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Abstract: We characterize the possible groups ∕E N� �( ) arising from elliptic curves over ∕N� � in terms of
the groups E p�( ), with p varying among the prime divisors of N . This classification is achieved by showing that
the infinity part of any elliptic curves over ∕pe� � is a ∕pe� �-torsor, of which a generator is exhibited. As a
first consequence, when ∕E N� �( ) is a p-group, we provide an explicit and sharp bound on its rank. As a
second consequence, when =N pe is a prime power and the projected curve E p�( ) has trace one, we provide an
isomorphism attack to the elliptic curve discrete logarithm problem, which works only by means of finite ring
arithmetic.
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1 Introduction

Elliptic curves have been providing number theory with a fertile field of intense research for the last century,
from theoretic [1–4], algorithmic [5,6], and applied [7–10] sides. In their basic definition, these objects consist of
non-singular plane projective cubics, defined as the zero-set of a Weierstrass polynomial over a given base
field. It is well known that these curves are actually abelian varieties with the chord-tangent sum [11–13]. The
study of the group structure arising from this operation has attracted huge attention, and its grasp has proven
to be remarkably challenging. Beyond its indisputable algebraic interest, the security of cryptographic proto-
cols based on these curves relies upon the nature of their addition operation; hence, the investigation of these
groups has received impetus in the last few decades.

When the underlying field is finite, any group that may be realized as the point group of an elliptic curve is
known [14,15]. Nevertheless, both their distribution [16] and their efficient explicit description [17] are lines of
open research. We refer to the study by Sala and Taufer [18] for an overview of the known classification of
groups arising from curves with a Weierstrass model.

Elliptic curves may also be defined over rings, among which ∕N� � is a significant instance both from a
theoretical perspective [19] and for cryptographic applications [20,21]. In this study, we are mainly interested
in their algebraic, especially groupal, properties: we classify all the possible groups arising from elliptic curves
over any residue ring ∕N� � in terms of their projected components modulo the prime divisors of N . More
precisely, if p is a prime integer and v Np( ) is the p-adic valuation of N , the Chinese reminder theorem provides
a group isomorphism:

∕ ≃ ⊕ ∕E N E p ,

p N

v Np� � � �( ) ( )
∣

( )
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whose components are known [12,19] to split as:

∕ = ⊕E p H E .

v N
p

p� � �( ) ( )( )

The subgroup at infinity H , given by the kernel of the canonical projection, is known to be a p-group, since
= −H pv N 1p∣ ∣ ( ) [19]. However, the structure of this group was only recently determined in terms of 0-layers of

elliptic loops [22].
In this work, we provide a complete classification result based only on the arithmetic of curves over

∕N� � . In particular, we prove the following group isomorphism:

∕ ≃ ⊕ ⊕ ∕ ⊕ ⊕

≠

−

=

E N E p G ,

p N

E p

p
v N

p N

E p

p
1

p

p

p

� � � � �

� �

( ) ( )
∣

∣ ( )∣

( )

∣

∣ ( )∣

where everyGp may be either ∕pv Np� �( ) (cyclic case) or ⊕ ∕ −pp
v N 1p� � �( ) (split case). This result is obtained by

proving that the infinity part of ∕E pe� �( ) is a ∕pe� �-torsor, which is far from holding over generic local rings
[23]. By proving it, we refine the case =t 0 of [22, Proposition 10.3], as we explicitly exhibit a generator of this
cyclic subgroup.

From the aforementioned classification, we derive some consequences. First, we give an explicit bound on
the rank of ∕E N� �( ) when the points of such curve form a p-group. This bound is sharp and depends only on p,
determining as a corollary infinitely many groups that cannot arise from such curves. The proof of this bound
also provides a systematic way for generating such p-curves of admissible ranks. Second, we exhibit a poly-
nomial-time isomorphism attack to the elliptic curve discrete logarithm problem (ECDLP) over anomalous
curves. Although similar attacks have already appeared [24,25], we find this approach noteworthy as its correct-
ness and execution may be elaborated with only finite ring arithmetic, which makes it slightly more elementary.

This article is organized as follows. In Section 2, we recall some known results and definitions, including
the group structure of elliptic curves over finite fields and the definition of such curves over rings. In Section 3,
the group structure of elliptic curves over ∕N� � is investigated and we derive our main result (Theorem 2).
Consequently, in Section 4, we present a bound to the rank of p-groups that may arise from elliptic curves over
∕N� � . An isomorphism attack to the ECDLP over anomalous curves is described in Section 5. Finally, con-

clusions and further work are discussed in Section 6.

2 Preliminaries

In this study, R always denotes a commutative ring with unity and R* is the set of its invertible elements. We
use capital letters X Y, , and Z to denote the elements of R, while lowercase ones are variables in R x y z, ,[ ].

Definition 1. (Primitivity) A finite collection ⊆∈
+X Ri i n

n
0, … ,

1{ } { } is called primitive if the ideal ∈Xi i n R0, … ,
({ } ){ } is R

itself.

2.1 Elliptic curves over finite fields

The trace t of any elliptic curve over a finite field q� is constrained by the Hasse bound [11, Theorem V.1.1], i.e.,

= + −t q E1 q�∣ ( )∣

is bounded by

− ≤ ≤q t q2 2 .

Not every possible integer t in the aforementioned interval occurs as the trace of an elliptic curve over q� , as
detailed in [26, Theorem 4.1]. However, the same theorem shows that every such t may be achieved if q is a
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pure prime, i.e., the Hasse interval over prime fields is full. From this work, a complete characterization of the
possible point groups for elliptic curves over finite fields has seen the light, independently discovered by two
authors [14,15].

By virtue of these works, we know all the possible groups arising from elliptic curves over finite fields,
which we will use in Section 3 to characterize those of curves over ∕N� � .

2.2 Strong rank

To deal with matrices over commutative rings, it is worth introducing a stronger notion of matrix rank.

Definition 2. (Minor ideal) Let ∈ ≥n m,
1

� and ∈A M Rn m, ( ). For every integer ≤ ≤t n m1 min ,{ }, we define the
t-minor ideal I At( ) as the ideal generated by the ×t t minors of A. We also define by convention =I A R

0
( ) and

for every >t n mmin ,{ }, we set =I A 0t( ) ( ).

Definition 3. (Strong rank) Let ∈ ≥n m,
1

� and ∈A M Rn m, ( ). We define the strong rank of A as:

= ∈ ≠≥A t I Ark max 0 .t0
�( ) { ∣ ( ) ( )}

This notion of rank is easily shown to be never lower than the usual notion of rank over rings [27, Chapter
4]. The convenience of using this rank relies on the following result.

Lemma 1. Let ∈ ≥n m,
1

� and ∈A M Rn m, ( ) be a matrix whose entries are primitive, then the following are
equivalent.
(i) =Ark 1( ) .
(ii) The ×2 2 minors of A vanish.
(iii) All the primitive vectors of Rn that may be obtained from an R-linear combination among the columns of A

are equal up to R*-multiples.

Proof. Let = ≤ ≤
≤ ≤

A ai k i n

k m

, 1

1

( ) .

[ ⇒i ii] Since =Ark 1( ) , then =I A 0
2
( ) ( ); hence, all the generators of I A

2
( ) vanish.

[ ⇒ii iii] Let =v v v, …, n1 11 1
( ) and =v v v, …, n2 21 2

( ) be two primitive column combinations. Since v
1
is

primitive, there are ∈α α R,…, n1
with

∑ = ∈
=

α v R1 .

i

n

i i

1

1

Any ×2 2 minor of the ( ×n 2)-matrix v v
1 2

( ∣ ), whose columns are v
1
and v

2
, is an R-linear combination of the

×2 2 minors of A; hence, it vanishes. Thus, for every ∈i j n, 1, …,{ }, we have =v v v vi j j i1 2 1 2
, then

∑ ∑ ∑⎜ ⎟ ⎜ ⎟ ⎜ ⎟= ⋅ =
⎛
⎝

⎞
⎠

=
⎛
⎝

⎞
⎠

=
⎛
⎝

⎞
⎠= ≤ ≤ = ≤ ≤ =

v v α v v α v v α v v1 .

i

n

i i j

j n i

n

i j i

j n i

n

i i2 2

1

1 2

1
1

1 2

1
1

2 1

This proves that v
2
is a multiple of v

1
, and since also v

2
is primitive, then the scalar factor has to be a unit,

i.e., ∑ ∈= α v R*i

n

i i1 2
.

[ ⇒iii i] For every pair of columns ck and ch of A, there is ∈r R*kh such that =c r ch kh k . Therefore, for every
≤ ≤i j n1 , , we have

− = − =a a a a r a a a a 0,ik jh ih jk kh ik jk ik jk( )

which shows that =I A 0
2
( ) ( ). Moreover, since the entries of A are primitive, we have =I A R

1
( ) , so that

=Ark 1( ) . □
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2.3 Elliptic curves over rings

Let n be a non-negative integer. The projective n-space over R is defined in order to respect projections on any
non-zero quotient of R, as follows.

Definition 4. (Projective n-space) The projective n-space over R is the set of orbits of primitive tuples in +Rn 1

under the action of elements ∈u R* given by:

=u X X uX uX, …, , …, .n n0 0
( ) ( )

It is denoted by Rn� ( ), while ⋯ ∈X X R: : n
n

0
�( ) ( ) represents the orbit of ∈ +X X R, …, n

n
0

1( ) .

An elliptic curve over R may be defined [19] to properly extend a family of elliptic curves over ∕R m, for m

ranging among all the maximal ideals of R, provided that this ring satisfies the following condition.
Condition I [19] For every pair ∈ ≥n m,

1
� and every matrix

= ∈≤ ≤
≤ ≤

A a M Rij i n

j m

n m1

1

,
( ) ( )

with strong rank =Ark 1( ) and primitive entries, there exists an R-linear combination of the columns of A

whose entries are primitive.
In this work, we will only deal with elliptic curves that may be defined via their short Weierstrass

equation, which is not restrictive when ∈ R6 *.

Definition 5. (Elliptic curve over R) Let R be a commutative ring with unity satisfying Condition I and let
∈A B R, such that

= − + ∈Δ A B R4 27 *.A B,
3 2( )

The elliptic curve E RA B, ( ) is defined as:

= ∈ = + +E R X Y Z R Y Z X AXZ BZ: : .A B,
2 2 3 2 3�( ) {( ) ( )∣ }

Given an elliptic curve =E E RA B, ( ), we denote by = ∈ E0 : 1 : 0� ( ) its zero element, with = ∩E E Ra
aff

2� ( ) its
affine points and with ∞E the remaining points, which are called points at infinity.

On these curves, a sum operation may be explicitly defined on an open covering of ×E R E RA B A B, ,
( ) ( ) by

means of 2, 2( )-bidegree polynomials [28,29]. This operation extends the usual point addition with respect to
projections, i.e., for every proper ideal ⊊I R, we have a well defined group homomorphism:

↠ ∕π E R E R I: .A B A B, ,
( ) ( )

We recall for convenience the two addition laws we use in this work: the sum of =P X Y Z: :
1 1 1 1

( ) and
=P X Y Z: :

2 2 2 2
( ) is given by any primitive linear combination of S S S: :

1 2 3
( ) and T T T: :

1 2 3
( ), where1

= − + + − − − + − −
= − − − − − − + − +
+ −

= − − − + + −

S X Y X Y Y Z Y Z X Z X Z Y Y A X Z X Z X Z X Z B X Z X Z Z Z

S X X X Y X Y Y Y Y Z Y Z A X Y X Y Z Z A Y Z Y Z X Z X Z

B Y Z Y Z Z Z

S X X X Z X Z Y Z Y Z Y Z Y Z A X Z X Z Z Z

3 ,

3

3 ,

3

1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2

2 1 2 1 2 2 1 1 2 1 2 2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 1

1 2 2 1 1 2

3 1 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2

( )( ) ( ) ( )( ) ( )

( ) ( ) ( ) ( )( )

( )

( ) ( )( ) ( )

and



1 Addition laws corresponding to 0 : 0 : 1( ) and 0 : 1 : 0( ) as in [28, Theorem 2].

4  Massimiliano Sala and Daniele Taufer



= + − + − + + − +
− + + + +

= + + + − + − +

− + − +

= + + + + + + + +
+ +

T Y Y X Y X Y AX X Y Z Y Z A X Y X Y X Z X Z B X Y X Y Z Z

B X Z X Z Y Z Y Z A Y Z Y Z Z Z

T Y Y AX X BX X X Z X Z A X Z X Z X Z A X Z X Z X Z

ABZ Z X Z X Z A B Z Z

T X X X Y X Y Y Y Y Z Y Z A X Y X Y Z Z A X Z X Z Y Z Y Z

B Y Z Y Z Z Z

3

3 ,

3 9 2 2

3 9 ,

3

3 .

1 1 2 1 2 2 1 1 2 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2 1 1 2

1 2 2 1 1 2 2 1

2

1 2 2 1 1 2

2 1

2

2

2

1

2

2

2

1 2 1 2 2 1

2

1 2 1 2 2 1

2

2 1 1 2 2 1

1 2 1 2 2 1

3 2

1

2

2

2

3 1 2 1 2 2 1 1 2 1 2 2 1 1 2 2 1 1 2 1 2 2 1 1 2 2 1

1 2 2 1 1 2

( ) ( ) ( )( ) ( )

( )( ) ( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )( )

( )

A compact and efficient way for computing the latter addition law may be found in [22, Lemma 2.1]. Similar
concise formulas over any characteristics were established in [23, Proposition 3.2].

3 Elliptic curves over ∕∕N� �

Let ∈ ≥N
2

� be an integer. Hereafter, we consider elliptic curves defined over the ring = ∕R N� � , which
satisfies Condition I. More generally, in the study by Lenstra [19], this condition has been proved to hold for
every ring with a finite number of maximal ideals. Here, we show that ∕N� � underlies a condition even
stronger than Condition I.

Lemma 2. Let ∈ ≥N
2

� be an integer and A be a matrix over ∕N� � whose entries are primitive; then, there
exists a linear combination of the columns of A that is primitive. In particular, = ∕R N� � satisfies Condition I.

Proof. Let =A c c c… m1 2
( ∣ ∣ ∣ ) be the columns of the considered matrix. Since A is primitive, for every prime p N∣ ,

there are coefficients ∈ ∕α α p,…,

p

m

p

1
� �

( ) ( ) such that the vector

∑=
=

v α cp

i

m

i

p

i

1

( ) ( )

is primitive over ∕p� � . By the Chinese reminder theorem, we may find integers ∈β β,…,
m1

� solving, for
every prime divisor p of N , the congruence system:

≡β α pmod .
i i

p( )

Therefore, ∑ = β ci

m

i i1
is easily seen to be a primitive combination of the columns of A. □

We now recall how the group of points of an elliptic curve over ∕N� � can be described by the curve
projections over the p-components of this ring, with p ranging among the prime divisors of N .

Proposition 1. [12, Corollary 2.32] Let N
1
and N

2
be coprime integers and let ∈A B, � such that

∈ ∕Δ N N *A B, 1 2
� �( ) . Then, the canonical projections induce a group isomorphism:

∕ ≃ ∕ ⊕ ∕E N N E N E N .A B A B A B, 1 2 , 1 , 2
� � � � � �( ) ( ) ( )

Thus, it is sufficient to study the structure of elliptic curves ∕E pA B
e

,
� �( ) for any prime p and positive

integer e, which is the main goal of this section. We begin by noting that the points ∈ = ∕P E E pA B
e

,
� �( ) of

such curves have prescribed representatives:
– If ∈P Ea, then there are ∈ ∕X Y p,

e� � such that

=P X Y: : 1 .( )

– If ∈ ∞P E , then there are ∈ ∕X Z p p,

e� �( ) such that

=P X Z: 1 : .( )

Group structure of elliptic curves over Z/NZ  5



The size of these curves is known, as reported in the next lemma.

Lemma 3. [19, Section 4] Let p be a prime, ∈ ≥e
1

� , and

∕ →π E p E: A B
e

A B p, ,
� � �( ) ( )

be the canonical projection. Then, for every ∈P EA B p,
�( ), we have

=− −π P p .

e1 1∣ ( )∣

In particular:

– The size of the curve is ∕ = −E p p EA B
e e

A B p,

1

,
� � �∣ ( )∣ ∣ ( )∣,

– πker is a subgroup of ∕E pA B
e

,
� �( ), whose size is −pe 1.

The coordinates of points at infinity satisfy the following relation, which we prove by adapting the idea of
expansion around � [11, Chapter IV].

Proposition 2. Let p be a prime, ∈ ≥e
1

� , and = ∕E E pA B
e

,
� �( ). There is a polynomial ∈ xf �[ ] of degree at most

−e 1 such that for every ∈ ∞P E , there is ∈ ∕X p pe� �( ) satisfying

=P X X: 1 : .f( ( ))

Moreover, we have

≡ + +X X AX BX pmod .

3 7 9 10f( )

Proof. Since ∈ ∞P E , it may be represented in the form X Z: 1 :( ), with ∈ ∕X Z p p,

e� �( ) that satisfy

≡ + +Z X AXZ BZ pmod .

e3 2 3

We recursively define the following sequence of polynomials in x z,�[ ]:

= + + ∀ ∈ =≥ −F x z x Axz Bz i F x z F x F x z, , : , , , .i i0

3 2 3

1 1 0
�( ) ( ) ( ( ))

It is easy to see by induction on ∈ ≥i
0

� that this sequence satisfies

≡Z F X Z p, mod .i
e( )

Moreover, every Fi for ∈ ≥i
1

� is obtained from −Fi 1
by substituting all the occurrences of z with F x z,

0
( ), which

contains only terms of degree 3; hence, the total degree of terms involving z in Fi is strictly increasing while
increasing i. This means that there exist ∈ ≥M

0
� and ∈g x z,�[ ] such that

= +F x z x g x z, , ,M f( ) ( ) ( )

with ∈g x z,

e x z,�( ) [ ] and < edeg f( ) . Since both X and Z are divisible by p, then

≡ ≡Z F X Z X p, mod ,M
ef( ) ( )

so that ∈ xf �[ ] is the required polynomial. A direct computation shows that

= + + + ≥F x Ax Bx terms of degree 11 ,
3

3 7 9 ( )

which proves the moreover part. □

Remark 1. Although finite local rings are complete with respect to the topology induced by their maximal ideal,
they may well not be domains (e.g., ∕N� �). For this reason, we found it appropriate to explicitly compute f
instead of considering the truncation to the correct exponent of the classical series [11, Chapter IV].
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To simplify the exposition, for any ∈ ∕X pe� � and any positive integer t we write p Xt∣ or ≡X p0 mod

t in
place of the more precise ∈ ∕X p pt e� �( ). In the same spirit, we assign a p-adic valuation to any ∈ ∕X pe� � by
writing

=
⎧
⎨
⎩

∈ ∕ ⧹ ∕
=

+
v X

t X p p p p

e X

, if ,

, if 0.

p

t e t e1� � � �
( )

( ) ( )

From Proposition 2, it is possible to derive a description of the first-order approximation of the sum of two
points at infinity.

Proposition 3. Let p be a prime, ∈ ≥e
1

� , = ∕E E pA B
e

,
� �( ), and ∈ xf �[ ] be the polynomial arising from E as in

Proposition 2. Let also

= = ∈ ∞P X X and P X X E: 1 : : 1 : ,
1 1 1 2 2 2

f f( ( )) ( ( ))

with =e v Xp1 1
( ) and =e v Xp2 2

( ). Then,

+ = ≡ +P P X X where X X X p: 1 : , mod .

e e
1 2 3 3 3 1 2

5 min ,
1 2f( ( )) { }

Proof. As π is a group homomorphism, +P P
1 2

lies in ∞E , which implies that these points are never exceptional
for the addition law +

0:1:0( ) corresponding to 0 : 1 : 0( ) [28, Theorem 2]. A straightforward computation with
+

0:1:0( ) shows that, modulo monomials in X
1
and X

2
of total degree at least 5 (i.e., modulo p e e5 min ,

1 2
{ }), we have

+ = + + +P P X X AX X X X: 1 3 : ,
1 2 1 2 1

2

2

2

1 2

3( ( ) )

which is equal to + +X X X X: 1 :
1 2 1 2

3( ( ) ) as we verify by multiplying its entries by
( )− ∈ ∕AX X p1 3 *

e e
1

2

2

2 5 min ,
1 2� �{ } . □

We can now prove that the infinity group is cyclic, which provides a structure theorem for elliptic curves
over ∕N� � .

Theorem 1. Let p be a prime, ∈ ≥e
1

� , and ∈ xf �[ ] be the polynomial arising from ∕E pA B
e

,
� �( ) as in

Proposition 2. Then,

→ ↪ ∕ → →p p E p E0 : 1 : 0,

ι

A B
e

π

A B p, ,
f � � �⟨( ( ))⟩ ( ) ( )

is a short exact sequence of groups.

Proof.We know that the canonical projection ∕ ↠π E p E: A B
e

A B p, ,
� � �( ) ( ) is a surjective group homomorphism

and that = −π pker

e 1∣ ∣ by Lemma 3. Thus, it is sufficient to prove that = ∈P p p π: 1 : kerf( ( )) has order −pe 1.
Since P lies over ∈ EA B p,

�� ( ), then its order is a power of p ( πker is a p-group). We prove by induction on
≤ ≤ −ε e0 1 that

= = +p P X X v X ε: 1 : with 1.

ε
pf( ( )) ( )

In particular, the minimal ε such that ≡X p0 mod

e is = −ε e 1.
=ε 0[ ] It is trivially seen that

= =p P p p v p: 1 : and 1.p
0 f( ( )) ( )

→ +ε ε 1[ ] By the inductive hypothesis, we know that

= = = ++p P p p P p X X v X ε: 1 : and 1.

ε ε
p

1 f( ) ( ( )) ( )

By Proposition 3 and induction on ∈ −α p1, …, 1{ }, we have

+ =X X αX αX X X: 1 : : 1 : : 1 : ,
2 2

f f f( ( )) ( ( )) ( ( ))

with

≡ + +X α X p1 mod .

ε
2

5 1( ) ( )

Group structure of elliptic curves over Z/NZ  7



Thus, by specializing the aforementioned result for = −α p 1, the p-adic valuation of the first component of
p X X: 1 : f( ( )) is proved to be + = +v X ε1 2p( ) . □

The aforementioned theorem shows that the infinity part of any elliptic curve over ∕pe� � is a
∕pe� �-torsor with respect to the standard multiplication action. This agrees with [22, Proposition 10.3], and

it is sufficient to determine the group structure of these curves when their projection is not anomalous.

Corollary 1. Let p be a prime, ∈ ≥e
1

� , and ∕E pA B
e

,
� �( ) be an elliptic curve such that ≠E pA B p,

�∣ ( )∣ . Then,

∕ ≃ ⊕ ∕ −E p E p .A B
e

A B p
e

, ,

1� � � � �( ) ( )

Proof. It is sufficient to show that the short exact sequence of Theorem 1 splits, which by the splitting lemma
amounts to proving that it is left split. Since = ≠q E pA B p,

�∣ ( )∣ is in the Hasse bound of p, then =p q, 1( ) , which
implies the existence of a ∈k � satisfying

⎧
⎨
⎩
≡
≡

−k p

k q

1 mod ,

0 mod .

e 1

By Theorem 1, we have ∕ = =∞ −E p π p p: 1 :A B
e

,

1 f� � �( ) ( ) ⟨( ( ))⟩. Thus, since ≡k q0 mod , the map

∕ →
⋅

E p p p: 1 :A B
e

k

,
f� �( ) ⟨( ( ))⟩

is a well defined group homomorphism. Moreover, since ≡ −k p1 mod

e 1, the cyclic group p p: 1 : f⟨( ( ))⟩ is fixed
under this map; hence, the multiplication-by-k is a left section for the considered sequence. □

Despite forming a cyclic group, the algebra of points at infinity may be rather involved [23]. However,
when e is small, an explicit group isomorphism may also be exhibited. The key point is the simplified
description of X

3
as +X X

1 2
given by Proposition 3, when the exponent of p does not exceed 5. We also remark

that in the more general setting of elliptic loops, 5 is the exponent threshold for associativity of the projective
part [22, Lemma 8.3, 8.4].

Proposition 4. Let p be a prime, ≤ ≤e1 5 be an integer, ∕E pA B
e

,
� �( ) be an elliptic curve, and =q EA B p,

�∣ ( )∣ be the
size of its projected curve. Then,

⎟⎜

∕ → ⊕ ∕

↦
⎛
⎝

⎞
⎠

−E p E p

P π P
p

qP

qP

Φ : ,

,

1

A B
e

A B p
e

x

y

, ,

1� � � � �( ) ( )

( )
( )

( )

is a well defined group homomorphism. Moreover, if ≠q p, then Φ is a group isomorphism.

Proof. It is easy to see that PΦ( ) does not depend on the projective representative of P . Moreover, as π is a
group homomorphism, we have

= = ∈π qP qπ P E .A B p,
��( ) ( ) ( )

Hence, by Proposition 2, we have =qP X X: 1 : f( ( )) with ∈ ∕X p pe� �( ). Therefore, ∈ ∕p p
qP

qP

ex

y

� �( )
( )

( )
, which is

canonically isomorphic to ∕ −pe 1� � . Thus, Φ is a well defined map between groups having, by Lemma 3, the
same size. It also respects the sum, as for every pair ∈ ∕P P E p, A B

e
1 2 ,

� �( ), we compute

⎟⎜+ =
⎛

⎝
⎜ +

⎛
⎝

+
⎞
⎠

⎞

⎠
⎟P P π P P

p

qP

qP

qP

qP
Φ Φ ,

1

,

x

y

x

y

1 2 1 2

1

1

2

2

( ) ( ) ( )
( )

( )

( )

( )

and since ≤e v qP v qP5 min ,p x p x1 2
{ (( ) ) (( ) )}, then by Proposition 3, we have

8  Massimiliano Sala and Daniele Taufer



+ =
+
+

=
+
+

qP

qP

qP

qP

qP qP

qP qP

q P P

q P P
.

x

y

x

y

x

y

x

y

1

1

2

2

1 2

1 2

1 2

1 2

( )

( )

( )

( )

( )

( )

( ( ))

( ( ))

As for the moreover part, it is sufficient to prove that =kerΦ �{ } when ≠q p. Let =PΦ , 0�( ) ( ), then there
exists ∈ ∕X p pe� �( ) such that =P X X: 1 : f( ( )) and

≡ ≡ −qX

p

qP

p
p0 mod .

x
e 1

( )

Since q lies in the Hasse interval of p, then ≠q p implies =p q, 1( ) , and we conclude that ≡X p0 mod

e; hence,
the kernel of Φ is trivial. □

When the restricted curve EA B p,
�( ) is anomalous, two different scenarios may occur. By Theorem 1, the

curve ∕E pA B
e

,
� �( ) is guaranteed to contain a cyclic subgroup of order −pe 1; therefore, it may be either cyclic

∕ ≃ ∕E p p ,A B
e e

,
� � � �( ) (Cyclic)

or split, i.e.,

∕ ≃ ⊕ ∕ −E p p .A B
e

p
e

,

1� � � � �( ) (Split)

Even if the cyclic case occurs over ∕pe� � with an overwhelming probability of −p

p

1 [25], both may take place.
For instance, one may check that

∕ ≃ ∕ ≃ ⊕E E13 0 : 61 : 1 , while 13 2 : 4 : 1 13 : 1 : 0 .
7,3

2

1,6

2� � � �( ) ⟨( )⟩ ( ) ⟨( )⟩ ⟨( )⟩

The aforementioned discussion leads to the classification theorem.

Theorem 2. Let N be a positive integer and let A and B be integers such that ΔA B, is coprime to N. Then, we have

∕ ≃ ⊕ ⊕ ∕ ⊕ ⊕

≠

−

=

E N E p G ,A B
p N

E p

A B p
v N

p N

E p

p, ,

1

A B p

p

A B p, ,

� � � � �

� �

( ) ( )
∣

∣ ( )∣

( )

∣

∣ ( )∣

where every Gp may be either ∕pv Np� �( ) or ⊕ ∕ −pp
v N 1p� � �( ) .

Proof. By Proposition 1, we know that

∕ ≃ ⊕ ∕E N E p .A B

p N

A B
v N

, ,

p� � � �( ) ( )
∣

( )

By Corollary 1, for every p such that EA B p,
�( ) is not anomalous, we have

∕ ≃ ⊕ ∕ −E p E p .A B
e

A B p
v N

, ,

1p� � � � �( ) ( ) ( )

On the other side, we have seen that

= ⊕ ∕ = ∕−G p G porp p
v N

p
v N1p p� � � � �( ) ( )

may both occur as group structure of ( )∕E pA B
v N

,

p� �( ) when EA B p,
�( ) is anomalous, which completes the study

cases. □

Remark 2. Given a finite collection of elliptic curves { } ≤ ≤E RA B l l k, 1l l
( ) , we may define an elliptic curve over their

product ring ∏ = Rl

k

l1
with the componentwise operation, and by [19, Section 4], we have

∏ ∏⎜ ⎟
⎛
⎝

⎞
⎠
≃

= =
E R E R .A A B B

l

k

l

l

k

A B l, … , , , … ,

1 1

,k k l l1 1

( )( ) ( )

Thus, Theorem 2 provides the group structures of every elliptic curve defined over a ring isomorphic to a finite
product of integer residue rings.
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Remark 3.We note that Theorem 1 heavily relies on the behavior of elliptic curves over ∕pe� � . Let us consider
another local ring, namely, = ∕R x x

5

4� [ ] ( ), and let ε be a generator of its maximal ideal. Again, we have a
canonical projection:

→ + + + ↦R X X ε X ε X ε X, ,
5 0 1 2

2

3

3

0
�

so we have an elliptic curve E R
1,2

( ) defined as in Section 2.3, together with a canonical projection onto E
1,2 5

�( ).
This curve may appear similar to ∕E 5

1,2

4� �( ) at first glance, but one can directly verify that the point
group of E R

1,2
( ) is given by:

+ ⊕ + + ⊕ + + + + +ε ε ε ε ε ε ε ε ε ε ε ε2 : 1 : 3 3 2 : 1 : 3 3 : 3 4 3 : 1 ,

3 3 3 2 3 3 3 2⟨( )⟩ ⟨( )⟩ ⟨( )⟩

so that ≃ ∕ ⊕ ∕ ⊕ ∕E R 5 5 35
1,2

� � � � � �( ) . This is due to the different structure of the infinity parts, as
≃ ∕∞ ⊕E R 5

1,2

3� �( ) ( ) , while ∕ ≃ ∕∞
E 5 5

1,2

4 3� � � �( ) as prescribed by our previous results. A detailed study of
the latter type of rings may be found in the study by Invernizzi and Taufer [23].

4 Rank of p-groups from elliptic curves

We know that groups arising from elliptic curves defined over finite fields have prescribed constraints [14,15],
e.g., their rank cannot exceed 2. This restriction can be relaxed for curves defined over ∕N� � , as their rank
may be arbitrarily large, but it may still be bounded in terms of the number of primes inside a Hasse interval.

Definition 6. ( p� ) Given an integer ∈p � , we define

= ∈ + − ≤ ≤ + +q q p p q p pis prime and 1 2 1 2 .p �� ∣{ ∣ }∣

The following result provides a sharp bound on the rank that elliptic curves over ∕N� � may have if their
point group are p-groups, which, in particular, shows that there are infinitely many groups that cannot arise as
a point group for an elliptic curve over an integer residue ring.

Proposition 5. Let ≥p 5 be a prime, ∈ ≥N
2

� , and = ∕E E NA B, � �( ) be an elliptic curve that is a p-group. Then, by
defining

=
⎧
⎨
⎩

≃ ⊕
χ

if there is a prime q such that E

otherwise

2, ,

0, ,

p

A B q p p,
� � �( )

we have

≤ + +E χrk 1.p p
�( )

Proof. By Theorem 2, we have

≃ ⊕ ⊕ ∕ ⊕ ⊕

≠

−

=

E E q G ,

q N

E q

A B q
v N

q N

E q

q,

1

A B q

q

A B q, ,

� � �

� �

( )
∣

∣ ( )∣

( )

∣

∣ ( )∣

where every Gq may be either ∕qv Nq� �( ) or ⊕ ∕ −qq
v N 1q� � �( ) . It is easy to see that Gq is a p-group only if =q p;

hence, we have

⊕ ≤

=

Grk 2.

q N

E q

q

A B q,
�

∣

∣ ( )∣

Similarly, we note that ∕ −qv N 1q� �( ) is a p-group only if =q p, but EA B p,
�( ) is a p-group if and only if

=E pA B p,
�∣ ( )∣ . Thus, we have
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⊕ ⊕ ∕ ≃ ⊕

≠

−

≠

E q E .

q N

E q

A B q
v N

q N

q p

A B q,

1

,

A B q

q

,

� � � �

�

( ) ( )
∣

∣ ( )∣

( )

∣

Moreover, since the rank of EA B q,
�( ) is at most 2 [12, Theorem 4.1], then it is a p-group only if

≃ ≃ ⊕E Eeither or .A B q p A B q p p, ,
� � � � �( ) ( )

Since the Hasse bound over a prime field is full, then EA B q,
�( ) may be isomorphic to p� for every prime q inside

the Hasse interval of p.
On the other side, by [12, Prop.4.16], we know that ≃ ⊕EA B q p p,

� � �( ) may occur only if

∈ + ± + ± +q p p p p p1, 1, 2 1 .

2 2 2{ }

However, both p and q are odd primes; hence, only = ± +q p p 1

2 may occur. Furthermore, since >p 3, it is
easy to see that either + +p p3 1

2∣ or − +p p3 1

2∣ ; therefore, only one of them can be prime. We conclude that
there is at most one prime q such that ≃ ⊕EA B q p p,

� � �( ) , so that

⊕ ≤ − +
≠

E χrk 1 .

q N

q p

A B q p p,
� �( ) ( )

∣

Collecting the aforementioned rank bounds, the statement follows. □

Example 1. Let =p 11. None of ± +11 11 1

2 is prime, then we have =χ 0
11

; therefore, by Proposition 5,
regardless of ∈ ≥N

2
� , the rank of any elliptic curve over ∕N� � that is a 11-group is bounded by

+ =1 5
11

� . We also note that this bound is sharp, as

∕ ≃ ⊕ ⊕ ⊕ ⊕E 187187 .
167707,21664 11 11 11 11 11

� � � � � � �( )

Example 2. Let =p 13. We note that − + =13 13 1 157

2 is prime and

≃ ⊕E .
0,15 157 13 13

� � �( )

Therefore, we have =χ 2
13

. By means of Proposition 5, we know that any elliptic curve over ∕N� � that is a 13-
group has rank-bounded by + =3 8

13
� . We note again that this bound is sharp, as

∕ ≃ ⊕E 659902243 .
63707931,239467091 13

8� � �( ) ( )

5 Another isomorphism attack to anomalous ECDLP

Given an additive group G and a base element ∈g G, the discrete logarithm problem (DLP) on G consists of
computing for any given ∈h G a positive integer N , if existent, such that = ⋅ = + +⋯+h N g g g g . When G is
the point group of an elliptic curve (ECDLP), this problem is known to be computationally feasible only in
special cases, such as the anomalous ones [24,25,30].

From the knowledge of the group structure provided by Theorem 1, we have another way of efficiently
solving the ECDLP on anomalous curves using any cyclic curve that projects onto it.

Proposition 6. Let p be a prime, ∈ ≥e
2

� , and = ∕E E pA B
e

,
� �( ) be an elliptic curve, whose point group is cyclic of

order pe. Then, the map

→

↦ −

−

−

E

P
p

p P

p P

Θ : ,

1

p

e

e
x

e
y

1

1

1

�

( )

( )

is a well defined surjective group homomorphism, whose kernel is

Group structure of elliptic curves over Z/NZ  11



= p pkerΘ : 1 : .f⟨( ( ))⟩

Proof. For every ∈P E , the point −p Pe 1 is a p-torsion point of E ; hence,

= ≥ −−p P X X v X e: 1 : , with 1.

e
p

1 f( ( )) ( )

Therefore, = ∈−PΘ

X

p
pe 1

�( ) is well defined. Let ∈G E be a generator of the point group of E; then, for every
integer ∈m � , we have

= =−p mG m X X mX mX: 1 : : 1 : ,

e 1 f f( ( )) ( ( ))

where the last equality follows from Proposition 3, as for every ≥e 2, the point −p Ge 1 lies in −p : 1 : 0

e 1⟨( )⟩.
Thus, =mG m GΘ Θ( ) ( ), so that Θ is a group homomorphism. Moreover, from the aforementioned equation, it
follows that

= ∈ =mp G m p pkerΘ : 1 : .f�{ ∣ } ⟨( ( ))⟩

By comparing the size of these groups, the surjectivity follows. □

From the aforementioned proposition, the discrete logarithm over anomalous curves may be immediately
recovered.

Corollary 2. Let p be a prime, ∈ ≥e
2

� , and ∕E pA B
e

,
� �( ) be an elliptic curve, whose point group is cyclic of order

pe. Then, the map

∘ →−π EΘ : A B p p
1

,
� �( )

is a well defined group isomorphism.

Proof. By Theorem 1, the projection π induces a group isomorphism ∕ ∕ ≃E p p p: 1 :A B
e

,
f� �( ) ⟨( ( ))⟩ E p�( ),

whereas the map Θ arisen from Proposition 6 induces a group isomorphism ∕ ∕ ≃E p p p: 1 :A B
e

,
f� �( ) ⟨( ( ))⟩ p� .

By composing those isomorphisms, the result follows. □

Finding any lift of a given point is computationally costless; therefore, the complexity of the isomorphism
attack given by Corollary 2 only depends on the cost of computing Θ, which is O plog( ). This approach is not
faster than previously known attacks to the same family of curves [24,25,30], but it has the advantage of
involving only finite precision objects.

Example 3. Let us consider an anomalous curve as constructed in the study by Leprévost et al. [31]:

=
=
=

p

A

B

730750818665451459112596905638433048232067471723,

425706413842211054102700238164133538302169176474,

203362936548826936673264444982866339953265530166.

We consider on EA B p,
�( ) the points

=
=

P

Q

1 : 310536468939899693718962354338996655381367569020 : 1 ,

3 : 38292783053156441019740319553956376819943854515 : 1 .

( )

( )

To find their discrete logarithm, it is sufficient to compute any lifts, such as

= + = + ∈ ∕↑ ↑P P αp Q Q βp E p1 : : 1 , 3 : : 1 ,y y A B,
2� �( ) ( ) ( )

where

=
+ + −

=
+ + −

α

A B P

pP
p β

A B Q

pQ
p

1

2

mod , and

27 3

2

mod ,

y

y

y

y

2

2

2

2
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and to apply them, the group homomorphism Θ of Proposition 6:

=
=

↑

↑
P

Q

Θ 343088892565802863386490109374548044078624360215,

Θ 470974712001084540433398653921983741661987449793.

( )

( )

This way we obtain the discrete logarithm N such that = ⋅Q N P as:

= =
↑

↑N
Q

P
p

Θ

Θ

mod 113690975836469390483838646646828917131453128585.

( )

( )

We remark that such a discrete logarithm would be infeasible to be computed with generic logarithm tech-
niques, as one can directly verify that the Log routine of Magma [32] does not terminate in a reasonable time.

6 Conclusions and open problems

In this work, we have provided the classification of groups arising from elliptic curves over ∕N� � and
exploited it to obtain a bound for their rank and an attack on the ECDLP over anomalous elliptic curves.

The key ingredient is Theorem 1, which might still hold for more general classes of rings, even though the
kernel generator may be less explicit. Finding other instances or even classifying all the rings over which the
infinity group is cyclic is still an open line of research.

From a cryptographic perspective, Theorem 1 shows that the difficulty of the ECDLP depends on the
difficulty of the same problem over the base field and in the group of points at infinity. Whenever these
two groups are linked (as in the case of the anomalous curves), the discrete logarithm on one group may be
read from the other.

Finally, in this work, we only considered genus-1 curves for their theoretical and historical relevance, but
it is reasonable to ask which other abelian varieties admit such an extension to ∕N� � and, when it is the case,
if analogous group decompositions over these rings hold.
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