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Abstract: The condition number of a generator matrix of an ideal lattice derived from the ring of integers of an
algebraic number field is an important quantity associated with the equivalence between two computational
problems in lattice-based cryptography, the “Ring Learning With Errors (RLWE)” and the “Polynomial Learning
With Errors (PLWE)”. In this work, we compute the condition number of a generator matrix of the ideal lattice
from the whole ring of integers of any odd prime degree cyclic number field using canonical embedding.
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1 Introduction

The Ring Learning with Errors (RLWE) problem and the Polynomial Learning with Errors (PLWE) problem are
the basis for some of the most promising post-quantum cryptographic protocols [1,2]. These problems are part of
lattice-based cryptography since they arise from Learning with Errors (LWE) problem, which is at least as
difficult to solve as the approximate shortest independent vector problem (α-SIVP). In turn, these problems
are known to be NP-hard for certain α [3]. Although the decision version of RLWE has known security reduction
forα-SVP, the advantage of PLWE is that it is more efficient and suitable for implementation. Essentially, RLWE is
defined over the ring of integers of an algebraic number field �( )=K a through canonical embedding, whereas
PLWE is defined over a quotient of a polynomial ring � [ ] ( ( ))∕x f xq through coefficient embedding.

In some cases, the problems RLWE and PLWE are equivalent, which occurs when there is an algorithm
that transforms a solution of one of them into a solution of the other, and vice versa, in polynomial time. The
theoretical problem of the relation (in particular, the equivalence) between RLWE and PLWE was first
described in [4]. Especially since then, it has been shown that RLWE and PLWE are equivalent or non-
equivalent in several situations (e.g., [5–9]).

To determine the equivalence (or not) between RLWE and PLWE, an important quantity is the condition
number associated with a generator matrix of the ideal lattice used in the RLWE construction. If K is an
algebraic number field of degree n and �K denotes its ring of integers, the canonical embedding of K consists of
the map �⟶σ K:K

n given by ( ) ( ( ) ( ))=σ x σ x σ x, …,K n1 , for all �∈x K , where σ σ,…, n1 are the monomorph-
isms from K to � . In this way, �( )σK K can be seen as a lattice in an n-dimensional Euclidean space H

isomorphic to �n, where the lattice is understood to be a full-rank discrete additive subgroup of H (or �n).
The lattice �( )= σΛ K K is said to be an ideal lattice and is associated with an ×n n matrix M such that ∈v Λ if
and only if = ⋅v M u

T T for some �∈u
n. The matrix M is called a generator matrix of Λ. The condition number
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ofM (or, of K ) is defined as the quantity ( ) ‖ ‖‖ ‖= −
M M MCond

1 , where‖ ‖ ( )≔A A ATr * denotes the Frobenius
norm of a matrix A (where A* denotes the conjugate transpose of the complex matrix A and Tr denotes
the trace of a matrix). The condition number is important in RLWE/PLWE equivalence because it measures
the distortion caused in the transformation from one to the other when the algebraic structures involved
are paired [8]. In these situations, the RLWE/PLWE equivalence is established if the condition number is ( )O n

r

for some constant >r 0 depending only on the field K .
Let K be a cyclic number field of odd prime degree p. Since �∕K is an Abelian field extension, there is a

cyclotomic field �( )ζm containing K according to the Kronecker–Weber theorem. The minimal m with this
property is called the conductor of K . It is known that p is either unramified or ramified in �K . If p is
unramified in �K , then the conductor of K is given by = ∏ =m p

i

r

i1
, where ≥r 1 and p p,…,

r1
are prime positive

integer numbers such that ( )≡p p1 mod
i

for =i r1, …, (unramified case). In turn, if p is ramified in �K ,
then the conductor of K is given by =m p u

2 , where =u 1 or = ∏ =u p
i

r

i1
with ≥r 1 and p p,…,

r1
are prime

positive integer numbers such that ( )≡p p1 mod
i

(ramified case). In this context, algebraic lattices coming
from �-modules of �K through canonical embedding and their associated trace forms have recently been
studied for different applications (e.g., [10–13]).

Our objective in this work is to compute the condition number of a generator matrix of the lattice �( )σK K ,
where K is an odd prime degree cyclic number field. The unramified case is described in Section 2 – the
condition number is given in Theorem 2.1. In turn, the condition number of K in the ramified case is available
in Theorem 3.1, which is covered in Section 3. Finally, we conclude this work in Section 4 with suggestions for
further research related to RLWE/PLWE equivalence for K .

2 The unramified case

Let K be a cyclic number field of prime degree >p 2. Suppose that p is unramified in the ring of integers �K .
This means that the conductor of K is given by =m p p…

r1
, where ≥r 1 and p p,…,

r1
are prime positive integer

numbers satisfying ( )≡p p1 mod
i

, for each =i r1,…, . Then, �( )⊆K ζm , where ζm is an mth primitive root
of unity. In this case, the Hilbert–Speiser theorem [14, Theorem 1.7] states that K has a normal integral basis:
in fact, if � ( )( )≔ ∕t ζTr ζ K mm

and θ denotes a generator of the Galois group �( )∕KGal , then { ( ) ( )}−
t θ t θ t, , …,

p 1

is a �-basis of �K .
Since �∕K is a Galois field extension of the odd degree, K is a totally real number field. Therefore, the

monomorphisms from K to � are exactly the i-powers of θ for = −i p0,…, 1 and have their images contained
in � . So, the canonical embedding associated with K can be defined as �( ) ( ( ) ( ))= ∈−

σ x x θ x θ x, , …,K

p n1 ,
for all ∈x K . Thus, a generator matrix of the lattice �( )= σΛ K K is given by

( ( ( )))

( ) ( )

( ) ( )

( ) ( )

{ }= =

⎛

⎝

⎜
⎜
⎜

⋯
⋯

⋮ ⋮ ⋱ ⋮

⎞

⎠

⎟
⎟
⎟

∈ −

−

− −

θ θ t

t θ t θ t

θ t θ t t

θ t t θ t

M

…

.K

i j

i j p

p

p p

, 0,1, … , 1

1

2

1 2

(1)

Also, in [11, Theorem 2.2], it is shown that

( ) = +
−

t m

m

p

Tr

1

K

2 (2)

and for { }∈ −i j p, 0, 1, …, 1 with ≠i j,

( ( ) ( )) =
−

θ t θ t

m

p

Tr

1

.K

i j (3)
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Furthermore, in the following, we use the fact shown in [15, Lemma 2.3] that, for any �∈a b, ,

( ) ( ( ) )

⎛

⎝

⎜
⎜
⎜

⋯
⋯
⋯

⋮ ⋮ ⋮ ⋱ ⋮
⋅

⎞

⎠

⎟
⎟
⎟

= − + −

×

−

a b b b

b a b b

b b a b

b b b a

a b a k bdet 1 .

k k

k 1 (4)

Finally, we are able to show the main theorem of this section:

Theorem 2.1. If K is a cyclic number field of prime degree >p 2, where p is unramified in �K , then the condition
number of a generator matrix of �( )= σΛ K K is given by

( ) ( )= + − ⎛
⎝ + − + ⎞

⎠p m p

m

MCond 1 1 1

1

,K
(5)

where m is the conductor of K.

Proof. The matrix ≔ =G M M M M*
K K K

T

K is the Gram matrix of Λ because K is a totally real number field. Since
( ( ) ( )) ( ( ))= −
θ t θ t tθ tTr TrK

i j

K

j i for all { }∈ −i j p, 0, 1, …, 1 , ( ) ( )= =θ t θ t t
p 0 , and by (2) and (3), we have that

( ) ( ( )) ( ( ))

( ( )) ( ) ( ( ))

( ( )) ( ( )) ( )

=

⎛

⎝

⎜
⎜
⎜

⋯
⋯

⋮ ⋮ ⋱ ⋮
⋯

⎞

⎠

⎟
⎟
⎟

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

+
− −

⋯
−

−
+

−
⋯

−

⋮ ⋮ ⋱ ⋮
− −

⋯ +
−

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

−

−

− −

t tθ t tθ t

tθ t t tθ t

tθ t tθ t t

m

m

p

m

p

m

p

m

p

m

m

p

m

p

m

p

m

p

m

m

p

G

Tr Tr Tr

Tr Tr Tr

Tr Tr Tr

1 1 1

1 1 1

1 1 1

.

K K K

p

K K K

p

K

p

K

p

K

2 1

2 2

1 2 2

(6)

So, ‖ ‖ ( ) ( )= = − +m pM GTr 1 1K . To compute ‖ ‖−
M

K

1 , we observe that (( ) ) ( )=− − −
M M GTr Tr

K

T

K

1 1 1 , which
corresponds to the sum of the eigenvalues of the symmetric matrix −

G
1 counted with multiplicity. Since the

eigenvalues of −
G

1 are equal to the inverse of the eigenvalues of G,‖ ‖ ( )= = ∑− −
=

−
λM GTrK i

p

i

1 1

1

1, where λ λ, …, p1

are the eigenvalues of G. Thus, to complete this proof, we need to compute the eigenvalues of G. By (4),
denoting by Ip the ×p p identity matrix, we have

( ) ( ) ( )− = − −−
x m x xG Idet 1 ,p

p 1 (7)

whence it follows that the eigenvalues of G are = = = =−λ λ λ m… p1 2 1 and =λ 1p . So, ‖ ‖ ( )= + − ∕−
p mM 1 1

K

1 .
Therefore,

( ) ‖ ‖‖ ‖ ( ( ) )= = − + ⎛
⎝ +

− ⎞
⎠

−
m p

p

m

M M MCond 1 1 1

1

,K K K

1 (8)

which completes this proof after a simple rearrangement of the last expression. □

3 The ramified case

Let K be a cyclic number field of prime degree >p 2. In this section, we suppose that p is ramified in the ring of
integers �K . In this case, the conductor of K is given by =m p u

2 , where =u 1 or =u p p…
r1
for some prime

positive integer numbers p p, …,
r1
such that ( )≡p p1 mod

i
, =i r1, …, . In this case, the Leopoldt theorem

[16, Theorem 2] implies that K has an integral basis given by { ( ) ( )}= −
B θ t θ t1, , …,

p 1 , where θ is a generator
of the cyclic Galois group �( )∕KGal and � ( )( )≔ ∕t ζTr ζ K mm

(note that B is not a normal integral basis of K , which
in fact is regarded by the Hilbert–Speiser theorem).
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As commented in the previous section, the canonical embedding associated with K can be seen as
�⟶σ K:K

p defined by ( ) ( ( ) ( ))= −
σ x x θ x θ x, , …,K

p 1 , for all ∈x K . Then, a generator matrix of the ideal lattice
�( )= σΛ K K is given by

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

=

⎛

⎝

⎜
⎜
⎜
⎜

⋯
⋯

⋮ ⋮ ⋮ ⋱ ⋮
⋯

⎞

⎠

⎟
⎟
⎟
⎟

−

−

θ t θ t θ t

θ t θ t t

θ t θ t θ t

t θ t θ t

M

1 …

1

1

1

.K

p

p

2 1

2 3

3 4

2

(9)

Since m is not a squarefree integer, it is well known that

�( ) ( )( )= =t ζTr Tr 0.K ζ mm
(10)

Additionally, in [13], it is shown that

( )
( )

=
−

t

m p

p

Tr

1

K

2 (11)

and for { }∈ −i j p, 0, …, 1 , ≠i j,

( ( ) ( )) ( ( ))= = −−
θ t θ t tθ t

m

p

Tr Tr .K

i j

K

j i (12)

With this setting, in the following theorem, we show the condition number of a generator matrix
of �( )σK K :

Theorem 3.1. If K is a cyclic number field of prime degree >p 2, where p is ramified in �K , the condition number
of a generator matrix of �( )= σΛ K K is given by

( ) ( )= ⎛
⎝ + ⎞

⎠ − ⎛
⎝ + ⎞

⎠ + + − + +p

m

p

m

m

p

m

m

p

MCond 2 1

1 2

6 7

2

1 ,K

2

2
(13)

where m is the conductor of K.

Proof. The proof is similar to that presented for Theorem 2.1. In this case, due to formulas (10), (11), and (12),
the Gram matrix of Λ, =G M M

K

T

K , is given by

( ) ( ) ( )

( ) ( ) ( ( )) ( ( ))

( ) ( ( )) ( ) ( ( ))

( ) ( ( )) ( ( )) ( )

( )

( )

( )

=

⎛

⎝

⎜
⎜
⎜
⎜

⋯
⋯
⋯

⋮ ⋮ ⋮ ⋱ ⋮
⋯

⎞

⎠

⎟
⎟
⎟
⎟

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⋯
−

− ⋯ −

−
−

⋯ −

⋮ ⋮ ⋮ ⋱ ⋮

− − ⋯
−

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

−

−

− −

p t t t

t t tθ t tθ t

t tθ t t tθ t

t tθ t tθ t t

p

m p

p

m

p

m

p

m

p

m p

p

m

p

m

p

m

p

m p

p

G

Tr Tr Tr

Tr Tr Tr Tr

Tr Tr Tr Tr

Tr Tr Tr Tr

0 0 0

0

1

0

1

0

1

.

K K K

K K K K

p

K K K K

p

K K

p

K

p

K

2 2

2 3

2 3 2

(14)

Thus, ‖ ‖ ( ) ( )= = + − + ∕p m m m pM GTr 1 2K . Finally, to compute ‖ ‖ ( )=− −
M GTr

K

1 1 , we need the eigenva-
lues of G. Using the Laplace expansion in combination with (4), we have that

( ) ( )( ) ( )− = − − ∕ −−
x p x m x m p xG Idet .p

p 2 (15)

This implies that =λ p1 , = = = =−λ λ λ m… p2 3 1 , and = ∕λ m pp are the eigenvalues of G. Consequently, their
inverses are the eigenvalues of −

G
1. So,

‖ ‖ ( )
( )

= = +
−− −

p

p

m

M GTr

1 2 1

.
K

1 1 (16)
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Therefore,

( ) ‖ ‖‖ ‖ ( )
( )

⎜ ⎟⎜ ⎟= = ⎛
⎝

+ − + ⎞
⎠
⎛
⎝

+
− ⎞

⎠
−

p m m

m

p p

p

m

M M MCond 1 2

1 2 1

K K K

1 (17)

from which the result follows after rearrangements in this expression. □

4 Conclusion and future research

Considering that K is an odd prime degree cyclic number field and σK is the canonical embedding associated
with it, in this work, we have shown formulas for the condition number of a generator matrix of the lattice

�( )σK K depending only on the degree and the conductor of K . If p not divides m, this condition number is
presented in Theorem 2.1. In turn, if p divides m, the condition number is computed in Theorem 3.1.

As noted in the introduction of this work, the condition number of a generator matrix of an ideal lattice
can be used in a cryptographic context related to the equivalence between the RLWE and PLWE problems.
Although the quantities shown in this work indicate that RLWE and PLWE are equivalent for odd prime degree
cyclic number fields, once the condition numbers computed here are of polynomial order, the non-mono-
genicity of these number fields (as shown in [17]) prevents the expected conclusion a priori. Thus, future
research could investigate whether the RLWE and PLWE problems are equivalent in the context of odd prime
degree cyclic number fields, which could lead to new studies related to RLWE/PLWE equivalence for non-
monogenic number fields.
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