while CKKS provides homomorphic computation for numerical computation with certain accuracy. With
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recent efforts to standardize homomorphic encryption schemes and security [8,9], it is desirable to have concrete
and mathematically solid discussions on encryption schemes and homomorphic computing protocols that match
the functionalities proposed in the standard, including parameter specifications for efficiency and security.

We should mention that Chillotti et al. [10,11] present a fully homomorphic encryption scheme that can
perform one bit operation in less than 0.1 s, while Gao [12] and Case et al. [13] present a fully homomorphic
encryption scheme with similar running time but a much smaller ciphertext expansion (<20). However, each
operation in these schemes is prohibitively expensive at the moment. Leveled schemes have a much larger
ciphertext expansion, but each operation is much cheaper. A leveled scheme allows for some predetermined
number of operations [5,14,15], which is the style we opt for in this article. Several works study noise bounds
for homomorphic encryption [14,16-20] in both the canonical embedding and infinity norms. These analyses
include both theory and implementations. Speedups can be implemented via the residue number system (RNS)
[19, 21-23], which uses the Chinese remainder theorem to break down computations into smaller rings. The
schemes we present in this article can all be implemented using RNS representation.

Our contributions. This article has two main goals. The first goal is to present detailed algorithms for the
functionalities proposed in the homomorphic encryption standard [8,9] for each of the BFV, BGV, and CKKS
schemes, and to present a detailed correctness proof for all the functionalities. This lays a rigorous mathematical
foundation for homomorphic encryption schemes. The second goal is to improve the current schemes for BFV, BGV,
and CKKS. We present modified schemes for each of the three schemes, especially in public key encryption and
leveled homomorphic computing, and focus on noise control and the worst-case noise bounds, thereby reducing
ciphertext expansion and storage expenses. In particular, under the modified schemes, the noise bound for
ciphertexts from public key encryption and from homomorphic computing at each level is always bounded by
a fixed function p, which depends on the underlying ring. The worst-case bound guarantees that ciphertexts can
always be decrypted correctly, with no probability of decryption error, which is preferred for many applications.
Furthermore, parameter sizes resulting from our worst-case bounds are comparable to parameter sizes from
average-case bounds in the literature, thus not degrading the efficiency of the schemes.

Organization of this article. In Section 2, we describe notations and necessary background. We then introduce
LWE and RLWE problems. We present and prove two variations of modulus reduction, which is later applied
to RLWE-based encryption schemes. In Section 3, we outline three RLWE-based homomorphic encryption
schemes: BFV, BGV, and CKKS. For these three schemes, we provide modified encryption to better control noise
and conduct a thorough worst-case theoretical noise analysis. In Section 4, we discuss leveled schemes and
present techniques in choosing parameters to guarantee homomorphic operations. We also outline operations
in RNS here. In Section 5, we give a brief discussion of attack techniques for LWE problems. In Section 6, we
provide concluding remarks and further potential research topics. Appendix A contains the proofs of the
lemmas on correctness of functionalities for all the algorithms.

2 Notations and preliminaries

2.1 Notations

For a positive integer q, define Z, = Z N (-q/2, q/2] to be the ring of centered representatives modulo g.
For an element v € Z, we denote [v], to be the modular reduction of v into the interval Z ; such that q divides
v - [v]q. When v is a vector or a polynomial, [v], means reducing each entry or coefficient of v modulo ¢,
respectively. Denote R, as the ring

Ry = Z[x]/(¢(x)),

where @(x) is a polynomial of degree n and (¢(x)) is the ideal generated by ¢(x). Often, we will choose ¢(x)
to be a power of two cyclotomic polynomial. That is, a polynomial of the form ¢(x) = x" + 1, wheren is a
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power of two. For an integer ¢, we define R, ; as follows:
Ryq = Zq[x]/((b(x)) = Z[x]/(¢(x), @),

where (¢(x), q) is the ideal generated by ¢(x) and q. When v is a polynomial, [v]s() denotes modular reduction
of the polynomial into R,. Similarly, when v is a polynomial with integer coefficients, [v]4(),, denotes modular
reduction of the polynomial into Ry 4, where all the coefficients are in (-¢/2, q/2].

For a vector or polynomial v, the infinity norm of v, denoted ||v||«, is the maximum entry or coefficient

in absolute value of v. Equivalently, if v = (ay, ...,ap-1) or v = Z?;()laix", then
VIl = max{la] : i =0, ..,n - 1}.

|||l denotes the standard 2-norm. The symbols |- | and -] will denote floor and ceiling respectively, whereas
L-1 will denote rounding to the nearest integer, rounding down in the case of a tie. When applying L-1,[-7,
or|-]to a polynomial or vector, we mean the rounding of each entry or coefficient. Define the expansion factor
6r of R, as follows:
8R=maxm:u,veRn,
llulleo (V1o

where uv must be reduced modulo ¢(x) before applying the norm. When ¢(x) = x" + 1, where n is a power of
two, it is well known that 8z = n.

2.2 Noise distributions and learning with errors problems

For a set S, we denote y(S) as an arbitrary probability distribution y on S. We denote U as the uniform
distribution. Let p > 0 be any integer. We denote y, as any probability distribution on R,, where each
coefficient is random in [-p, p] and independent. We call y, an error distribution or noise distribution. We
allow for flexibility in the exact choice of x,, but most commonly, y, is chosen as uniform random on[-p, p}, or
a truncated discrete Gaussian to maintain security [24,25]. Over Z, the discrete Gaussian distribution Dz 4
assigns a probability proportional to exp(-7x%/(aq)?) for each x € Z with standard deviation o = aq/~/27
[2,24]. For the cyclotomic polynomial ¢(x) = x™ + 1, an n-dimensional extension of Dz ., to R, can be con-
structed by process of sampling each coefficient from Dz 4,. More details on the impact of the error distribu-
tion on security can be found in Section 5.
LWE problems. For any secret s € Z}, we sample e < y(Z) from some desired distribution y such that
llells < p, where p is a desired parameter, we sample a uniform random a < U(Zy), and calculate b via
b = [~(a, s) + e];. The ordered pair (a, b) € Zy x Z is called an LWE sample. The search-LWE problem is
to find s given many LWE samples. The decision-LWE problem is given many samples that are either LWE
samples or sampled at uniform random from Zy x Z,, decide, which distributions the samples are drawn
from [2,24].

When drawing elements from distributions on R, and R, 4, we can similarly define the RLWE problems.
For a secret s € R,q, sample a polynomial e <y, sample a < U(Rnq), and compute b € R,, via

b = [-as + e]yy,q- The ordered pair (a,b) € R,%,q is called an RLWE sample. The RLWE problems can be
defined in an analogous way to the LWE problems. Throughout this paper, when given an RLWE sample
or similarly structured ordered pair, we will commonly refer to the polynomial e as the noise term and ||e||«
as the noise size.

Most leveled homomorphic encryption schemes use RLWE as opposed to LWE. The ciphertexts of homo-
morphic encryption schemes discussed will all essentially take the form of a modified RLWE sample. Regev
originally showed the hardness of the LWE problem [2], which serves as foundation for the security of
homomorphic encryption schemes. We discuss more specifics on security in Section 5.

We remark that, in our schemes, we use noise size p = n, and the noise distribution can be uniform on
integers bounded by p or a discrete Gaussian distribution but truncated at p. When using a bounded uniform
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distribution, our choice of noise has standard deviation o of about n/~+/3. In comparison, most implementa-
tions in practice (including the homomorphic encryption standard) use a discrete Gaussian distribution with
o = 3.2 [8,9,19,26]. Our larger noise bound increases the security, which will be discussed later.

2.3 Modulus reductions

Let Q and g be any positive integers. Given an RLWE sample (ay, by) € R,iQ, where by = —a,s + ey mod (¢(x), Q),
we can compute a new RLWE sample (ag, by) € R,fyq satisfying by = —ags + e; mod (¢(x), q) for some new noise
term e;. Although this is a new RLWE sample with a new integer modulus g, the key observation is that the
polynomial s remains the same. Furthermore, if given an initial bound on e, we can guarantee a bound on e;
dependent on Q and q. Algorithm 1 gives the procedure for modulus reduction, while Lemma 2.1 shows correct-
ness and the resulting bound on e;. Although Q and q are any positive integers, we typically choose Q > q and
refer to this procedure as a modulus reduction rather than a modulus switch as many other papers do. Note here
that we use a subscript of 0 in our RLWE sample, as it will provide more consistency with our later applications
of this algorithm to ciphertexts. For this reason, we also label (ay, by) as cty in Algorithm 1.

Algorithm 1. BFV modulus reduction

BFV.Modreduce (cto, Q, q)

Input: Q € N an integer,
q € N an integer,

cto = (ap, by) € Ry .

Output: cty = (ag, b)) € Rr%,q’
Step 1. Compute ag = l%l and b = I%bo ‘
Step 2. Return ctj = (ag, b) € Ry,

Lemma 2.1. Suppose the input cty of Algorithm 1 is an RLWE sample such that ||eg||.. < E. Let ctj be the output of
Algorithm 1. Then,

b; = —ags + e mod (¢(x), q)

SrlIs|l +1
g

and ||eg|le < %E + Furthermore, if Q/q > then ||egllo < SR||S||oo-

_2k
Sgllslle =17

What will be more useful than a modulus reduction for a generic RLWE sample will be a modulus
reduction for a “modified” RLWE sample that takes the form of a standard BFV ciphertext, hence the algorithm
name BFV.Modreduce. By a BFV ciphertext, we mean that our input for Algorithm 1 cty = (a, by) € R,%,Q
satisfies

by + aps = Domy + ey mod (¢(x), Q)

for some noise term ey € Ry, where my € Ry, and Dy is a positive integer. This format is further clarified in
Section 3.1. Classic BFV [6] uses Dy = LQ/t]. In this article, we will always assume ¢|(Q — 1) for any given
ciphertext modulus Q, meaning that Dy = (Q - 1)/t when using the same floor definition as in classic BFV. The
resulting output cty = (ag, by) € R,f,q of Algorithm 1 satisfies by + ags = Dymg + eg mod (¢(x), q) for some e,
where D; = (q - 1)/t whent|(q - 1). Algorithm 1 and the proof of Lemma 2.2 have a similar style to the proof of
Lemma 2.3 in [12].
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Lemma 2.2. Suppose the input of Algorithm 1 is a BFV ciphertext such that ||e||l. < E. Let cty be the output of
Algorithm 1. If t|(Q - 1) and t|(q — 1), then

bj + ags = Dymo + e mod ($(x), @)

SRII [l

and ||eg|le < qE +1+ . Furthermore, if Q/q > then ||egllc < SR||S||co-

> 2
Sgllslle =27

The final reformulation essentially states that if Q/q meets a specific bound depending on E, modulus
reduction always produces a new noise term e; bounded by &g||$||». A similar algorithm and lemma can also be

constructed for a standard BGV ciphertext [4,5], which is an ordered pair cty = (ag, by) € R,{Q satisfying
by + aes = my + tep mod (¢(x), Q)

for some noise term e, and given message my € R, ;, which is the message space for some integert > 1. The procedure
for computing the new ciphertext differs from the previous two modulus reduction algorithms. In particular, we use
the procedure outlined in Lemma 4.3.1 of [27], which is given here as Algorithm 2.

Algorithm 2. BGV modulus reduction

BGV.Modreduce(cty, Q, q)

Input: Q €N, an integer,
q € N, an integer,
cty = (ao, by) € R, BGV ciphertext.

Output: = (ag, by) € Rn ¢ BGV ciphertext.
Step 1. Compute

we = [~aqt o and wp = [~beqto.
Step 2. Compute

ag = [%tw“] and by = [WL.
Step 3. Return cty = (ag, by) € R

Lemma 2.3. Suppose the input of Algorithm 2 is a BGV ciphertext such that ||ey||. < E. Let cty be the output of
Algorithm 2. If t|(Q - 1) and t|(q - 1), then

by + ags = mg + teg mod (¢(x), q)

6R||5Hm

and ||eg|le < qE +1+ . Furthermore, if Q/q > then ||eglleo < Srl|S||co-

> 26
Sgllslle - 27

3 Homomorphic encryption schemes and noise bounds

Most homomorphic encryption schemes in the literature use a modified version of RLWE to hide messages.
In this section, we will cover three main schemes: BFV [6], BGV [4,5], and CKKS [7]. For these three schemes,
we present modified versions where the noise sizes are improved and always controlled by a fixed bound,
namely p = &g||$]|e-

Overview of specifications. Before outlining our specific algorithms, we first provide an overview of speci-
fications for parameters and spaces. Although there are variations between the schemes, the parameter
choices outlined below work for all of BFV, BGV, and CKKS (when applicable). These parameter conditions
ensure proper functionality regarding homomorphic computation for each scheme. Further caution must be
taken when choosing parameters in practice to ensure security, which is discussed in Section 5.
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Specifications for homomorphic encryption schemes

Public Parameters: q €N
Po €N with p, = 56z + 3
p, €N with p, = 6q
t €N with t|(q - 1),t{(p, -1, and t|(p; - D
Plaintext: m € R,; for BFV and BGV

m € C"V2 for CKKS
Secret key: sk € Ry3

Public key: pk € R?, ,

Evaluation key: ek € Rr%,plq

Ciphertext: ct € Ry,
Noise bound : p = &g||$]|w
Noise distribution: y,, a probabilistic distribution on R,

with each coefficient random in [-p, p].

We want to emphasize that each coefficient of the distribution X, can be uniform random on [-p, p], or
any sub-Gaussian truncated by the bound p, or any other distribution that is bounded by p. All the noise
bounds in this article will be valid, since they depend only on the worst-case bound p. We will simply say
“Sample e < y,” in all the algorithms for this generic distribution.

The bound p appears prominently in our algorithms. It is not just a bound on the noise distribution, but

also a worst-case bound for both fresh ciphertexts from public key encryption and new ciphertexts after
modulus reduction when going from one level to the next level, as indicated by the lemmas in the previous
section. In practical implementations, we often choose n to be a power of 2 and ¢(x) = x™ + 1, hence & = n.
When |||l = 1, we have p = &]|$S|l. = n.
Remark on message encoding and choice of t. In the BFV scheme, we choose to encode a message polynomial
m as D;m, where D; = (q - 1)/t, which requires that g — 1 is divisible by ¢. Kim et al. [16] proposes to encode m as
Lgm/t1, which works for any t and g, hence no restriction that ¢|(q — 1). An extra small amount of noise is introduced
from their encryption style, but has minimal impact and gives about the same bounds in our lemmas in the case
of t dividing g - 1 that we consider. This alternate encryption style is slightly more expensive from a computation
standpoint, as additional rounding operations must be performed as opposed to just integer multiplication. We refer
the reader the study by Kim et al. [16] for more details on plaintext modulus choice and SIMD.

3.1 Modified BFV scheme

BFV key generation. The key generation process we use is slightly different from the standard BFV scheme [6]
in that the public key and evaluation key are generated in a larger modulus [6,14,16,19], which will be useful
for reducing the noise size in ciphertexts. Algorithm 3 gives the key generation for the BFV keys needed, which
is the secret key sk, the public key pk, and the evaluation key ek. Here, sk is kept secret, while pk and ek are
published. The public key pk = (ko, k) € R,ipgq satisfies

ki + kos = e mod (¢(x), pyq)

2

p,q Satisfies

for noise term e < X,- The evaluation key ek = (kg, k) € R
ky + kis = p;s? + e{ mod (¢(X), p,q)

for noise term e; < y,. We remark that in Algorithm 3 we choose s randomly rather than specifying
the sampling distribution. This is intentional, as s may be desired to be chosen to satisfy certain properties
in practice. For instance, s is often chosen randomly with a predetermined Hamming weight in practice.
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Algorithm 3. BFV key generation.

BFV.Keygen(q, p,, p,)

Input: qEN,
Py € N with p, 2 56g + 3,
p; € N with p; = 6q.
Output: sk = s € Ry 3 secret key,
pk = (ko, ki) € R}, 4 public key,
ek = (kj, k) € R?, , evaluation key.

n.piq
Step 1. Choose randomly s € Ry 3.
Step 2. Sample Ko < U(Rpp,q) and e < y,,.

Compute k = [~(Kos + €)lp0),pyq-
Step 3. Sample ki < U(Ryp,q) and e] < .
Compute kj = [-Kkis + p;s* + €] lsp0,pq-
Step 4. Return sk = s, pk = (Ko, k), and ek = (kg, k9).

BFV encryption and decryption. We encrypt a message my € R, using a modified version of the standard
public key procedure for BFV. Note that we choose the plaintext modulus ¢ so that ¢t divides p, - 1 and q - 1,
and therefore divides p,q — 1. We immediately reduce the ciphertext modulus from p,q to q before adding the
message bits, then return the ciphertext. The purpose of this is to ensure the noise term on the returned
ciphertext ct; is within the constant bound of p. Given our description of the secret key selection, it is obvious
that||s|l» = 1. Most results we provide can be easily modified for the case of general||s||. however, allowing for
some flexibility in key generation if desired. The exact choices of p, and q will of course depend on several
factors, such as the desired number of homomorphic computations. We will further discuss the choices
of these in Section 4. Assuming these parameters, Algorithm 4 describes the encryption procedure for BFV.
In many algorithms, we will refer to inputs as “BFV ciphertexts.” By this, we mean some ordered pair
ct = (a, b) € RZ, satisfying

b + as = Dym + e mod (¢(x), q)

for some message m € Ry, some noise term e € Ry, ciphertext modulus ¢, and constant D, = Lq/t] = (q - 1)/t.
This encryption style is the classic form of BFV encryption [6]. If ||e|l. < E, we will say ct = (a, b) is a BFV
ciphertext with noise bounded by E.

Algorithm 4. Modified BFV encryption

BFV.Encrypt(myg, Dy, pk)

Input: my € R, message,
D,; € N constant,

Pk = (Ko, ky) € R}, 4 public key.

Output: cty = (ag, by) € Ry, BEV ciphertext.
Step 1. Sample u < U(R,3) and sample ey, e; < Xy
Step 2. Compute (ao, by) € Rripoq where

ao = [Kot + e1lpio,pqs
bO = [klu + e2]¢(X):qu'
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Step 3. Compute
(ag, bg") = BFV.Modreduce((ao, bo), Pyq, q),
b6 = [b(;k + quo]q.

Step 4. Return ctj = (ag, bg) € RZ,.

Lemma 3.1 provides correctness and the corresponding noise bound resulting from encryption.
The bounds in Lemma 3.1 are assuming that||s||. = ||u|l. = 1. However, the bounds can be discussed in terms

265(lulle + 1Is]l) + 26

SalSle - 1 . In this case,

of more generic u and s, in which case the bound condition on p; is p, >
the resulting noise term from encryption still satisfies ||ej||l. < p.

48%+ 28,
§R -1 "

Lemma 3.1. Let ctj be the output of Algorithm 4. Suppose that ||s|l. = 1, t|(p, - D), tl(q — 1), and p, >
Then ct; is a BFV ciphertext with noise bounded by p.

We argue that when & 2 16, the condition on p, in Lemma 3.1 is satisfied when p, is chosen so that
Po 2 58 + 3 as per our parameter specifications, since

32 16 16 26,285 +1) A8+ 26
56+ 3> =8+ — = —(25 + 1) = R(7R ), Aot 26
7 §6R 6R -1

77

This technique of encryption with a built-in modulus reduction in Step 3 was first mentioned in [19], but is
overall not especially well outlined in the literature. Implementations do often reduce the modulus immedi-
ately after encryption to reduce noise. For instance, Microsoft SEAL [28] chooses p, as a “special prime,” then
generates all keys with an integer modulus of p,q (for q a product of some primes) before reducing down to
integer modulus g to house any ciphertext data. SEAL documentation recommends choosing this special prime
D, to be at least as big as any prime divisor of g, though it is not a strict requirement. In our modification, we
propose computing the modulus reduction locally during encryption and doing so before adding the message
bits. The advantage to this approach is we can choose p, to be much smaller.

Algorithm 5 provides for the decryption of a BFV ciphertext, which is the standard BFV decryption.

Algorithm 5. BFV decryption

BFV.Decrypt(cty, sk)

Input: cto = (o, bo) € R; , BEV ciphertext,
sk = s € Ry 3 secret key.
Output: my € R, message.
Step 1. Compute ¢ = [by + aoS]px).q-
Step 2. Compute m, = “%” .
t
Step 3. Return m,.

Lemma 3.2. If the input cty of Algorithm 5 is a BFV ciphertext with noise bounded by (D, - 1)/2 and t|(q - 1),
then the decryption in Algorithm 5 is correct.

BFV additions and linear combinations. We allow for linear combinations of ciphertexts with scalars from Z.
Based on the sum of absolute values of these scalars, we can guarantee a bound on the resulting ciphertext
noise. In particular, we discuss the case of linear combinations with scalars ay,..., ax-1 € Z such that
Zf;ol |a;] < M. Assuming each input ciphertext has noise bounded by E, a linear combination of k ciphertexts
using these scalars results in noise bounded by M(E + 1). Algorithm 6 gives the algorithm for linear combina-
tions, while Lemma 3.3 gives the resulting noise bound for BFV ciphertexts.
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Algorithm 6. Linear combinations

Linearcombo(cty, ...,Ctk-1, Qg, ...,qAx-1)

Input: Cto,.r, Cte-1 € Ri g (OF Cly,..., Clig € R ),
Qg, ..., Qx-1 € Z scalars.

Output: cty € Ry, (or cty € R ).

Step 1. Set cty = [0, 0] (or [0, 0, 0]).

Forifrom Otok -1do
cty = [cty + aictylg.
Step 2. Return ctg.

Lemma 3.3. Suppose the inputs of Algorithm 6 are BFV ciphertexts each with noise bounded by E and suppose

Zf:_ol la;| < M. Let cty be the output of Algorithm 6. If t|(q — 1), then ctj is a BFV ciphertext with noise bounded
by M(E + 1).

We remark that we allow for inputs of Algorithm 6 to also be in R,iq. For the input of Algorithm 6, when
using elements of the form (¢, ¢, ¢) € R,f',q satisfying

Co + GS + 6s? = Dym + e mod (¢(x), q)

for somem € R, ; and e € Ry, we still refer to e as a noise term (and refer to a bound on |||l as a noise bound).
If each input has noise bounded by E, we can slightly adjust the proof of Lemma 3.3 to obtain an element in R,f’,q
with noise bounded by M(E + 1) from the output of Algorithm 6. This alternate choice of inputs will be utilized
when discussing budgeted operations in Section 4.1.

BFV multiplication. As expected, multiplication incurs much bigger increase in ciphertext noise and more
tedious noise analysis. The procedure is again standard for the BFV scheme as in the study by Fan and
Vercauteren [6]. The proof is similar to that presented in the study by Fan and Vercauteren [6], but we give
a simpler worst-case noise bound with Lemma 3.4.

Algorithm 7. BFV multiplication

BFV.Multiply(cty, cty)

Input: cto = (ao, by), ¢ty = (@, by) € Ry, BFV ciphertexts.
Output: (cg, ¢f, ¢;) ERY,.
Step 1. Compute

Co = [bobilpy, @ = [D1ao + boilpc, @ = [Aot]peo)-
Step 2. Compute

¢ = Lteolq, ¢f = Ltalq], ¢, = Lte/q].
Step 3. Return (cg, ¢f, ¢;).

Lemma 3.4. Suppose the inputs of Algorithm 7 are BFV ciphertexts for messages my and my respectively, both
with noise bounded by E. Let (cg, ¢{, ¢;) be the output of Algorithm 7. If t|(q — 1) and &g = 16, then

Cj + ¢fs + ¢352 = Dy[moMylyce,e + € mod (¢(x), q), )]

with ||e’|l» < 3.5Etp?.
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The simple bound provided in Lemma 3.4 will allow us to choose parameters easily and stack moduli as we
will do in Section 4, while having minimal influence on functionality.
Comparison to current bounds. As mentioned earlier, we can see that our bound is on the order of Et§3 when
choosing ||s|l-=1, where E is the bound on the noise term of each ciphertext before multiplication. Comparing
to more current works, [16] achieves a similar multiplication noise bound. Rather than restricting choices of ¢
and ¢, [16] achieves this bound by an alternative encryption method, namely, by computing
by + aes = Lgm/t] + e mod (¢(x), q) rather than standard BFV, which computes by + ags = Lq/tIm +
e mod (¢(x), q). We provide a short comparison of multiplication noise bounds, with e’ being the noise
term resulting from multiplication. Most notably, we assume two ciphertext noise terms are both bounded
by E rather than having separate input bounds. Note this comparison does not include relinearization noise.
We discuss the additional relinearization noise accumulated for our modified BFV scheme in Lemma 3.5.
Classic BFV [6]:

llells < 26-tE(L + Sgllsll) + 2856(lIsll + D™
Improved BFV [16]:

1+ Sgllsll + SRllsl
el < 212+ 4+ | « 220l 20,

Our BFV variant:

lle’|l < 3.5EtS3||s|l%

In the study by Kim et al. [16], the dominant noise term is %(cSRHsHoo )2E = Et52|s||l.. We note that, by going

through their proof for the worst-case bound, the factor &z/2 in their bound should be &g||s||», Which is what we
used in our proof. Hence, the dominant term should be 2Et52||s]|-. In comparison, our bound for all the noise
terms is 3.5Et8Z||s|[%, which is slightly bigger than their bound. Our goal was to provide a simple bound that
is easier to use in practice. We will expand upon how we use this simple bound further in Section 4.
BFV relinearization. To convert a returned ciphertext from Algorithm 7 back to the proper form of a BFV
ciphertext, we can employ a relinearization (or keyswitch) algorithm [6]. The algorithm converts a linear form
in s and s? to a linear form in only s, while introducing a small additional noise term. Note that to accomplish
this, we must use the published evaluation key, from Algorithm 3, denoted as ek. Algorithm 8 gives the
relinearization algorithm for BFV. Lemma 3.5 provides for the resulting noise bound.

Algorithm 8. BFV Relinearization

BFV.Relinearize((c{, c{, ¢;), ek)

Input: (c5,¢{,¢5) € R,iq polynomial ordered triple,

ek = (kp, k) € Ry, , evaluation key.
Output: (Co, @) € R,
Step 1. Compute B, = [¢;Kplpo,p,q @0d By = [c1K1)p00),p,q-
Step 2. Compute d; = [’;—‘i and d{ = l%l
Step 3. Compute ¢ = [¢g + dgly and ¢ = [¢] + d{],.
Step 4. Return (co, ).

Lemma 3.5. Let (cy, ) be the output of Algorithm 8 and suppose the input (cg, ¢{, ¢;) satisfies (1) in Lemma 3.4.
If p, 2 6q and &g = 16, then (co, ¢) is a BFV ciphertext with noise bounded by 3.6Etp>.
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Alternate relinearization technique. Algorithm 8 is not the only option for relinearizing a ciphertext. Another
technique [6,14,27,29] involves generating the evaluation key differently, by expanding ¢, with respect to some
integer base. In this relinearization process, the evaluation key is a vector pair ek = (u, v) € (R} ,)* where each
entry of u is sampled from U(Ry,q), and y and v are computed in the following way. For chosen public base
B €N, find the smallest y € N such that BY > q and define g € R}, as follows:

g’ =(,B,B% .., B
Let w € R}, a vector with each entry sampled from X,- Compute v as
v = s2g — us + w (mod ¢(x), q).

To obtain a new relinearized ciphertext from (cg, ¢{, ¢;), one can first write
y-1
Czl = Zth],
j=0

where hj € R, 4 such that||hj|l < B/2 and define h” € R,{q as h = (hg, hy, ..., hy-1). Then
c;s% = h(s?g).

Using ek = (u, v), the new ciphertext can be computed as ([¢{ + hu]y g, [¢j + hV]s00,4) since c;5% + hw =
hv + hus mod (¢(x), q¢). Here, hw is the noise introduced during relinearization and satisfies |[hw]l. <
(yB83|Is|l»)/2. However, this technique is less used since the evaluation key (u, v) € R q)z is much larger
than the evaluation key generated in Algorithm 3. Specifically, ek = (u, v) is of size 2y log,q. The noise incurred
by relinearization grows linearly with B; hence, B must be relatively small, which means y will likely be much
bigger than 4. On the other hand, ek = (kg, k{) from Algorithm 3 is of size 4log,q. Although Algorithm 3 gives
a smaller key size, a larger ring dimension n must be used to maintain security. We refer the reader to the
references mentioned earlier for details. Some implementations of BFV such as Microsoft SEAL [28] do not
realinearize their ciphertexts after each multiplication and allow the degree of the linear form s to grow larger
than 2 [30].

3.2 Modified BGV scheme

BGV key generation. As we did with BFV, we use a slightly different key generation process from the standard
BGV scheme [4,5] by generating the public key and evaluation key in a larger modulus to reduce noise sizes
in ciphertexts. Algorithm 9 gives the key generation for the BGV keys. Just like BFV, sk is kept secret, while pk
and ek are published.

Algorithm 9. BGV key generation

BGV.Keygen(q, p,, py)

Input: qEN,
Po € N with p, 2 58 + 3,
p, € N with p, > 6q.
Output: sk = s € Ry 3 secret key,
pk = (ko, k) € R}, , public key,
ek = (kj, k) € R?, . evaluation key.

n.pyq
Step 1. Choose randomly s € Ry, 3.
Step 2. Sample Ko < U(Rpp,q) and e < y,.

Compute k; = [~(Kos + t€)]p(0),pyq-
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Step 3. Sample ki < U(Ry,p,q) and e] < Xp-
Compute kj = [-Kkis + p;s? + te] loco,pug-
Step 4. Return sk = s, pk = (K¢, k), and ek = (kg, k9.

BGV encryption and decryption. We define the BGV public key encryption in Algorithm 10. Decryption of
a BGV ciphertext is given in Algorithm 11. When we refer to a “BGV ciphertext” in these algorithms and
lemmas, we mean an ordered pair ct = (a, b) € R,%,q satisfying

b +as=m + te mod (¢(x), q)

for some noise terme € R, and given message m € R, ;. Lemma 3.6 provides proof of correctness for encryption,
as well as the corresponding noise bound resulting from encryption.

Algorithm 10. Modified BGV encryption

BGV.Encrypt(m,, pk)

Input: my € R, message,
pk = (ko, ky) € Rripoq public key.
Output: cty = (ag, bg) € R?, BGV ciphertext.
Step 1. Sample u < U(R,3), and sample ey, e; < Xp-
Step 2. Compute (ao, by) € R,f,poq, where

ao = [Kout + ter]p(o,pyq
by = [k + tez]peu)pyq-
Step 3. Compute
(ag, b) = BGV.Modreduce((ag, bo), Pyq @),
by = [b + moly.

Step 4. Return ctj = (ag, bg) € Ry,

461%*'2613
6p=2 "

Lemma 3.6. Let cty be the output of Algorithm 10. Suppose that ||s||» = 1, t|(p, - 1), tl(q - 1), and p, >
Then cty is a BGV ciphertext with noise bounded by p.

Algorithm 11. BGV decryption

BGV.Decrypt(cty, sk)

Input: cto = (o, bo) € R; , BGV ciphertext,
sk = s € Ry 3 secret key.

Output: my € R, message.

Step 1. Compute ¢ = [by + aoS]px)q-

Step 2. Compute mg = [c};.

Step 3. Return m.
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Just as with BFV, the condition on p, can be discussed in the more general case for any choice of u and s,

265(1ulle + 1Isll) + 26
Sgl[S]leo =2

to BFV as well, we argue that when & > 16, the condition on p, in Lemma 3.6 is satisfied when p; is chosen
so that p, = 56z + 3 as per our parameter specifications since

in which the condition on p, is p, > and the resulting noise term e; satisfies ||eg|| < p. Similar

2
56, + 3 > ?’7—25R . ? - ?(z(sR q) = 220D 4‘2‘ J'_ZZ‘SR.
30r R
Regarding decryption, the proof of correctness for Algorithm 11 is straightforward. Simply observe that
[[bo + aoSlpco,qle = [Mo + tegls = mo. The key observation here is that in order for correctness to hold, it is
required that ||mg + teg|l. < g/2. That is, fully reducing by + aps modulo g will actually yield the correct
polynomial m; + te;. The worst-case bound on ||mg + teg|» is t/2 + ¢E if ||eg||l. < E. Hence, it suffices to require

E< % - % This is very similar to the condition given earlier needed for correct BFV decryption.
BGV additions and linear combinations. Additions and linear combinations for BGV can be done using
Algorithm 6. The argument is similar to Lemma 3.3 for BFV ciphertexts and results in the same noise bound
of M(E + 1). It is worth noting that divisibility of ¢ - 1 by ¢ yields no noise improvement for BGV addition, and
the noise bound of M(E + 1) holds for any ¢ and q.

BGV multiplication. Again, multiplication incurs large noise increase during homomorphic computation.
Unlike BFV, there is no requirement that ¢ divides g — 1, and the noise analysis for BGV multiplication is
simpler than BFV, as no scaling by t/q is required after computing the necessary components given from ct,
and ct;. Algorithm 12 outlines the procedure for BGV multiplication. Lemma 12 provides for proof of correct-

ness and the corresponding noise bound.

Algorithm 12. BGV multiplication

BGV.Multiply(cty, ct;)

Input: cty = (ag, by), cty = (a1, by) € R,f,q ciphertexts.
Output: (¢g, i, ¢;) E Ry .
Step 1. Compute

¢¢ = [bob1lgeo,q
¢f = [b1ag + boarlpexo, g
¢; = [aolpeo.q-

Step 2. Return (cg, ¢f, ¢y).

Lemma 3.7. Suppose the inputs of Algorithm 12 are BGV ciphertexts for messages my and my, respectively, both
with noise bounded by E. Let (cg, ¢{, ¢;) be the output of Algorithm 12. Then

Cg + ¢fs + ;8% = [momylyco,e + te’ mod ($(x), q) @

With ||e/|| < 26xt(E2 + 1).

BGV relinearization. We can relinearize a BGV ciphertext to rewrite the left hand side of equation (2) as
a linear form in only s rather than s and s2. For BGV, a slightly modified evaluation key must be generated,
as well as a slightly modified relinearization algorithm. Algorithms 9 and 13 give the BGV evaluation key
generation and relinearization respectively, which we have based on the algorithms in [16]. Lemma 3.8
provides proof of correctness of Algorithm 13 and the corresponding noise bound. Algorithm 13 and the result
of Lemma 3.8 can be combined with Algorithm 12 and the result of Lemma 12, respectively, to obtain a full BGV
multiplication operation.
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Lemma 3.8. Let (co, ¢) be the output of Algorithm 13 and suppose the input (cg, ¢{, ¢;) satisfies (2) in Lemma 3.7.
If p, 2 6q and & 2 16, then (co, @) is a BGV ciphertext with noise bounded by 26gt(E? + 1) + %61%“8”00.

Algorithm 13. BGV relinearization.

BGV.Relinearize((cg, ¢{, ¢;), ek)

Input: (cg, ¢f,c3) ERY

ek = (kp, ki) € Ry, , evaluation key.
Output: (co, @) € RE,.
Step 1. Compute B, = [¢;Kolow.p,q AN By = [€7K )p0x0p,q-
Step 2. Compute wy = [~t7B]p, and wy = [-t7B,]p,.
Step 3. Compute d; = ﬁ°+T1tw° and dy = Purten
Step 4. Compute ¢ = [¢g + dgl; and ¢ = [¢] + d{].
Step 5. Return (cy, @).

3.3 Modified CKKS scheme

In this section, we will discuss the CKKS scheme [7]. CKKS allows for homomorphic encryption for arithmetic
of approximate numbers rather than arithmetic exactly as BFEV and BGV do. This is done by first taking in data
as some vector over C, mapping the components into R,, and then performing the homomorphic computation
before mapping back to a vector over C. This process of mapping to and from the C-vector space is known as
the encoding and decoding procedures, respectively. Throughout Section 3.3 and whenever referring to CKKS,
we will always assume ¢(x) = x™ + 1, where n is a power of two. Thus, & = n.
Message encoding and decoding. Recall that R, = Z[x]/(¢(x)) and R, = Zy[x]/(¢(x)). Let H = {z € C™
Zj = Zn-j+1}. Define two mappings:

m:H - CM2

0 CxJ/(g0n) —

Here, 77 is the projection of H onto C"2, by keeping only the first half of the entries for each vector inH, and ¢
is the canonical embedding map defined as follows. Note that the polynomial ¢(x) = x™ + 1 has n complex
roots, say ¢, {3, ..., {» in any fixed order, which are all primitive roots of unity of order 2n. Given a polynomial
h € C[x]/(¢(x)), o is defined via
a(h) = (h(6), h(&), ....h(&) € C™.

That is, o evaluates h at all the roots of ¢(x) and stores the evaluations as a vector. Note that both 7 and o serve
as isomorphisms of vector spaces over C, so 7' and ¢™! exist. In practice, ¢ is computed via a fast Fourier
transform (FFT), and ¢! by an inverse fast Fourier transform (FFT™).

The purpose of these mappings is that given a message vector z € C"/2, we want to convert it into
a polynomial in R, whose values at § correspond to w = 77(z), hence polynomial multiplication corresponds
to component-wise multiplication for message vectors. We now must map 77(z) into R,. Given §, {,..., { in a
fixed order such that (3, 3, ...,{n) € H, o then serves as an isomorphism between R[x]/(¢(x)) and H. So, for
w € H, we can compute o (w) € R[x]/(¢(x)) and then round each coefficient to obtain an element in R,.

It is worth noting that most texts use a technique called coordinate-wise random rounding instead of
rounding to the nearest integer [25]. However, we will use the closest integer rounding. As we will see, this step
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of rounding causes accuracy loss in the message. To avoid this, we scale by some positive integer A to preserve
some desired precision of our message in the end result. The message encoding function is defined as follows:

Ecd(z, A) = Lo™i(An7Y(2))1 € R,

for any message z € C"2, and the message decoding function is defined as follows:
Dcd(m, A) = n(a(A1m)),

for any polynomial m € R,

The encryption and decryption procedures for CKKS then map between R, and R, 4. A high level overview
of the mappings in CKKS is shown below. Note that ¢ is used for the integer modulus of the ciphertext space
after homomorphic computation, as we may have a different integer modulus if we perform any modulus
reduction.

Overview of CKKS Mappings

n/o Art ot L] encrypt
Cr /AT | Rla] (6(2)) — Ro R,
J{computation
n/2 2
c A"l H g R decrypt qu/

Note the scaling factor A affects the ending precision and is usually chosen proportionally to the moduli
gaps, which is discussed later in this section. It is also worth mentioning that although Ecd is defined for all
messages z € C"2, in practice z is taken in the space of fixed precision numbers of some length, which is
a subset of C"/2,

The remainder of Section 3.3 is devoted to the homomorphic computation in R,f,q for the CKKS scheme.

A significant observation for CKKS is how the homomorphic computation relates to the computation in C™2,
In particular, for vectors z, z” € C"2, we denote z  z’ as the Hadamard product of z and z’ (i.e., the vector
obtained from component-wise multiplication between z and z’). Homomorphic multiplication in R,%’q of two

ciphertexts corresponds with the Hadamard product of the respective vectors in C"/2, whereas homomorphic
addition corresponds with standard vector addition of the respective message vectors.

CKKS rescaling. Regarding modulus reduction in CKKS, a similar procedure known as rescaling occurs. The
rescaling procedure is identical to the modulus reduction for BFV outlined in Algorithm 1. That is,

CKKS.Modreduce = BFV.Modreduce.

The main difference is the purpose of the procedure. Rather than using modulus reduction as a form of noise
control, it is used here to control precision. For two message encodings mg, m; € Ry, ciphertext multiplication
yields an encryption of the product mym;, which takes up some less significant bits (LSBs). We rescale the
corresponding ciphertext of mom, to get rid of the lower significant digits to perform further computation
where we want to keep only a fixed number of digits. While the rescaling serves a different purpose than
modulus reduction, we can still discuss bounds on the corresponding error term achieved. Lemma 3.9 outlines
our worst-case noise bound. When we refer to a “CKKS ciphertext” in these algorithms and lemmas, we mean
an ordered pair ct = (a, b) € Rr%,q satisfying

b +as=m+ e mod (¢(x), q)

for some noise term e € R[x]/(¢(x), q¢) and m = Ecd(z, A) € R[x]/(¢(x), q) for some z € C2,

Lemma 3.9. Suppose the input of Algorithm 1 is a CKKS ciphertext with noise bounded by E. Let ct be the output
of Algorithm 1. Then,

b + ags = imo + e; mod (¢(x), q)

Q

2E

1+ Sgllslle
E+— Sallslle -1’

and ||eg|l < . Furthermore, if Q/q > then ||egll < p.

a
Q

A notable difference in CKKS rescaling is that the algorithm returns an encryption of %mo rather than the
original m, encoding. As mentioned, this is intentional, as we wish to reduce the size of m, since bit usage
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becomes an issue. The reason we use a modulus reduction algorithm rather than simply trying to scale down
the ciphertext is because we are taking entries modulo Q. For a ciphertext (ao, by) € R,%,Q, if we computed
a scaled ciphertext (Lao/AT,Lbo/AT) for some scaling factor A, we would first need to write
by + ags = my + ey + Qr for a polynomial r € R,. This would result in a term approximately equal to Qr/A
after dividing through by 4, which is no longer equivalent to 0 mod Q and would result in a huge noise term.
However, it is still important to choose Q/q to be approximately 4, or whatever desired scaling factor is
needed. Accuracy of the approximation relies on this size of Q/q. When not concerned with RNS representa-
tion, we can simply choose 4 = Q/q exactly. In the RNS variant of CKKS [21], a bound is placed on the gap
between Q/q and A to ensure some precision, while still allowing for coprime moduli Q and q.

CKKS key generation. For CKKS, the keys used are generated in the same way that the BFV keys are generated.
In this case, we refer the reader to Algorithm 3 for generation of the CKKS keys, which again includes the secret
key sk, the public key pk, and the evaluation key ek.

CKKS encryption and decryption. The encryption algorithm is given by Algorithm 14, and decryption by
Algorithm 15. Note that CKKS encryption in Algorithm 14 uses Algorithm 1 as a subroutine, which is the
rescaling. From Step 2 of Algorithm 15, we obtain mg. However, recall that by + aes = m, + ¢y mod (¢(x), q),
so in this case, we really have that mj = my + €. In other words, m; is a close approximation of m, so long as
||€o|| is small. We do not include proofs that decryption works, as it is directly apparent from the algorithm
that it decrypts to an approximation of the desired message. We also note that many texts, such as the original
CKKS paper in the study by Cheon et al. [7], have separate steps for encoding/decoding and encryption/
decryption. We include the encoding or decoding in the encryption or decryption algorithms, respectively.
Aside from the encoding step, the encryption algorithm for CKKS is actually identical to a BFV encryption with
D, = 1. Lemma 3.10 provides for the corresponding noise bound after encryption. As with the other schemes,
choosing p, = 56z + 3 ensures the condition for p, in Lemma 3.10 holds. The condition on p, can also be

285(|julles + l1sl) + 26

i >
generalized to p, Salllle 1

with the resulting noise still satisfying ||e;|| < p.

Algorithm 14. Modified CKKS encryption

CKKS.Encrypt(z, 4, pk)

Input: z € C"2 message,
A € N scaling factor,

pk = (Ko, k) € R}, 4 Public key.

Output: ct = (a, b) € Ry, CKKS ciphertext.
Step 1. Encode z by computing m = Ecd(z, A).
Step 2. Compute ct = BFV.Encrypt(m, 1, pk).
Step 3. Return ct = (a, b) € Ry,

Algorithm 15. CKKS decryption

CKKS.Decrypt(ct, sk)

Input: ct = (a, b) € Ry, CKKS ciphertext,
sk = s € Ry 3 secret key.
Output: z € CV? message.
Step 1. Compute m = [b + as]gx),q-
Step 2. Decode m by computing z = Dcd(m, 4).

Step 3. Return z.
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4683 + 26
(SR—l :

Lemma 3.10. Let ct be the output of Algorithm 14. Suppose||s||» = 1 and p, >
with noise bounded by p.

Then ct is a CKKS ciphertext

CKKS additions and linear combinations. We can perform additions and linear combinations with CKKS
ciphertexts using Algorithm 6. The resulting ciphertext obtained from Algorithm 6 has a slightly different noise
bound than BFV and BGV. The reason for this is that the encoded messages which the ciphertexts represent are
in R, instead of R, so reduction modulo t is not necessary with CKKS. The result is summarized in
Lemma 3.11.

Lemma 3.11. Suppose the inputs of Algorithm 6 are CKKS ciphertexts each with noise bounded by E and suppose
Zf:_ol la;l < M. Let cty be the output of Algorithm 6. Then, ct; is a CKKS ciphertext with noise bounded by ME.

CKKS multiplication. Multiplication in CKKS follows the same process as BGV, which is given in Algorithm 12.
Thus,

CKKS.Multiply = BGV.Multiply.

The difference is only a slightly different noise bound, due to the plaintexts not being in R, ; and thus not
needing reduction modulo ¢. Lemma 3.12 outlines the result and proof of the corresponding noise bound.

Lemma 3.12. Suppose the inputs of Algorithm 12 are CKKS ciphertexts for messages m, and my, respectively, both
with noise bounded by E. Suppose that ||mo|l» < t/2 and||my|l» < t/2. Let(cy, ¢{, c;) be the output of Algorithm 12.
Then

¢ + ¢fs + ¢js? = memy + e’ mod (¢(x), q) ®

with ||e’|l < EtSg + E25z.

CKKS relinearization. As with the other schemes, full multiplication can then be achieved by including the
relinearization process discussed in Algorithm 8, so

CKKS.Relinearize = BFV.Relinearize.

The proof is almost identical to the proof in Lemma 3.5. The result for CKKS is given in Lemma 3.13.

Lemma 3.13. Let (cy, ) be the output of Algorithm 8 and suppose the input (cg, ¢{, ;) satisfies (3) in Lemma 3.12,
with |[Molle < t/2 and ||my||l. < t/2. If p, 2 6q and &g = 16, then (¢, G) is a CKKS ciphertext with noise bounded

by Et6y + E%g + 363)/S] -

Note on BFV versus CKKS. Initially, the formatting of ciphertexts in BFV and CKKS seem very similar. For a
message Mgy € Ry, a BFV ciphertext cty = (ao, bo) satisfies by + aos = D;mg + € mod (¢(x), q). In CKKS, the
encoding step for a message z; € CV2 scales our message by a factor of A. That is, our CKKS ciphertext
cto = (ay, by) satisfies by + ags = mg + €y mod (¢(x), q), where my = Ecd(zg, 4). In both equations for BFV
and CKKS, we have a scaling factor attached to our message. In BFV, the message m, is directly multiplied
by D,, while in CKKS, 4 multiplies the original message z, and is implicitly hiding in m,. Nonetheless, both have
a scaling factor. In multiplication of both schemes, this scaling factor initially compounds in the first step. The
two schemes handle this issue differently however, with BFV rescaling the individual degree 2 ciphertext
components in Step 2 of Algorithm 2, before taking the computed polynomials modulo q. CKKS on the other
hand computes the initial polynomials in multiplication and immediately reduces them modulo g, relinearizes
the ciphertext, and then rescales the hidden 42 back to 4 using modulus reduction in Algorithm 1. Part of the
reason these schemes differ in where they rescale is due to the fact that D, > A. Since D, = Lq/t] and t < ¢/2,
qu > q and rescaling must occur before taking components modulo ¢q. On the other hand, 4 in CKKS has more
freedom in choice, as it is a parameter chosen by the user that can influence accuracy in the approximation of
end result of computation.
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3.4 Comparison to other noise bound analyses

Our noise analysis differs from previous works [6,7,16,17] in that we derive worst-case bounds based on worst-
case bound assumptions on the error distribution. As a result, our correctness guarantees are deterministic;
there is no probability of decryption error. In addition, we simplify the derived bounds into clean, closed-form
expressions that will be useful for subsequent sections. This simplification comes at the cost of slightly looser
bounds overall, with the effect being most pronounced in BFV multiplication. A detailed comparison of BFV
multiplication appears near the end of Section 3.1.

For most operations, our bounds are very close to the worst-case results presented in the study by Kim
et al. [16], though with a few important distinctions. First, in all of our modulus reduction lemmas, we explicitly
bound the ratio Q/q to ensure that the noise remains below a fixed threshold, which supports more precise
composability in computations. Second, our modified encryption procedure enables much smaller choices of
p, by performing modulus reduction before message embedding. This results in fresh ciphertexts with noise
bounded by a constant, while preserving correctness. The same structure can be extended to CKKS rescaling
during encryption. Since the message bits are not yet introduced at that stage, rescaling does not degrade precision.

In addition, under basic assumptions on &g, we are able to significantly simplify the relinearization noise
bounds. This is especially helpful in regimes with small plaintext modulus ¢, where relinearization noise can
be more significant.

For concrete estimates, many works adopt 6z = 2+/n as an expansion factor that holds with high probability.
In contrast, we use the exact value & = n in later derivations. In the case of CKKS [7,17], the most significant
differences in noise growth appear in fresh encryptions, relinearization (i.e., key switching), and rescaling.
Across these operations, our analysis yields a dominant noise term of approximately n, compared to -/n in
the aforementioned works. This is primarily due to our adoption of a strict worst-case model and the associated
choice of expansion factor. For average-case analyses such as those presented in the study by Costache et al. [17],
direct comparison is more nuanced, as noise growth depends on the variance of sampled noise terms.

4 Leveled schemes and RNS variants

For practical computation, we employ a leveled homomorphic encryption scheme rather than a fully homo-
morphic one. Unlike fully homomorphic schemes — which support an unlimited number of operations via
costly bootstrapping — a leveled scheme supports a predetermined number of homomorphic operations,
making it more efficient for realistic workloads. In this section, we outline leveled versions of the BFV,
BGV, and CKKS schemes. The core idea is to carry out computations at decreasing modulus levels: perform
a fixed number of operations at a given modulus, then reduce both the modulus and the noise to enable
further computation.
Letq, > q, ;> .. > q, > 1 be distinct primes, and define

i
Q.=[lg. osise.
j=0

We refer to Q; as the modulus at level i or simply the level-i modulus. In Section 4.1, we describe how to select
each g; so that a budgeted operation, called a depth-1 multiplication, can be performed at level Q;. Specifically,
if the input ciphertexts at level Q; have noise bounded by p, then the resulting ciphertext — after multiplication
and modulus switching to Q,_; — continues to maintain the same noise bound p.

Section 4.2 details how ciphertext operations are performed in the RNS. By the Chinese remainder
theorem, any polynomial a € Ry, can be represented as follows:

[alg = (@@, a®, ...,a"¥),

where a® = a mod g;, and B = (qy, ¢, ---.q,) is called the modulus basis (or simply the basis). This represen-
tation is referred to as the RNS form of a.
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All ciphertexts, public keys, and evaluation keys are stored in RNS form with respect to appropriate
modulus bases. A key advantage of RNS is that addition and multiplication of polynomials can be performed
component-wise, independently across the g;. However, operations such as modulus reduction and relinear-
ization are more involved. In Section 4.2, we describe how these operations are implemented in RNS for the
BFV, BGV, and CKKS schemes, and we present the associated noise bounds.

4.1 Budgeted operations at each level

For a collection of ciphertexts, we want to know how much homomorphic computation we can perform before
ciphertext noise becomes too big to the point that no further computation can be performed. To do this, we
introduce the concept of a depth-1 multiplication computation.

Definition 4.1. (Depth-1 multiplication) Suppose we have a collection of messages. For fixed & and k;, we say
that we can perform a depth-1 multiplication if we can perform 2k, groups of k; — 1 additions, followed by one

round of k; multiplications, followed by k; — 1 additions.

mi1 mi.k, ma1 ma M2ky—1,1 M2ky—1,ky 7712;9271 7712’92%‘1

Figure 1: Plaintext depth-1 multiplication.

Figure 1 shows an arbitrary depth-1 multiplication with 2k;k; plaintexts, where m; ; is a plaintext for each
j=1,..,2k, k=1,., k. Our goal to derive a bound on g; so that one can compute depth-1 multiplication
homomorphically at each level i. To perform a depth-1 multiplication homomorphically for BFV, BGV, and
CKKS, we introduce Algorithm 16.

Algorithm 16. Depth-1 multiplication

Depthl(Ct]"k, ek;, Qi’ Qi—l)

Input: Ctix € R,%,Qi, j=1,.,2k, k=1,.,k ciphertexts,
ek; € R'%:O. evaluation key at level i,

Q; € N integer modulus,
Q;-1 € N integer modulus with Q; = q,Q;_;.

Output: ct €R:g .
Step 1. For j from 1 to 2k, do

ct; = Linearcombo(ct;y, ...,Ctj kg, 1, ..., 1).
Step 2. Initialize ct = (0,0,0).

For j from 1 to k; do
ct = ct + Multiply(cty-1, Cty).
Step 3. Compute ct = Relinearize(ct, ek;).
Step 4. Compute ct = Modreduce(Q;, Q;_;, ct).
Step 5. Return ct.
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In Algorithm 16, we remark that Multiply, Relinearize, and Modreduce call the respective algorithms for
the inputted ciphertext type. For example, if each ct; ; is a BFV ciphertext, Algorithm 16 will use BEV.Multiply,
BFV.Relinearize, and BFV.Modreduce, while Linearcombo is identical for all three ciphertext types. Note that
ek; € Rr%,ploi is assumed to match the ciphertext type of the ct;;’s. Our relinearization takes place after sum-
ming together our ct;’s obtained from Step 2, which are each a polynomial triple. This slightly improves our
bounds, and is better from a computational perspective since we are only running Relinearize once in
Algorithm 16.

To guarantee the amount of computation we can perform, we want to choose g; so that the output of
Algorithm 16 is always a ciphertext with noise bounded by p when all the ct; x inputs have noise bounded by p.
The precise bound on g, is presented in Lemmas 4.1 and 4.2 for BFV and BGV, respectively.

Lemma 4.1. Forany1 < i < ¢, suppose q; > 9kikotn? and &g = 16. Then, for a collection of BFV ciphertexts at level i all
with noise bounded by p, the output of Algorithm 16 is a BFV ciphertext at level i — 1 with noise bounded by p.

Lemma 4.2. For any 1 < i < ¢, suppose q; > 4kikytn® and 8 = 16. Then, for a collection of BGV ciphertexts at level i
all with noise bounded by p, the output of Algorithm 16 is a BGV ciphertext at level i — 1 with noise bounded by p.

For a similar depth-1 result in CKKS, we must use caution when finding conditions for g;. The reason for
this is that in CKKS, we do not have much flexibility to choose g;. For the standard scheme, it is always assumed
that g; = A for each i # 0. Thus, the best that we can do is to bound the error in general after computing the
depth-1 algorithm. We cannot force the error down within a constant after rescaling without the assumption
that g; > A, which clearly contradicts the size of A needed in CKKS. We give the result on bounding CKKS noise
below in Lemma 4.3.

Lemma 4.3. Let i be such that 1 < i < ¢, and suppose that n? < A and q; = A. Suppose we have a collection of CKKS
ciphertexts at level i all with noise bounded by E. Furthermore, suppose that the corresponding messages
zj € C"'% each satisfy ||zjl|. < Z. Then Algorithm 16 results in a CKKS ciphertext at level i - 1 with noise bounded

kfkoE™n
+ el +

klszn 1
A A 8"

by 2kikonEZ + ——

One special case of a depth-1 multiplication is the inner product of vectors. That is, given vectors of
messages m = (my, ...,my) € R, and m’ = (m{, ...,my) € R¥,, we want to compute (m, m’) € R, homomor-
phically. This can be thought of as one round of k products between the corresponding ciphertexts of my,..., my
and my,..., my, followed by k - 1 additions to sum them together. This is simply a depth-1 multiplication with
ks =1 and k; = k. Alternatively, a depth-1 multiplication with & = k and k;, = 1 allows for k ciphertexts to be
added together for two separate groups, followed by a single multiplication between the two sums. We argue
that our proposed model allows for some more flexibility from a theoretical perspective, as we provide for
additions both before and after multiplication at each modulus level.

Remark. Algorithm 16 also works for groups of ciphertext inputs of size less than & with arbitrary linear
combinations in Step 1. That is, we can compute

ct; = Linearcombo(ct; 1, ...,ct,-,kjr, a1, ...,aj,k]z)

so long as k; < kg for each j. Furthermore, if for each j, we have

kj’
Y laj ol < ki,
w=1

then Lemmas 4.1, 4.2, and 4.3 still apply.
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4.2 Operations in the residue number system

Implementations of homomorphic encryption [28,31-33] take advantage of the RNS variants of schemes
[19,21-23]. In our modified leveled homomorphic schemes, we would require that each g; be chosen coprime
to one another in order to use the Chinese remainder theorem. Additions and multiplications are computed
componentwise (except for BFV multiplication), which provides major computational advantage over compu-
tation modulo large integers. However, algorithms for modulus reductions and relinearization need to be
modified to avoid operations in large integers.

Basis conversion in RNS. Suppose q = ¢ ... gy_; and p = q ... @,,_, Where q,..., @_y, Gy -, Qg+ o, are distinct
primes. Denote

B =(qp Q-1 C= (G - Gyrp-1)
as two arbitrary ordered sets which we call bases. For an element a € R, 4, we denote [a]g € I'I;:éRn,qj
as the vector of CRT components of a in basis 8. That is,

[als = (@@, a®, ...a*D) = (@Ppgek-1

where a¥ = a mod q; for 0 <j < k. We need to compute a mod p, that is, [a]c. To do this, let §; = q/q; € Z
and r; = ¢;'a’’ mod g; for 0 < j < k - 1, where ||rjl|.» < g;/2. Let

k-1
a= qurj.
Jj=0

One can check that @ = a¥) (mod ¢;) for 0 <j < k - 1, hence @ = a (mod ¢). Then one can compute d@ mod g;
fork<j<k+ ¢ -1to get[d]c. This yields Algorithm 17 below from [21-23].

Algorithm 17. Fast basis conversion

Conv([a]g, B, C)

Input: B =(qy Q) With q = q; ... G_y,
C= (G rqrsp-1) With P = Gy .. Quipys
[alg = (a©, ...,.a%k™D), RNS representation of a € R, 4 in basis B.

Output: [d]c = (@, ...,a), RNS representation of @ € Ry, in basis C.
Step 1. For 0 < i< k-1, compute r; = [a® - §],.
Step 2. For 0 <i<¢ -1, compute
G0 = [y5 14 ]
@ [ZFOqj 7'] ic+i
Step 3. Return [d]c = (@©, ...,a¢™D).

Lemma 4.4. ([21-23]) Suppose the input of Algorithm 17 is the RNS representation in basis 8 of an element
a € Ry 4. Then, the output [d]c is the RNS representation in basis C of an element a € Ry, satisfying
a=a+q-e

for some e € R, satisfying ||d|l. < q - k/2 and ||e|l < k/2.

We note that the bound on e follows from the fact that ||d||. < gk/2. This means that d is only an
approximation of a. There are other fast basis conversions in the literature, which give an exact switch
(e.g., see [22]). For our purposes in the analysis of relinearization error, the approximate switching in Algo-
rithm 17 will suffice.
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Modulus reduction in RNS. Let p be a factor of Q, say Q = gp. For any polynomial a € R, o, we need to
compute the rounding:

a

p

va
Q

Suppose q = ¢ ... @4_; ANA P = Gy ... @y p_q WHETE G, ..., G_y5 Gp> o> Gy -1 Are distinct primes. In RNS, a is repre-
sented as (a'?, ...,ak*¢-D), where

€ Rug.

a=a® (modgq), O0<isk+¢é-1 4)

By the Chinese remainder theorem, the solution a to equation (4) is unique modulo Q. Note that, for any two

polynomials a and b with a = b (mod Q), we have

q-a q-b
Q Q

This is true even if q is not a factor of Q. Hence, we can use any solution a to (4) in the rounding.
Define @, = Q/q; and

(mod ¢q).

;= Oi_la(i) mod ql" 0 < l < k + £ - 1:

where the coefficients of r; are bounded by g;/2. Then a solution of (4) is

k+e-1 k+6- 1

Z@n Zi +qz—n
i=0 i=0 i i=k i

Note that
k-1 k+6-1
a
a_va,., S a,
p i=0 qi i=k ql

The first sum has integer coefficients, and we only need to round the second sum. Let

k+¢-1
2 inl-

i=k qi

Then

—=) - htwte, (5)
where e € R[x]/(¢(x)) with ||e]|» < 1/2. Also, note that, for 0 <j < k -1,

i = p'a"’ mod g;.

This gives us the Algorithm 18 that matches Algorithm 1.

Algorithm 18. RNS BFV modulus reduction (v1)

RNS.BFV.Modreduce([a]p, D, B)

Input: D = (g s Qgrp-1)>

B = (qp - @i-y) With q = Gy ... @y ANA P = G .. Gpypys

[alp = (@, ...,ak*¢~V), RNS representation of a € Ry in basis D.
Output: [blg = (b, ..., b%"D), RNS representation of b € R, 4 in basis 8.
Step 1. Fork<i<k+¢-1andp, = p/q, compute

= 1 a0l
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Step 2. Compute
w= |22 ik,
Step 3. For 0 £j <k -1, compute

b(]) = [p_la(j) + W]q

it

Step 4. Return [b]g = (b, ..., p*D) ﬂffz_an,qi.

The w above gives a rounding error at most 1/2, however, it might be too expensive to compute, as its
coefficients are too large. Next, we derive a faster rounding method, with a slightly larger rounding error.
Let , = p/q; and v; = p"a® mod q; with ||Vl < p/2 fork < i<k + ¢ - 1. Then

k+e-1
v=) B
i=k

Y

satisfies v = a (mod p) and ||Vl < (p£)/2. Letu = HT, which has integer coefficients. Then
L. u+e (6)
p I

where e = v/p € R[x]/(¢(x)) with |le|l» < £/2. In RNS, umod g can be obtained by first computing v mod g;,
0 <j < k - 1, via basis conversion from p to q. Algorithm 19 describes the procedure, while Lemma 4.5 shows
the noise bound. We exclude the proof of Lemma 4.5 from our Appendix, as it is clear from the previous
discussion.

Algorithm 19. RNS BFV modulus reduction (v2)

RNS.BFV.Modreduce([a]p, D, B)

Input: D = (qy sQierp-1)s
B = (o - G-1) With q = Gy ... @y aNA P = G .. @iy
[alp = (a©, ...,a*k*¢"D), RNS representation of a € R, ¢ in basis D.

Output: [blg = (b, ...,b*"D), RNS representation of b € R, 4 in basis B.
Step 1. Let C = D\8B = (q;, -.-,qy+,-1)- Compute

WO, ... ,v& D) = Conv((a®, ...,a**¢"D) C, B).
Step 2. For 0 £j <k -1, compute

bW = p (@ - vD) mod q;

Step 3. Return [b]g = (b, ..., p*D) ﬂf:_oan,qi.

Lemma 4.5. Let the RNS representation of a € Ry o be the input of Algorithm 19 and the RNS representation
of b € Ry, the output. Then,

a. b+e
p
for some e € R[x]/(¢(x)) with ||e|l. < €/2.

Next, we show a BGV modulus reduction in RNS that matches Algorithm 2. When ¢ is a factor of Q, say
Q = qp, note that (-aeqt™) mod Q is the same as q(—agt™ mod p). Hence, Algorithm 2 can be simplified as
follows:
we = [~apt™], and wp = [~bot™Y],
ag+t w, {b0+twb

p

q

ag and by =
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Algorithm 20 describes the above procedure for reduction of one polynomial, while Lemma 4.6 shows the
noise bound. We exclude the proof of Lemma 4.6, since it is clear from the discussion and the proof of
Lemma 2.3.

Algorithm 20. RNS BGV modulus reduction

RNS.BGV.Modreduce([a]p, D, B)

Input: D =(qp Gy > gsp-1)
B =(qp > Qp-y) ANA P = Gy o G poys
[alp = (a9, ...,a**¢~D), RNS representation of a € Ry ¢ in basis D.

Output: [blg = (b©, ..., b*"D), RNS representation of b € R, 4 in basis B.
Step 1. Fork<i<k+ ¢ -1, compute
W(l) = [—t_la(i)]q__
Step 2. Let C = D\B = (qy, ...,Gy+,-1)- Compute
@O, ... u*Dy = Conv((w®, ... wk+¢=D) C B).
Step 3. For 0 <i <k -1, compute
b = [p™(a® + tu®)],.
Step 4. Return (b©, ... b*D) € [T Ry g

Lemma 4.6. Let the RNS representation of a € Ry o be the input of Algorithm 20 and the RNS representation of
b € R, 4 the output. Then,

Lopet-e
p
for some e € R[x]/(¢(x)) with ||e|l. < €/2.

For the CKKS rescaling procedure in RNS, we can again use the same procedure as the fast BFV modulus
reduction in Algorithm 19. Said otherwise,

RNS.CKKS.Modreduce = RNS.BFV.Modreduce.

Note here that we specifically use (v2) of the RNS BFV Modulus reduction for RNS CKKS. Likewise, we can also
use Lemma 4.5 for RNS CKKS when discussing the noise bound after performing RNS.CKKS.Modreduce.
Relinearization in RNS. For the rest of this section, fix Q, = ¢q; ... ¢, and P = py, ... p,_, With q; ... q,, Dy .. P, all
coprime. For 0 < i < ¢, let Q; = ¢ ... ¢; and fix the ordered bases

B = (qo’ ---’qi))
C=(py - sPx-1)»
D = B U C = (qo’ -~-qu1 po: '--:pk—l)'

The goal of our relinearization algorithms in RNS will again be to closely match the previously outlined
relinearizations for the classic variants in Algorithms 8 and 13. We first introduce the evaluation key genera-
tions for the three schemes, followed by their relinearization procedures. We should note that we only discuss
the evaluation key generation here. The generations of other keys (secret and public encryption keys) are
similarly RNS versions of Algorithms 3 and 10.

We begin with RNS BFV. The procedure for evaluation key generation is given in Algorithm 21.
Observe that this evaluation key generation is the same as the evaluation key generation in Algorithm 3,
only computed in RNS.
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Algorithm 21. RNS BFV evaluation key generation

RNS.BFV.ek.Keygen(sk, (qy, ---»q,» Pgs - >Pr-1))

Input: sk = s € R, 3 secret key,
(qy> ->9,> Pgs ++->DPy—1) Tull RNS basis.

Output: ek = &, &V ))0<}<k+g ey 0R I'Iﬂt(l)R,f’p} evaluation key.
Step 1. Sample (kf)o), . UM)) (e j=0Rn,qj x I'Illf;éRn,p]_ )and € < y,.
Step 2. For 0 <j < ¢ compute

k(J) [- k(])s i [P]q 2+ 8 ]¢(X)q
Step 3. For 0 <j < k - 1 compute

k(€+1+1) [- 1~<85+1+j)s " é]¢(x),17j~
Step 4. Return ek = (k(] &Y ))()<}<k+g

For the RNS BGV scheme, the evaluation key generation is again a similar approach to the original
evaluation key generation from Algorithm 9. Algorithm 22 gives the procedure for RNS BGV.

Algorithm 22. RNS BGV evaluation key generation

RNS.BGV.ek.Keygen(sk, (qy, ....qp P> --sPx-1))

Input: sk = s € Ry 3 secret key,

(qy> -+>9,> Pgs -+->Dy—1) Tull RNS basis.
Output: ek = (k(] &Y ))0<}<k+g ens i= 0R x I'Ilf;(l)R,f », evaluation key.
Step 1. Sample (kgo), . (k g)) (e i=oRn % M« i oRn p) and & < .

Step 2. For 0 <j < ¢ compute
=), () <
k= [-k’s + [Plgs% + t€lscnq;

Step 3. For 0 <j < k - 1 compute

1) = (€+1+)) ~
k = [~ k s+ t€]¢(x),pj.

~(J) (1)

Step 4. Return ek = (Kq ', Ky Dosj<k+e-

For the RNS CKKS scheme, the evaluation key generation is exactly the same as the evaluation key
generation for RNS BFV:

RNS.CKKS.ek.Keygen = RNS.BFV.ek Keygen.

We are now ready to discuss the full RNS realinearization procedures In these algorithms, we assume that

we have obtained a vector of components (cé]), cl(]), czj))0<]<, el [ oR3 g which are the RNS representation of

some (Cg, G, ;) € R,ioi that is obtained after initial RNS multiplication for BFV, BGV, or CKKS. The initial RNS
multiplication operations for BGV and CKKS are simply computed componentwise modulo the g’s.
The procedure for BFV is more complicated. Specifically, Step 2 of Algorithm 7 in which we must scale
down components without modular reduction is difficult to perform in RNS representation. We refer the
reader to the previous studies [22,23] for details for the details on the initial RNS BFV multiplication.

For all three schemes, the RNS linearization procedure is given in Algorithm 23. Here, RNS.Modreduce
is the RNS modulus reduction procedure for the chosen scheme, and ek is the corresponding evaluation key
for that scheme. For instance, if we choose to run RNS relinearization for BGV, we use RNS.BGV.Modreduce
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in Step 4 with the corresponding evaluation key ek for BGV. We introduce Lemmas 4.7, 4.8, and 4.9 to prove
correctness of the algorithm and our noise bound for RNS variant of BFV, BGV, and CKKS, respectively.

Algorithm 23. RNS relinearization

RNS.Relinearize([(cq, ¢, 0)]s, [eK]p)

Input: [(co, @, )]s = (Cé]); 01(1), CZ(]))Osjsi € ﬂlj:oR,iqj,

[eklp = ke, K ogjsien € |_|i,<=0R,'iqj x H’;;E)R,%,,,j evaluation key.

Output: [ctlg = (@), b)g<j<; RNS ciphertext.
Step 1. Compute @, ...,éz(k_l)) = Conv((c(o), ...,cz(i)), B,0).
Step 2. For 0 <j < i compute

AT i)

av = [c"ky loco.qp

A0)] Nz

B = [e”R g
Step 3. For 0 <j < k - 1 compute

art . ~(D e ((+1+]

QU1+ o= [CZ(])kg 1)]¢(x),p],
A1) (D (1)
b = [CZ(/)kl ](;S(x),pj-
Step 4. Compute

@9, ....") = RNS.Modreduce((d@”, ....al"™), D, B),

. A ~(0 ~ (i+k

@, ... &% = RNS.Modreduce((h,”, ..o, ), D, B).
Step 5. For 0 <j < i compute

ai) = [¢P + él(f)]q},

b = [ + @gf)]q]_

Step 6. Return ct = (@, b)o<je;.

Lemma 4.7. Let ct be the output of Algorithm 23 and suppose the input (c(j ), Cl(j ), Cz(j ))Os‘gi is the RNS repre-
p g pp D j P
sentation of some (¢, ¢, ¢) € RriQi satisfying

CtaGs+ C282 = DQi[m0m1]¢(X),t + e’ mod (¢(X), Ql)

for|le|l. < E.If P 2 6Q,;, 8z = 16, and k > i, then ct is the RNS representation of a BEV ciphertext with noise
bounded by E + 553k

Lemma 4.8. Let ct be the output of Algorithm 23 and suppose the input (céi ), cl(j ) cz(j))osl-si is the RNS repre-
sentation of some (¢, ¢, ¢) € R,ioi satisfying

Co + GS + 62 = [Momy]yco,c + te’ mod (P(x), Q)

for|le|l. < E.If P 2 6Q,, &g = 16, and k > i, then ct is the RNS representation of a BGV ciphertext with noise
bounded by E + 55%k.
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Lemma 4.9. Let ct be the output of Algorithm 23 and suppose the input (c(j), cl(j), cz(j))osjsi is the RNS repre-
sentation of some (¢y, G, ) € Rri()i satisfying

Co* ¢S + Gs? = memy + e’ mod (¢(x), Q)),

for|le’lle < E.If P 2 6Q, 8 = 16, and k > i, then ct is the RNS representation of a CKKS ciphertext with noise
bounded by E + 383k.

In addition to the relinearization technique we opt for, we should also mention that there exists versions of
the alternate relinearization technique from Section 3.1 in RNS [22,23]. In the RNS version, the element ¢ is
essentially expanded into a bit decomposition twice: an expansion in the g;’s first, and then another expansion in

a fixed base B for each component corresponding to each g;. Though this technique is certainly viable, we opt for
the outlined technique due to the smaller size of ek. In practice, both relinearization techniques are used together
in a method known as hybrid key switching [34]. In practice, the noise bound for hybrid key switching is quite
similar to what we have outlined in Lemmas 4.7, 4.8, and 4.9. The bound for hybrid key switching ranges from
about E + %6§k to E + %61%1( with our approach, using the noise bound from the study by Kim et al. [16] and
practical estimates of d ,, from [9]. We refer the reader to [16,34] for more details on hybrid key switching.

5 Lattices, security, and attacks

The security of homomorphic encryption schemes is based on the LWE problem over finite fields, which can be
reduced to lattice problems. In this section, we will give an overview of these lattice problems as well as
various attacks on LWE. As this article is more focused on noise reduction in homomorphic encryption
schemes, we only provide a brief overview of security and attacks. For a more in-depth discussion on security,
we refer the reader to various sources [24,30,35]. Decision-RLWE can be shown to be as hard as many worst-
case lattice problems [36]. There is also a brief mention of security reductions from RLWE to LWE in [30].
We will discuss attacks on classic LWE rather than RLWE, since RLWE problems can be easily converted into
LWE problems. Furthermore, all the best attack algorithms are for LWE instead of RLWE.

5.1 Lattices and lattice problems

Let m > 1. A subset A C R™ is called a lattice if A is a discrete additive subgroup of R™ and each point of A is
isolated (i.e., no points in A are arbitrarily close to each other). In general, a lattice can be generated in the
following way: given a matrix B = (by, ...,b,) € R™" with independent columns, a lattice can be defined via

A={yeER™:y=Bx,x € Z"}.

Here, A € R™ is an n-dimensional lattice. We call B a lattice basis. For a lattice A defined by lattice basis B,
the volume vol(A) is defined as follows:

vol(A) = \/det(B"B),
which can be proved to be independent of the choice of basis. Let
A(A) = minf|jx]l; : x € A, x # 0}.
Definitions 5.1, 5.2, and 5.3 describe a few instances of well-studied lattice problems for a lattice A [30].

Definition 5.1. (SVP) The shortest vector problem (SVP) is as follows: given a basis B of A, find a vectorv € A
such that ||v]l, = A(A).
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Definition 5.2. (y-SVP) The y-approximate shortest vector problem (y-SVP) is as follows: given a basis B of A,
find a nonzero vector v € A such that ||v|j, < y - A(A).

Definition 5.3. (y-GapSVP) The y-gap shortest vector problem (y-GapSVP) is as follows: given a basis B of A
and a real number r > 0, output “yes” if A(A) < r and output “no” if A(A) >y - r.

These lattice problems are examples of NP-hard problems in the worst case. Regev [24] provides a
reduction from an instance of y-GapSVP to Decision-LWE [35], meaning that LWE is at least as hard as
y-GapSVP. For potential attacks on LWE based schemes, we will discuss attack strategies outlined in the
previous studies [24,30].
g-ary Lattices. In lattice-based cryptography, a class of lattices that is particularly important is g-ary lattices.
We say A is a g-ary lattice if A is a lattice such thatqZ™ C A C Z™. In particular, given a matrix A € Z™" of
rank n modulo g, the following are g-ary lattices

AfA) ={xeZ™: x=Ay mod q for some y € Z"},
AJ(A) ={x€z™:x"A = 0 mod q}.

It is also worth mentioning that although the matrix A defines both of these lattices, A is not necessarily
a lattice basis for these lattices. To find a lattice basis of A,(A), we can perform column operations on A modulo
q, permuting the rows if necessary, to obtain a matrix

In

€zmn,
A

where I, is an n x n identity matrix and A; € Zf{”‘")x". Let

€ zmm, @)

B=|"
[Al qln-n
Then B has rank m and is a lattice basis for A4(A). Since A4(A) is a full rank lattice, vol(A4(A)) = |det(B)| = g™ ™
To obtain a lattice basis for A;/(A), let A; be as mentioned earlier. Note that the solution space for
xTA = 0 mod q is spanned by the columns of the matrix

_aT
Al g zmxonm,

m-n

Then, a basis for Aq’(A) is

_AlT ql
In-n O

B = € zmm.

The volume of this lattice is vol(Aq’(A)) =q".
Gaussian heuristic. By the Gaussian Heuristic, for a lattice A of rank m, we expect its shortest vector to be of

length
L 1/m
\ 2 - exp(1) vol(A)

on average [24,37], where exp(1) = 2.7182... is the exponential function evaluated at 1. As the lattice A4(A) has
volume g™ ™ and A4 is uniform random in ZE{”‘")X", we can use the Gaussian Heuristic and expect the shortest
vector in A4(A) to be of length

L ql—n/m (8)
\ 2 exp(1)
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on average. Similarly for A;/(A), we expect its shortest vector to be of length

L qn/m
2 - exp(l)

on average.

5.2 LWE attack strategies

First, recall the LWE problems outlined in Section 2.2. Fix s € Zg, which is secret. We sample ¢; < y(Z) from
some desired distribution y such that||ej|. < p, where p is a desired parameter. Then, we sample a uniform
random a; € Z;' and calculate b; via b; = [-{a;, S) + €;]. The ordered pair (a;, b;) € ZZ x 7 4 is called an LWE
sample. The Search-LWE problem is to find s given many LWE samples. The decision-LWE problem is given
many samples that are either LWE samples or sampled uniform randomly, decide which distributions the
samples are drawn from [2,24]. If we sample m times, we can instead think of the LWE samples as the matrix
equation

b = As + e mod q, )

where b € 7' is the vector of b;’s, A € Zf{"‘” is the matrix of a/’s, and e € Z¢' is the vector of ¢s.

Dual attacks via SVP. To solve Decision-LWE, we employ a dual attack. Let A be the matrix defined in equation
(9). In dual attacks, we wish to find a short vector v € A;(A). Since (v, b) = (v, As + e) = (v, e) mod q and e is
short, (v, b) is small. If an adversary can find a short vector v € A;/(A), then the adversary can solve the
Decision-LWE problem with a fair amount of confidence, since (v, b) would likely not be small for true random
b. Thus, the attacker can distinguish LWE samples from true random samples with advantage. We refer the
reader to [8,24,38,39] for more details on dual attacks and the exact advantages based on sizes of e and v.
Primal attacks via SVP. A common attack strategy for Search-LWE is with SVP. Let A be the matrix defined in
equation (9) and B be computed from A as in equation (7). Let

B b
01

B:

] € Zm+x(m+1),
and let A be the lattice defined by B, which has volume vol(A) = ¢™". Then equation (9) means that the vector

k

to be of length about

is in A. By the Gaussian Heuristic in equation (8), we expect the shortest vector in the lattice generated by B

L ql—n/m
2m - exp(1)

since the entries of A; are uniform random in Z . If |||}, is smaller than this, then the shortest vector in A is

likely to be

i] with a significant probability. Thus, when e is small, we can solve SVP for the lattice A to find e,

and in turn solve LWE. The error distribution y is crucial in determining the expected size of e, which we
discuss thoroughly in the next subsection. We refer the reader to previous studies [30,39,40] for more details
on primal attacks.

Lattice basis reduction algorithms. Several algorithms employ these strategies, as well as others, to solve
LWE. Algorithms in practice for solving lattice problems include algorithms such as LLL [41], BKW [42], and
BKZ [43], which are discussed thoroughly in previous studies [8] and [24]. We will primarily discuss BKZ, as it
seems to currently be the best algorithm for lattice reduction. The basic idea behind BKZ is to solve SVP for
sublattices of dimension k, which is known as the block size in BKZ.
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Let B = (b, ...,bm-1) be a lattice basis for A, ordered so that b, is the shortest vector in B. Then, there
is a constant y, so that

lIbollz = yg" voL(A)™.

We call ;" the Hermite factor and y, the root-Hermite factor of the lattice basis B. The Hermite factor is crucial
in determining cost and runtime of lattice reduction algorithms, especially BKZ. For a block size k in BKZ, Chen
[44] shows that it is expected that the algorithm output a lattice basis B with y, satisfying

lim y, =
m-oo

1 Z(kl—l)
(ﬂk)k] . (10)

2+ exp(1)

In practice, the limiting factor from equation (10) is used to estimate y, for a finite dimensional lattice [24].
One can compute a lattice basis B with root-Hermite factor y, with the estimate in equation (10). For ease of
analysis, y, is approximated by either y, = ka or Yo = 2«. Albrecht et al. [24] show that for block sizes
50 < k < 250, 2« actually approximates the estimate of y, from equation (10) better than k.

Our goal is to obtain a basis with a specific target size for [|by|, while we are allowed to determine the
lattice dimension m, which is the number of LWE samples used. This can be difficult since the relationship

between y, and | b, ||, depends on m. In this scenario, one of the earlier estimates for y;, (e.g., y, = k? or Y = 26)
can be used to determine m based on a chosen block size k. In practice, the best root-Hermite factor Y that can
be obtained via lattice reduction algorithms is about ; = 1.1011 to ), = 1.1013 [45], and consistently lower values
do not seem currently achievable. For a lattice of volume q" (e.g., A (A)), the study [46] gives the optimal size of

m as
_ |nlog(q)
™7\ Tog(y)

for use in lattice reduction algorithms to obtain the best result.

The study by van de Pol and Smart [45] introduces a technique which does not rely on first knowing y, to
find m. Instead, a security level is first chosen, then the best possible Y obtained from BKZ is found based on
the security level, a chosen lattice dimension m, and the underlying error sampling distribution (and in
particular, its standard deviation). The homomorphic encryption standard and several implementations use
X = Dz o With aq = 8, resulting in a standard deviation of g = 3.2. In our proposed schemes, y is a discrete

uniform distribution in [-n, n] with standard deviation

0_=\/(2n+1)2—1 =\/4n2+4n _n

12 12 NER
Note that in all these techniques, the dual g-ary lattice A(A) is used instead of the lattice A ,(A). Though, A,(A)
and AZ;(A) are equivalent to one another up to normalization (see, e.g., [46]).

After deciding on the block size k and optimal dimension m, one can estimate the cost of BKZ as follows.
For algorithms to solve SVP for lattices of rank k, the fastest known classical algorithm (using sieving) [47] runs
in time 20.292k+000)_ The fastest known quantum algorithm [48] runs in time 20265k+0(_With BKZ, we can have up
to 8m calls to an oracle solving SVP using a sieving algorithm, meaning that the total costs for BKZ we can
expect are 8m - 20292%k+0(0) classically and 8m - 20265k+o() quantumly [8].

In summary, to estimate the total cost of attack, an appropriate block size k and lattice dimension m must
first be determined based on parameters n, g, and the standard deviation of the chosen error sampling
distribution y. After finding this expected size of e, we can calculate the root-Hermite factor y,, which then
allows us to determine the block size k and the total cost of BKZ. Though a thorough security analysis is still to
be conducted on our strategy for picking leveled homomorphic encryption parameters, extensive research and
estimates have been performed on the best known algorithms for solving LWE as briefly shown above. We
point the reader to previous studies [8,9,24,49] for a more complete discussion and further references on
security.
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6 Conclusion

We have presented a detailed mathematical foundation for the BGV, BFV, and CKKS homomorphic encryption
schemes, aligning our work with the functionalities proposed in recent homomorphic encryption standards.
By providing protocol algorithms and correctness proofs, we have ensured that these schemes are not only
theoretically sound but also practical for implementation. Our proposed improvements, particularly in noise
management and leveled homomorphic computation, enhance the efficiency and applicability of these
schemes by reducing ciphertext expansion and storage requirements. In future works, we plan to further
analyze the impacts of these noise bounds on precision accuracy in CKKS.
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Appendix
A Proofs of Lemmas

Proof of Lemma 2.1. By assumption, by = —aes + ¢y mod (¢(x), Q). Therefore, there exists r € R, such that

b = -aes + ey + Qr mod P(x).

Since ag = [%‘ and bg = I%b"], there are polynomials &, & € R[x]/(¢(x)) such that ag = % - & and by =
P~ & with |[es]l, [|ez]le < 1/2. Then,
,_ 4
bO = 61)0 - &
= —iaos + leo + qr - & mod ¢(x)
Q Q

=-qgs + %eo +qr - & — &S mod ¢(x).

Let 5 = %eo - & — &S. Then, by = —ags + e; mod (¢(x), q). Note that ||eg|l < %E + w. By assumption
2E 4

Q1> g1 SO llegll < Sglls]l- O

Proof of Lemma 22. By assumption, we first note that (ag, by) € R,{Q satisfies by = —aes + Domy
+ ¢y mod (¢(x), Q). Therefore, there is some ry € R, such that by + aos = Domg + €y + Qrp mod ¢(x). Let
g9 =Q/t - Do, &5 = q/t — Dy, & = qao/Q - ag, and & = gby/Q — by. Then,
b oS D e
b0’=ﬂ—ezz—q—o+q—om0+ﬂ—ez+qromod¢(x).

Q Q Q Q
Note that as Dy = Q/t — g9, we have that qDy/Q = q/t — q€o/Q. Since q/t = D, + &, we have qDy/Q = D,
+ &; — q&o/Q. Therefore,

_9as | Do qeo

bg = my+ — - & + qrp mod ¢(x)
"0 0 Q ¢
£ e
=-ags — &s + Dymg + (& - %)mo + % - & + qrp mod @(x).
Let e = % + (g~ %)mo - & - &s. Then, by + ags = Dymy + eg mod (¢(x), @). Furthermore if Q > g,

f(Q -1, and t|(g - 1), then Dy =(Q - D/t and gy =1/t. Similarly, D; = (q - 1)/t and &; = 1/t. Then,

l£g = qg0lQ1 = (1~ 3) < 1. So,

, qeo
llegll = H ? + (&g~ qeo/Q)mg — & — &8
q t
< 5I|€olloo * leg = qgo/ Q15 + Il + lles]l
< iE ‘1 SRl |
Q 2
By assumption Q/q > ﬁ, S0 ||€g]lew < OR||S||w- O

Proof of Lemma 2.3. First, note that aj and b; are polynomials with integer coefficients since both qa, + tw,
and gb, + twy are equivalent to 0 modulo Q. Then, we have

qbg + twy L 400+

Q Q

t
b{ + ags = Yes mod d(x) (A1)
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1
Q

1
umo + 16’0 + —(wp + WgeS)

Qt Q Q
=my + te; mod (P(x), q),

=mp+t + qr mod ¢(x)

where e; = q(;tomo + %eo + l(wb + WgS). Since Q > |q — Q|, we have | | <= Thus we have that
q 1
llegll = H —mo 66’0 + 5(% + (gS) i
q-0Q q 1 1
< ‘—‘ IMoll + 5I|€olloo + 5|Iwbllm + allwaSIIm
1 4, 1 . Sells |l
T2 Q 2 2
_4, SR |1l
—E+1+ .
2
. ZE ’
By assumption Q/q > sl 2> 50 llegllo < SRl|S]loo-

Proof of Lemma 3.1. By assumption, the public key pk = (ko, k) satisfies
k; + Kos = e mod (¢(x), pyq)
for some noise e € R, with |e|l. < p. Then,
by + aos =k + e, + (kou + e1)s mod (¢(x), pyq)

=(kos + e)u + ey + (Kou + e)s mod (@(x), pyq)
—Kosu — eu + ey + Kosu + e;s mod (¢(x), pyq)

=-eu + ey + (48] mOd (¢(X), p()q)'

Let ey = —eu + e, + e55. Then, by + aps = ¢y mod (¢(x), p,q). Note that
lleoll = || = et + ez + exs.
< &gllefl |[ulle + llezllw + Srllex]l IS]le
< gllulle + 8g + SISk
= 85(|[ullo + I8l=) + S.

46R zaR

since ||s]le = ||ullo = 1, ||€ollw < 283 + 8. By assumption p, >
cty = (ag, by) satisfying

by = —ags + ej mod ($(x), Q)
with |||l < p by Lemma 2.1. Since by = [bg" + D;moly, we have

b + ags = Dgmg + eg mod (@(x), q).

35

(A2)

(A3)

(A4)

(A5)

, so BFV.Modreduce(cty, p,q, q) outputs

O

Proof of Lemma 3.2. By assumption, by + ags = Dymg + ey mod (¢(x), q) with ||eg||e < (Dy — 1)/2. There is

a polynomial r € R, such that [by + aoSlgx),q = Do + € + qr mod ¢(x). Thus,

tc = t[by + AoSlp),q = tDgMg + tey + tqr = qmg — mg + tey + tqr.
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Then,
“tﬂ =|my + m°+te]+tr mg + t(e 1m)u m
—|| =[Mot|—— + —& = [mo + | —(e — —My)|| = mo.
q ], a q R q t R
The last equality follows from the fact that Ié(eo - %mo)l =0, as |le|le < (Dg — D/2. O

Proof of Lemma 3.3. By assumption, each ct; = (a;, b;) € R,f,q satisfies

b; + a;s = Dym; + ¢; mod (¢(x), q)

with ||ej]le < E for alli = 0,..., k - 1. Then,

bl

k-1
Y ab;
g Li=0

k-1 k-1
cty = Z a;ct; Z a;a;
i=0 i=0

q q

Since t|(q - 1) and D; = (q - 1)/t, we have D;t = -1 mod q. There exists r € R, such that

k-1 k-1
Z aim; = Z am;| + tr
i=0 i=0 t
with ||r]je < M. Then,
k-1 k-1 k-1 k-1
Z ab; + Z aa;s = Dy z am;| + Z aie; mod (¢(x), q)
i=0 i=0 i=0 i=0
k-1 k-1
=D, Z am;| + Z a;e; + Dytr mod (¢(x), q)
i=0 t i=0
k-1 k-1
=D Y amy| + Y aie; ~ r mod ($(x), q).
i:0 t i:()

Lete’ = Zf‘;ol a;e; — r. Then, we have

k-1

z a;m;

k-1 k-1
Z ab; + Z a;a;s = Dq
i=0 i=0 i=0

+ e’ mod (¢(x), q).

t

So, cty is a BFV ciphertext with noise term e’ and

k-1
le'llo < 2 lailledlo + [I7]lo < ME + M = M(E + 1). O
i=0

Proof of Lemma 3.4. By assumption, we have for i = 0,1,

b; + a;s = Dygm; + ¢; mod (¢(x), q), (A6)
with ||aille < q/2, ||bille < q/2, and ||ej|l.. < E. We can rewrite (A6) as follows:

b; + a;s = Dgm; + ¢; + qr; mod ¢(x), (A7)
where

1 1 1
Ik = 210+ asl = 2| 3+ Ll < 50+ Glislle) = Gl

On the one hand,

(t/q)(by + aps)(by + ass) = (t/q)(boby + (b1ag + boar)s + aeass?) mod ¢(x)
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(t/q)(co + as + ¢s*) mod ¢(x)
€ + s + 387 + (g7 + &s + £55%) mod ¢(x),

with ||&/||, £ 1/2 for 0 < i < 2. Let 1y € Ry, so that mgmy = [MoMylpeo,c + thn With ||/l < tSp/4. Then on the
other hand, noting that (t/q)D, = (¢/q)(q/t - 1/t) =1 - 1/q and tD; = -1 mod ¢, we have

(t/q)(Dgmo + ey + qro)(Dgmy + eg + qry)
e (t/Q)(DquOml + Dy(moe; + myeg) + q(egri + Tyer) + egey + qDg(mory + Tymy) + q°rory) mod G(x)

(1 - 1/@)Dy[momylgco,e + (1 = 1/@)Dytry + (1 = 1/q)(moey + muey) + t(egry + roey) + (t/q)ege;

+ tDy(mony + rymy) + tqrpr; mod ¢(x)

Dy[momylpco,e = Do/ PIMamilpeo,e + Dyttin = (Dgt/ Qi + (Moe1 + myep) — (1/q)(moey + myep)

+ t(eor + mper) + (t/q)eper + tD(mory + romy) + tqrory mod G(x)

Dy[momylpeo,e = Tn + (Moey + Mueg) + t(ert + rey) — (Mo + 1omy) — (Dol OMmomylpeo),e
- (1/q)(meey + myey) + (t/q)epe; mod (¢(x), q).
Let
& =&+ gs+ejs? and
& = —Ty + (Meey + myep) + t(egr + rey) — (Mony + rymy) = (Dg/ PIMomylpoy,e — (A/q)(meey + myep) + (t/q)eges.
Let e’ = & - &. Then,
Co + ¢S + €352 = Dg[momylgc,c + € mod (¢(x), ).
We now turn to the noise bound for e’. First, note that

1 Sllslle . Slisll (1 + SglIs]l=)?
&llo = ||&¢ + (S + &8 < = + + = )
el = lleg + efs + 252 < 5 + == + 2 .

To simplify the noise analysis for &, we break down &, into two pieces. Let

w1 = —Tiy + (Meey + myeg) + t(eor + roey) — (mery + 1pmy)  and
Wy = (Dl QImomalpc,e = (Dgt/ @t — (1/q)(Meey + maey) + (t/q)ege.

Then, & = w; + w,. For wy, we have
lwillo < [[Tnllo + |[Mo€1 + Myeolleo + tl|EoT + Toe1llo + |[Mor1 + ToMy|leo

t§
< TR + EtSg + 2EtS||S|lw + t831S]}w-
For w,, note that since D, < g/t and q > 2t, we have
D, Dyt 1 t
llwallee < —[I[MoM1lpeo),elle + 7||'”m||co + EHmoel + maeg|lo + E||€o€1||w

1 t
< —|l[momulpco.elleo + [Tl + 5||m091 + myeg|lo + E||90€1||oo

+@+_‘Et6R+E_6R
4 q 2

The bound on é||e0e1||oo follows from the fact that since ey, e; are ciphertext noise terms, so by assumption
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lledle < E < (Dy - 1)/2 < Dy/2 < q/(2t) for i = 0, 1. So,

t t E&g
—||eges]lo € —E28g < —.
lleoed| LA
By assumption, 8 2 16, E 2 1, t = 2, and ||S||» = 1. So,
t6 1 t6 Srlls|le + 1)?
ek = 22+ ey + 2Bl + Sl + + + 8+ g 4 e 1D
4 2 4 2
R 2 Sxllsle
—— + Etég + 3Et6p||S||lo + 1+ ESp + —7 + 8gl|S|le
1 3 1 1 1 1
= Et&3|s|l + + + + +—+—
M ESRlIsIE  SEllsIE  llslle  EtSRlIsIE - tSpllslE - 2Et  Etglls|le
1 1 1 1 1 1
SESHslal—=+ 5 +3+ —5 + ——+ — + ——
ilsll) 16 * 762 2-162 2-16 2-2 2-16
< 3.5Et82|s][%
= 3.5tEp?. 0

Proof of Lemma 3.5. Notice that as 8, = ¢c;k{ mod (¢(x), p,q), we can write
By = ¢7ki + pyqay mod P(x)

for some a; € Z. Then,

ckq (44

=22 4 qum+e=
2] 1

/

+ & mod (¢(x), q)

I l k1+p1qa1

for some & € R[x]/(¢(x)) with ||&|l. < 1/2. Note also that as c;kqy = —c;kis + cjef + c;p;s2 mod (§(X), p,q),
we have that for some ay € Z,

By = ciky = —cfkis + cief + cip,s? + p,qao mod P(x).

Then,
dg = &
p,
-c;kis + cje{ + c;p;s + p,qao
_ mod (¢(x), q)
12} P
-k
_|zakis | cer | ¢ss% + qag| mod (¢(x), q)
p, 12}
- M + m + CZISZ +qap + & mod (¢(X)y ‘I)
P, Py
_ /k/ ‘n’!
_ ks | chel | ¢35 + g mod (¢(x), q)
pl pl

for some & € R[x]/(¢(x)) with ||&|l < 1/2. Therefore,

1,7

ks cef S
di +d{s=cjs? - 2 + 2L 4 ¢ + g5 mod (¢(x), q)
1 P 1
It
=cys? + st

» + & + &s mod (¢(x), q)
1

cre . .
Lete” = ;—ll + g + &s. Then, dj + d{s = ¢;s* + ¢” mod (¢(x), q). By assumption, (c{, ¢/, ¢;) satisfies

o + €S + €357 = Dg[momylgco,c + € mod (¢(x), q).



DE GRUYTER Homomorphic encryption schemes =—— 39

Let e* = ¢’ + e”. Then,
q+cps=cy+dg+cfs +dis mod (¢(x), q)
=¢j + ¢{s + ¢;8* + e” mod (¢(x), q)
= Dylmomylpco.c + €+ e” mod ($(x), @)
= Dylmomylpco.c + * mod ($(x), @)

Now, we turn to the noise bounds on e” and e*. Note that as e/ < y,, we have ||ef|l. < p = Ogl|Sle- If p; 2 6q
and 8§ = 16, then

e

+&+ &S

" =
lle ||oo-H

1

1, sl

q .
< —6;lISlle + =
g SHlslle + 5+ =5

1 1 1
S SRlISllo| == + g+ o
sl [12 AR 25R]

1
< =83I]|o-
5 SRlsl
By Lemma 7, we have that ||e’|l. < 3.5Etp* = 3.5Et5%||s|[%. As relinearization introduces additional noise e”
bounded by %(S}%Hsnm, we have

1
lle*|l < 3.5EtSgls|fz + g@%llsllw

= Et8|s|[2]3.5 +

1
< Et5§||s||§,[3.5 + E]

< 3.6EtS3|s|%
= 3.6Etp>. [

Proof of Lemma 3.6. By assumption, the public key pk = (Ko, k;) satisfies
ky + Kos = te mod (¢(x), pyq)
for some noise e € R, with ||e||. < p. Then,
kju + tey + (kou + tey)s mod (¢(x), pyq)
=(kos + te)u + te; + (kou + ter)s mod (¢(x), pyq)
= -Kosu — teu + te, + Kosu + te;s mod (¢(x), pyq)
=-t(eu + ey + e;5) mod (¢(x), poq)
= teo mod (9(X), Py

by + ags

Letey = —eu + e, + ;5. Then, by + aes = tey mod (¢(x), pyq). Since ||s|lo = |[U]lo =1, we have ||eg|lo < 282 + 8.

2
4Z+_226R, so BGV.Modreduce(cty, p,q, @) outputs cty = (ag, by") satisfying

By assumption p, >
b = —ags + teg mod (¢(x), q)
with ||eg|l» < p by Lemma 2.3. Since by = [bg' + my),, we have

bg + ags = mg + teg mod (¢(x), q). H
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Proof of Lemma 3.7. By assumption, we have for i = 0,1,

b; + a;s = m; + te; mod (¢(x), q)

DE GRUYTER

with ||ej|l» < E. Let 1 € Ry such that memy = [MeMylgeo,c + thy. Note that ||l < t. We have that

cf + ¢fs + ¢58% = boby + (b1ag + boay)s + agass* mod (¢(x), q)
= (by + aes)(by + a;8) mod (P(x), q)
= (my + teg)(my + te;) mod (¢p(x), q)
= momy + t(meey + mueg + teger) mod (P(x), q)

= [momylpeo,c + t(meey + mueg + tegey + 1) mod ((x), q).

Let e’ = mge; + nyey + tege; + 1y. Then,

with

Co + ¢S + €582 = [moMylpco,c + te’ mod (¢(x), q)

||€’||m < SRtE + (SRtEZ +t< 26RtE2 +t< 26Rt(E2 + 1)

Proof of Lemma 3.8. First, observe that both B, + tw, and B, + tw; are divisible by p, since fori =0, 1,

B; + tw; = B; + tl-tBly, = B; + t(-t74;) = 0 mod p;,

Byt tw
sodj="—
Let e” = ey

121
satisfies

wWo + W1S

121

D1

dg +dis=

By +twy B+ tw
+

1
N

Py

Czlk6 + Wy +

1
Gkt w

t . .
and d{ = Bt yave integer coefficients. Then,

mod (¢(x), q)

121

cj(-kis + p;s” + tef) + twy

1

Ls mod ((x), q)

c ki + tw
At 1

cist+t

Py

cef + Wy + Wy

1

1

% mod (¢(x), q).

s mod (¢(x), q)

, which has integer coefficients. Then, dj + d{s = c¢;s* + te”. By assumption, (c{, ¢{, ¢;)

Cg + ¢fS + ¢352 = [Momylpc,c + te’ mod ((x), q),

where ||€'|| < 28zt(E? + 1). Let e* = e’ + e”. Then,

Then, note that

a+cs=cg+dg+cfs + dis mod (¢(x), q)
= ¢j + ¢fs + ¢;8% + te” mod (¢(x), q)
= [momu]pco,c + t(e’ + €”) mod (¢(x), q)

= [momyJgeo,¢ + te* mod (¢(x), ).

= 5§IISII«>[

1
< 7 SRlsll +

1
12

Wo + WS
121
Py

00

141

+ o=t o 6lISlle

2, 2y
1 SISl
— + —
2 2
1 1

+ + —
287Islke 28
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1 1 1
< 84151k 2 st i]

1
< =83]|8]|eo-
S Sl
The bound on e* then follows immediately. O

Proof of Lemma 3.9. By assumption, we first note that (ao, by) € R,f’(, satisfies
by = —aes + my + ey mod (¢(x), Q).

Therefore, there is some integer r € Z such that by + aes = mgy + ey + Qr mod ¢(x). Let & = qao/Q - ag,
and & = qby/Q - b;. Then,

b
b6=_q00—82
qacs 4 4
=- +—mg+ —— - &+ qr mod @(x)
0 o™ o 2t q ¢

=-qgs-&s+ %mo + % - & + qr mod ¢(x).

Leteg = %eo - & — &s. Then, bj + ags = %mo + ¢; mod (¢(x), q). Therefore,
iE + 1+ 6R”s||°°'
Q 2

80 [|eglle < llS] |- .

lleoll <

. 2E
By assumption Q/q > Solsle <1’
Proof of Lemma 3.10. We consider step 2 of Algorithm 14, in which we compute ct = BFV.Encrypt(m, 1, pk).
By an argument identical to the proof of Lemma 3.1, steps 1-3 of Algorithm 4 produce an ordered pair
(ao, bo) € R’%:Poq satisfying

by + ags = ey mod (¢(x), pyq)

4682 +26g
6R_1 4

for ey € R, with ||e]l. <283+ 6. By assumption p, >
satisfies

so (ag, bg) = CKKS.Modreduce(p,q, g, cto)

by = —ags + e; mod (¢(x), q)
with |||l < p by Lemma 3.9. Since b; = [bg + m],, we have
by + ags = m + e; mod (¢(x), q).
Let(a, b) = (ag, bg). Then, ct = (a, b) is the output of Algorithm 14 and is a CKKS ciphertext with noise bounded
by p. O
Proof of Lemma 3.11. By assumption, each ct; = (a;, b;) € R,%,q satisfies
b; + ais = m; + ¢; mod (¢(x), q)

for some noise term e; with ||ej||l. < E. Then,

cty = =

b

q

k-1
Z a;ct;
i=0

k-1
Z a;a;
i=0

k-1
> ab;
i=0

q q

Lete’ = Zf:olaiei. Then,
k-1 k-1 k-1 k-1 k-1
Jabi+ Yaas= Y am+ ) ae= ) am;+ e mod ($(x), q).
i=0 i=0 i=0 i=0

i=0

So, cty is a CKKS ciphertext with noise term e’ and

k-1
lelle < D lai|leil < ME. 0
i=0
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Proof of Lemma 3.12. By assumption, we have for i = 0, 1,
b; + a;s = m; + e; mod (¢(x), q)
with ||ej]le < E. Let e’ = moe; + myep + epey. Then,

c§ + cfs + 482 = (by + aps)(by + a1S)
= (mo + eg)(my + ey) mod (¢(x), q)
= memy + mee; + myey + ege; mod (9(x), q)
= memy + e’ mod (¢(x), q).

The bound on e’ then follows immediately. O
Proof of Lemma 3.13. It is clear from the proof of Lemma 3.5 that dj + d;s = c;s> + ¢” mod (¢(x), q)
where e” = %{ +g+&s and &y, & € R[x]/(¢p(x)) with |gl. <1/2 and ||&|l. <1/2. By assumption,
¢+ ¢fs + ¢58% = mgmy + e’ mod (¢p(x), q) with |||l < EtSz + E*Sg, s0

G+ s =cg+dg + ¢fs + dis mod (¢(x), q)
=g + ¢S + ¢;8* + e” mod (¢(x), q)
=memy + e’ + e” mod (¢(x), q)

Let e* = e’ + e”. Then, g + ;s = megmy + e* mod (¢(x), q). The bound on e* follows immediately. O

Proof of Lemma 4.1. Suppose we have a collection of BFV ciphertexts, each with noise bounded by p = &||$]|«.
By Lemma 3.3, computing

ct; = Linearcombo(ct; s, ...,Ctj g, 1, ..., 1)

results in BFV ciphertexts ct; for j = 1,..., 2ky, each with noise bounded by ki&g||s|l» + ki. Since &z = 16, we have
k 17
00 + = + =¥ 00 S A 00 «
kaSgl[sll + Ky [k1 6R||s||m]6R”s” 16 Fadellsl

By Lemma 3.4, each Multiply(cty4, cty;) in step 2 of Algorithm 16 for j = 1,..., k; results in a polynomial triple
with noise bounded by

17 119
3.5[Ek18R||s||m]t6,%||s||§, = E!qt&,%”s”i,.

Summing all k, of these polynomial triples in step 2 of Algorithm 16 results in a polynomial triple with noise
bounded by

119
alqkzt&%HSIIi +ky

by an equivalent argument to Lemma 3.3 with polynomial triples as the input. Notice,

32

119 119
koS3 Is|E + ko = kot SFIs|E|1 + —————
52 KiketGilslle + ke = 35 kkatallsllo) L+ 100 s o

119 2
< 311cl13
iKY klkzt‘SR”s””[l T 92 163]

30
< ?klkzthHsllfo

By the proof of Lemma 3.5, BFV.Relinearize introduces additional noise of at most %61%||s||m. So, after performing
relinearization in step 3 of Algorithm 16, we have a BFV ciphertext with noise bounded by

30 1 30
5 hikat6Fs1, + 26l = kikat6lls {1+

1
30k1k2t5R||3||go
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IA

0 3[ 1 ]
. > 1 JE
8 klk2t6R||s|| + 30-2-16

31
< —k1k2t61§||s||§°.
So, a worst- case noise bound for a depth-1 multiplication is given by k1k2t6R||s||3 Since & - %SR and
SgllS|lo — 2 2 6R||s||m, we have

31
25 kakotSRlIsIE)  Lhakotsdlsl -
< = < kakot ||| [ -
Sillslle = 2 3 Orllsls

As &z = nand||s|l. = 1, we have that 9kktSZ||s|% = 9kiketn? < q;. By Lemma 2.2, BFV modulus reduction from g,
to Q;,_; gives a new ciphertext with noise bounded by p. Thus, the lemma is proved. O

Proof of Lemma 4.2. Suppose we have a collection of BGV ciphertexts, each with noise bounded by p = &g||$||c-
By a similar argument to Lemma 3.3, computing

ct; = Linearcombo(ctj g, ...,Ctjx, 1, ..., 1)
results in BGV ciphertexts ct; for j = 1,..., 2k;, each with noise bounded by kiJg||s||» + k. Since &z = 16, we have

k 17
kl(SR”S“w + kl = (k1 6 || ” )5}2”5”«; s 6k16R||S”oo.

By Lemma 3.7, each Multiply(cty;-1, cty) in step 2 of Algorithm 16 for j = 1,..., k; results in a polynomial triple
with noise bounded by

17 2
ztaR[[EklsRusnm] ] 2t6R[256 5§||s||§,+1].
Then,
289 256
) 2 222 k283 s| 2 |1 +
t6R[256 oIl ] 128tk15R”s”[ 289k1261%||s||§,]

1
289 5 2
128 tk15R|| [l [ 289]

290, 9
=128 thiS3Is][%-

Summing all k, of these polynomial triples in step 2 of Algorithm 16 results in a polynomial triple with noise
bounded by

—k12k2t6R| Is|I3, + ko

128
Notice,
ZRIASISIE + o = 2 kKatsRsE[1 + W]
- POt 1 + 350 2]
ﬁkszté;§||s||§, 1+ ﬁ]

< §k5k2t513||s||§°.
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By the proof of Lemma 3.8, BGV.Relinearize introduces additional noise of at most %51%“8”30. So, after per-
forming relinearization in step 3 of Algorithm 16, we have a BGV ciphertext with noise bounded by

13 1 13
g KikatSgllslle + S 6Rllslle = 5 kikatSlslla| 1 +

1
13k2kytSg||s| % ]

8., .3 3[
<— |1+
3 ki kot Sg||S]J-| 1 416

14
< gksztsgusni.
So, a worst-case noise bound for a depth-1 multiplication is given by %ksztagnsui. Since 8 — 2 > %SR and
7
SISl = 2 2 g&gl|S]l, We have

14
2 kkat6illsle) B kinotssIR
Selislle =2~ Tspls]le

= 4kt S3||s|[% .

As g = nand ||s|l. = 1, we have that 4kZkyt83||s|% = 4kikstn® < q;. By Lemma 2.3, BGV modulus reduction from
Q; to Q,_; gives a new ciphertext with noise bounded by p. Thus, the lemma is proved. (I

Proof of Lemma 4.3. Suppose we have a collection of CKKS ciphertexts, each with noise hounded by E. Recall
that &g||S|l. = n. By Lemma 3.11, computing

ctj = Linearcombo(ct; 1, ...,Ctjx, 1, ...,1)
results in CKKS ciphertexts ct; for j = 1,..., 2k;, each with noise bounded by kE. Lett = 24Z + 1, and observe
that for each encoding m; of message z;,
1 1
Imjllo < Allzjlle + - < AZ + = = t/2.
2 2
By Lemma 3.12, each Multiply(cty;-4, cty) in Step 2 of Algorithm 16 for j = 1,..., k; results in a polynomial triple
with noise bounded by
kEtn + kKPE*n = lKE(QAZ + 1)n + KPE*n.

Summing all k; of these polynomial triples in Step 2 of Algorithm 16 results in a polynomial triple with noise
bounded by

kikE(2AZ + 1)n + kk,E™n

by an equivalent argument to Lemma 3.11 with polynomial triples as the input. By the proof of Lemma 3.13,
CKKS.Relinearize introduces additional noise of at most %nz. So, after performing relinearization in Step 3 of
Algorithm 16, we have a CKKS ciphertext with noise bounded by

1
kkEQ2AZ + 1)n + klzszzn + gnz.
So, a worst-case noise bound for a depth-1 multiplication is given by kkE(24Z + 1)n + kkE?n + %nz.
Performing a rescaling operation then gives noise bounded by

21 2 2 27, D2
2k1k2EAZn + klszn + kl sz n + n_ < ZklkanZ + klszn + kl sz n
A A A 84 A A

s 0
8

Proof of Lemma 4.7. By assumption the input of Algorithm 23 is the RNS representation in basis 8 of some
(co, G, @) € Ry, satisfying

Co + GS + 6s? = Do[momylg,c + € mod (¢(x), Q).
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for ||€’||» < E. From Step 1, @Y, &5, 2 ....csP) is the RNS representation of & € Ry pg, in ba51s Z) satis-

fying & = ¢ + Qe for some e E R, w1th ||cz||oo < Q,(l +1)/2 by Lemma 4.4. After Step 3, note (a®”, Y )0<]<l+k
is the RNS representation of some (d, b) € Rn, po, satisfying
b + ds = &k + &koes mod (¢(x), PQ,)

= §(—kos + Ps? + &) + ks mod (¢(x), PQ)

= (¢ + Qe)(~kos + Ps? + &) + (¢ + Qie)kos mod (p(x), PQ)

=(q + Qe)(Ps* + &) mod (¢(x), PQ)

= gPs? + g + PQes? + Qeé mod (¢(x), PQ,)

= gPs? + o€ + Qeé mod (¢(x), PQ,)

= Ps? + € mod (¢(x), PQ,)

for & = € + Q€ = GE. Note that as € < x,, we have [[€]l, = [|G€]l. < Qi + 1)p?/2. Furthermore, there exists
w € R, such that

b + ds = gPs® + é + wPQ, mod ¢(x).

By Lemma 4.5, Step 4 returns the RNS representation of some ¢y € R, o, and & € Ry, satisfying

with ||&||. < k/2 and ||é4||. < k/2. Finally, Step 6 returns the RNS representation of (a, b) € Rr%,o,-’ which
satisfies
b+as=cy+ ¢+ (q+ &)s mod (P(x), Q)

=co + gs + PI(b + ds) + 6y + é;5 mod (¢(x), Q)

=¢o+ GS + PY(gPs? + é + wPQ) + & + és mod (¢(x), Q)

=Co+ S + Gs? + P16 + wQ, + & + &5 mod (¢(x), Q)

= Do [momulgco,e + €+ P7é + & + és mod (p(x), Q)

= Do[momulp,c + €* mod (¢(x), Q)
for e* = e’ + P71 + &, + é;s. We now turn to the noise term e*. If P 2 6Q,, & = 16, and k > i, then

lle¥|k < le/]l + P*néuw + [ldos]l + ||&1||w

, Q( . KSellsll
<leflo + = 5R|| ll= + = 5

1 1 1
<lello + 83k TR E]
R

1
<E+ gé}%k. [

Proof of Lemma 4.8. By assumption the input of Algorithm 23 is the RNS representation in basis 8 of some
(C(), q, CZ) € R’?:Qi Satisfying

Co+ GS + G = [MoMy]peo,c + te’ mod (¢(x), Q).

for ||e’||l. < E. From Step 1, @Y, &5, 2 ...csP) is the RNS representation of & € Ry pg, in ba51s Z) satis-
fying & = ¢ + Qe for some e € R, with ||§]|.. < Q,(l +1)/2 by Lemma 4.4. After Step 3, note (@, 5" )0<]<,+k



46 —— Shuhong Gao and Kyle Yates DE GRUYTER

is the RNS representation of some (4, b) € R,%,PQ[, satisfying

b + as = &k + Gkes mod (¢(x), PQ)
= §(—kos + Ps? + t€) + &kos mod (¢(x), PQ,)
= (g + Qe)(~kos + Ps? + &) + (¢ + Qe)kos mod (¢(x), PQ,)
= (g + Qe)(Ps* + t&) mod (p(x), PQ)
= gPs? + teé + PQes? + tQeé mod (¢(x), PQ,)
= gPs? + t(ee + Qe€) mod (¢(x), PQ,)
= gPs? + té mod (¢(x), PQ,)

for é = € + Q,eé = 6. Note that as & « X,» we have l1é]l = ||G€]lo < Qi(i + 1)p%/2. Furthermore, there exists
W € R, such that

b + ds = gPs* + té + wPQ, mod B(x).

By Lemma 4.6, Step 4 returns the RNS representation of some ¢y € Ry o and ¢ € Ry o, satisfying

with ||é|l» < k/2 and ||éy||l. < k/2. Finally, Step 6 returns the RNS representation of (a, b) € R,f’ol_, which
satisfies

b+as=cy+ &+ (g + &)s mod (¢(x), Q)
=co + gs + PI(b + ds) + té) + tés mod (¢(x), Q)
= ¢y + GS + PTY(gPs? + té + wPQ) + téy + té;s mod (¢(x), Q)
=Co+ S + Gs? + PTlté + wQ, + téy + té;s mod (¢(x), Q)
= [momylpo,c + te’ + P7lté + téy + té;s mod (@(x), Q)
= [momylpu,e + te* mod (¢(x), Q)

for e* = ¢’ + P1é + &y + &s. The bound on e* follows identically as in the proof of Lemma 4.7. O
Proof of Lemma 4.9. By assumption the input of Algorithm 23 is the RNS representation in basis 8 of some
(co, &, @) € R3 satisfying

Co + GS + 6s? = momy + e’ mod (P(X), Q).

for ||¢’||l. < E. By an identical argument to the proof of Lemma 4.7, the output of Algorithm 23 is the RNS
representation in basis 8 of (a, b) € Ry o, satisfying

b + as = mgmy + e*

with [[e*|J. < E + 562k O
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