DE GRUYTER Journal of Mathematical Cryptology 2024; 18: 20230029 a

Research Article

Marco Calderini, Riccardo Longo*, Massimiliano Sala, and Irene Villa

Searchable encryption with randomized
ciphertext and randomized keyword search

https://doi.org/10.1515/jmc-2023-0029
received September 05, 2023; accepted October 18, 2023

Abstract: The notion of public-key encryption with keyword search (PEKS) was introduced to search over
encrypted data without performing any decryption. In this article, we propose a PEKS scheme in which both
the encrypted keyword and the trapdoor are randomized so that the cloud server is not able to recognize
identical queries a priori. Our scheme is Ciphertext-Indistinguishabiltity secure in the single-user setting and
Trapdoor-Indistinguishability secure in the multi-user setting with a stronger security, i.e., with multi-trapdoor.

Keywords: searchable encryption, PAEKS scheme, cloud cryptography, bilinear pairings

MSC 2020: 94A60 Cryptography, 14H52 Elliptic curves, 94A62, authentication and secret sharing, 68W40 ana-
lysis of algorithms

1 Introduction

With the rapid development of cloud computing technology, more and more enterprises and individuals are
willing to share their own data on cloud platforms.

Since data owners lose control of the data and cloud servers may be untrusted, several security and
privacy issues arise in cloud storage. So, sensitive data should be encrypted before being uploaded to the cloud
server to protect the data from being leaked. However, data encryption makes it extremely difficult to search
for a specific file in a large number of encrypted files.

In the last few years, many prominent cryptographic primitives have been proposed for achieving secure
and efficient cloud data usage, such as searchable encryption (SE) [1,2]. SE allows a remote server to search in
the encrypted data on behalf of a client without the knowledge of plaintext data.

Almost all SE techniques provide search ability over encrypted documents by extracting the keywords
from the plaintexts (the documents) and generating searchable ciphertexts corresponding to these keywords
[3-7]. Then, data receivers can search uploaded encrypted documents to find those containing a keyword by
generating a trapdoor to send to the server. Once the trapdoor has been received, the server runs an algorithm
to test which documents contain the searched keyword. If there is a match, then the server returns the
associated encrypted document.

* Corresponding author: Riccardo Longo, Department of Mathematics, University of Trento, via Sommarive 14, 38123, Povo (Trento),
Italy; Center for Cybersecurity, Fondazione Bruno Kessler, Via Sommarive 18, 38123, Povo (Trento), Italy, e-mail: rlongo@fbk.eu
Marco Calderini: Department of Mathematics, University of Trento, via Sommarive 14, 38123, Povo (Trento), Italy,

e-mail: marco.calderini@unitn.it

Massimiliano Sala: Department of Mathematics, University of Trento, via Sommarive 14, 38123, Povo (Trento), Italy,

e-mail: maxsalacodes@gmail.com

Irene Villa: Department of Mathematics, University of Trento, via Sommarive 14, 38123, Povo (Trento), Italy; Department of Mathematics,
Excellence Department 2023-2027, University of Genova, via Dodecaneso 35, 16146, Genova, Italy, e-mail: irenelvilla@gmail.com
ORCID: Marco Calderini 0000-0002-6817-3421; Riccardo Longo 0000-0002-8739-3091; Massimiliano Sala 0000-0002-7266-5146; Irene Villa
0000-0001-6381-4712

8 Open Access. © 2024 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.


https://doi.org/10.1515/jmc-2023-0029
mailto:marco.calderini@unitn.it
mailto:rlongo@fbk.eu
mailto:maxsalacodes@gmail.com
mailto:irene1villa@gmail.com
http://orcid.org/0000-0002-6817-3421
http://orcid.org/0000-0002-8739-3091
http://orcid.org/0000-0002-7266-5146
http://orcid.org/0000-0001-6381-4712

2 =—— Marco Calderini et al. DE GRUYTER

The first SE schemes that appeared in the literature use a symmetric setting [2]. In 2004, Boneh et al. [1]
proposed the first public-key encryption with keyword search (PEKS). In a multi-user setting, PEKS [1] allows
any user to encrypt keywords for searching, by designated searching key holders.

However, PEKS schemes are vulnerable to offline keyword guessing attacks (KGAs) [8,9]. That is, given a
trapdoor, the adversary can generate a ciphertext of a guessing keyword and then test whether it matches the
trapdoor. If the keyword space has low entropy, this attack is very efficient. Indeed, several PEKS schemes are
shown to be insecure against KGAs [5,8-12].

Public-key authenticated encryption with keyword search (PAEKS) was proposed in 2017 by Huang and Li
[13] to defend against KGAs. Its security model guarantees two security goals: cipher-keyword indistinguish-
ability (CI-security) and trapdoor indistinguishability (TI-security). The first refers to the fact that an attacker is
not able to distinguish which keyword is associated to a ciphertext, even when this keyword is one (randomly
chosen by the challenger) of two alternatives controlled by the attacker itself. Conversely, trapdoor indistin-
guishability states that an attacker is not able to distinguish which keyword is associated to a trapdoor, even
when this keyword is one (randomly chosen by the challenger) of two alternatives controlled by the attacker
itself. In the standard setting, the attacker may ask queries to a trapdoor oracle and a ciphertext oracle as long
as they are not related to the challenge, while in the Full Security setting, this restriction is relaxed.

Recently, Noroozi and Eslami [14] showed that the PAEKS scheme in the study by Huang and Li [13] is not
secure in the multi-user setting, and Qin et al. [6] showed that it is not secure in the multi-cipher-keyword setting.
Both proposed some adjustments to their scheme. Qin et al. [15] proposed a PAEKS scheme, and they proved that
their scheme is secure in the multi-cipher-keyword setting for CI-security and in the multi-user setting. However,
in the study by Qin et al. [15] the trapdoor is deterministic, thus, if an attacker is allowed to issue a trapdoor query
for any challenge keyword, then the scheme is not secure in a multi-trapdoor-keyword setting. In addition,
Emura [16], Emura introduced a PAEKS scheme, where each keyword is converted into an extended keyword,
and a PEKS scheme is then used for extended keywords. The author defined trapdoor privacy by formalizing
indistinguishability against keyword guessing attack (IND-IKGA) and proved that the proposed scheme is secure
under this notion. As remarked by Emura [16], IND-IKGA does not imply full TI-security.

In this article, we propose a PAEKS scheme with an improved TI-security model with respect to the study
by Qin et al. [15]. In particular, our PAEKS scheme is CI-secure in the single-user scenario and TI-secure in the
multi-trapdoor and multi-user scenario. Moreover, both the encryption and the trapdoor are randomized, i.e.,
encrypting two times the same keyword (or creating the trapdoor for the same keyword) will produce
different results, in contrast with the study by Qin et al. [15] where the trapdoor is not randomized. Obviously,
if the cloud server receives two trapdoors, both testing positive on the same ciphertext, then the server learns
that the two corresponding queries are the same, even if the trapdoors look different. Yet, in our system, the
cloud server is not able to recognize a priori that two encrypted trapdoors correspond to the same query. This
is a significant advancement w.r.t. previous schemes.

Note also that, regarding our discussion on security, if we exchange the role of the encryption and
trapdoor algorithm, we would obtain a PAEKS scheme that is CI-secure in the multi-user setting and TI-secure
in the single-user setting.

This article is structured as follows: in Section 2, we provide some preliminary notions that are useful to
understand the rest of the article; Section 3 presents PEKS and PAEKS schemes, together with the security
models for trapdoor indistinguishability and ciphertext indistinguishability; in Section 4, we describe our
PAEKS scheme, commenting on the possibility of combining multiple keywords; and in Section 5, we provide
the security proofs of our scheme. In particular, we prove that our PAEKS scheme is fully secure in a multi-user
setting for trapdoor indistinguishability, and it is secure in a single-user setting for ciphertext indistinguish-
ability. The conclusions of our work are in Section 6.

2 Preliminaries

In this section, we collect the notations and preliminaries needed for the rest of this work. The symbol Z
stands for the ring of integers, and for n a positive integer, Z, is the ring of integers modulo n.



DE GRUYTER Searchable encryption with randomized ciphertext and keyword = 3

2.1 Bilinear pairing

Let G and Gt be two multiplicative cyclic groups of prime order p. An admissible pairing is defined as a map
e : G x G — Gy that satisfies the following properties:

— Bilinearity: for any g,h € G, and a, b € Z, e(g%, h?) = e(g, h)™.

— Non-degeneracy: for any generator g of G, e(g, &) € Gr is a generator of Gy.

— Computability: for any g, h € G, we can compute e(g, h) efficiently.

Bilinear pairings play an important role in the construction of many cryptographic schemes, such as identity-
based encryption schemes [17], attribute-based encryption schemes [18], key-agreement protocols [19], signa-
ture schemes [20]. Many schemes based on pairings can be found in a recent survey on functional encryption
in the study by Mascia et al. [21].

2.2 Complexity assumptions

We recall some problems that are believed to be hard. The related assumptions will be used in the proof of
security of the proposed scheme.
A function f: N — R is called negligible if, for any positive integer d, there exists an integer N such that

If (k)| < % for any k 2 Nj.
We define the advantage of an algorithm A that outputs a guess 5 of a bit  as Advg = |Pr[f’" = B] - %|.

Definition 2.1. (CDH) The computational Diffie-Hellman (CDH) problem over a group G of order p is the
following. Given a generator g € G and two elements g%, g¥ € G, for x, y randomly chosen from Z,, compute
the element g¥. We say that CDH is intractable (i.e., the CDH assumption holds) if all polynomial-time
algorithms have a negligible probability of solving CDH.

Note that, when we are considering an admissible bilinear map, solving the decisional version of the
above problem is easy, so we have to adapt it as follows.

Definition 2.2. (DBDH) The decisional bilinear Diffie-Hellman (DBDH) problem over a bilinear pairing
(G, Gy, e) of order p is the following. Given a generator g € G and elements g*, g7, g7 € G, where x, y, and
z are randomly chosen from Z,, distinguish e(g, )** from a random element of Gr. We say that DBDH is
intractable (i.e., the DBDH assumption holds) if all polynomial-time algorithms have a negligible advantage in
solving DBDH.

If we assume that the DBDH is intractable, then the CDH is also intractable.

Definition 2.3. (DLIN) The decisional linear (DLIN) problem over a group G of order p is the following. Given a
generator g € G and the elements g*, g7, g, g”° € G, for x, y, s, and r randomly chosen from Z,, distinguish
g"*s from a random element of G.

As in the study by Huang and Li [13], we consider the modified decisional linear (mDLIN) problem, which
is defined as below.

Definition 2.4. (mDLIN) Given a generator g € G and the elements g*, g7, g’*, gk’ € G, for x,y,j, and k
randomly chosen from Z,, distinguish g/** from a random element of G. We say that mDLIN is intractable
(i.e., the mDLIN assumption holds) if all polynomial-time algorithms have a negligible advantage in solving
mDLIN.



4 —— Marco Calderini et al. DE GRUYTER

Similarly, as before, if we assume that the mDLIN is intractable, then the CDH is also intractable. Indeed,

suppose that given g2 and g®, we are able to compute efficiently g%. Thus, from g and g*”, we are able to
recover g¥. Then, we can distinguish Z = g/* from a random element by computing Z/g* and then solving the
CDH problem between Z/gk and g* and check if it coincides with g/*.

3 Preliminaries on public-key SE schemes

In this section, we introduce PEKS and PAEKS schemes and the related security notions.

3.1 PEKS

A PEKS consists of the following (probabilistic) polynomial-time algorithms [1].

Setup(A): given in input a security parameter A, the algorithm outputs a global system parameter Param.
KeyGen(Param): given the system parameter, it outputs a pair of public and secret keys (pk, sk). The algo-
rithm is run by the data receiver.

Encrypt(W, pk): given a keyword W and the receiver’s public key, it outputs a ciphertext Gy of W. The
algorithm is run by the data sender.

Trapdoor(W, sk): given a keyword W and the secret key, it outputs a trapdoor Tjy. The algorithm is run by
the data receiver.

Test(pk, Cu, T): given the receiver’s public key, a ciphertext Cy-, and a trapdoor Ty, it outputs 1 (true)
indicating that Cy~ and Ty contain the same keyword (W’ = W), and 0 otherwise. The algorithm is run by the
cloud server.

The first bilinear pairing-based PEKS scheme was proposed in 2004 [1].

This type of scheme is vulnerable to the inside KGA. Indeed, to recover the keyword contained in a

trapdoor Ty, an honest-but-curious cloud server could check whether W’ equals the keyword W contained
in Ty by computing the ciphertext Cy» and performing the test algorithm. Since in real applications the
keyword space is usually not that big, the server would be able to carry out the KGA in a reasonably short time.

To address this issue, the notion of PAEKS was introduced in 2017 [13].

3.2 PAEKS

A PAEKS scheme consists of the following (probabilistic) polynomial-time algorithms.

Setup(A): given in input a security parameter A, the algorithm outputs a global system parameter Param.
KeyGeng(Param): given the system parameter, the sender’s key pair generation algorithm outputs a pair of
public and secret keys (pks, sks) for the sender.

KeyGeng(Param): given the system parameter, the receiver’s key pair generation algorithm outputs a pair of
public and secret keys (pky, skg) for the receiver.

Encrypt(W, skg, pkg): given a keyword W, the receiver’s public key, and the sender’s private key, it outputs a
ciphertext G of W. The algorithm is run by the data sender.

Trapdoor(W, pKq, skg): given a keyword W, the sender’s public key, and the receiver’s secret key, it outputs a
trapdoor Tyy. The algorithm is run by the data receiver.

Test(pKg, pKg, Cw, Tw): given the sender’s public key, the receiver’s public key, a ciphertext Cy-, and a
trapdoor Ty, it outputs 1 (true) indicating that C~ and Ty contain the same keyword, and 0 otherwise.
The algorithm is run by the cloud server.



DE GRUYTER Searchable encryption with randomized ciphertext and keyword == 5

As explained by Huang and Li [13], the notion of PAEKS prevents a third-party, even the cloud server, from
generating a valid ciphertext-keyword. It provides both confidentiality and integrity of the plaintext.

3.3 Security models

Similar to PEKS, security of PAEKS requires that there is no probabilistic polynomial-time adversary that could
distinguish trapdoors or ciphertexts. Therefore, a semantic security model for PAEKS includes both CI-security
and TI-security or Trapdoor Privacy. Related to the security of PAEKS schemes, we recall the notation pre-
sented in the study by Qin et al. [15], adapted to the purposes of our scheme. Suppose that (pke, skg) and
(pky, skg) are the key pairs of the attacked data sender and data receiver, respectively. In a multi-user setting,
an adversary may have the following two abilities to attack a PAEKS scheme.

3.3.1 Chosen keyword to ciphertext (CKC) attacks

In a CKC attack, the adversary has the ability to obtain a ciphertext for any keyword W of its choice under
a receiver’s public key pk, specified by the adversary. That is, the adversary will obtain the ciphertext
Cw = Encrypt(W, sks, pky). Formally, CKC attacks are modelled by giving the adversary A access to a cipher-
text oracle Encryptg (-,-), viewed as a “black box”; the adversary can repeatedly submit any keyword W

and a (data receiver’s) public key pk, of its choice to this oracle, and is given in return a cipher-
text Gy = Encrypt(W, sk, pkp).

3.3.2 Chosen keyword to trapdoor (CKT) attacks

In a CKT attack, the adversary has the ability to obtain a trapdoor of any keyword W of its choice under a
sender’s public key pk¢ specified by the adversary. That is, the adversary will obtain the trapdoor
Ty = Trapdoor(W, pK, skg). Similar to the previous case, CKT attacks are modelled by giving the adversary
A access to a trapdoor oracle Trapdoory, (-,-), viewed as a “black box”; the adversary can repeatedly submit
any keyword W and a (data sender’s) public key pk, of its choice to this oracle and is given in return a
trapdoor T = Trapdoor(W, pKq, skg).

Clearly, the adversary’s access to the aforementioned oracles has to be restricted in some trivial instances.
Let W and Wy* be the challenge keywords, then, in the CI-security model, the adversary cannot request the
trapdoors of the challenge keywords for the target public keys, lest the challenge become trivial. In many
PAEKS schemes, such as [13], there are other limitations on the ciphertext oracle. For example, the adversary is
not allowed to request the ciphertext corresponding to either W or Wj*. Qin et al. [15], in their study,
considered full CKC attacks, where this limitation is removed.

Similarly, for TI-security, the adversary cannot request the ciphertexts of the challenge keywords. In
addition, in this case, many PAEKS schemes (see [13,15]) impose other limitations such as the adversary is
not allowed to request trapdoors corresponding to either W or Wy*. In this article, we consider full CKT
attacks, where this limitation is removed.

In the following, we present the formal definitions of the security notions we will use. Note that in a
multiuser setting, the adversary can also choose a public key to give as extra input to the oracles, while in the
single-user setting, this public key is fixed.



6 =—— Marco Calderini et al. DE GRUYTER

3.3.3 (MU) full TI-security model

We describe the full TI-security game for an adversary A in the multi-user setting.

(D Initialization: Given a security parameter A, the challenger runs the setup algorithm to generate the global
system parameter Param. Then, it runs KeyGeng(Param) and KeyGeng(Param) to generate the target
sender’s key pair (pkq, sks) and the target receiver’s key pair (pkg, skg), respectively. The challenger
invokes the adversary A on input (Param, pKg, pkp).

(2) Phase 1: The adversary is allowed to adaptively issue queries to the following oracles for polynomially
many times.

— Trapdoor oracle Or: Given a keyword W and a public key pK,, the oracle computes the corresponding
trapdoor Ty with respect to pkg and skg, and returns Ty to A.

— Ciphertext oracle O¢: Given a keyword W and a public key pk,, the oracle computes the corresponding
ciphertext Gy with respect to skg and p_kR, and returns Gy to A.

(3) Challenge: At some point, A chooses two keywords (W', W7") with the restriction that (Wy', pky) and (W7, pkp)
have never been queried to O¢ in Phase 1. These keywords are submitted to the challenger as the challenge
keywords. The challenger randomly chooses a bit § € {0, 1}, computes Tz < Trapdoor(W§, pkg, skg), and
returns TW/; to A.

(4) Phase 2: The adversary continues to issue queries to Or and O¢ as above, with the restriction that neither
(W¢, pky) nor (W7, pkp) could be submitted to the ciphertext oracle.

(5) Guess: Finally, A outputs a bit B’ € {0, 1}. It wins the game if and only if 8’ = .

We define A’s advantage in correctly distinguishing the scheme’s trapdoors as Adv’;(A) = [Pr[’ = B] - % .

Definition 3.1. ([MU] Full TI-security) A PAEKS scheme satisfies trapdoor indistinguishability under a full CKT
attack and a CKC attack in the multi-user setting if, for all probabilistic polynomial-time adversaries A, the
advantage Adv’;(2) is negligible in A.

3.3.4 Standard CI-security model

We describe the standard CI-security game for an adversary A, in the single-user scenario.

(1) Initialization: Given a security parameter A, the challenger generates Param and prepares pk, and pk; as
in the previous Game. It then invokes the adversary A on input (Param, pkg, pkpg).

(2) Phase 1: The adversary issues queries to oracles Oy and O¢ as before, but in the single-user setting (no
public key is given in input to the oracles since it is implicitly set to pk, and pky, respectively).

(3) Challenge: At some point, A chooses two keywords (Wg, W;*), which have not been requested for trap-
doors nor ciphertexts, and submits them to the challenger as the challenge keywords. The challenger
randomly chooses a bit € {0, 1}, computes Cy; — Encrypt(Wy, sks, pkg), and returns Cy; to A.

(4) Phase 2: The adversary continues to issue queries to Or and O¢ as above, with the restriction that neither
W§ nor W' could be submitted to either oracle.

(5) Guess: Finally, A outputs a bit 8’ € {0, 1}. It wins the game if and only if 8’ = .

We define A’s advantage in correctly distinguishing the ciphertexts as Adv(2) = |Pr[g’ = B] - % .

Definition 3.2. (Standard CI-security) A PAEKS scheme satisfies ciphertext indistinguishability under a CKT
attack and a CKC attack, if, for all probabilistic polynomial-time adversaries A, the advantage Advgq(ﬁ) is
negligible in A.



DE GRUYTER Searchable encryption with randomized ciphertext and keyword == 7

4 The new scheme

In this section, we describe a new public-key authenticated SE scheme. For the sake of brevity, we condense

the two algorithms KeyGen, and KeyGen,, into a single step KeyGen.

* Setup. Given a security parameter A, the algorithm constructs two multiplicative groups of prime order p, G, and
Gr, arandom generator g of the group G and an admissible bilinear mape : G x G — Gr. Then, it selects two hash
functions H : {0,1}* - Gand H, : G — Z;. The global system parameters are Param = (G, Gr, e, p, g, H, H,).

» KeyGen. Given Param, the algorithm produces the following pair of keys for sender and receiver:
(pKs, sks) = (g% a) and (pKg, skg) = (g?, b), with a, b € Z; chosen randomly. From them, the sender and
the receiver can construct three common secrets: h,t € G and s € Z;. In particular, h = g%, t = g,
and s = Hy(t).

* Encrypt. Given a keyword W € {0, 1}*, pk,, and skg, the common secrets h, t, and s are obtained. The sender
selects a random r € Z and outputs the pair:

Gy =[G, Go] = [t - H(pK||pkg||W)*- g7, I'].

* Trapdoor. Given a keyword W € {0, 1}*, pk, and skg, the common secrets h, t, and s are obtained. The
receiver selects a random p € Z, and outputs the tuple:

Tw = [Q1, @y, Q3] = [e(t - H(pk|[pkgl[W)*, h?), g, hP].

* Test. Given in input any trapdoor Ty = [Q;, Q,, Qs], corresponding to a keyword W’, and any ciphertext
Cw = [C1, G;], corresponding to a keyword W, the test consists in checking the equivalence

e(Cl) QS) = Ql : e(CZ) QZ)

The correctness of the scheme is verified as follows. Since

e(Cy, Q3) = e(t - H(pKyl[pkgl|W)*- g7, hP) = e(t - H(pKk|[pkgl|[W)*, hP)- e(g", hP),
and
Q1 - e(Gy, Qy) = e(t - H(pk||pkyl|W"), hP)e(N, gP) = e(t - H(pk||pky||W )5, hP)e(g", hP),

if the keywords W and W’ are the same, then H(pK||pkg||W) = H(pk||pky||W") and the equivalence is
satisfied. If the keywords are different (W # W’), then H(pKg||pkg||W) # H(pK||pkg||W*) due to collision
resistance of the hash function H, and thus Q; # e(t - H(pKk|[pkg||W)*- g7, h*).

Remark 1. The aim of the KeyGen algorithm is to generate three secrets only known by the sender and the
receiver. Note that there are also other options in order to construct these secrets.

4.1 On the combination of keywords

Suppose that we want to allow the search also for combinations of keywords. That is, given two distinct
keywords, we want to allow the search of documents containing the first keyword, the second keyword, or
both keywords.

A trivial way to do this is, for the sender, to generate a ciphertext for each keyword characterizing the
document. The receiver, who wants to find a document containing n different keywords W;,..., W, will have to
verify that, among these ciphertexts, the test algorithm is satisfied at least once for all trapdoors Ty,..., T,

Another possible solution is to generate a ciphertext and a trapdoor for the combination of keywords. This
allows to generate only one trapdoor and so to reduce the number of tests needed.

For example, consider the case of two keywords. A document is characterized by the keywords W; and W5.

The sender generates the following ciphertexts:



8 —— Marco Calderini et al. DE GRUYTER

Cw; = [t - H(pKg||pkgl|W1)*- g7, h1],
Cuw, = [t - H(pKg||pkg||[W2)°- g7, h7],
Cwiaw, = [t - H(pK||pKg||[Wh)*- H(pK||pkg||[W2)*- g7, R3]

So, if the receiver wants to search for both Wj and W, a solution would be to create the trapdoor:
Twaw, = [e(t - H(pKg||pKg||W1)*H (pK|[pkgl| W), hP), P, hP].
Another solution is to encrypt the combination of W; and W, as follows:
[t - H(pKs||pkg|[WA||W2)*- g%, W7,

and then create the trapdoor for W;||W,. However, in this way, first of all, the sender and the receiver should
agree on a keyword ordering (e.g. lexicographic), so that it is always used with the same concatenation (since
using Wj||W;, instead of W||W; would change the output of the hash). Then, the sender needs to compute also
H(pkg||[pkg|| WA||W,)S, while, for the previous solution, the sender has already computed H(pkg||pkg||W;)® and
H(pkg|[pkg||W2)?, so it does not need to perform another hashing and exponentiation.

As a final remark, let us note that, if we do not use the shared secret t in the encryption and in the
trapdoor, then the server is able to generate valid ciphertexts corresponding to combinations of keywords.
Indeed, given two ciphertexts:

Cw; = [H(PKg|[PKg[|[Wh)* g7, W], Cw, = [H(pKs|[PKel W2)*- &7, R,

the server, just by multiplying them entry-by-entry, will obtain a valid ciphertext for the combination of the
keywords. That is,

Cw*Cuw, = [H (PKs|Ipkg|[W1)*- g7, h3]*[H (K| [Pkl W2)*- &7, %]
= [H (pK|[PKgl[W1)*H (pKg|[PKg|| W2)*- 87772, H72] = Gy

5 Security proofs

In this section, we prove that our PAEKS scheme is Cl-secure and (MU) fully TI-secure. Note that, if we
exchange the role of the Encrypt and Trapdoor algorithms, then we obtain a scheme TI-secure and (MU) fully
Cl-secure.

5.1 Trapdoor indistinguishability

Before stating the security result, recall that if we assume that the DBDH problem over (G, Gr, e) is intractable,
then the CDH problem over G is also intractable (see Definition 2.2).

Theorem 5.1. Under the DBDH assumption, our PAEKS scheme is (MU) fully TI-secure in a random oracle model.

Proof. To prove the theorem, we show that, for the proposed scheme, winning the related game with a non-
negligible advantage implies solving the DBDH problem with a non-negligible advantage.

Assume that there is a probabilistic polynomial time adversary A that breaks the trapdoor privacy of our
scheme with a non-negligible advantage er. We show in the following that there exists an algorithm 8 that is
able to solve the DBDH problem with a non-negligible advantage. O

Consider an instance of the DBDH problem, (G, Gr, e, p, g, 8%, 87, 8%, Z), where x,y,z € Z, are chosen
randomly, and Z is either a random element of Gr or equal to e(g, g)%. Let § be a bit such that g = 0 if
Z = e(g, £)¥% and S = 1 otherwise. The goal of 8 is to guess the bit , and it does so by simulating the (MU) full
TI-security game for A as follows.



DE GRUYTER Searchable encryption with randomized ciphertext and keyword == 9

5.1.1 Initialization

B controls the random oracles that define the hash functions H and H, and sets the system parameters to
Param = (G, Gr, e, p, g, H, H,). Then, it selects two random values a, b € Z, and sets pk; = g%, pk, = g%, so
skg = a and skg = b, therefore h = g%, Moreover, it selects another random value u € Z p and setst = g*. This

implies that Hy(g®) = u. The last secret s is implicitly set to be equal to X, so that Hy(g*) = x. To simplify the
notation, we set v = ab. Then, 8 calls A on input (Param, pkg, and pkp).

5.1.2 Phase 1

In this phase, four oracles are involved. The oracle for H, only requires an element in G as input. The oracle for
H requires in input a tuple in G x G x {0, 1}*. The oracles for encryption and trapdoor require in input a pair
inG x {0, 1}*. The number of queries for the different oracles is limited, specifically to at most g, gy, q;, and g,
queries for the oracles Oy, Oy, Or, and Oc, respectively. To simplify the description of the game, we assume
that the adversary would not issue a pair (g;, W;) to Or with g, # g% (or O¢ with g # g°) before issuing the
following queries: (g;, pky, W) (or (pks, &, Wi) to Oy; g (or gl.b) to Op,; and g% to O g, where a is the output of
the previous query. To the hash oracles, we associate two lists Ly, and Ly (initially empty) collecting the

outputs of the hashes. The mentioned oracles operate as follows:
* Hash Oracle Op,. Given an element g; € G, if there is an element in Ly, of the form (g, n;), 8 returns n;. If

& = g% then B aborts and outputs a random bit A’ as its guess of B. If g, = g%, then B sets n; = u. Otherwise,
it selects a random n; € Z,,. The pair (g;, n;) is added to the list Lg,. B returns Hy(g;) = n; as the hash value of
g to A.

* Hash Oracle Og. Given a tuple (p_ks, p_kR, W), then B returns h; if there is a tuple in Ly of the form
((ﬁ ,ﬁR, W), hy, a;, ¢;). Otherwise, B selects a random aq; € Z, and a biased ¢ € {0,1} such that
Pr[c; = 0] = 6. Then, B sets h; = g - g% if ¢; = 0, and h; = g% otherwise. The tuple ((pK, Pk, WD), hi, a;, Ci)
is added to the list Ly. Finally, 8 returns to AH(pk||pkgl|W;) = h; as the hash value of W;.

« Trapdoor oracle Or. Given a pair (pk, W), B selects a random p, € Z,, and retrieves from Ly the tuple
((pkg, Pkg, W), i, @;, ci). If pKg = g%, then B computes the trapdoor T; as follows:

—If ¢; = 1, then B sets T; = [e(g"(g¥)%, g), g7, g*P].
- If ¢; = 0, then B sets T; = [e(g4(g¥)%, gP)-e(g?, (g¥)P), g~ g"P1].

Note that T; is a well-distributed trapdoor: in fact, in the first case, we have H(pKg||pkgy||W;) = g%, and in the
second case, H(pKg||pkg||W) = g% - g%
« Otherwise, if pkg # pkg, then B sets h = (pkq)? and retrieves (h, n;) from Ly,. It sets { = g™, then it retrieves
(t, 5) from Ly, Then, it returns the trapdoor T; = [e(f - hf, k"), g?, h"].
* Ciphertext oracle O¢. Given a pair (ﬁR, W), 8 retrieves from Ly the tuple ((pk ,p_kR, W), hy, a;, ¢;) and
selects a random r; € Z,. We distinguish two cases:
- If pk, # pkg, B sets h = (pky)* and retrieves (h, n;) from Ly,. Then, it sets { = g™ and retrieves (f, §) from
Ly, Finally, 8 returns the ciphertext C; = [C;y, Ci2] = [T - hf - g% R"].
- If pk, = g°, then B checks the value of ¢; retrieved from Ly. If ¢; = 0, then it aborts and outputs a random
bit f” as its guess of B. Otherwise, it returns the ciphertext G; = [C; 1, Ci2] = [g%*"(g*)%, g""i]. Note that C; is a
well-distributed ciphertext.

5.1.3 Challenge

The adversary A submits two keywords Wg and Wy, and we assume that (pkg, pkp, W) and (pkg, pkg, W)
have been queried to O, but (pk,, W) and (pk,, W) have not been queried to Oc. 8 retrieves from Ly the



10 — Marco Calderini et al. DE GRUYTER

tuples ((pKg, pky, W), h¢', ag, ¢g) and ((pk, pke, Wi, b, af', ¢f). If ¢f = ¢f = 1, then it aborts and outputs a
random bit 8 as a guess of S. If ¢; = ¢;* = 0, then let y be a bit selected at random. Otherwise, let y be the bit
such that ¢ = 0. Note that y is uniformly distributed in {0, 1}. 8 then computes the trapdoor

T* = [Q Q) Q1 = [(Z - e(g*, &)V e(g, &)Y, 87, (§7)'].
Note that, if Z = e(g, £)¥7, then
QF =(Z - e(g*, 807 e(g, 8)) = (e(g, &) e(g", &) e(g*, 8”))
= e(g" - g°7*), g%) = e(t - H(PKs|[pKgl|W;)°, h).

Therefore, T* is a correct trapdoor. In this case, the random value chosen for the trapdoor corresponds to y.
Otherwise, the first entrance in Q;* is a random element of G,. The tuple T* is returned to the adversary.

5.1.4 Phase 2

A continues issuing queries to the oracles, with the restriction that it cannot issue (pkp, W) and (pk,, W7) to
Oc. In this phase, B sets ¢; = 1 for all new queries to Op.

5.1.5 Guess

Finally, A outputs a bit y’. If y’ = y, then B outputs p’ = 0, otherwise g’ = 1.

We analyse now the success probability of 8. Denote by abt the event that 8 aborts during the game,
which is divided into three events.
* abtg: if g; = g in the simulation of O g,. Since u was selected randomly over Z,, therefore determining g* is

either a random guess or, given that H,(g®) = u, corresponds to solving the CDH. Therefore, under some
limitations on the number of queries q;,, we have that Pr[abt,] is negligible.

« ab: if ¢; = 0 and pk, = g? in the simulation of Oc. We can overestimate this probability by assuming that
pky = g” in every call to Oc. Each ¢; is selected randomly and independently, therefore a lower bound to the
probability that abt; does not happen is Pr[abt] < (1 - ).

+ abty: if ¢ = ¢ff = 1 in the generation of the challenge trapdoor. Therefore, Pr[abt,] =1 - (1 - )%

So, the probability that 8 does not abort in the game can be computed as follows:

Pr[abt] = Pr| abty]- Pr[abt,]: Pr|abt] < Pr[abty)-(1 - 8§)4(1 - (1 - §)2).

Ifweset§=1- /qqi 1 then we have that the probability takes the maximal value
C

Pr[mo]'

qc qC/Z' 2
qc +2 qc+2°

which is approximately Pr[ abty|- % and thus non-negligible.

We have seen that, if § = 0 (i.e, Z = e(g, £)¥%) and 8 does not abort, then the view of A is identically
distributed as in a real attack. In this case, if A succeeds in breaking the trapdoor privacy of our scheme, then
B succeeds in solving the DBDH problem instance. Note also that, if § = 1, then A acts on random inputs, so 8
effectively outputs a random guess, and thus the probability of guessing correctly is % Therefore, the prob-

ability of guessing the bit f (and thus solving the DBDH problem) is:



DE GRUYTER Searchable encryption with randomized ciphertext and keyword = 11

Pr{f’ = B]=Prlp’ = B | B = OJPr[f = 0] + Prlp’ = B | B = 1|Pr[ = 1]
~lerip=p1p=01+Pelp=p|p=1]

i =§18=0]+ 3

Pr(f’=f | f = 0 A abt|Pr[abt] + Pr[8’ = § | § = 0 A abt|Pr{abi] + %

N N= N =, N =N

(1= Pr[aT) + (e + 2)Prfabt] + %]

— 1
= —¢grPr[abt] + 2
Thus, if the advantage er of the adversary A is non-negligible, then the advantage |[Pr[f’ = ] — 1/2| of B is also
non-negligible.

5.2 Ciphertext indistinguishability

Recall that, if we assume that the mDLIN problem over G is intractable, then the CDH problem over G is also
intractable (see Definition 2.4).

Theorem 5.2. Under the mDLIN assumption, our PAEKS scheme has ciphertext indistinguishability under CKC
and CKT attacks in random oracle model.

Proof. To prove the theorem, we show that winning the related game with a non-negligible advantage implies
solving the mDLIN problem with a non-negligible advantage. Assume that there is a probabilistic polynomial
time adversary A, which breaks the ciphertext indistinguishability of our scheme with a non-negligible
advantage ec. We want to show that we can build an algorithm 8 that is able to solve the mDLIN problem
with a non-negligible advantage.

Consider an instance of the mDLIN problem (G, Gr, e, p, g, g%, g7, &, g”, Z), where x,y, ], and k are
randomly chosen from Z,, and Z is either a random element of G or Z = g/*k. Let B be a bit such that = 0 if

Z = gi*¥ and B = 1 otherwise. The goal of B is to guess the bit 3, and it does so by simulating the Cl-security
game for A as follows. O

5.2.1 Initialization

B controls the random oracles that define the hash functions H and H, and sets up the parameters as
Param = (G, Gr, e, p, g, H, H,). Then, 8 selects a random value a € Z, and it sets pk, = g% and pk = g"/a,
so skg = a and sk = x/a. Therefore, the common secret h corresponds to g*. Moreover, 8 selects another
random value u € Z, and sets t = g*. The last common secret is set as s = y. Therefore, we have Hy(g*) = u
and Hy(g") = y. Since we are in a single-user setting, we simplify the notation by writing H(W) instead of
H(pKg||pkg||W). Then, 8 calls A on input (Param, pKg, pkp).

5.2.2 Phase 1

B answers the adversary’s queries with the same oracles and with the same assumptions considered in the TI
case, but in a single-user setting. We describe the differences with the oracles of the previous game.
— The hash oracle Oy, aborts if it is called on g“.



12 — Marco Calderini et al. DE GRUYTER

— The action of the hash oracle Oy is as follows. Given a keyword W, it selects a random a; € Z, and a biased
¢; € {0, 1} such that Pr[c; = 0] = 6.
It sets h; = gk - g% if ¢; = 0, and h; = g% otherwise. The tuple (W}, h;, a;, ¢;) is added to the list Ly (initially
empty). It returns H(W,) = h; as the hash value of W} to A.

— For the trapdoor oracle Or, given in input a keyword W, B retrieves the tuple (W, h;, a;, ¢;) from Lg. If ¢; = 0,
it aborts and outputs a random bit 8 as a guess of . In the other case (wWhere H(W;) = g%), it selects a
random p; and outputs

T; = [e(g"(g")%, (g¥)P), gP, (g9)P].
— Similarly, for the ciphertext oracle O, given in input a keyword W}, 8 retrieves the tuple (W, h;, a;, ¢;) from

Ly. If ¢; = 0, it aborts and outputs a random bit 8’ as a guess of . Otherwise, 8 selects a random r; and
outputs

G = [g"(g”)"g", (g")1].

Note that both the ciphertext and trapdoor oracles’ answers are correctly distributed.

5.2.3 Challenge

When the adversary submits two keywords W and Wy*, queried to Oy but not to Oy or O, B retrieves from
Ly the tuples (W¢, hg', ag, ¢’y and (W7, b, aff, ¢f). If ¢5 = ¢f* = 1, then it aborts and outputs a random bit f’ as
a guess of . If ci* = 0 or ¢ = 0, it sets y be the bit such that ¢ = 0, so ¥ = gk’ - g% If ¢ff = ¢ = 0, then y is
selected at random. Note that, as in the previous game, y is uniformly distributed. 8 computes the ciphertext

C*=[Ct, ¢l =2 g8, 871
If Z = g/*k, then we have G = gi*kgU(g))4 = gig¥@ kgl = tH(W)’g/, and Cf = W/. In this case, the

random element corresponds to j and C* is a proper ciphertext. If Z is a random element of Gy, so it is C*.
The tuple C* is returned to the adversary.

5.2.4 Phase 2

A continues to issue queries to the oracles, with the restriction that it cannot issue Wy and Wy* to Oy nor Oc.
As in the previous game, in this phase, 8 sets ¢; = 1 for all new queries to Oy.

5.2.5 Guess

Finally, A outputs a bit y’. If y’ = y, then B outputs p’ = 0, otherwise g’ = 1.

Denoted by abt the event that 8 aborts during the game, the probability of this event is similar to the one
in the previous game.

* abty: if g; = g" in the simulation of O ,. Since u was selected randomly over Z, therefore determining g is
either a random guess or, given that Hy(g*) = u, corresponds to solving the CDH since the adversary knows
pkg = g¥/ and pk, = g% Therefore, under some limitations on the number of queries qy, Prlabto] is
negligible.

¢ abty: if ¢; = 0 in the simulation of O¢ or Or. Each ¢; is selected randomly and independently, therefore the
probability that abt; does not happen is Pr[abt] = (1 — §)4c*4r,

+ abty: if ¢ = ¢ff = 1 in the generation of the challenge trapdoor. Therefore, Pr[abt,] =1 - (1 - §)%



DE GRUYTER Searchable encryption with randomized ciphertext and keyword =—— 13

Table 1: Comparison of our scheme with the one proposed in in the study by Qin et al. [15]

Ciphertext Trapdoor TI-security CI-security
[15] Randomized Deterministic Standard in multi-user Fully in multi-user
This article Randomized Randomized Fully in multi-user Standard in single-user

So, the probability that 8 does not abort in the game is bounded by:
Pr[abt] = Pr[ abto] Pr[abt]- Pr[abt,].

With§ =1- [-Z"% e obtain:
Gr+qc+2

Pr[abt] = Pr[ abt]:

(Go+ac)/2
Go*tq |°°

qo+qc+2

qQ+qC+2’

Wthh is approximately equal to Pr[ abtg]- m and thus non-negligible. We have seen that, if § = 0 (i.e,,

= g/*k) and B does not abort, then the view of A is identically distributed as in a real attack. In this case, if
A succeeds in breaking the ciphertext privacy of our scheme, then 8 succeeds in solving the mDLIN problem
instance. As before, if § = 1, then A acts on random inputs, so 8 effectively outputs a random guess, and thus
the probability of guessing correctly is % Therefore, the probability of guessing the bit f (and thus solving the
mDLIN problem) is, just like in the previous game:

Pr(p’ =] = eTPr[abt] + %

Thus, if the advantage ¢ of the adversary A is non-negligible, then the advantage |Pr[f’ = B] — 1/2| of B is also
non-negligible.

To better understand the improvements of the proposed scheme, we present a comparison with the PAEKS
scheme presented in the study by Qin et al. [15], see Table 1.

6 Conclusions and open problems

In this work, we presented a new PAEKS scheme, which not only randomized the ciphertext but also the

trapdoor. We proved that our scheme is fully TI-secure and CI-secure (or fully CI-secure and TI-secure if we

swap the encryption and trapdoor algorithms). We also discussed how to use our SE scheme for combination
of keywords.
Future work could be towards two directions:

* To modify our scheme in order to obtain trapdoors that implement disjunctive queries, i.e., that can be
satisfied simultaneously by subsets of a set of keywords. This would reduce the amount of information
leaked to the cloud server when it performs the test since it is possible to tune the search more finely and
disclose only the overall match between trapdoors and ciphertexts.

* To extend our scheme to provide also CI-security in the multi-user setting.

Acknowledgements: This work has been accepted for presentation at CIFRIS23, the Congress of the Italian
association of cryptography “De Componendis Cifris.” The first, second, and last authors are members of the
INdAM Research Group GNSAGA.

Funding information: This work has been partially supported by the project SERICS (PE00000014) under the
MUR National Recovery and Resilience Plan funded by the European Union - NextGenerationEU. Funding by
the MUR Excellence Department Project awarded to Dipartimento di Matematica, UniversitAa di Genova, CUP



14 — Marco Calderini et al. DE GRUYTER

D33C23001110001, and by the European Union within the program NextGenerationEU. The third author
acknowledges support from Ripple’s University Blockchain Research Initiative.

Author contributions: All authors have accepted responsibility for the entire content of this manuscript and
approved its submission.

Conflict of interest: Prof. Massimiliano Sala is the Editor-in-Chief of the Journal of Mathematical Cryptology
and was not involved in the review process of this article.

Data availability statement: Data sharing is not applicable to this article as no datasets were generated or
analysed during the current study.

References

[11 Boneh D, Crescenzo GD, Ostrovsky R, and Persiano G. Public key encryption with keyword search. In: International conference on
the theory and applications of cryptographic techniques. Berlin, Heidelberg: Springer; 2004. p. 506-22.

[21 Song DX, Wagner DA, Perrig A. Practical techniques for searches on encrypted data. In: 2000 IEEE Symposium on Security and
Privacy. Berkeley, CA, USA: IEEE Computer Society; 2000. p. 44-55.

[31 Demertzis I, Chamani JG, Papadopoulos D, Papamanthou C. Dynamic searchable encryption with small client storage. In: 27th
Annual Network and Distributed System Security Symposium. NDSS 2020, San Diego, California, USA, 23-26 February 2020. The
Internet Society; 2020.

[4] He D, Ma M, Zeadally S, Kumar N, Liang K. Certificateless public key authenticated encryption with keyword search for industrial
internet of things. IEEE Trans Ind Inform. 2018;14(8):3618-27.

[5] Noroozi M, Karoubi I, Eslami Z. Designing a secure designated server identity-based encryption with keyword search scheme: still
unsolved. Ann des Telecommun. 2018;73(11-12):769-76.

[6] Qin B, ChenY, Huang Q, Liu X, Zheng D. Public-key authenticated encryption with keyword search revisited: security model and
constructions. Inf Sci. 2020;516: 515-28.

[71 Soleimanian A, Khazaei S. Publicly verifiable searchable symmetric encryption based on efficient cryptographic components. Des
Codes Cryptography 2019;87(1):123-47.

[8] Byun W, Rhee HS, Park H, Lee DH. Off-line keyword guessing attacks on recent keyword search schemes over encrypted data. In:
SDM 2006, LNCS 4165, 2006; 2006. p. 75-83.

[9]1 Jeong IR, Kwon JO, Hong D, Lee DH. Constructing PEKS schemes secure against keyword guessing attacks is possible? Comput
Commun. 2009;32(2):394-6.

[10] LuY,WangG, Li). Keyword guessing attacks on a public key encryption with keyword search scheme without random oracle and its
improvement. Inf Sci. 2019;479:270-6.

[11] Yau W-C, Heng S-H, Goi B-M. Off-Line keyword guessing attacks on recent public key encryption with keyword search schemes. In:
Rong C, Jaatun MG, Sandnes FE, Yang LT, Ma J, (eds.) ATC 2008. LNCS. Vol. 5060. Heidelberg: Springer; 2008. p. 100-5.

[12] Yau W, Phan RC, Heng S, Goi B Keyword guessing attacks on secure searchable public key encryption schemes with a designated
tester. Int ] Comput Math. 2013;90(12):2581-7.

[13] Huang Q, Li H. An efficient public-key searchable encryption scheme secure against inside keyword guessing attacks. Inf Sci.
2017;403:1-14.

[14] Noroozi M, Eslami Z. Public key authenticated encryption with keyword search: revisited. IET Inf Secur. 2019;13(4):336-42.

[15] Qin B, Cui H, Zheng X, Zheng D. Improved security model for public-key authenticated encryption with keyword search. In:
International Conference on Provable Security. Cham: Springer; 2021. p. 19-38.

[16] Emura K. Generic construction of public-key authenticated encryption with keyword search revisited: stronger security and efficient
construction. Proceedings of the 9th ACM on ASIA Public-Key Cryptography Workshop; 2022.

[17]1 Boneh D, Franklin M. Identity-based encryption from the Weil pairing. In: Annual international cryptology conference. Berlin,
Heidelberg: Springer; 2001. p. 213-29.

[18] Bethencourt J, Sahai A, and Waters B. Ciphertext-policy attribute-based encryption. In: 2007 IEEE Symposium on Security and
Privacy (SP’07). IEEE; 2007. p. 321-34.

[19] Joux A. A one round protocol for tripartite Diffie-Hellman. In: International algorithmic number theory symposium. Berlin,
Heidelberg: Springer; 2000. p. 385-93.

[20] Boneh D, Lynn B, Shacham H. Short signatures from the Weil pairing. In: International Conference on the theory and Application of
Cryptology and Information Security. Berlin, Heidelberg: Springer; 2001. p. 514-32.

[211 Mascia C, Sala M, Villa I. A survey on functional encryption. Adv Math Commun. 2023;17(5):1251-89.



	1 Introduction
	2 Preliminaries
	2.1 Bilinear pairing
	2.2 Complexity assumptions

	3 Preliminaries on public-key SE schemes
	3.1 PEKS
	3.2 PAEKS
	3.3 Security models
	3.3.1 Chosen keyword to ciphertext (CKC) attacks
	3.3.2 Chosen keyword to trapdoor (CKT) attacks
	3.3.3 (MU) full TI-security model
	3.3.4 Standard CI-security model


	4 The new scheme
	4.1 On the combination of keywords

	5 Security proofs
	5.1 Trapdoor indistinguishability
	5.1.1 Initialization
	5.1.2 Phase 1
	5.1.3 Challenge
	5.1.4 Phase 2
	5.1.5 Guess

	5.2 Ciphertext indistinguishability
	5.2.1 Initialization
	5.2.2 Phase 1
	5.2.3 Challenge
	5.2.4 Phase 2
	5.2.5 Guess


	6 Conclusions and open problems
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


