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Abstract: Let p > 1 be a large prime number, and let € > 0 be a small number. The established unconditional
upper bounds of the least primitive root u # +1, v* in the prime finite field F, have exponential magnitudes
u < pY/#*¢_ This note contributes a new result to the literature. It proves that the upper bound of the least
primitive root has polynomial magnitude u < (logp)'*¢ unconditionally.
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1 Introduction

The established unconditional upper bounds of the least primitive root u # +1, v* in the prime finite field F,

seem to have exponential magnitudes u < p'/4*¢ see [1, Theorem 3], and the established conditional upper
bounds seem to have polynomial magnitudes u < (logp)*¢ (see [2, Theorem 1.3]). Moreover, there is a partial
result of the form u < 475(logp)®/> for infinitely many primes (see [3, Theorem 3]). Finally, there is a con-
jectured upper bound of the form u « (logp)(loglogp)? — the heuristic appears in [4, Section 4]. This note
proposes a new result on the theory of primitive roots in finite fields, and it proves the conjectured upper
bound for all large primes unconditionally. This result sharpens both the established unconditional results and
the established conditional results.

Theorem 1.1. Let p = p, be a large prime number, and let € > 0 be a small real number. Then, there exists
a primitive root u # +1, v* in the prime finite field F, such that

u < (logp)t*e.

In practice, this result holds for prime numbers p that are significantly smaller than the explicit lower
bound p 2 p, > 224 = 105 estimated in Section 5. In fact, the numerical data in [5, Table 1] show that the least
primitive roots modulo p have very small magnitudes O((logp)(loglogp)?) for all primes, as conjectured, even
the least prime primitive roots have the same upper bound.

Given the prime factorization of the totient p — 1, an application of Theorem 1.1 leads to a deterministic
primitive root search algorithm of polynomial time complexity O((logp)°© ), where ¢ > 1 is constant. In contrast,
the established deterministic primitive root search algorithm seems to have exponential time complexity
O(p4*¢) (see [6, Theorem]). Similar primitive root search algorithms are studied by Grossman [7] and
a survey of the literature and the most recent primitive root search algorithm appear by the study by Shpar-
linski [8]. Another application of Theorem 1.1 leads to a deterministic primality test algorithm of polynomial
time complexity O((logp)**¢), and the technical details appear in previous studies [9], [10], and [11, p. 1].
In contrast, the established deterministic primality test algorithms have higher time complexities: the AKS
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algorithm has a running time complexity of O((logp)'/?) arithmetic operations (see [12, Theorem 5.3]) and the
Gaussian period algorithm has a running time complexity of O((logp)®) arithmetic operations (see [13, The-
orem 1]. Furthermore, this result can be used to construct other related deterministic cryptographic algo-
rithms of polynomial time complexities, such as the squareroot mod p and signature schemes as in the study
by Brier et al. [14], etc.

This innovation is made possible by a new representation of the characteristic function for primitive roots,
described in Lemma 3.2. It is much simpler than the standard characteristic function for primitive roots in
finite fields, described in Lemma 3.1. In addition, it significantly simplifies some of the standard analytic
methods utilized in the theory of primitive roots; consult the relevant literature such as [15], [16], [17], [5],
et al. to compare the differences. The foundation of the main result is covered in Sections 3-8. Last but not
least, the proof of Theorem 1.1 appears in Section 9.

2 Notation

The setN = {0, 1, 2, 3, ...} denotes the set of nonnegative integers, the set Z = {...,-2,-1,0,1, 2, ...} denotes the
set of integers, and the set P = {2, 3,5, ...} denotes the set of prime numbers. The letters p, ¢, r € P usually
denote arbitrary prime numbers, and the letters a, b, ¢, k, m, n € N usually denote arbitrary integers.

* The symbol logx = Inx denotes the natural logarithm.

* Let f, g [x0, ] — R be a pair of functions and assume g(x) > 0. The big O notation is defined by

fx) =0@gx) & [f(x)] = cg), €y

for some constant ¢ > 0 as x — o,
¢ The symbol « is defined by

f) < g(x) & [f(X)] < cg(x), @

for some constant ¢ > 0 as x = ®,

3 Representations of the characteristic function

The multiplicative order of an element in a finite field is defined by ord,u = min{k : u¥ = 1mod p}. An element
u # +1,v?* is called a primitive root if ord,u = p - 1. The characteristic function ¥ : G — {0, 1} of primitive
elements is one of the standard analytic tools employed to investigate the various properties of primitive roots
in cyclic groups G. Many equivalent representations of the characteristic function ¥ of primitive elements are
possible. Two of these representations are investigated here.

3.1 Divisor-dependent characteristic function

The divisor-dependent characteristic function was developed about a century ago (see [18, Theorem 496],
[16, Lemma 2.3], [19, p. 258]), et al. This characteristic function detects the multiplicative order of an element
by means of the divisors of the totient p - 1. The precise description is stated in the following.

Lemma 3.1. Let p = 2 be a prime, and let y be a multiplicative character of multiplicative order ordy = d,
where d|p - 1. Ifu € [F, is a nonzero element, then

_op-1) 5 ud) (1 if ordyw) =p -1,
- op-1 dlpz—l o(d) Or%=d)((u) o, if ord,(w) # p - 1,

P(u)

where u : N — {-1, 0, 1} is the Mobius function.



DE GRUYTER The least primitive roots mod p == 3

There are a few variant proofs of this result, and these proofs are widely available in the literature. Almost
every result in the theory of primitive roots in finite fields is based on this characteristic function, but some-
times written in different forms. This techniques was developed by Landau [18], Vinogradov, [20], Erdos [21].
An extension of this characteristic function to the finite ring Z/nZ is presented in [22, Lemma 4]. The main
obstacle in this technique is the prime decomposition of the totients p - 1.

3.2 Divisor-free characteristic function

A new divisors-free representation of the characteristic function of primitive element is developed here. It is
completely independent of the prime decomposition of the totients p — 1. It detects the multiplicative order
ord ,(u) 2 1 of the element u € [F, by means of the solutions of the equation 7" — u = 0 in[F,, where u and 7 are
constants, andn € # = {n < p : gcd(n, p - 1) = 1} is a variable. This is the original source of this result, and it
is the product of many years of research in number theory and finite fields.

Lemma 3.2. Let p = 2 be a prime, and let T be a primitive root mod p and let { # 1 be a nonprincipal additive
character of order ordy = p. Ifu € [, is a nonzero element, then

11 lf‘ Ordp(u) = p - 11

1
R e A (A

ged(n,p-1)=1 p 0<s<p-1

Proof. Set the additive character ¥)(s) = e?™®/P, wherea € F,.Astheindexn € Z ={n<p:gcd(n,p-1) =1
ranges over the integers relatively prime to ¢(p) = p - 1, the element 7" € [, ranges over the primitive roots
modulo p. Accordingly, the equation a = 7" - u = 0 has a unique solution n € £ if and only if the fixed
element u € [, is a primitive root. This implies that the inner sum in

1 5> pizn ™7 =[

ged(n,p-1)=1 p 0<s<p

1, if ordy(uw) =p -1,

0, if ordy(u) #p - 1. )

collapses to 2053<pei2ﬂas/p = 2o<s<pl = p- Otherwise, if the element u € F, is not a primitive root, then
the equation a = 7" - u = 0 has no solution n € #, and the inner sum in (3) collapses to ZOS“pe"Z”“S/P =0,

this follows from the geometric series formula ) c,<y_;w" = (WY - 1)/(w - 1), where w = e2/P = 1 and
N=p. U

4 Results on exponential sums
The exponential sums of interest in this analysis are presented in this section.

Lemma 4.1. Let p = 2 be a large prime, and let x < p. If T is a primitive root modulo p and a € [1, p - 1], then

- n
z el2nat"/p « p1/2+6’

1<nsx (4)
ged(n,p-1)=1
where § > 0 is a small real number.
Proof. The complete proof appears in [23, Lemma 4.1]. d

Lemma 4.2. Let p = 2 be a large prime, and let x < p. If T is a primitive root modulo p and a € [1, p — 1], then

2 ermir= 5 eltmip 4 O(p!late),
1<n=<x 1<n<x (5)
ged(n,p-1)=1 ged(n,p-1)=1

where 6 > 0 is a small real number and the implied constant is independent of a # 0.

Proof. The complete proof appears in [23, Lemma 4.3]. O
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5 Lower bound of the totient function

The totient function is defined by @(n) = #{m : gcd(m, n) = 1} = n[l,,(1 - 1/r), where r 2 2 varies over the
prime divisors of n (see [24, Theorem 2.4]). This subsection provides a detailed proof of the lower bound of this
function.

Lemma 5.1. If p is a large prime, then

o(p-1) o 1 .
p loglogp

Proof. For any prime p, the ratio ¢(p — 1)/p can be rewritten as a product over the prime

-1 -1 -1 -1 1
o(p-1 _p-1 o(p-1 _p |—|[1_ ’ ®6)

14 p p-1 p rlp-1 r

r

where r 2 2 ranges over the prime divisor of p - 1. This step follows from the identity ¢(n)/n = [1,,(1 - 1/r),
where r 2 2 ranges over the prime divisors of n. Since the number p - 1 has fewer than 2logp prime divisors
(see [25, Theorem 2.10]), let x = 2logp. Then, an application of the lower bound of the product given
in [26, Theorem 6.12] yields

-1 -1
op-D P i [1 1 ]
p p r<2logp r
S D - 1 ) e’ 1- 0.2 ] (7)
p  log(2logp)|"  (log(2logp))*
1
> >
loglogp
where y > 0 is the Euler constant. |

An alternative result for the lower bound of the ratio ¢(n)/n appears in [25, Theorem 2.9].

Remark 5.1. The explicit lower bound p > p, > 2245 =10% is derived from the explicit parameter
x = 2logp, > 2,973 for the totient product given in [26, Theorem 6.12] and the extreme value of the prime
divisor counting function w(p — 1) < 2logp. However, on average, the order of w(p — 1) is significantly
smaller, i.e., x = (loglogp)®2 (see [27, Theorem 3.1] for more details). Thus, on average, the explicit lower
bound is expected to be significantly smaller than p, > 105%.

6 Fibers and multiplicities result

The multiplicities of certain values occurring in the estimate of the error term E(z) are computed in this
section.

Lemma 6.1. Let p be an odd prime, let z = (logp)'*¢, and let T € [F,, be a primitive root in the finite field [F,. Define
the maps

a(n,u) = (t"-u) modp and p(a,b) = abmodp. 8)
Then, the fibers a”}(m) and B~(m) of an element 0 # m € [, have the cardinalities
#alm)<z-1 and #BY(m) = z, ©)]

respectively.
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Proof. Let Z = {n < p : gcd(n, p - 1) = 1}. Given a fixed u € [2, z], the map
a:Rx|[2,z] > Fp, definedby a(n,u)=(t"-u) modp, (10)
is one-to-one. This follows from the fact that the mapn — 7" mod p is a permutation of the nonezero elements

of the finite field [F,, and the restriction map n — (7" - u) mod p is a shifted permutation, and it maps the
subset

RCF, to Z-ucCh, an
see [19, Chapter 7] for extensive details on the theory of permutation functions of finite fields. Thus, as

(n, u) € # x [2, z] varies, a value m = a(n, u) € [, is repeated at most z — 1 times. Moreover, the premises
no primitive rootu < z = (logp)'*¢ implies thatm = a(n, u) # 0. This verifies that the cardinality of the fiber is

#a'\(m) = #H{(n,u) € # % [2,z] :m= (" - u) modp} <z -1 (12)
Similarly, given a fixed a € [1, z], the map
B:[,z]x[1,p-1 —F, definedby p(a,b)=abmodp, 13)

is one-to-one. Here, the map b — ab mod p permutes the nonzero elements of the finite field F,. Thus, as
(a,b) € [1, z] x [1, p — 1] varies, each value m = B(a, b) € [F; is repeated exactly z times. This verifies that the
cardinality of the fiber is

#B7Y(m) = #{(a,b) € [1,z] x [1,p - 1] : m = ab mod p} = z. (14)
]

7 Evaluation of the main term
An asymptotic formula for the main term M(z) is computed in this section.

Lemma 7.1. Let € > 0 be a small real number. If p 2 2 is a large prime and u < z = (logp)'*¢, then

-1
> o 3 1= oy + o)
2<u<z 1<n<p-1
ged(n,p-1)=1

Proof. The number of relatively prime integers n < p coincides with the values of the totient function. Thus,
a routine rearrangement gives

zl Z 1=‘P(p‘1) Zl

2<u<z P 1sns<p-1 p 2<us<z
ged(n,p-1)=1

-1

_ <p(pp )((1ogp)1+8 _ ) (15)
-1

= M . (logp)1+£ + 0(1)’
p

where ¢(p - D/p < 1. O

8 Estimate of the error term

A nontrivial upper bound of the error term is computed in this section. To achieve this objective, the error
term is partitioned as E(z) = Ey(z) + E1(z). The upper bound of the first term Ey(z) for n < p/z is derived using



6 —— Nelson Carella DE GRUYTER

geometric summation/sine approximation techniques, and the upper bound of the second term Ey(z) for
p/z < n < p is derived using exponential sums techniques.

Lemma 8.1. Let € > 0 be a small real number. Suppose p = 2 is a large prime and u < z = (logp)'*¢ . If there is
no primitive root u < z = (logp)'*¢, then

1
2 - 2 2 W@ -ws) < (logp)loglogp),

2<u<z P 1snp-1 1<s<p-1
ged(n,p-1)=1

where (s) = e@™*s/P with 0 < k < p, is an additive character.

Proof. The product of a point (a, b) € [1, z] x [1, p/z) satisfies ab < p. This leads to the partition [1, p/z) U
[p/z, p) of the index n, which is suitable for the sine approximation ab/p < sin(;tab/p) < ab/p for |ab/p| < 1
on the first subinterval [1, p/z) (21). Thus, consider the partition of the triple finite sum

1 . ’[n*uS
E= 3 — 3 ) e

25us<z 1snsp-1 1ss<p-1
ged(n,p-1)=1
1 . ("-uw)s 1 o (T"-u)s 16
-yl v Yo vy 1oy Y e (16)
2susz P 1sn<plz 1ssp-1 a2<usz P plzsnsp-1 1255p-1
ged(n,p-1)=1 ged(n,p-1)=1

= Eo(2) + E4(2).

The first suberror term Ey(z) is estimated in Lemma 8.2, and the second suberror term E;(z) is estimated
in Lemma 8.3. Summing these estimates yields

z
E(z) = Ey(z) + Ex(z) < (logz)(logp) + P < (logz)(logp), 17)
where § > 0 is a small real number. This completes the estimate of the error term. O

Lemma 8.2. Let p 2 2 be large primes. If T is a primitive root modulo p and there is no primitive root
u < z = (logp)'*¢, then

1 . Tn—llS
E@= Y — Y Y 2" =0((ogz)logp)).
2<u<z 1sn<p/z 1ss<p-1
ged(n,p-1)=1

(18)

Proof. To apply the geometric summation/sine approximation techniques, the subsum Ey(z) is partitioned
as follows:

Bo= Y - Yy e

2susz P 1sn<plz 1sssp-1

ged(n,p-1)=1
. N 19
_ Z l z z eizl_[(znpu)s + Z eiZJT(Tnpu)S ( )
a<uez P 1sn<piz |1ss<pi2 pl2<ssp-1
ged(n,p-1)=1

= Ego(2) + Eo1(2).
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Now, a geometric series summation of the inner finite sum in the first term yields

Eyo(2) = Z & Z Z e"z”(rn;’u)S

2<us<z 1sn<p/z 1s<s<p/2
ged(n,p-1)=1
1 P2 (TG +) eiz;z—“"p' 0
=7 - 20
P o<usz 1sn<p/z 1- elZJTLpu) (20)
ged(n,p-1)=1
1 2
S - f)
p 2<u<z 1<n<p/z |Sln”(T - u)/P|
ged(n,p-1)=1

where the last line in (20) follows from the hypothesis that u is not a primitive root. Specifically,
0 # 7" - u € F, for any n > 1 such that ged(n, p - 1) = 1 and any u < z = (logp)'*¢ . Similar estimations using
geometric series summation/sine approximation appear in [28, Chapter 23]. Utilizing Lemma 6.1, the first term
has the upper bound

1 2
Eoo(2) = — _
p zsgsZ 1<n<p/z [sinzz(z" - u)/p|
ged(n,p-1)=1
2 1

< — z

P 1<a<z 1b<piz |sinmrab/p|

(VAY)
<ty vy 2
D 1cazz 1<b<p nab
1 1
<y =3 -
1<as<z a 1<b<p b
< (logz)(logp),
where ab < p and [sinab/p| # 0 since ptab. Similarly, the second term has the upper bound
1 izﬂ(r"fu)s
Ey2)= ) = X Yy ey
a<uez P 1sn<plz pra<sep-1
ged(n,p-1)=1
1 eiZn(Tnl;u) _ eiZn(T"T_“)(gﬂ)
P 2éues 1sneplz 1- 62" (22)
ged(n,p-1)=1
1 2
< — _
P o<u<z 12n<piz sinzz(z" - w)/p|
ged(n,p-1)=1
<« (logz)(logp).
This is computed in the way as done in (20) to (21), mutatis mutandis. Summing (21) and (22) yields
E(z) = Eoo(z) + Eo1(2) < (logz)(logp). (23
O

Lemma 8.3. Let p 2 2 be a large prime. If T is a primitive root modulo p and there is no primitive root
u < z = (logp)'*¢, then

1 . (T"fu)s V4
E@)= ) — ey = o[—]
25%52 p/zs%sp-l 1Ss§p—l pl/z s 24)
ged(n,p-1)=1

where § > 0 is a small real number.
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Proof. The hypothesis that there is no primitive root such that 7" - u # 0 in the finite field [F, for any u < z
and gcd(n, p - 1) = 1, implies that Ej(z) has a nontrivial upper bound. To determine an upper bound, rear-
range the triple finite sum E(z) and apply Lemma 4.2 to the new inner sum on the second line in the following:

E@= Y S 3y e

2<usz P plzsnsp-1 1sss<p-1

ged(n,p-1)=1
Z Yoy ey

P 2<u<z 1<s<p-1 plzsn<p-1 (25)
ged(n,p-1)=1

1 —lZnus i2 ﬂ 1/2+5

v.2 2 e+ o(plo)

p <usz 1sssp-1 plzsn<p-1
ged(n,p-1)=1

where § > 0 is a small real number. The application of Lemma 4.2 to the inner exponential sum on the second

line of (25) removes the dependence on the variable s # 0 in exchange for a simpler exponential sum and an

error term, which are both independent of the variable s. Now, use the exact evaluation ZlSsSp_leﬂn”S =-1,

take absolute value, and apply the triangle inequality:

i n
|Ey(2)] < 1 Z z e e Z el 4 O(p1/2+5)
2<us<z | 1<s<p-1 plzsn<p-1
ged(n,p-1)=1
1 —
<= 23 et ptd| 26)
2<usz p/z<n<p-1

ged(n,p-1)=1

1
<= Y [|-1p!/**9)

25u<z
VA

LK —F
1/2-6°
p/

where the exponential sum estimate

. n
z el « p1/2+6

plzsn<p-1 (27)

ged(n,p-1)=1

follows from Lemma 4.1. O

9 Least primitive roots in finite fields

The determination of an upper bound for the smallest primitive root in the finite field [F, is based on a new
characteristic function for primitive roots in finite field F, introduced in Section 3. The proof is broken up into
several lemmas proved in Sections 3-8.

Define the counting function

Ny(z) =#u <z :ordpu =p - 1}. 28)
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Proof of Theorem 1.1. Let p > p, be a large prime number, and let z = (logp)!*¢, where € > 0 is a small
number. Suppose, by contradiction, that the least primitive root uy > z and consider the sum of the character-
istic function over the short interval [2, z], i.e.,

Nyz)= ) ¥(u)=0. 29)

25usz
Replacing the characteristic function, Lemma 3.2, into the nonexistence equation (29) and expanding it yield

Ny2)= ) W(u)

25us<z
1 n

=2 0= 2 2 W@ -ws)

a<uzz| P 1=ngp-1 oss<p-1 (30)
ged(n,p-1)=1

-y Yy ey Y Y - ws)

2<u<zp 1<n<p-1 2<u<zp 1<n<p-1 1<s<p-1
ged(n,p-1)=1 ged(n,p-1)=1
=M(z) + E(2).

The main term M(z), which is determined by a double finite sum over the trivial additive character
Y(s) = 1, is computed in Lemma 7.1, and the error term E(z), which is determined by a triple finite sum over
the nontrivial additive characters y(s) = e#™5/P « 1, is computed in Lemma 8.1.

Substituting these evaluation and estimate yields

N(@)= ) ¥

25us<z

=M(z) + E(2) €3)]
(r-1 N

= 2= (ogp)" + 01 + O((logp)(loglogp)).

Applying Lemma 5.1 to the totient ratio ¢(p — 1)/p show that the main term in (31) dominates the error term:
1
. 1+e
N2> 1 2logp (logp)'* + O((logp)(loglogp))
, (logpy*e (log logp)z] (32)
(loglogp) (logp)*

>0,

as p — «. Clearly, this contradicts the hypothesis (29) for all sufficiently large prime numbers p = p,. There-
fore, there exists a small primitive root uy < z = (logp)'*¢, quod erat inveniendum. O

In synopsis, this result proves that the smallest primitive roots satisfy the conjectured upper bound
c(p)(logp)(loglogp)?, where c¢(p) > 0 is a constant. Furthermore, the mean value of the constant c(p) over
the set of primes seems to be bounded by the limit supremum:

= lim —— L c(p) < hmsup )

——— = ¢/ = 1781072 .... 33
e 100 & (logp)(log logp)? 9

The limit supremum for prime primitive roots £ is discussed in [4, Section 4]. Hence, on average, the smallest
primitive root satisfies the mean explicit inequality

g(p) < § < 2(logp)(loglogp)?, (34)
where eV < 2, and this follows from (33). The numerical data in the study by McGown et al. [5] shows that (34) is

true for all primes up to p = 6525032504501281. For example, for the prime p = 6525032504501281, there is an
abundance of primitive roots (both composite and prime) bounded by the mean explicit upper bound (34):
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417,431,467,473,479,499,521,527,556,571,581,602,617,691,695,769,801,817,821,823,829,834
< e’(logp)(loglogp)* = 838.1936 (35)
< 2(logp)(loglogp)? = 941.2234.

The closest explicit result in this direction seems to be the claim that g(p) < p%8 for all prime p > 10%, which is
proved in [17, Corollary 1] using the standard characteristic function given in Lemma 3.1.

For large prime p, the determination of the specific constant ¢(p) > 0, which depends on p, and the mean
value € of these constants seem to be difficult problems in analytic and algebraic number theory.
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