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Abstract: MinRank is an NP-complete problem in linear algebra whose characteristics make it attractive to
build post-quantum cryptographic primitives. Several MinRank-based digital signature schemes have been
proposed. In particular, two of them, MIRA and MiRitH, have been submitted to the NIST post-quantum
cryptography standardization process. In this article, we propose a key-generation algorithm for MinRank-
based schemes that reduces the size of the public key to about 50% of the size of the public key generated by
the previous best (in terms of public-key size) algorithm. Precisely, the size of the public key generated by our
algorithm sits in the range of 328-676 bits for security levels of 128-256 bits. We also prove that our algorithm
is as secure as the previous ones.
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1 Introduction

MinRank is a problem in linear algebra that was first introduced by Buss et al. [1]. Roughly speaking, given
k +1 matrices My,..., M of size m x n over a finite field [, the decisional version of MinRank asks to
determine if there exists a non-trivial linear combination of Mj,..., M, whose rank does not exceed a fixed
parameter r. The search version of MinRank, which is the one we will be focusing on hereafter, asks to find
such a linear combination.

For several reasons, MinRank is an attractive candidate to build post-quantum cryptographic primitives.
First, MinRank is completely based on simple linear algebra operations, which can be implemented easily and
efficiently. Second, the hardness of MinRank is supported by a long line of research: MinRank is an NP-
complete problem [1] and, due to its relevance in cryptanalysis [2-4], algorithms for solving it have been
extensively studied, to the extent that random instances of MinRank are expected to be hard [5-12]. Finally,
there are no known quantum algorithms to solve MinRank that go beyond straightforward quantum search
applications.

Several digital signature schemes based on MinRank have been proposed, namely: a scheme due to
Courtois (2001) [13], MR-DSS (2022) [14], MIRA (2023) [15] (see also [16]), and MiRitH (2023) [17] (see also [18]).
In particular, MIRA and MiRitH have been submitted to the NIST post-quantum cryptography standardization
process.

* Corresponding author: Carlo Sanna, Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24,
Torino, 10129, Italy, e-mail: carlo.sanna@polito.it

Antonio J. Di Scala: Department of Mathematical Sciences, Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy,
e-mail: antonio.discala@polito.it

ORCID: Antonio J. Di Scala 0000-0003-0758-7062; Carlo Sanna 0000-0002-2111-7596

8 Open Access. © 2025 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.


https://doi.org/10.1515/jmc-2024-0008
mailto:antonio.discala@polito.it
mailto:carlo.sanna@polito.it
http://orcid.org/0000-0003-0758-7062
http://orcid.org/0000-0002-2111-7596

2 —— Antonio . Di Scala and Carlo Sanna DE GRUYTER

Table 1: Comparison of the sizes of the public keys, for the parameter sets proposed for MiRitH [17, Table 1]

Parameters Public key (bits)
A q m n k r KeyGen1 KeyGen2 KeyGen3
128 16 15 15 78 6 1,028 716 356
128 16 16 16 142 4 1,152 584 328
192 16 19 19 109 8 1,636 1,200 592
192 16 19 19 167 6 1,636 968 512
256 16 21 21 189 7 2,020 1,264 676
256 16 22 22 254 6 2,192 1,176 648

In all these schemes, the public key is a random instance of MinRank, the secret key is the solution of such
an instance, and the signing and verification algorithms together are a non-interactive zero-knowledge proof
of knowledge of the solution. While the secret key can be easily compressed as a seed of A bits, where A is the
security parameter, compressing the public key is less obvious.

Courtois [13, Section 5.1] proposed an algorithm, which we call KeyGen1, that compresses the public key
in A + mnloggq bits, where log is the logarithm in base 2. This method was improved in MR-DSS [14, Section 4.4]
by reducing the compressed public key to A + (mn - k)logq bits. This improvement, which we call KeyGen2,
is employed by MIRA [15, Section 2.4.1], while MiRitH uses KeyGen1 [17, Section 3.2].

We propose a new key-generation algorithm for MinRank-based schemes, which we call KeyGen3,
with a compressed public key of A + (m(n — r) — k)logq bits. (Note that k < m(n - r). In fact, all parameter
sets satisfy the stronger inequality k < (m — r)(n - r), in order to make the MinRank problem overdetermined,
see Section 2.2.)

Table 1 provides a comparison of the sizes of the public keys' of the three key-generation algorithms, for
the parameter sets proposed for MiRitH [17, Table 1]. As it can be seen, the public-key size of KeyGen3 is about
50% of that of KeyGen2 and sits in the range of 328-676 bits for security levels of 128-256 bits.

The next theorem reduces the security of KeyGen3 to that of KeyGenl. For every x > 0, let 7(x) =
min(0.72, 2.1x).

Theorem 1. Assume that k < m(n - r) and n > 2r (which are satisfied in practice, Table 1), and that no attacker
has a non-negligible advantage against the pseudorandom generators employed by KeyGenl and KeyGen3. Let
As be an attacker that, given a random public key generated by KeyGen3, can retrieve in time t; the corre-
sponding secret key with probability p,. Then, there exists an attacker A, that, given a random public key
generated by KeyGenl, can retrieve in time t; the corresponding secret key with probability p,, where

tl = t3 + pOly(q; m: n: k) and pl > (1 - T(q_l))4p3'

Note that if we take g = 16 as in Table 1, then (1 - 7(q"1))* > 0.56. Roughly speaking, Theorem 1 says that
the set of keys generated by KeyGen3 is equivalent (via an efficient transformation) to a large subset of the keys
generated by KeyGenl, where, for q = 16, “large” means more than 56% of the total. Since the MinRank
problem is supposed to be hard to solve on average, considering a large subset of all the possible instances
remains hard to solve on average. More precisely, KeyGen3 has a security loss of less than log,(1/0.56) = 0.836
bits compared to KeyGen1.

The structure of the article is as follows: First, in Section 2, we provide the necessary notation (Section 2.1),
the formal definition of the MinRank problem (Section 2.2), and we recall the key-generation algorithm
KeyGen1 of Courtois (Section 2.3). Second, in Section 3, we describe our new key-generation algorithm KeyGen3.
To simplify the exposition, we show first a partial (less efficient) version of the algorithm (Section 3.1),
and then, after recalling a canonical form for MinRank instances (Section 3.2), we show the complete algorithm
(Section 3.3). Finally, in Section 4, we prove Theorem 1.

1 Hereafter, we will say “public key,” respectively “secret key,” instead of “compressed public key,” respectively “compressed
secret key,” since the difference will be always clear from the context.
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2 Preliminaries

2.1 Notation

Let[F, be a finite field of g elements. For all positive integers m, n, andr < min(m, n), let [F;”X" be the vector space of
m x n matrices over [F;, and let Fg"™" be the set of m x n matrices over F, having rank equal to . For every
A € Fg’", let AT € F™™ be the transpose of A. Moreover, let A" € [F(’I"X(""'), respectively, A* € F{"™", denote the
matrix consisting of the first n - r, respectively, the lastr, columns of A, so that A = (A"|AR). Note that r is omitted
in the notation A" and AR, but it will be always clear from the context. Let (A) € [F}Ix’"" denote the row vector
consisting of the entries of A in column-major order, that is, the entries of (A) are, in order, the entries of the first
column of A, followed by the entries of the second column of A4, etc. Let (A); be the ith entry of (A). Let I, or just I
when the dimension is clear from the context, be the identity matrix of [Ffl"s . With a slight abuse of notation, let 0
denote the zero matrix of Fflxt, the dimension s x ¢ being always clear from the context. Finally, let §;; be the
Kronecker delta, let #S be the cardinality of the finite set S, and let |obj| be the size in bits of the object obj.

2.2 MinRank
The search version of MinRank is formally defined as follows.

Definition 1. (MinRank) Let ¢, m, n, k, r be positive integers, with g being a prime power and m > n > r. Given
k + 1 matrices My, ..., My € [F{Z"X", the MinRank problem asks to find aj, ..., ax € [, (if they exist) such that
k

E=Mo+ ) aM; §)
i=1

has rank at most r.

In MinRank-based schemes, the parameters g, m, n, k, r are selected so that: Every known algorithm to
find a solution of MinRank with rank(E) = r requires on average at least 2* operations; and random instances
of MinRank are expected to have exactly one solution with overwhelming probability. Consequently, the
schemes have to construct the solution so that rank(E) = r. Furthermore, to enforce the uniqueness of
the solution, it is required that MinRank is overdetermined, that is, k < (m — r)(n — r) [19, p. 33]. For details
on the algorithms to solve MinRank, and consequentially on the selection of the parameters of MinRank-based
schemes, see, for example, the documentation of MiRitH [17, Sections 4 and 5].

2.3 The key-generation algorithm of Courtois

We begin by briefly reviewing the algorithms proposed by Courtois [13, Section 5.1] to generate and decom-
press the public key and the secret key (Figure 1) It is clear that KeyGen1 in Figure 1 generates a random
uniformly distributed instance of MinRank, and that the public key has a size of |seedy| + [Mo| = A + mnloggq
bits. The most computationally expensive step (not taking into account the cost of running the PRG) is the

2 Actually, the key-generation algorithm in [13, Section 5.1] is slightly different from that of Figure 1 (Mj plays the role of My, and
consequently a division by ay is necessary). However, this makes no difference in later arguments. We stated the key-generation
algorithm this way only to uniformize it with the other algorithms.
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KeyGen1()

1: (seedpk, seedsy) & {0,1}* x {0,1}*

2: Generate Mq,..., My € ]FZLX" from seedpk with a secure PRG.

3: Generate ai,...,a, € Fg and E € F;'*™" from seedy with a secure PRG.

k
41 Mo« E—) a;M;
i=1
5: pk < (seedpk, Mo)
6: sk < seeds

return (pk, sk)

DecompressPK1(pk) DecompressSK1(sk)
1: seedpk, Mo < pk 1: seedpk < pk
2: Regenerate M, ..., M} from seedp. 2: Regenerate aq,...,a) from seeds.
return (Mo, ..., M) return (ai,..., o)

Figure 1: The algorithms of Courtois to generate and decompress the keys.

generation of E, which Courtois suggested to compute as E = SLT, where L € Fg™"" is a fixed matrix and

SE€Fg" ™ and T € Fy" are pseudorandom invertible matrices.

3 New key-generation algorithm

3.1 A first improvement

To simplify the exposition, we provide first a key-generation algorithm with a public key of A + m(n - r)logq bits.

This algorithm employs the facts that: If E € Fg""" is taken at random with uniform distribution, then
ER € Fg""" with significant probability (Lemma 6); and, in such a case, there exists a unique matrix
Ke [F{IX("") such that E* = ERK (Lemma 5). Then, assuming that E* = ERK, it follows from (1) that

k
M} = ERK - ) aME. @
i=1

Hence, we can generate pseudorandom M§, M, ..., My, and K, compute

k
ER = M} + ) ;MR €))
i=1
and M{ via (2), and finally pack M{' into the public key (see Figure 2 for the details). In this way, the size in bits
of the public key is equal to

seedpk| + [Mg] = A + m(n - r)logq.

Note that we cannot be sure that the matrix E? computed by (3) has full rank (this, by E* = ERK, is equivalent to
rank(E) = r). Therefore, we have to test if rank(ER®) < r (step 5 of KeyGen in Figure 2). Since ER is a uniformly
distributed random matrix in F7**", the probability that E® is not full-rank is very small (less than 273 for the
parameters in Table 1), see Lemma 3. Hence, the test has to be repeated only for a few times before finding
a matrix ER of full-rank.

Furthermore, note that checking if rank(E®) < r must be done in way that prevents timing attacks, so
either by a constant-time algorithm (see [20] for constant-time Gaussian elimination), or by a non-constant
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KeyGen()

1: (seedpk, seedsk) & {0,1}* x {0,1}*

2: Generate Mg € Fg*" and My, ..., My € F;"™™ from seedy with a secure PRG.
3: Generate ay,...,ap € Fg and K € ]F:IIX("*"') from seedsx with a secure PRG.

k
4: ER e ME4 Z a;ME
=1

if rank(E™) < r then go back to step 1.

o

k

6: My« EMK =Y oM}
i=1

7: pk « (seedp, My)

8: sk < seed

return (pk,sk)

DecompressPK(pk) DecompressSK(sk)
1: seedpk,]VIé“ + pk 1: seedg < sk
2: Regenerate Mg' and My, ..., My from seedp. 2: Regenerate a1, ..., a) from seeds.
31 Mo+ (My | Mg return (ai, ..., )
return (Mo, ..., My)

Figure 2: First version of the improved key-generation algorithm.

time algorithm that do not leak information about ER. For instance, one can multiply E® on the left and on the
right by random invertible matrices and then check if the resulting product has rank less than r, so that the no
information on ER is leaked from the execution time.

3.2 Canonical form of MinRank instances

In this section, we recall a canonical form of MinRank instances that was first introduced in [14, Section 4.4].
Given a MinRank instance M = (My, ...,My) € (FJ"")**1, let L € F V™ be the matrix whose rows are
(My),...,{My) and (M), in this order. Furthermore, write

(L Ly
L_I€1 €2]’

where Ly € F§*¥, L, € Fi*™0, ¢ € Fy**, and ¢, € Fy*™0),
If L, is invertible, then we say that M is reducible to canonical form and that the canonical form of M
is M’ = (Mg, ...,My) € ([F,’l"x")’”l, where (M),...,(M{) and (M) are the rows, in this order, of the matrix

Lt o . I L{L,
oLt 1 0 &-6L'L,|
In particular, we have that (Mg, ...,M;) € Cy x C;, where

Co={NEF;":(N) =0forief{l, ..k}
and

C1 = {(Ny, ., Ni) € (g™ (NDYy = 6, for 4, € {1, ... K},
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In general, we say that MinRank instances belonging to Cy % C; are in canonical form. If M is reducible to the
canonical form M’, then an easy computation shows that (1) is equivalent to

k
E= M+ ) aiM;,
i=1

where
(f ... ag) =( ... ax)L1 + 4. 4

Consequently, finding a solution to the instance M is equivalent to finding a solution to the instance M.

3.3 The complete algorithm

Now, we can provide the key-generation algorithm with a public key of A + (m(n - r) - k)logq bits.

The idea is to generate My,..., M so that they are in canonical form. In this way, the first k entries of (M{')
are equal to 0, and there is no need to pack them into the public key. Thus, the size of the public key is reduced
to A + (m(n - r) - k)logq bits.

The KeyGen algorithm of Figure 2 can be easily modified to generate (M, ...,Mx) € C;. However, the way
in which MOL is computed does not guarantee that My,..., My are in canonical form, i.e., that M, € Cy.
To achieve that, we have to choose aj,..., a; so that the first k entries of (MOL) are equal to 0. Since

k k
My = Mg+ Y M} (K = 3 aM}
Jj=1 Jj=1

and (M,»L),- = §;j fori,j € {1, ...,k} (note that k < m(n - r)), this amount to solving the linear system
k
2 (6 = (MFK))a; = (MEK); (=1, ..,k). *)
j=1

We will prove that (*) has a unique solution with high probability (Lemma 8). The algorithms for the genera-
tion of the keys and their decompression are given in Figure 3.

KeyGen3()
1: (seedp, seedsy) & {0,1}* x {0,1}*
2: Generate My € F7'*" and (M, ..., My) € Cy from seedy with a secure PRG.

3: Generate K € ]F;'X("*’) from seedy with a secure PRG.
4: Compute ai,...,ar € Fy as the unique solution to the linear system (x),

if such a solution exists unique, otherwise go back to step 1.

R
51 BY e Mg+ oM}
=1

6: if rank(E™) < r then go back to step 1.

k
7 Mg« ENK = oM
i=1
81 pk« (seedpi, (Mg Vks1, -y (M3 ) m(n—r))
9: sk < (seedpk, seeds)
return (pk, sk)

DecompressPK3(pk) DecompressSK3(sk)
1: seedpk, €kt1,- -y Cm(n_r) < PK 1: seedy, seedg < sk
2: Regenerate ]Wé? and My,..., M}, from seedpy. 2: Regenerate ]VL$ and M, ..., M} from seedp.
3 <Mg,“> 0,0y 0, €501y ey () 3: Regenerate K from seeds.
Hk’_/ 4: Compute au,...,a, € Fy as the unique
4: My« (]W(I)‘ | ]\,[5‘) solution to the linear system (x).
return (Mo,..., M) return (ai,...,ox)

Figure 3: The proposed key-generation algorithm.
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Note that solving (*) must be done in constant time, in order to protect the secret aj,..., ax from timing
attacks. Furthermore, note that this construction requires to store seedy into the secret key (see Remark 1 for
a way to avoid that). However, this should not be an issue since, usually, whoever has the secret key also has
the public key.

Remark 1. One of the referees pointed out that, instead of storing seedy into the secret key, one could derive

seedpy from seedg For instance, one can set seedy, — Hash(seedg), where Hash is a cryptographically secure
hash function.

4 Proof of Theorem 1

4.1 Preliminaries
In this section, we collect some preliminary lemmas. We begin with the following inequality.

Lemma 1. We have that
[Na-q)H>1-1q 6)
j=s
for all integers s = 1.
Proof. Let P(q) denote the product in (5). First, suppose that g**! = 8. Since the logarithm is concave, we have
that In(1 - x) = —cgx, for all xy € (0,1) and x € [0, X¢], where

In(1 - xo) >0

Co = Co(Xp) = - X
0

Hence, taking xo = ¢ ¢*D, we obtain that

~¢y ) q7

j=s+1

Pya(q) 2 exp = exp

=(s+1) =(s+1)
_ Coq 51— Coq ’
1-q71 1-qt

where we also used the fact that exp(-x) > 1 - x for all x > 0. Therefore, we obtain that

cog ©*Y
1-q7

P(q)>(1- q‘s)[l - >1- [1 + qcz) 1lq‘s.

Since cy(Xp) is an increasing function of Xy, it follows that cy(x) < co(1/8) < 1.1. Hence, we obtain that
P(@)>1-A+c)q*>1-21g°=1-1(q%),

since 2.1q7° < 0.72.
Now, suppose that ¢**! < 8. Then, ¢ = 2 and s = 1. Moreover, we obtain that
R()=(1 -2 -2 - 2)PR(2)
>A-2ha -2 -2%H1-21-2%

>1-0.72
=1-1(q"),
since 2.1q75 > 0.72. The proof is complete. g

The next lemma provides a formula for the number of m x n matrices of rank r over F,.
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Lemma 2. We have that

r-1c.m _ Six(an — i
T = |—|(q crz)(qi (o)
i=0 -9

Proof. See, e.g., [21]. (I

The next three results are well known (more or less in these forms), but we include their proofs for
completeness.

Lemma 3. Let s, t be positive integers, and let A € [Fflxt be a random matrix taken with uniform distribution.
Then, the probability that rank(A) = min(s, t) is greater than 1 - t(q”'s~1™1).

Proof. Since rank(4A") = rank(A), we can assume that s > t. Hence, the probability that rank(4) = min(s, t)
is equal to the probability that A € [F;X"t. In turn, by Lemma 2, such a probability is equal to

#[FZXM t-1 ‘ t-1 ‘ 00 4
aror = (@ - O - =[la-q¢=> [l a-q),
q =0 i=0 j=s—t+1
and the claim follows from Lemma 1. O

Corollary 1. Let s be a positive integer and let A € Fy* be a random matrix taken with uniform probability.
Then, the probability that A is invertible is greater than1 - 7(q?).

Lemma 4. Let A € F;**° be a random matrix with an arbitrary probability distribution, and let B € F3*
(respectively, C € [F;"S) be a random uniformly distributed matrix independent from A. Then, the matrix AB

(respectively, CA) is uniformly distributed in F;** (respectively F**) and independent from A.

Proof. It suffices to prove the claim for B. Then, the claim for C follows by matrix transposition. For each
De [Fflx‘, we have that

Pr[AB=D]= » Pr[A = A¢]Pr[B = A;'D]

AgEFSs
= ) PrlA=A ]—1 -1
- - 410 xt xt*
AOE[FlSIXS,S #ﬂ:z #I]:fl

Hence, we obtain that AB is uniformly distributed in [Fz” .
For each E € [F;x”, we have

Pr[AB = D|A = E| = Pr[EB = D] = Pr[B = E'D] = = Pr[AB = D],

L
xt

#Fq

since B and AB are uniformly distributed. ]

Let & be the set of E € Fg"™™" such that R e Fglxr,r'

Lemma 5. Let E € Fy™"". Then, E € & ifand only if E* = ERK for some K € [ng(”'r). In such a case, we have that
K is unique.

Proof. First, suppose that E € &. Then, the columns of ER generate the column-space of E. Consequently,
the columns of E' are a linear combination of those of ER, that is, EX = ERK for some K € [Ffl“""). Moreover,
the matrix K is unique, since the columns of ER are linearly independent. Vice versa, if E' = ERK
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for some K € [Ffl"(”'”, then the column-space of E is generated by the columns of ER. Since E has rank r,
it follows that E® € F7""", thatis E € &. O

Lemma 6. Let E € Fg™"" be a random matrix taken with uniform distribution. Then, E € & with probability
greater that 1-7(q™"). In such a case, the unique matrix K € F;*™") such that E = ERK (Lemma 5)

. . . . . rx(n-r)
is uniformly distributed in [F .

Proof. By Lemma 5, the map @ that sends each E € & to (E}, K), where K € [F,’I*("'r ) is the unique matrix such
that E* = ERK, is a bijection

_, [Emxr,r rx(n-r)
& - 0T x D),

Hence, by Lemma 2, the probability that E € & is equal to

mxr,r rx(n-r) r-1 =1 om _ pinean _ qiy )
Mg ¥ " M - | - o |—|(q Q" - )
#ES™ i=0 0 -4
r-1 i - r-1 - r-1
(q" - q9%"" 1-4"7 i
= - = = > a-qn
i|=_(|) q-q i|=_(|J1 -q i|=_(|) 1

> ﬁ(l -q)>1-1(qY),
j=1

where the last inequality follows from Lemma 1.
Furthermore, again since @ is a bijection, we obtain that K is uniformly distributed in [ng("”). O

The next lemma regards the probability that a MinRank instance can be reduced to canonical form,
and the distributions of its canonical form and the corresponding solution.

Lemma 7. Assume that M, ..., My € [Fjl"x", .., ax €Fy, and E € [FZ[”"” are independent and uniformly dis-
tributed in their respective spaces. Set

k

My =E - ) a;M,

i=1
Then, My, ..., Mj can be reduced to canonical form with probability greater than1 - ©(q™Y). In such a case, letting
Mg, ..., My be the canonical form of My, ..., My, and letting a,..., a; be given by (4), we have that (M, ...,My)
and (o, ...,a;) are independent and uniformly distributed in C,; and [F’;, respectively.

Proof. With the notation of Section 3.2, we have that

(M)
= (L1 Ly).
(M)

Hence, it follows that L; € Ff* and L, € F§*™® are independent and uniformly distributed. Since
My,..., M can be reduced to canonical form exactly when the matrix L; is invertible, it follows from
Corollary 1 that the probability that the reduction is possible is greater than 1 - 7(q™"). Furthermore, if L,
is invertible, we have that

(M)
=k Li'Ly),
(My)

and the claim about the distribution of (M, ...,My) and (aj, ...,a;) follows from Lemma 4. O
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We conclude with a lemma concerning the invertibility of a certain matrix.

Lemma 8. Let Ny,..., Ny € Fg™" and K € [ng(”‘r) be random matrices that are independent and uniformly
distributed in their respective spaces. Let X € FX** be the matrix whose entry of the ith row and jth column
is equal to (N;K);. Then

Pr(I - X € FE*K] > (1 - o(qg™))%

Proof. Let p(s) be the probability that a uniformly distributed random matrix in Fg™ is invertible.
Write K = (Ki|Ky), where K; € F*" and K; € ;"2 (recall that n > 2r). Note that

Pr(l - X € Fy ¥ 2 Pr[I - X € F{*** and K € F[']
=Pr[I - X € Ff** |k € F"] Pr[Ky € 7] (6)
=Prll - X € Fy*¥|K € F7T] p(r).
Therefore, it suffices to prove that the conditional probability in (6) is equal to p(min(mr, k)), and then the

claim follows from Corollary 1.
Hereafter, assume that K; is invertible. Let Nj = NK for each j € {1, ...,k}. By Lemma 4, we have that

Nj,..., Ny are independent, uniformly distributed in F7"™" and independent of K;. Moreover, we have that
NK = (Nj|NjK{ 1K) for each j € {1, ...,k}. Consequently, we obtain that (N)K); = (Nj); for all positive integers
i<mrandj<k.

If mr 2 k, then it follows that (N;K); = (Nj); for each i,j € {1, ...,k}. Hence, X is uniformly distributed

in [F’;"k . Thus, the conditional probability in (6) is equal to p(k), as desired.
Assume that mr < k. It follows easily that there exists a matrix H € F"*®*™, which is completely
determined by K, such that X = (I,|[H) J, where

J= (NG o (NG
is uniformly distributed in [F;"”k .

Note that the matrix

P =

Ly 0
H ~Ixk-mr

satisfies P(I-|[H) = (I|0) and P? = I. In particular, P is invertible. Hence, by Lemma 4, we have that J* = JP
is uniformly distributed in F}"¥. Write J* = (J/ |J;), where J; € Fj"™™ and J; € F;"**"™) are independent
and uniformly distributed. Then, we have that

P(I - X)P = P? - PXP = I = P(I |HY JP

Ly _]1/ _]2/ ]

=I- (Imr|O)T], = 0 A
-mr

Consequently, we obtain that I — X is invertible if and only if I - J is invertible. Therefore, the conditional
probability in (6) is equal to p(mr), as desired. O

4.2 Proof of Theorem 1

Our strategy to prove Theorem 1 is the following. First, we provide an algorithm R that takes as input
a random instance of MinRank M generated by KeyGenl and, with probability greater than (1 - 7(g™))%,
returns as output the canonical form M’ of M together with the matrices L, #; described in Section 3.2.
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Y I Do : E

| KeyGenl M: R :M Ay |2 T _:O‘_,

 ~KeyGen3 ' | _ Ly, 6y
___________ L

Figure 4: An illustration of the strategy of the proof of Theorem 1. The block labeled ~KeyGen3 returns a random MinRank instance M’
having the same probability distribution of the output of KeyGen3.

Second, we show that M’ follows the same probability distribution of a random MinRank instance generated
by KeyGen3. Let A; be an attacker built from R, A3, and 7~ as in Figure 4, where 7 is the algorithm computing

(@ ... ) = ((of .. a) = €)LT",

in light of (4). Since the attacker A3 can solve M’ with probability p;, we obtain that A; can solve M with

probability p; > (1 - 7(q"V))*p,, as desired. Moreover, it will be clear that the algorithms R and 7~ have

complexities that are polynomial in g, m, n, k. Hence, we obtain that = t; + poly(q, m, n, k), as claimed.
Let My, ..., My € [FZ“", E € [F{I”W ,and @y, ..., ax € [, be generated by KeyGenl. In particular, we have that

M,..., My, E, and @y, ..., ax are independent and uniformly distributed in their respective spaces.
The steps of the algorithm R are the following.

(1) The algorithm R takes as input My,..., Mx.

(2) If My,..., My cannot be reduced to canonical form, then stop. Otherwise, if Mj,..., My can be reduced
to canonical form, then compute the canonical form Mg,..., My and the conversion matrices L, 4,
as described in Section 3.2.

(3) Return Mg, ..., My and Ly, 4.

For the sake of the analysis of R, we define the following events and objects.
(1) Event O; occurs if My, ..., My can be reduced to canonical form. In such a case, let a;, ..., a; be given by (4).

Note that, by Lemma 7, event O; happens with probability greater than 1 - 7(q™), while (M, ...,My)
and (af, ...,ay) are independent and uniformly distributed in C; and [F’;, respectively. Furthermore,
since k < m(n - r), we have that M;®,..., M;® are independent and uniformly distributed in Fg™.

(2) Event O, occurs if ER € [FZ””. In such a case, in light of Lemma 5, let K € [F,rlx("" ) be the unique matrix
such that E* = ERK. Note that, by Lemma 6, event O happens with probability greater than 1 - 7(q™),
and K is uniformly distributed in F}*®"".

(3) Event O3 occurs if both O4 and O, occur and the matrix I — X is invertible, where X € [F’,;"k is the matrix
having the entry of the ith row and jth column equal to (M;RK )i- Note that, by Lemma 8, the probability
that I — X is invertible is greater than (1 - 7(q™))%

By construction, we have that event O3 happens with probability greater than (1 - 7(¢™%))*. Therefore,
the algorithm R returns as output M’ and Ly, & with probability greater than (1 - 7(q™))*, as desired.

It remains to prove that M’ follows the same probability distribution of a MinRank instance generated by
KeyGena3.

Let S be the set of

(Mg, ..Mt B aff, ...,a7) € Co x Gy x & x F§

such that
() E*= M} + Y5 a*M*;
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() af, ..., af is the unique solution to the linear system

k
2 (81 = (MFRE*))x; = (MFRK*) (i =1, ...,k),
j=1

where K* € F“"™") is the unique matrix such that E*L = E*RK*, by Lemma 5.

Note that each element of S is completely determined by either
(@ M, ..., M, E*, and o, ..., ayf, since using (i) one can retrieve Mg from the former matrices and scalars; or
(b) MZR, M;, ..., M, and K*. In fact, given such matrices, one can retrieve a;, ..., a;* by using (ii). Then, using
(i), one obtains that
k

E*R — M(;kR + Zai*M*R'
i=1

Finally, one has that E* = (E*RK*|E*R),

Recall that My,..., My € [Fq'"x”, E€ [FZ"‘””, and @,..., ax € [, are generated by KeyGenl. If O; occurs, let
S = (M, ..M, E, &, ...,a0).

Note that (M, ...,My), E, and (aj, ...,a;) are independent and uniformly distributed in Cy, Fg""", and [FZ,
respectively. It follows easily that the event O3 happens if and only if S” € S. Hence, thanks to (a), we obtain
that, conditionally to the event O3, the random variable S’ is uniformly distributed in S.

Let My,..., My, K°, E°R, and a°,..., @ be the matrices and the scalars generated by KeyGen3. Also, put

E° = (EoRKolEoR) and
S° o= (MOQ, ...,ngyEo; alo’ ""ako)’

It follows easily that KeyGen3 generates My}, (M, ...,M;’), and K independently and with uniform distribu-
tion in [Fq’"” T Cy, and [ng("” ), respectively, until the condition S° € S is satisfied. Hence, by (b), we obtain that
S° is uniformly distributed in S.

The proof is complete.
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