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Abstract: Let >p 1 be a large prime number, and let >ε 0 be a small number. The established unconditional
upper bounds of the least primitive root ≠ ±u v1, 2 in the prime finite field p� have exponential magnitudes

≪ ∕ +u p ε1 4 . This note contributes a new result to the literature. It proves that the upper bound of the least
primitive root has polynomial magnitude ≤ +u plog ε1( ) unconditionally.
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1 Introduction

The established unconditional upper bounds of the least primitive root ≠ ±u v1, 2 in the prime finite field p�

seem to have exponential magnitudes ≪ ∕ +u p ε1 4 , see [1, Theorem 3], and the established conditional upper
bounds seem to have polynomial magnitudes ≪ +u plog ε6( ) (see [2, Theorem 1.3]). Moreover, there is a partial
result of the form < ∕u p475 log 8 5( ) for infinitely many primes (see [3, Theorem 3]). Finally, there is a con-
jectured upper bound of the form ≪u p plog log log 2( )( ) – the heuristic appears in [4, Section 4]. This note
proposes a new result on the theory of primitive roots in finite fields, and it proves the conjectured upper
bound for all large primes unconditionally. This result sharpens both the established unconditional results and
the established conditional results.

Theorem 1.1. Let ≥p p
0
be a large prime number, and let >ε 0 be a small real number. Then, there exists

a primitive root ≠ ±u v1, 2 in the prime finite field p� such that

≪ +u plog .ε1( )

In practice, this result holds for prime numbers p that are significantly smaller than the explicit lower
bound ≥ > ≈p p 2 10

0

2145 645 estimated in Section 5. In fact, the numerical data in [5, Table 1] show that the least
primitive roots modulo p have very small magnitudes O p plog log log 2(( )( ) ) for all primes, as conjectured, even
the least prime primitive roots have the same upper bound.

Given the prime factorization of the totient −p 1, an application of Theorem 1.1 leads to a deterministic
primitive root search algorithm of polynomial time complexityO plog c(( ) ), where >c 1 is constant. In contrast,
the established deterministic primitive root search algorithm seems to have exponential time complexity

∕ +O p ε1 4( ) (see [6, Theorem]). Similar primitive root search algorithms are studied by Grossman [7] and
a survey of the literature and the most recent primitive root search algorithm appear by the study by Shpar-
linski [8]. Another application of Theorem 1.1 leads to a deterministic primality test algorithm of polynomial
time complexity +O plog ε4(( ) ), and the technical details appear in previous studies [9], [10], and [11, p. 1].
In contrast, the established deterministic primality test algorithms have higher time complexities: the AKS
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algorithm has a running time complexity of ∕O plog 15 2(( ) ) arithmetic operations (see [12, Theorem 5.3]) and the
Gaussian period algorithm has a running time complexity of O plog 6(( ) ) arithmetic operations (see [13, The-
orem 1]. Furthermore, this result can be used to construct other related deterministic cryptographic algo-
rithms of polynomial time complexities, such as the squareroot mod p and signature schemes as in the study
by Brier et al. [14], etc.

This innovation is made possible by a new representation of the characteristic function for primitive roots,
described in Lemma 3.2. It is much simpler than the standard characteristic function for primitive roots in
finite fields, described in Lemma 3.1. In addition, it significantly simplifies some of the standard analytic
methods utilized in the theory of primitive roots; consult the relevant literature such as [15], [16], [17], [5],
et al. to compare the differences. The foundation of the main result is covered in Sections 3–8. Last but not
least, the proof of Theorem 1.1 appears in Section 9.

2 Notation

The set = 0, 1, 2, 3, …� { } denotes the set of nonnegative integers, the set = − −…, 2, 1, 0, 1, 2, …� { } denotes the
set of integers, and the set = 2, 3, 5, …� { } denotes the set of prime numbers. The letters ∈p q r, , � usually
denote arbitrary prime numbers, and the letters ∈a b c k m n, , , , , � usually denote arbitrary integers.
• The symbol =x xlog ln denotes the natural logarithm.
• Let ∞ ⟶f g x, : ,0 �[ ] be a pair of functions and assume >g x 0( ) . The big O notation is defined by

= ⇔ ≤f x O g x f x cg x ,( ) ( ( )) ∣ ( )∣ ( ) (1)

for some constant >c 0 as → ∞x .
• The symbol ≪ is defined by

≪ ⇔ ≤f x g x f x cg x ,( ) ( ) ∣ ( )∣ ( ) (2)

for some constant >c 0 as → ∞x .

3 Representations of the characteristic function

The multiplicative order of an element in a finite field is defined by = ≡u k u pord min : 1 modp
k{ }. An element

≠ ±u v1, 2 is called a primitive root if = −u pord 1.p The characteristic function ⟶GΨ : 0, 1{ } of primitive
elements is one of the standard analytic tools employed to investigate the various properties of primitive roots
in cyclic groups G. Many equivalent representations of the characteristic function Ψ of primitive elements are
possible. Two of these representations are investigated here.

3.1 Divisor-dependent characteristic function

The divisor-dependent characteristic function was developed about a century ago (see [18, Theorem 496],
[16, Lemma 2.3], [19, p. 258]), et al. This characteristic function detects the multiplicative order of an element
by means of the divisors of the totient −p 1. The precise description is stated in the following.

Lemma 3.1. Let ≥p 2 be a prime, and let χ be a multiplicative character of multiplicative order =χ dord ,
where −d p 1∣ . If ∈u p� is a nonzero element, then

∑ ∑=
−

−
=

⎧
⎨
⎩

= −
≠ −− =

u
φ p

p

μ d

φ d
χ u

if u p

if u p
Ψ

1

1

1, ord 1,

0, ord 1,
d p χ d

p

p1 ord

( )
( ) ( )

( )
( )

( )

( )
∣

where ⟶ −μ : 1, 0, 1� { } is the Mobius function.
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There are a few variant proofs of this result, and these proofs are widely available in the literature. Almost
every result in the theory of primitive roots in finite fields is based on this characteristic function, but some-
times written in different forms. This techniques was developed by Landau [18], Vinogradov, [20], Erdos [21].
An extension of this characteristic function to the finite ring ∕n� � is presented in [22, Lemma 4]. The main
obstacle in this technique is the prime decomposition of the totients −p 1.

3.2 Divisor-free characteristic function

A new divisors-free representation of the characteristic function of primitive element is developed here. It is
completely independent of the prime decomposition of the totients −p 1. It detects the multiplicative order

≥uord 1p( ) of the element ∈u p� by means of the solutions of the equation − =τ u 0n in p� , where u and τ are
constants, and ∈ = < − =n n p n p: gcd , 1 1R { ( ) } is a variable. This is the original source of this result, and it
is the product of many years of research in number theory and finite fields.

Lemma 3.2. Let ≥p 2 be a prime, and let τ be a primitive root mod p and let ≠ψ 1 be a nonprincipal additive
character of order =ψ pord . If ∈u p� is a nonzero element, then

∑ ∑= − =
⎧
⎨
⎩

= −
≠ −− = ≤ ≤ −

u
p

ψ τ u s
if u p

if u p
Ψ

1 1, ord 1,

0, ord 1.
n p s p

n
p

pgcd , 1 1 0 1

( ) (( ) )
( )

( )
( )

Proof. Set the additive character = ∕ψ s ei πas p2( ) , where ∈ ×
a p� . As the index ∈ = < − =n n p n p: gcd , 1 1R { ( ) }

ranges over the integers relatively prime to = −φ p p 1( ) , the element ∈ ×
τn

p� ranges over the primitive roots
modulo p. Accordingly, the equation = − =a τ u 0n has a unique solution ∈n R if and only if the fixed
element ∈u p� is a primitive root. This implies that the inner sum in

∑ ∑ =
⎧
⎨
⎩

= −
≠ −− = ≤ <

−

p
e

u p

u p

1 1, if ord 1,

0, if ord 1.
n p s p

i π
p

pgcd , 1 1 0

2
τ

n
u s

p

( )

( )
( )

( )

(3)

collapses to ∑ = ∑ =≤ <
∕

≤ <e p1s p
i πas p

s p0
2

0 . Otherwise, if the element ∈u p� is not a primitive root, then

the equation = − =a τ u 0n has no solution ∈n R, and the inner sum in (3) collapses to ∑ =≤ <
∕e 0s p

i πas p
0

2 ,

this follows from the geometric series formula ∑ = − ∕ −≤ ≤ − w w w1 1n N
n N

0 1 ( ) ( ), where = ≠∕w e 1i πa p2 and
=N p. □

4 Results on exponential sums

The exponential sums of interest in this analysis are presented in this section.

Lemma 4.1. Let ≥p 2 be a large prime, and let ≤x p. If τ is a primitive root modulo p and ∈ −a p1, 1[ ], then

∑ ≪
≤ ≤

− =

∕ ∕ +e p ,

n x

n p

i πaτ p δ

1

gcd , 1 1

2 1 2
n

( )

(4)

where >δ 0 is a small real number.

Proof. The complete proof appears in [23, Lemma 4.1]. □

Lemma 4.2. Let ≥p 2 be a large prime, and let ≤x p. If τ is a primitive root modulo p and ∈ −a p1, 1[ ], then

∑ ∑= +
≤ ≤

− =

∕

≤ ≤
− =

∕ ∕ +e e O p ,

n x

n p

i πaτ p

n x

n p

i πτ p δ

1

gcd , 1 1

2

1

gcd , 1 1

2 1 2
n n

( )

( ) ( )

(5)

where >δ 0 is a small real number and the implied constant is independent of ≠a 0.

Proof. The complete proof appears in [23, Lemma 4.3]. □
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5 Lower bound of the totient function

The totient function is defined by = = = ∏ − ∕∣φ n m m n n r# : gcd , 1 1 1r n( ) { ( ) } ( ), where ≥r 2 varies over the
prime divisors of n (see [24, Theorem 2.4]). This subsection provides a detailed proof of the lower bound of this
function.

Lemma 5.1. If p is a large prime, then

−
≫

φ p

p p

1 1

log log
.

( )

Proof. For any prime p, the ratio − ∕φ p p1( ) can be rewritten as a product over the prime

∏−
=

−
⋅

−
−

=
− ⎛

⎝ − ⎞
⎠−

φ p

p

p

p

φ p

p

p

p r

1 1 1

1

1
1

1
,

r p 1

( ) ( )

∣

(6)

where ≥r 2 ranges over the prime divisor of −p 1. This step follows from the identity ∕ = ∏ − ∕φ n n r1 1r n( ) ( )∣ ,
where ≥r 2 ranges over the prime divisors of n. Since the number −p 1 has fewer than p2 log prime divisors
(see [25, Theorem 2.10]), let =x p2 log . Then, an application of the lower bound of the product given
in [26, Theorem 6.12] yields

∏

⎜ ⎟

−
≥

− ⎛
⎝ − ⎞

⎠

>
−

⋅ ⎛
⎝

− ⎞
⎠

≫ >

≤

−

φ p

p

p

p r

p

p

e

p p

p

1 1
1

1

1

log 2 log
1

0.2

log 2 log

1

log log
0,

r p

γ

2 log

2

( )

( ) ( ( ))
(7)

where >γ 0 is the Euler constant. □

An alternative result for the lower bound of the ratio ∕φ n n( ) appears in [25, Theorem 2.9].

Remark 5.1. The explicit lower bound ≥ > ≈p p 2 10
0

2145 645 is derived from the explicit parameter
= >x p2 log 2,973

0
for the totient product given in [26, Theorem 6.12] and the extreme value of the prime

divisor counting function − ≤ω p p1 2 log( ) . However, on average, the order of −ω p 1( ) is significantly
smaller, i.e., = ∕x plog log 23( ) (see [27, Theorem 3.1] for more details). Thus, on average, the explicit lower
bound is expected to be significantly smaller than >p 10

0

645.

6 Fibers and multiplicities result

The multiplicities of certain values occurring in the estimate of the error term E z( ) are computed in this
section.

Lemma 6.1. Let p be an odd prime, let = +z plog ε1( ) , and let ∈τ p� be a primitive root in the finite field p� . Define
the maps

≡ − ≡α n u τ u p and β a b ab p, mod , mod .n( ) ( ) ( ) (8)

Then, the fibers −α m1( ) and −β m1( ) of an element ≠ ∈m0 p� have the cardinalities

≤ − =− −α m z and β m z# 1 # ,1 1( ) ( ) (9)

respectively.
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Proof. Let = < − =n p n p: gcd , 1 1R { ( ) }. Given a fixed ∈u z2,[ ], the map

× ⟶ ≡ −α z α n u τ u p: 2, , defined by , mod ,p
nR �[ ] ( ) ( ) (10)

is one-to-one. This follows from the fact that the map ⟶n τ pmodn is a permutation of the nonezero elements
of the finite field p� , and the restriction map ⟶ −n τ u pmodn( ) is a shifted permutation, and it maps the
subset

⊂ − ⊂uto ,p pR R� � (11)

see [19, Chapter 7] for extensive details on the theory of permutation functions of finite fields. Thus, as
∈ ×n u z, 2,R( ) [ ] varies, a value = ∈m α n u, p�( ) is repeated at most −z 1 times. Moreover, the premises

no primitive root ≤ = +u z plog ε1( ) implies that = ≠m α n u, 0( ) . This verifies that the cardinality of the fiber is

= ∈ × ≡ − ≤ −−α m n u z m τ u p z# # , 2, : mod 1.n1 R( ) {( ) [ ] ( ) } (12)

Similarly, given a fixed ∈a z1,[ ], the map

× − ⟶ ≡β z p β a b ab p: 1, 1, 1 , defined by , mod ,p�[ ] [ ] ( ) (13)

is one-to-one. Here, the map ⟶b ab pmod permutes the nonzero elements of the finite field p� . Thus, as
∈ × −a b z p, 1, 1, 1( ) [ ] [ ] varies, each value = ∈ ×

m β a b, p�( ) is repeated exactly z times. This verifies that the
cardinality of the fiber is

= ∈ × − ≡ =−β m a b z p m ab p z# # , 1, 1, 1 : mod .1( ) {( ) [ ] [ ] } (14)
□

7 Evaluation of the main term

An asymptotic formula for the main term M z( ) is computed in this section.

Lemma 7.1. Let >ε 0 be a small real number. If ≥p 2 is a large prime and ≤ = +u z plog ε1( ) , then

∑ ∑ =
−

⋅ +
≤ ≤ ≤ ≤ −

− =

+
p

φ p

p
p O

1
1

1
log 1 .

u z n p

n p

ε

2 1 1

gcd , 1 1

1
( )

( ) ( )

( )

Proof. The number of relatively prime integers <n p coincides with the values of the totient function. Thus,
a routine rearrangement gives

∑ ∑ ∑=
−

=
−

−

=
−

⋅ +

≤ ≤ ≤ ≤ −
− =

≤ ≤

+

+

p

φ p

p

φ p

p
p

φ p

p
p O

1
1

1
1

1
log 1

1
log 1 ,

u z n p

n p

u z

ε

ε

2 1 1

gcd , 1 1

2

1

1

( )

( )
(( ) )

( )
( ) ( )

( )

(15)

where − ∕ <φ p p1 1( ) . □

8 Estimate of the error term

A nontrivial upper bound of the error term is computed in this section. To achieve this objective, the error
term is partitioned as = +E z E z E z0 1( ) ( ) ( ). The upper bound of the first term E z0( ) for < ∕n p z is derived using
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geometric summation/sine approximation techniques, and the upper bound of the second term E z1( ) for
∕ ≤ ≤p z n p is derived using exponential sums techniques.

Lemma 8.1. Let >ε 0 be a small real number. Suppose ≥p 2 is a large prime and ≤ = +u z plog ε1( ) . If there is
no primitive root ≤ = +u z plog ε1( ) , then

∑ ∑ ∑ − ≪
≤ ≤ ≤ ≤ −

− =
≤ ≤ −p

ψ τ u s p p
1

log log log ,

u z n p

n p

s p

n

2 1 1

gcd , 1 1

1 1

(( ) ) ( )( )

( )

where = ∕ψ s ei πks p2( ) , with < <k p0 , is an additive character.

Proof. The product of a point ∈ × ∕a b z p z, 1, 1,( ) [ ] [ ) satisfies <ab p. This leads to the partition ∕ ∪p z1,[ )

∕p z p,[ ) of the index n, which is suitable for the sine approximation ∕ ≪ ∕ ≪ ∕ab p πab p ab psin( ) for ∕ <ab p 1∣ ∣

on the first subinterval ∕p z1,[ ) (21). Thus, consider the partition of the triple finite sum

∑ ∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

=

= +

= +

≤ ≤ ≤ ≤ −
− =

≤ ≤ −

≤ ≤ ≤ < ∕
− =

≤ ≤ − ≤ ≤ ∕ ≤ ≤ −
− =

≤ ≤ −

−

− −

E z
p

e

p
e

p
e

E z E z

1

1 1

.

u z n p

n p

s p

i π

u z n p z

n p

s p

i π

u z p z n p

n p

s p

i π

2 1 1

gcd , 1 1

1 1

2

2 1

gcd , 1 1

1 1

2

2 1

gcd , 1 1

1 1

2

0 1

τ
n

u s

p

τ
n

u s

p

τ
n

u s

p

( )

( ) ( )

( )

( ) ( )

( )

( ) ( ) (16)

The first suberror term E z0( ) is estimated in Lemma 8.2, and the second suberror term E z1( ) is estimated
in Lemma 8.3. Summing these estimates yields

= + ≪ + ≪∕ −E z E z E z z p
z

p
z plog log log log ,

δ0 1 1 2
( ) ( ) ( ) ( )( ) ( )( ) (17)

where >δ 0 is a small real number. This completes the estimate of the error term. □

Lemma 8.2. Let ≥p 2 be large primes. If τ is a primitive root modulo p and there is no primitive root
≤ = +u z plog ε1( ) , then

∑ ∑ ∑= =
≤ ≤ ≤ < ∕

− =
≤ ≤ −

−
E z

p
e O z p

1
log log .

u z n p z

n p

s p

i π
0

2 1

gcd , 1 1

1 1

2
τ

n
u s

p( ) (( )( ))

( )

( )

(18)

Proof. To apply the geometric summation/sine approximation techniques, the subsum E z0( ) is partitioned
as follows:

∑ ∑ ∑

∑ ∑ ∑ ∑

=

=
⎛

⎝
⎜ +

⎞

⎠
⎟

= +

≤ ≤ ≤ < ∕
− =

≤ ≤ −

≤ ≤ ≤ < ∕
− =

≤ ≤ ∕ ∕ < ≤ −

−

− −

E z
p

e

p
e e

E z E z

1

1

.

u z n p z

n p

s p

i π

u z n p z

n p

s p

i π

p s p

i π

0

2 1

gcd , 1 1

1 1

2

2 1

gcd , 1 1

1 2

2

2 1

2

0,0 0,1

τ
n

u s

p

τ
n

u s

p

τ
n

u s

p

( )

( ) ( )

( )

( )

( )

( ) ( ) (19)
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Now, a geometric series summation of the inner finite sum in the first term yields

∑ ∑ ∑

∑ ∑

∑ ∑

=

=
−

−

≤
− ∕

≤ ≤ ≤ < ∕
− =

≤ ≤ ∕

≤ ≤ ≤ < ∕
− =

+

≤ ≤ ≤ < ∕
− =

−

− −

−

E z
p

e

p

e e

e

p π τ u p

1

1

1

1 2

sin
,

u z n p z

n p

s p

i π

u z n p z

n p

i π i π

i π

u z n p z

n p

n

0,0

2 1

gcd , 1 1

1 2

2

2 1

gcd , 1 1

2 1 2

2

2 1

gcd , 1 1

τ
n

u s

p

τ
n

u
p

p τ
n

u

p

τ
n

u

p

2

( )

∣ ( ) ∣

( )

( )

( )( )

( )

( )

( )

( ) (20)

where the last line in (20) follows from the hypothesis that u is not a primitive root. Specifically,
≠ − ∈τ u0 n

p� for any ≥n 1 such that − =n pgcd , 1 1( ) and any ≤ = +u z plog ε1( ) . Similar estimations using
geometric series summation/sine approximation appear in [28, Chapter 23]. Utilizing Lemma 6.1, the first term
has the upper bound

∑ ∑

∑ ∑

∑ ∑

∑ ∑

=
− ∕

≪
∕

≪

≪

≪

≤ ≤ ≤ < ∕
− =

≤ ≤ ≤ < ∕

≤ ≤ ≤ <

≤ ≤ ≤ <

E z
p π τ u p

p πab p

p

p

πab

a b

z p

1 2

sin

2 1

sin

2

1 1

log log ,

u z n p z

n p

n

a z b p z

a z b p

a z b p

0,0

2 1

gcd , 1 1

1 1

1 1

1 1

( )
∣ ( ) ∣

∣ ∣

( )( )

( )

(21)

where <ab p and ∕ ≠πab psin 0∣ ∣ since ∤p ab. Similarly, the second term has the upper bound

∑ ∑ ∑

∑ ∑

∑ ∑

=

=
−

−

≤
− ∕

≪

≤ ≤ ≤ < ∕
− =

∕ < ≤ −

≤ ≤ ≤ < ∕
− =

+

≤ ≤ ≤ < ∕
− =

−

− −

−

E z
p

e

p

e e

e

p π τ u p

z p

1

1

1

1 2

sin

log log .

u z n p z

n p

p s p

i π

u z n p z

n p

i π i π

i π

u z n p z

n p

n

0,1

2 1

gcd , 1 1

2 1

2

2 1

gcd , 1 1

2 2 1

2

2 1

gcd , 1 1

τ
n

u s

p

τ
n

u

p
τ

n
u

p

p

τ
n

u

p

2

( )

∣ ( ) ∣

( )( )

( )

( )

( )( )

( )

( )

( )

( )

(22)

This is computed in the way as done in (20) to (21), mutatis mutandis. Summing (21) and (22) yields

= + ≪E z E z E z z plog log .0 0,0 0,1( ) ( ) ( ) ( )( ) (23)
□

Lemma 8.3. Let ≥p 2 be a large prime. If τ is a primitive root modulo p and there is no primitive root
≤ = +u z plog ε1( ) , then

∑ ∑ ∑ ⎟⎜= = ⎛
⎝

⎞
⎠≤ ≤ ∕ ≤ ≤ −

− =
≤ ≤ −

∕ −
−

E z
p

e O
z

p

1
,

u z p z n p

n p

s p

i π

δ1

2 1

gcd , 1 1

1 1

2

1 2

τ
n

u s

p( )

( )

( )

(24)

where >δ 0 is a small real number.
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Proof. The hypothesis that there is no primitive root such that − ≠τ u 0n in the finite field p� for any ≤u z

and − =n pgcd , 1 1( ) , implies that E z1( ) has a nontrivial upper bound. To determine an upper bound, rear-
range the triple finite sum E z1( ) and apply Lemma 4.2 to the new inner sum on the second line in the following:

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

=

=

=

⎛

⎝

⎜
⎜⎜

+

⎞

⎠

⎟
⎟⎟

≤ ≤ ∕ ≤ ≤ −
− =

≤ ≤ −

≤ ≤ ≤ ≤ − ∕ ≤ ≤ −
− =

≤ ≤ ≤ ≤ − ∕ ≤ ≤ −
− =

∕ +

−

−

−

E z
p

e

p
e e

p
e e O p

1

1

1
,

u z p z n p

n p

s p

i π

u z s p p z n p

n p

i πs

u z s p p z n p

n p

i π δ

1

2 1

gcd , 1 1

1 1

2

2 1 1 1

gcd , 1 1

2

2 1 1 1

gcd , 1 1

2 1 2

τ
n

u s

p

i πus
p

τ
n

p

i πus
p

τ
n

p

2

2

( )

( )

( )

( )

( )

( )

(25)

where >δ 0 is a small real number. The application of Lemma 4.2 to the inner exponential sum on the second
line of (25) removes the dependence on the variable ≠s 0 in exchange for a simpler exponential sum and an

error term, which are both independent of the variable s. Now, use the exact evaluation ∑ = −≤ ≤ −
−

e 1s p1 1

i πus
p

2

,
take absolute value, and apply the triangle inequality:

∑ ∑ ∑

∑ ∑

∑

≤ +

≪ −

⎛

⎝

⎜
⎜
⎜

+

⎞

⎠

⎟
⎟
⎟

≪ −

≪

≤ ≤ ≤ ≤ − ∕ ≤ ≤ −
− =

∕ +

≤ ≤ ∕ ≤ ≤ −
− =

∕ +

≤ ≤

∕ +

∕ −

−
E z

p
e e O p

p
e p

p
p

z

p

1

1
1

1
1

,

u z s p p z n p

n p

i π δ

u z p z n p

n p

i π δ

u z

δ

δ

1

2 1 1 1

gcd , 1 1

2 1 2

2 1

gcd , 1 1

2 1 2

2

1 2

1 2

i πus
p

τ
n

p

τ
n

p

2

∣ ( )∣ ( )

∣ ∣ ∣ ∣

∣ ∣∣ ∣

( )

( )

(26)

where the exponential sum estimate

∑ ≪
∕ ≤ ≤ −

− =

∕ +e p
p z n p

n p

i π δ

1

gcd , 1 1

2 1 2
τ

n

p

( )

(27)

follows from Lemma 4.1. □

9 Least primitive roots in finite fields

The determination of an upper bound for the smallest primitive root in the finite field p� is based on a new
characteristic function for primitive roots in finite field p� introduced in Section 3. The proof is broken up into
several lemmas proved in Sections 3–8.

Define the counting function
= ≤ = −N z u z u p# : ord 1 .p p( ) { } (28)
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Proof of Theorem 1.1. Let ≥p p
0
be a large prime number, and let = +z plog ε1( ) , where >ε 0 is a small

number. Suppose, by contradiction, that the least primitive root >u z0 and consider the sum of the character-
istic function over the short interval z2,[ ], i.e.,

∑= =
≤ ≤

N z uΨ 0.p

u z2

( ) ( ) (29)

Replacing the characteristic function, Lemma 3.2, into the nonexistence equation (29) and expanding it yield

∑

∑ ∑ ∑

∑ ∑ ∑ ∑ ∑

=

=

⎛

⎝

⎜
⎜⎜

−

⎞

⎠

⎟
⎟⎟

= + −

= +

≤ ≤

≤ ≤ ≤ ≤ −
− =

≤ ≤ −

≤ ≤ ≤ ≤ −
− =

≤ ≤ ≤ ≤ −
− =

≤ ≤ −

N z u

p
ψ τ u s

p p
ψ τ u s

M z E z

Ψ

1

1
1

1

.

p

u z

u z n p

n p

s p

n

u z n p

n p

u z n p

n p

s p

n

2

2 1 1

gcd , 1 1

0 1

2 1 1

gcd , 1 1

2 1 1

gcd , 1 1

1 1

( ) ( )

(( ) )

(( ) )

( ) ( )

( )

( ) ( )

(30)

The main term M z( ), which is determined by a double finite sum over the trivial additive character
=ψ s 1( ) , is computed in Lemma 7.1, and the error term E z( ), which is determined by a triple finite sum over

the nontrivial additive characters = ≠∕ψ s e 1i πks p2( ) , is computed in Lemma 8.1.
Substituting these evaluation and estimate yields

∑=

= +

=
−

+ +

≤ ≤

+

N z u

M z E z

φ p

p
p O O p p

Ψ

1
log 1 log log log .

p

u z

ε

2

1

( ) ( )

( ) ( )

( )
(( ) ( )) (( )( ))

(31)

Applying Lemma 5.1 to the totient ratio − ∕φ p p1( ) show that the main term in (31) dominates the error term:

⎜ ⎟⎜ ⎟

≫ ⋅ +

≫
⎛
⎝

+ ⎛
⎝

⎞
⎠
⎞
⎠

>

+

+

N z
p

p O p p

p

p
O

p

p

1

log log
log log log log

log

log log
1

log log

log

0,

p
ε

ε

ε

1

1 2

( ) ( ) (( )( ))

( )

( )

( )

( )

(32)

as → ∞p . Clearly, this contradicts the hypothesis (29) for all sufficiently large prime numbers ≥p p
0
. There-

fore, there exists a small primitive root ≤ = +u z plog ε
0

1( ) , quod erat inveniendum. □

In synopsis, this result proves that the smallest primitive roots satisfy the conjectured upper bound
c p p plog log log 2( )( )( ) , where >c p 0( ) is a constant. Furthermore, the mean value of the constant c p( ) over
the set of primes seems to be bounded by the limit supremum:

∑= ≤ = =
→∞ ≤ →∞

c
π x

c p
g p

p p
elim

1
limsup

ˆ

log log log
1.781072 ….

x
p x p

γ

2( )
( )

( )

( )( )
(33)

The limit supremum for prime primitive roots ĝ is discussed in [4, Section 4]. Hence, on average, the smallest
primitive root satisfies the mean explicit inequality

≤ <g p g p pˆ 2 log log log ,2( ) ( )( ) (34)

where <e 2γ , and this follows from (33). The numerical data in the study by McGown et al. [5] shows that (34) is
true for all primes up to =p 6525032504501281. For example, for the prime =p 6525032504501281, there is an
abundance of primitive roots (both composite and prime) bounded by the mean explicit upper bound (34):
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≤ =
< =

e p p

p p

417,431,467,473,479,499,521,527,556,571,581,602,617,691,695,769,801,817,821,823,829,834

log log log 838.1936

2 log log log 941.2234.

γ 2

2

( )( )

( )( )

(35)

The closest explicit result in this direction seems to be the claim that < ∕g p p5 8( ) for all prime >p 1022, which is
proved in [17, Corollary 1] using the standard characteristic function given in Lemma 3.1.

For large prime p, the determination of the specific constant >c p 0( ) , which depends on p, and the mean
value c of these constants seem to be difficult problems in analytic and algebraic number theory.
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