
Research Article

Renata Kawa* and Mieczysław Kula

Access structures determined by uniform
polymatroids

https://doi.org/10.1515/jmc-2022-0017
received April 28, 2022; accepted May 08, 2023

Abstract: In this article, all multipartite access structures obtained from uniform integer polymatroids were
investigated using the method developed by Farràs, Martí-Farré, and Padró. They are matroid ports, i.e., they
satisfy the necessary condition to be ideal. Moreover, each uniform integer polymatroid defines some ideal
access structures. Some objects in this family can be useful for the applications of secret sharing. The method
presented in this article is universal and can be continued with other classes of polymatroids in further similar
studies. Here, we are especially interested in hierarchy of participants determined by the access structure, and
we distinguish two main classes: they are compartmented and hierarchical access structures. The main results
obtained for access structures determined by uniform integer polymatroids and a monotone increasing family
Δ can be summarized as follows. If the increment sequence of the polymatroid is non-constant, then the access
structure is connected. If Δ does not contain any singletons or the height of the polymatroid is maximal and its
increment sequence is not constant starting from the second element, then the access structure is compart-
mented. If Δ is generated by a singleton or the increment sequence of the polymatroid is constant starting from
the second element, then the obtained access structures are hierarchical. They are proven to be ideal, and their
hierarchical orders are completely determined. Moreover, if the increment sequence of the polymatroid is
constant and >Δ 1∣ ∣ , then the hierarchical order is not antisymmetric, i.e., some different blocks are equiva-
lent. The hierarchical order of access structures obtained from uniform integer polymatroids is always flat,
that is, every hierarchy chain has at most two elements.

Keywords: secret sharing, multipartite access structure, ideal access structure, partially hierarchical access
structure, uniform polymatroid
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1 Introduction

A secret sharing scheme is a method of sharing a secret among a finite set of participants in such a way that
only certain specified subsets of participants can compute the secret data. Secret sharing was originally
introduced by Blakley [1] and Shamir [2] independently in 1979 as a solution for safeguarding cryptographic
keys, but nowadays, it is used in many cryptographic protocols. The reader is referred to the studies of Beimel
[3] and Padró [4] for a general introduction to secret sharing.

Let P be a finite set of participants, and let ∉p P
0

be a special participant called the dealer. Given a secret,
the dealer computes the shares and distributes them secretly to the participants, so that each participant
receives only his/her share. It is required that only certain authorized subsets of P can recover the secret by
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pooling their shares together. It is easily seen that the family Γ of all authorized sets, called an access structure,
is monotone increasing, which means that any superset of an authorized subset is also authorized. To avoid
borderline cases, we assume that ∅ ∉ Γ and ∈P Γ. If no unauthorized set has any information about the
secret, regardless of the computational power available, then the secret sharing scheme is said to be perfect.
Such a scheme can be considered as unconditionally secure.

Ito et al. [5] and Benaloh and Leichter [6] independently proved, in a constructive way, that every
monotone increasing family of subsets of P admits a perfect secret sharing scheme. Therefore, every mono-
tone increasing family of subsets of P is referred to as an access structure. Obviously, every access structure is
uniquely determined by the family of its minimal sets. An access structure is said to be connected if every
participant in P is a member of a minimal authorized set.

In a perfect secret sharing scheme, the length of every share is at least the length of the secret. The secret
sharing schemes such that all shares have the same length as the secret are said to be ideal, and their access
structures are called ideal as well. More formal definitions can be found in the articles of Beimel [3] and Padró
[4]. Shamir’s threshold schemes [2] are the best known examples of ideal secret sharing schemes. The secret
sharing schemes constructed for a given access structure in the articles of Ito et al. [5] and Benaloh and
Leichter [6] are very far from being ideal because the length of the shares grows exponentially with the
number of participants.

An access structure is said to bemultipartite if the set of participants is divided into several blocks that are
pairwise disjoint and participants in individual blocks are equivalent (precise definition can be found in
Section 2.1). The study of multipartite access structures was initiated by Kothari [7], who posed the open
problem of constructing ideal hierarchical secret sharing schemes, and by Simmons [8], who introduced the
multilevel and compartmented access structures. This approach, developed by many authors, provides a very
effective tool for describing structures in a compact way, by using a few conditions that are independent of the
total number of participants (cf. [9–13]) and others.

The characterization of ideal access structures is one of the main open problems in the secret sharing
theory. This problem seems to be extremely difficult, and only some particular results are known. In many
articles, the authors consider some specific classes of access structures with prescribed properties and try to
check whether these structures are ideal. Most of the results obtained are based on the connections between
ideal secret sharing schemes and matroids discovered by Brickell [14] and Brickell and Davenport [15]. Later,
the use of polymatroids proposed by Farràs et al. in [10] provided a new tool for studying ideal multipartite
access structures. In particular, they proved that each access structure determined by a polymatroid with a
ground set J and a suitable family of subsets of J is a matroid port with a ground set ∪P p

0
{ }. A concise review

of the results contained in the literature can be found in the articles [10–12].
Since ideal access structures are known to be matroid ports, it seems quite natural to look for ideal access

structures among matroid ports. Given a specific class of polymatroids, one can take all multipartite access
structures determined by these polymatroids and investigate their properties. The ideality can be established
on the base of properties of particular polymatroids. In this article, the study is restricted to uniform integer
polymatroids. This choice is motivated by the fact that each such polymatroid defines a family of ideal access
structure (cf. Remark 2.5). But the method presented here is universal and can be continued with other classes
of polymatroids in further similar studies (cf. [16]).

Here, we deal with multipartite access structures =Γ Γ Π, , Δ�( ) in a set of participants divided into a
partition Π determined by uniform integer polymatroids � and monotone increasing families Δ. We examine
hierarchical order among the participants induced by the obtained access structure. A short introduction to
matroids and polymatroids and their relation to access structures are presented in Section 2.2. In particular,
we recall the result of Farràs et al. that every polymatroid with the ground set J and a monotone increasing
family of subsets of J , which is compatible with the polymatroid, determine a unique access structure, which is
a matroid port. The details are described in Definition [10]. In Section 2.3, some relations between uniform
integer polymatroids = gJ h, ,� ( ) and monotone increasing families ⊆ ⧹ ∅JΔ �( ) { } are presented. We prove
several technical properties that are useful in the next sections.

Section 3 is devoted to the study of necessary condition for an access structure obtained from a uniform
integer polymatroid to be hierarchical. Under some special conditions, it is proved that the existence of
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comparable blocks in the access structure Γ Π, , Δ�( ) implies that the increment sequence of the polymatroid is
(almost) constant. Another result of this section (Corollary 3.10) states that if the height of � is greater than 1 or
g is not constant, then different blocks in Π are not equivalent.

The main results obtained for access structures determined by uniform polymatroids and a monotone
increasing family Δ are contained in Sections 4 and 5. If the increment sequence of the polymatroid is non-
constant, then the access structure is connected (Theorem 4.1). This theorem combined with Corollary 3.10
shows that in general, the Π-partite access structures determined by uniform integer polymatroids are well
constructed, i.e., all participants are important and the basic partition Π cannot be improved. The exceptions
are generated by polymatroids with extreme height (1 or m) and constant increment sequence.

Theorems 4.2 and 4.3 show that large majority of access structures determined by uniform integer poly-
matroids are compartmented.

Exceptions occur for polymatroids with a maximum height. If Δ is generated by a singleton or the
increment sequence is constant starting from the second element, then the obtained access structures are
hierarchical (Theorems 4.8, 4.9, and 4.11). In these cases, the hierarchical orders are completely determined.
Moreover, if the polymatroid height is two, then complete description of hierarchical structures is also given
(Theorem 4.6).

Moreover, we prove in Theorem 4.12 that the maximal length of chains in such hierarchical access
structures is equal to 1. This fact seems quite surprising, because for other polymatroids, one can construct
hierarchical access structures with chains of arbitrary length. For instance, such constructions can be found in
[11–13,16] and others.

As was mentioned earlier, every uniform integer polymatroid determines some ideal access structures,
but the question is whether all access structures determined by uniform integer polymatroids are ideal. A
direction, which is worth considering and may result in obtaining the answer, is using the fact that a sufficient
condition (for access structures to be ideal) can be obtained by proving that the one point extension of a given
uniform integer polymatroid is representable (cf. [10, Corollary 6.7]). This method has been applied in Section 5
to the proof that all the structures described in Theorems 4.6, 4.8, and 4.11 are ideal. It is worth noting that the
class of access structures obtained from uniform integer polymatroids contains some interesting families of
objects that can be useful for the applications of secret sharing.

Another interesting example is the family of uniform access structures characterized by Farrás et al. in [12,
Section VI] (cf. Remark 4.10). It consists of multipartite access structures that are invariant under any permu-
tation of blocks of participants. In other words, all participants have the same rights, although they are not
hierarchically equivalent. A different situation occurs in compartmented access structures, where there is a set
of distinguished participants, whose representatives must be present in all authorized sets. Such a case is
described in Theorem 5.2.

This article is intended to initiate research on the access structures obtained from uniform integer
polymatroids, but it does not exhaust the topic and leaves space for further study. Some remarks on the
new research possibilities can be found in Section 6. Appendix contains a classification of all access structures
with four parts obtained from uniform integer polymatroids.

2 Preliminaries

The aim of this section is to provide the necessary definitions and results regarding multipartite access
structures and polymatroids. In general, we are using the same or similar notations and definitions as in
the articles [11] and [12]. The family of all subsets of a set X is denoted by X�( ) (the power set). Similarly, Xk� ( )

denotes the collection of all of k -element subsets of X . Let 0� and � denote the set of all non-negative integers
and positive integers, respectively. Let J be a finite set. For two vectors = ∈u u¯ x x J( ) and = ∈∈v v¯ x x J

J

0�( ) , we
write ≤u v¯ ¯ if ≤u vx x for all ∈x J . Moreover, <u v¯ ¯ denotes ≤u v¯ ¯ and ≠u v¯ ¯. Given a vector = ∈v v¯ x x J( ) , we
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define the support = ∈ ≠v x J vsupp ¯ : 0x( ) { } and the modulus = ∑ ∈v v¯ x J x∣ ∣ . Furthermore, we write = ′ ∈v vX̄ x x J( ) ,
where ⊆X J and

′ =
⎧
⎨
⎩

∈
∉

v
v x X

x X

if ,

0 if .
x

x

In particular, =∅ ∈v̄ 0 x J( ) . Let us observe that =v v¯ X̄∣ ∣ ∣ ∣ is equivalent to ⊆v Xsupp ¯( ) . For every ∈z J , we define
the vector ∈ē z J

0�( ) such that = ∈e e¯
z

x

z
x J( )( ) ( ) with =e 1z

z( ) and =e 0x

z( ) for all ≠x z. For undefined notions, see
the articles [10] and [17].

2.1 Multipartite access structures

Let Γ be an access structure on a set of participants P. A participant ∈p P is said to be hierarchically superior
or equivalent to a participant ∈q P (written ≼q p), if ∪ ∈A p Γ{ } for all subsets ⊆ ⧹A P p q,{ } with
∪ ∈A q Γ.{ } If ≼p q and ≼q p, then the participants p and q are called hierarchically equivalent.
By a partition (Π-partition) of the set of participants P, we mean a family = ∈PΠ x x J( ) of pairwise disjoint

and nonempty subsets of P , called blocks, such that = ⋃ ∈P Px J x . An access structure Γ is said to be multipartite
(Π-partite) if all participants in every block Px are pairwise hierarchically equivalent. Thus, we are allowed to
define a hierarchy in Π. Namely, Px is said to be hierarchically superior or equivalent to Py (written ≼P Py x) if
there are ∈p Py and ∈q Px such that ≼p q. In other words, it can be said that Py is hierarchically inferior or
equivalent to Px . By transitivity, we have ≼p q for all ∈p Py and ∈q Px whenever ≼P Py x . The relation ≼ both in
P and inΠ is reflexive and transitive but not antisymmetric in general, so it is a preorder. If ≼P Px y and ≼P Py x ,
then the blocks Px and Py are called hierarchically equivalent. Moreover, if ≼P Px y or ≼P Py x , then the blocks Px

and Py are called hierarchically comparable; otherwise, they are called hierarchically independent. Finally, if
≼P Px y and the blocks are not hierarchically equivalent, then we write ≺P Px y.
Let us recall that an access structure is said to be connected if every participant in P is a member of a

minimal authorized set. A participant who does not belong to any minimal authorized set is called redundant.
It is easy to see that every participant is hierarchically superior or equivalent to any redundant participant. In
particular, all redundant participants are hierarchically equivalent. A block of participants that contains a
redundant participant will also be called redundant.

A Π-partite access structure is said to be hierarchical if there are blocks Px and Py in Π such that ≺P Px y.
Otherwise, the access structure is referred to as compartmented.

A hierarchical access structure such that the relation ≼ is antisymmetric and every pair of blocks is
hierarchically comparable is referred to as totally hierarchical. A complete characterization of ideal totally
hierarchical access structure was presented by Farràs and Padró [11]. It is worth pointing out that the phrase
“compartmented access structure” used here is very general and covers several notions with the same name
appearing in the literature.

Given a partition = ∈PΠ x x J( ) of P and a subset ⊆A P, we define the vector = ∈π A vx x J( ) ( ) , where
= ∩v A Px x∣ ∣. If Γ is a Π-partite access structure, then all participants in every subset Px are pairwise hier-

archically equivalent, so if ∈ ⊆A B PΓ, and =π A π B( ) ( ), then ∈B Γ. We put = ∈ ∈π π A AΓ : Γ
J

0�( ) { ( ) } and

= ∈ ⊆ = ∈ ≤π A A P v v π PΠ : ¯ : ¯ .
J J

0 0P � �( ) { ( ) } { ( )}

Obviously, if ⊆ ⊆A B P , then ≤π A π B( ) ( ). Moreover, if ∈u π¯ Γ( ) and ≤ ≤u v π P¯ ¯ ( ), then ∈v π¯ Γ( ). Indeed,
there is ∈A Γ such that =u π A¯ ( ). The set A can be extended to a set ⊆B P such that =v π B¯ ( ). Hence, ∈B Γ

and consequently, ∈v π¯ Γ( ). This shows that ⊆π Γ ΠP( ) ( ) is a set of vectors monotone increasing with respect
to ≤. On the other hand, every monotone increasing set ′ ⊆Γ ΠP( ) determines the Π-partite access structure
= ⊆ ∈ ′A P π AΓ : Γ{ ( ) }. This shows that there is a one-to-one correspondence between the family of Π-partite

access structures defined on P and the family of monotone increasing subsets of ΠP( ). Therefore, we use the
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same notation Γ for both the access structure and its vector representation. With this convention, we
define = ∈ ∈v J vsupp Γ supp ¯ : ¯ Γ�( ) { ( ) ( ) }.

The hierarchy among blocks in Π can be characterized in vector terms as follows: ≼P Py x if and only if

− + ∈ ∈ ≥ <v e e v v v P¯ ¯ ¯ Γ for all ¯ Γ with 1 and .y x
y x x∣ ∣( ) ( ) (1)

To show that ≼P Py x , it is enough to check if the aforementioned condition is satisfied for all vectors ∈v minΓ.
A block Px in Π is redundant if and only if =v 0x for every ∈v̄ minΓ.

2.2 Polymatroids and access structures

Let J be a nonempty finite set and let J�( ) denote the power set of J . A polymatroid � is a pair J h,( ) where h is
a mapping ⟶h J: ��( ) satisfying
• ∅ =h 0( ) ;
• h is monotone increasing: if ⊆ ⊆X Y J , then ≤h X h Y( ) ( );
• h is submodular: if ⊆X Y J, , then ∩ + ∪ ≤ +h X Y h X Y h X h Y( ) ( ) ( ) ( ).

The mapping h is called the rank function of a polymatroid. If all values of the rank function are integer,
then the polymatroid is called integer. An integer polymatroid J h,( ) such that ≤h X X( ) ∣ ∣ for all ⊆X J is called a
matroid. All polymatroids considered in this article are assumed to be integer, so we omit the term “integer”
when dealing with polymatroid.

Let = J h,� ( ) be a polymatroid and let ∈x J such that =h x 1({ }) . The set ∈ ⧹ ∪ =X J x h X x h X:�{ ( { }) ( { }) ( )}

is called a polymatroid port or more precisely, the port of polymatroid � at the point x. One can show that
every polymatroid port is a monotone increasing family of some subsets of ⧹J x{ }, which does not contain ∅.

The following examples of polymatroids play a special role in studying ideal access structures. Let V be a
vector space of finite dimension, and let = ∈Vx x J� ( ) be a family of subspaces of V . One can show that the
mapping ⟶h J: 0��( ) defined by = ∑ ∈h X Vdim x X x( ) ( ) for ∈X J�( ) is the rank function of the polymatroid
= J h,� ( ). The polymatroids that can be defined in this way are said to be representable. If ≤Vdim 1x for all
∈x J , then we obtain a matroid, which is called representable as well. The family � is referred to as a vector

space representation of the polymatroid (matroid).
Let = J h,� ( ) be a polymatroid. For ′ = ∪J J x0{ } with a certain ∉x J0 and a monotone increasing family

⊆ ⧹ ∅JΔ �( ) { }, we define the function ′ ′ ⟶h J: 0��( ) by ′ =h X h X( ) ( ) for all ∈X J�( ) and

′ ∪ =
⎧
⎨
⎩

∈

+ ∈ ⧹
h X x

h X X

h X X J

if Δ,

1 if Δ.
0

�
( { })

( )

( ) ( )

If ′h is monotone increasing and submodular, then Δ is said to be compatible with � and ′ = ′ ′J h,� ( ) is a
polymatroid, which is called the one point extension of � induced by Δ. It is easy to see that ′ =h x 10( ) and Δ is
the polymatroid port of ′� at the point x0. The next result, which is a consequence of [18, Proposition 2.3] (cf.
also [11, Proposition 5.2]), is very useful in the investigation of access structures induced by polymatroids.

Lemma 2.1. ([18] Csirmaz, [10]) A monotone increasing family ⊆ ⧹ ∅JΔ �( ) { } is compatible with the integer
polymatroid = J h,� ( ) if and only if the following conditions are satisfied:
(1) If ⊆ ⊆Y X J and ∉Y Δ while ∈X Δ, then <h Y h X( ) ( ).
(2) If ∈X Y, Δ and ∩ ∉X Y Δ, then ∩ + ∪ < +h X Y h X Y h X h Y( ) ( ) ( ) ( ).

The following notation will be used very often throughout this article. Let = J h,� ( ) be a polymatroid and
let ⊆X J . We define the following set:

= ∈ ⊆ = ∀ ≤⊆X v v X v h X v h Y, ¯ : supp ¯ , ¯ , ¯ .
J

Y X Y0�� �( ) { ( ) ∣ ∣ ( ) ∣ ∣ ( )} (2)
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The notation X,� �( ) was introduced in [10]. Here, we will use its simplified form X�( ). It is easy to see that

⊆ ⊆ = ⊆Y X J h Y h X Y Xif and , then .� �( ) ( ) ( ) ( ) (3)

On the other hand, ∩ = ∅Y X� �( ) ( ) whenever ≠h Y h X( ) ( ).
The connection between matroids and ideal access structures was discovered by Brickell and Davenport

[15]. They proved that if ⊆ PΓ �( ) is the access structure of an ideal secret sharing scheme on a set of
participants P with a dealer ∉p P

0
, then there is a matroid � with the ground set ∪P p

0
{ } such that Γ is

the port of � at the point p
0
.

The converse is not true. For example, the ports of the Vamos matroid are not ideal access structures (cf.
[19]). But the linear construction of ideal secret sharing schemes proposed by Brickell [14] shows that every
port of a representable matroid is an ideal access structure.

Following [12, Definition 2.3], we define the main notion of this article.

Definition 2.2. Let = ∈PΠ x x J( ) be a partition of a set P of participants. Consider a polymatroid = J h,� ( ) with
≤h x Px({ }) ∣ ∣ for every ∈x J , and a monotone increasing family ⊆ ⧹ ∅JΔ �( ) { }, which is compatible with � . We

define a Π-partite access structure Γ Π, , Δ�( ) in the following way: a vector ∈ū ΠP( ) is in Γ Π, , Δ�( ) if and
only if there exist a subset ∈X Δ and a vector ∈v X¯ �( ) such that ≤v u¯ ¯. The family Γ Π, , Δ�( ) will be called
the Π-partite access structure determined by the polymatroid � and the monotone increasing family Δ.

Let = ∈PΠ x x J( ) be a partition of a set P of participants. Farràs et al. [10, Theorem 5.3] proved that a
Π-partite access structure Γ on P is a matroid port if and only if =Γ Γ Π, , Δ�( ) for some polymatroid �

with ground set J and monotone increasing family ⊆ ⧹ ∅JΔ �( ) { } compatible with � . Access structures that
are matroid ports are called κ-ideal in the literature. Moreover, if there is a (linearly) representable one point
extension ′� of � and Δ is a polymatroid port of ′� , then Γ is an ideal acces structure.

Example 2.3. Let us consider ′ =J 0, 1, 2, 3{ } and the function ′ ′ ⟶h J: 0��( ) defined by:

⎪

⎪

′ =
⎧
⎨
⎩

=
=
≥

h X

X

X

X

0 if 0;

1 if 1;

2 if 2.

( )

∣ ∣

∣ ∣

∣ ∣

It is easy to check that ′ = ′ ′J h,� ( ) is a polymatroid and =Δ 1, 2 , 1, 3 , 2, 3 , 1, 2, 3{{ } { } { } { }} is its port at 0. Moreover,
′� is a one point extension of = ′ J� � ∣ , where =J 1, 2, 3{ }. Thus, Δ is compatible with � . Hence, we obtain

=1, 2 1, 1, 0�({ }) {( )}, =1, 3 1, 0, 1�({ }) {( )}, =2, 3 0, 1, 1�({ }) {( )} and � =1, 2, 3({ }) 1, 1, 0 , 1, 0, 1 , 0, 1, 1{( ) ( ) ( )}.
From the aforementioned definition, we have ∈ū Γ Π, , Δ�( ) if and only if ≤ =u π P P P P¯ , ,1 2 3( ) (∣ ∣ ∣ ∣ ∣ ∣)

and ≥usupp ¯ 2∣ ( )∣ .

2.3 Uniform polymatroids

We begin this subsection with the definition of uniform polymatroids that play a major role in this article. To
shorten notation, we set =I m0, 1, …,m { }.

Definition 2.4. An integer polymatroid = J h,� ( ) is called uniform if

= ⇒ = ⊆X Y h X h Y X Y Jfor all , .∣ ∣ ∣ ∣ ( ) ( )

Let ≔m J∣ ∣. We define =h h Xi ( ) for every ∈i Im with ⊆X J , =X i∣ ∣ . It is obvious that the sequence ∈hi i Im
( )

determines the rank function of the polymatroid. For this sequence, we define the increment sequence
= ∈g g

i i Im
( ) by = −+g h h

i i i1 for = −i m0,…, 1, and additionally, =g 0
m

. It is easy to see that g is nonincreasing
sequence of non-negative integers.
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On the other hand, every nonincreasing sequence = ∈g g
i i Im

( ) of non-negative integers with =g 0
m

,
determines hj by:

∑= = =
=

−

h g j m hfor all 1,…, and 0.j

i

j

i

0

1

0
(4)

This sequence ∈hj j Im
( ) actually defines an integer polymatroid.

We define the height of a polymatroid as the number of nonzero elements in g . A polymatroid is said to be
of a maximal height if >−g 0

m 1
. Note that = ⇔ =⋯= =g h h0 0m0 1 and = ⇔ =⋯= =g h h g0 m1 1 0

. Hence,
according to the assumption that we consider only polymatroids such that their rank functions do not have
all values equal to 0, from now on, we assume that the height of each uniform polymatroid is greater than zero.
To avoid repetition in the further part of this article, a uniform polymatroid will be denoted by = gJ h, ,� ( ),
where = ∈g g

i i Im
( ) , > =g g 0

m0
is a nonincreasing sequence of non-negative integers and →h J: 0��( ) is the

rank function such that = = ∑ =
−

h X h gk i

k

i0

1
( ) for every ∈X X�( ) with =k X∣ ∣.

Remark 2.5. We shall show that every uniform polymatroid determines at least one ideal access structure.
Indeed, uniform polymatroids are known to be representable (cf. [9, Theorem 6]). Let� be a finite field, and let

∈Vx x J( ) be a � -vector space representation of a uniform polymatroid = gJ h, ,� ( ). Then,Vx are the subspaces
of the vector space hm� and = =V h gdim x 1 0

for every ∈x J . For any ⊆X J , we define = ∑ ∈V VX x X x . Given a
nonzero vector ∈β hm� , the family = ⊆ ∈ ⊆X J β V JΔ : X �{ } ( ) is a monotone increasing family of subsets of
J and Δ is compatible with the polymatroid � . It is easily seen that ∈ ∪Vx x J x0

( ) { }, where ∉x J0 and
=V βspanx0

({ }) is a vector space representation of the one point extension of � induced by Δ. This shows
that the access structure Γ Π, , Δ�( ) is ideal. Varying the representation of � and the vector β, we can control
to some extent the selection of Δ that allows us to obtain different ideal access structures. This idea will be used
in Section 5 in proofs that the structures considered there are linearly representable.

In order to continue our studies, we need some elementary properties of vectors in X�( ) that are proved
in several technical lemmas. In the remainder of this subsection, we assume that = gJ h, ,� ( ) is a uniform
polymatroid and ⊆X J . Let us recall that X�( ) is defined by equation (2).

Lemma 2.6. If ≤ =k X1 ∣ ∣ and ∈w X¯ �( ), then:
(1) For every ∈x X we have ≥ −w gx k 1

.

(2) If = −w gx k 1
for some ∈x X , then − ∈ ⧹w w e X x¯ ¯x

x �( { })( ) .

Proof.
(1) Let us note that = =w h X h¯X k∣ ∣ ( ) and ≤ ⧹ =⧹ −w h X x h¯X x k 1∣ ∣ ( { }){ } ; hence,

= − ≥ − =⧹ − −w w w h h g¯ ¯ .x X X x k k k1 1
∣ ∣ ∣ ∣{ }

(2) If we set ≔ −v w w e¯ ¯ ¯x
x( ), then we have ⊆ ⧹v X xsupp ¯( ) { } and

= − = = ⧹− −v h g h h X x¯ . □k k k1 1∣ ∣ ( { })

Lemma 2.7. Let ∈ ≠x y X x y, , , and ∈w X¯ �( ) such that = ≠w g w, 0x y0
. I f ∈v v¯ supp ¯�( ( )) and

≤ − +v w e e¯ ¯ ¯ ¯
y x( ) ( ), then ∉y vsupp ¯( ).

Proof. Let ′ ≔ − +w w e e¯ ¯ ¯ ¯
y x( ) ( ) and ≔Y vsupp ¯( ). It is clear that ∈v Y¯ �( ) implies ≤ =v h gx 1 0

and =v h Y¯∣ ∣ ( ).
Moreover, ⊆Y X and ≤w h Y¯Y∣ ∣ ( ). Suppose that ∈y Y . If ∈x Y , then we have

= ≤ + − + ′ = − ≤ −⧹h Y v w w w w h Y¯ 1 ¯ ¯ 1 1,x y
Y x y

Y
,

( ) ∣ ∣ ( ) ∣ ∣ ∣ ∣ ( )
{ }

which is a contradiction.
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Similarly, if ∉x Y , then we have

= ≤ − + ′ = − ≤ −⧹h Y v w w w h Y¯ 1 ¯ ¯ 1 1,y
Y y

Y( ) ∣ ∣ ( ) ∣ ∣ ∣ ∣ ( )
{ }

which is a contradiction. This completes the proof. □

Lemma 2.8. Let ∈y X and ∈ ⧹x J X and ∈w X¯ �( ) such that =w gy 0
. If ≔k X∣ ∣, >g 0

k
, and ∈v v¯ supp ¯�( ( ))

such that ≤ − +v w e e¯ ¯ ¯ ¯
y x( ) ( ), then ∉y vsupp ¯( ). Moreover, if >g 1

0
, then ∉x y v, supp ¯( ), i.e., ⊆ ⧹v X ysupp ¯( ) { }.

Proof. Let ′ ≔ − +w w e e¯ ¯ ¯ ¯
y x( ) ( ). Clearly, ⊆ ′ ⊆ ∪v w X xsupp ¯ supp ¯( ) ( ) { }. Let ≔ ∩Y X vsupp ¯( ), and let ≔l Y∣ ∣.

Suppose that ∈y vsupp ¯( ). If ∈x vsupp ¯( ), then = ∪v Y xsupp ¯( ) { }, and we have ≤l k and

= ≤ ′ + + − = + = ≤+ ⧹ ⧹h v w g w g w h¯ ¯ 1 1 ¯ ¯ .l
Y y Y y Y l1 0 0

∣ ∣ ∣ ∣ ( ) ∣ ∣ ∣ ∣
{ } { }

Hence, < ≤ = − ≤+g g h h0 0
k l l l1 , which is a contradiction.

If ∉x vsupp ¯( ), then =v Ysupp ¯( ) , and we have

= ≤ ′ + − = + − = − = −⧹ ⧹h v w g w g w h¯ ¯ 1 ¯ 1 ¯ 1 1,l
Y y Y y Y l0 0

∣ ∣ ∣ ∣ ( ) ∣ ∣ ∣ ∣
{ } { }

which is a contradiction. Thus, we have proved that ⊆ ⧹ ∪v Y y xsupp ¯( ) ( { }) { }.
Now, we assume >g 1

0
and suppose = ⧹ ∪v Y y xsupp ¯( ) ( { }) { }.

= ≤ ′ + = + = + − − = − − <⧹ ⧹ ⧹h v w w w g g w g h¯ ¯ 1 ¯ 1 ¯ 1 ¯ 1 ,l
Y y Y y Y y Y l0 0 0

∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ( ) ∣ ∣ ( )
{ } { } { }

as − >g 1 0
0

, which is a contradiction. This shows = ⧹ ⊆ ⧹v Y y X ysupp ¯( ) { } { }, which completes the proof. □

Lemma 2.9. Let ∈x y X, , ≠x y, and ∈w X¯ �( ). If >w 0y , then either ′ ≔ − + ∈w w e e X¯ ¯ ¯ ¯
y x �( )( ) ( ) , or there

exists a set ⊆ ⧹ ∈Y X y x Y,{ } , such that ≔ ∈v w Y¯ ¯Y �( ). Furthermore, ≤v w¯ ¯ and ≤ ′v w¯ ¯ .

Proof. Note that ′ ⊆w Xsupp ¯( ) and ′ = = = ∣ ∣w w h X h¯ ¯X X X∣ ∣ ∣ ∣ ( ) . Let us consider the case ′ ∉w X¯ �( ), that is, there
is a set ⊆Y X that ′ ≥ +w h Y¯ 1Y∣ ∣ ( ) . Let us choose a minimum setY for this property. It is easy to see that ∈x Y

and ∉y Y . Setting the notation ≔l Y∣ ∣, we obtain

+ ≤ ′ = + + = + ≤ +⧹h w w w w h1 ¯ 1 ¯ ¯ 1 1,l Y x Y x Y l∣ ∣ ( ) ∣ ∣ ∣ ∣{ }

and consequently, =w h¯Y l∣ ∣ . Thus, for ≔v w¯ ¯Y , we have ∈v Y¯ �( ). It is clear that ≤v w¯ ¯ and ≤ ′v w¯ ¯ , which
completes the proof. □

Now, we introduce a notion of a vertex vector. Let J be a finite set and ≔m J∣ ∣ and let = ∈g g
i i Im

( ) be the
increment sequence of a uniform polymatroid = gJ h, ,� ( ). Given ⊆X J and a bijection → −σ X k: 0, 1, …, 1{ },
where =k X∣ ∣, we define the vector = ∈w w¯ x x J( ) by:

∑=
∈

w g e¯ ¯ ,

x X

σ x

x

( )
( )

which is referred to as a vertex vector with basic set X. Note that in general, we have ⊆w Xsupp ¯( ) , but
=w Xsupp ¯( ) whenever >−g 0

k 1
. Vertex vectors are the vertices of the convex polytope

= ∈ ≤ ⊆T w w h X X J¯ : ¯ for every ,
J

X0�{ ∣ ∣ ( ) }

determined by the polymatroid J h,( ).

Lemma 2.10. For every vertex vector w̄, we have ∈w w¯ supp ¯�( ( )).

Proof. Let w̄ be any vertex vector and ≔k wsupp ¯∣ ( )∣. Let us take a subset ⊆Y wsupp ¯( ) and set ≔ ≤l Y k∣ ∣ . The
sequence g being nonincreasing implies
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∑ ∑ ∑= = ≤ = =
∈ ∈ =

−

w w g g h h Y¯ .Y

x Y

x

x Y

σ x

i

l

i l

0

1

∣ ∣ ( )( )

Here, we use the fact that the sum of l arbitrary elements of a nonincreasing sequence does not exceed the sum
of the l initial entries of the sequence. In particular, we obtain = ∑ = ==

−
w g h h w¯ supp ¯w i

k

i ksupp ¯ 0

1
∣ ∣ ( ( ))( ) , which

shows that ∈w w¯ supp ¯�( ( )). □

Remark 2.11. Note that if � is a uniform polymatroid, then the set X�( ) is always nonempty since it contains
vertex vectors with basic set X . In extreme cases when = ∅X or the range function of the polymatroid has all
values equal to 0, the family X�( ) contains only the zero vector. Moreover, it is easy to check that if ∈w X¯ �( )

for some ⊆X J , then ∈w w¯ supp ¯�( ( )).

Deciding if a monotone increasing family is compatible with a given polymatroid is not an easy task. The
Csirmaz lemma seems to be the most general tool for solving this problem. For example, it is easy to check that
if the increment sequence of a polymatroid with ground set J is strictly decreasing, then every proper
monotone increasing family of subsets of J is compatible with the polymatroid. At the end of this section,
we present several facts related to the compatibility of monotone increasing families and polymatroids, which
are used in proofs in subsequent sections.

Lemma 2.12. Let = gJ h, ,� ( ) be a uniform polymatroid and let a monotone increasing family ⊆ ⧹ ∅JΔ �( ) { } be
compatible with � .
(1) If =g 0

k
for some ≤ ≤k J1 ∣ ∣, then all subsets of the set J with at least k elements belong to Δ.

(2) If Δ contains a minimal set with k elements, then >−g 0
k 1

.

Proof. (1) By assumption, we have =g 0
i

for all =i k m,…, . Let us consider ⊆X J , ≔ ≥l X k∣ ∣ . Then, we have

∑− = − = =∣ ∣ ∣ ∣
=

−

h J h X h h g 0.J X

i l

m

i

1

( ) ( )

This implies =h X h J( ) ( ), and by the Csirmaz lemma, we obtain ∈X Δ.
(2) Assume that ⊆X J is a minimal set in Δ, =X k∣ ∣ . Then, for every ⊆Y X with = −Y k 1∣ ∣ , we have ∉Y Δ,

so by the Csirmaz lemma <∣ ∣ ∣ ∣h hY X . Hence,

= − = − >− − ∣ ∣ ∣ ∣g h h h h 0. □
k k k X Y1 1

Lemma 2.13. If ⊆ ⧹ ∅JΔ �( ) { } is a monotone increasing family such that = XminΔ { } for some∅ ≠ ⊆X J , then Δ

is compatible with a uniform polymatroid = gJ h, ,� ( ) if and only if >−g 0
m 1

.

Proof. Assume Δ is compatible with � . If ∈x X , then ⧹ ∉J x Δ{ } , so by Csirmaz lemma ⧹ <h J x h J( { }) ( ),
thus = − ⧹ >−g h J h J x 0

m 1
( ) ( { }) .

Now, we shall show that the conditions of the Csirmaz lemma are met whenever >−g 0
m 1

. Let us note that
− = >− −h h g 0i i i1 1

for all =i m1,…, , so the sequence h h h, ,…, m0 1 is strictly increasing. Let us take such sets
⊆ ⊆Y W J , that ∉Y Δ and ∈W Δ. Of course, <Y W∣ ∣ ∣ ∣, so we have <h Y h W( ) ( ); thus, condition (1) is satisfied.
Now, let us consider ∈W Y, Δ. Then, ⊆X W and ⊆X Y since = XminΔ { }, so ∩ ∈W Y Δ. This shows that

the second condition of the Csirmaz lemma is also satisfied. □

Let us recall a result of Farràs et al., which can be restated as follows.

Lemma 2.14. ([12], Lemma 6.1) For a positive integer ∈k Im, the monotone increasing family Δ such that
= JminΔ k� ( ) is compatible with a uniform polymatroid = gJ h, ,� ( ) if and only if >−g g

k k1
.

Further results concerned with compatibility can be found in Section 4.
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3 Access structures determined by uniform polymatroids

This section is devoted to the study of necessary conditions for an access structure obtained from a uniform
polymatroid to be hierarchical. It is proved in Propositions 3.4, 3.5, 3.7, and 3.8, and Corollary 3.9 that under
some special conditions, the existence of comparable blocks in the access structure Γ Π, , Δ�( ) implies = −g g

m1 1

i.e., the increment sequence of the polymatroid is (almost) constant. Another result of this section (Corollary
3.10) states that if the height of � is greater than 1 or g is not constant, then different blocks in Π are not
equivalent. This means that the relation ≼ is antisymmetric in this case.

From now on, we make the assumptions: J is a finite set with ≔ ≥m J 2∣ ∣ , = ∈g g
i i Im

( ) being the increment
sequence of a uniform polymatroid � with ground set J and =Γ Γ Π, , Δ�( ). Moreover, < <g P0 x0

∣ ∣ for all
∈x J ; hence, height of � is greater than or equal to 1. We define = ∈μ X XΔ min : Δ( ) {∣ ∣ }. Note that ≥μ Δ 1( ) ,

as ∅ ∉ Δ.

Example 3.1. Let us consider a uniform polymatroid = gJ h, ,� ( ) such that the height of � equals 1, i.e.,
> =g g 0

0 1
, and a monotone increasing family Δ of subsets of J is compatible with � . Applying Lemma 2.12 (1)

yields = ⧹ ∅JΔ �( ) { }. According to equation (4), we have =h X g
0

( ) for all nonempty subsets X of J . Hence,
⊆X J� �( ) ( ) for every ∅ ≠ ⊆X J (cf. equation (3)), and consequently, ⋃ =∈ X JX Δ� �( ) ( ). Let =Γ Γ Π, , Δ�( ).

This implies that ∈w̄ minΓ if and only if =w g¯ 0
∣ ∣ or equivalently ∈w̄ Γ if and only if ≥w g¯ 0

∣ ∣ . This shows that
the threshold access structure is the only type of access structures determined by uniform polymatroids with
height equal to 1. In particular, all blocks (and participants) are hierarchically equivalent.

Let us collect several simple observations, which are very helpful in many proofs.

Lemma 3.2.
(1) ⊆X Γ�( ) for all ∈X Δ.
(2) =supp Γ Δ( ) .
(3) If ∈w̄ minΓ, then ∈w w¯ supp ¯�( ( )) and ∈wsupp ¯ Δ( ) .
(4) If ∈w̄ Γ, then there exists ∈v̄ minΓ such that ≤v w¯ ¯ , ∈v v¯ supp ¯�( ( )) and ∈vsupp ¯ Δ( ) .
(5) If w̄ is a vertex vector and ∈wsupp ¯ Δ( ) , then ∈w̄ Γ.

Proof.
(1) This follows directly from Definition 2.2. (2) Let us consider ∈Y supp Γ( ). Then, there exists ∈w̄ Γ such that

=w Ysupp ¯( ) . Let us consider two cases:
(i) ∈w̄ minΓ. Then, there exists ∈X Δ such that ∈w X¯ �( ), so ⊆Y X . If =Y X , then ∈Y Δ. If ⊊Y X , then

also ∈Y Δ. Indeed, let us note that ≤w h Y¯Y∣ ∣ ( ), =w h X¯X∣ ∣ ( ), and =w w¯ ¯Y X∣ ∣ ∣ ∣, where the later equality
follows from the fact = ⊆w Y Xsupp ¯( ) . Moreover, if ∉Y Δ, then by the Csirmaz lemma, we would
obtain

= = ≤ <h X w w h Y h X¯ ¯ ,X Y( ) ∣ ∣ ∣ ∣ ( ) ( )

which is a contradiction.
(ii) ∈w̄ Γ and ∉w̄ minΓ. Then, there is ∈v̄ minΓ such that ≤v w¯ ¯ . From Case (i), we obtain ∈vsupp ¯ Δ( ) .

Let us note that ⊆v wsupp ¯ supp ¯( ) ( ). Moreover, Δ is a monotone increasing family, so = ∈Y wsupp ¯ Δ( ) .

Now, we shall show the converse inclusion. Let us take ∈X Δ. As we already have observed in Remark 2.11, the
family X�( ) cannot be empty, so there is a certain vector ∈w X¯ �( ). By (1), we obtain ∈w̄ Γ, so ∈wsupp ¯( )

supp Γ( ). The family supp Γ( ) is monotone increasing and ⊆w Xsupp ¯( ) , so ∈X supp Γ( ).
(3) If ∈w̄ minΓ, then ∈w X¯ �( ) for some ∈X Δ. Remark 2.11 implies ∈w w¯ supp ¯�( ( )). Moreover, ∈wsupp ¯( )

supp Γ( ); hence, and by (2), we obtain ∈wsupp ¯ Δ( ) .
(4) It follows from (3) immediately.
(5) If w̄ is a vertex vector, then we have ∈w w¯ supp ¯�( ( )) by Lemma 2.10. By assumption and part (1) of this

lemma, we obtain ∈w̄ Γ. □
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Lemma 3.3. If = >−g g 0
n1 1

for some ≤ ≤n m2 and if ∈X Y, minΔ as well as ∪ ≤X Y n∣ ∣ , then =X Y or both
sets are singletons. Moreover, if =g g

0 1
, then =X Y even if both X and Y are singletons.

Proof. For =n 2, the claim is obvious. Let us assume ≥n 3. It is enough to consider the case ≠X Y . Suppose that
at least one of these sets, for example X , has at least two elements. Let us fix ∈x X and consider the set

′ = ⎧⎨⎩
∩ ≠ ∅

∪ ∩ = ∅Y
Y X Y

Y x X Y

when ;

when .{ }

Note that ∪ ′ = ∪ ≤X Y X Y n∣ ∣ ∣ ∣ and ≔ ∩ ′ ≠ ∅W X Y . In addition, W is a proper subset of X , which is a
minimum set in Δ, so it does not belong to Δ. Hence, according to the Csirmaz lemma, we obtain

+ ∪ ′ < + ′h W h X Y h X h Y .( ) ( ) ( ) ( )

On the other hand, the assumption = −g g
n1 1

implies = + −h g l g1l 0 1
( ) for every ≤ ≤l n1 . From this, we obtain

+ < +∣ ∣ ∣ ∣+∣ ′∣−∣ ∣ ∣ ∣ ∣ ′ ∣h h h h ,W X Y W X Y( )

+ − + + + ′ − − < + − + + ′ −g W g g X Y W g g X g g Y g1 1 1 1 .
0 1 0 1 0 1 0 1

(∣ ∣ ) (∣ ∣ ∣ ∣ ∣ ∣ ) (∣ ∣ ) (∣ ∣ )

The aforementioned expression simplifies to <0 0, which is a contradiction. This shows that if X and Y are
different, then they cannot have more than one element.

Let us assume =g g
0 1

and = =X Y 1∣ ∣ ∣ ∣ . Let us suppose ≠X Y . Then, ∩ = ∅X Y , so by the Csirmaz lemma
we have

∩ + ∪ < +h X Y h X Y h X h Y ,( ) ( ) ( ) ( )

and consequently, <h h22 1 or equivalently + <g g g2
0 1 0

, which is a contradiction. □

Proposition 3.4. If ∈X minΔ, then for all ∈x y X, , ≠x y, the blocks Px and Py are hierarchically independent in
the access structure =Γ Γ Π, , Δ�( ).

Proof. Let ∈X minΔ and let x and y be two different elements in X . Suppose ≼P Py x , and consider a vertex
vector w̄ with basic set X and =w gx 0

. Setting ≔k X∣ ∣ and applying Lemma 2.12 (2), we have >−g 0
k 1

so
=w Xsupp ¯( ) , in particular, >w 0y , and by Lemma 3.2 (5), we obtain ∈w̄ Γ. Thus, ′ = − + ∈w w e e¯ ¯ ¯ ¯ Γy x( ) ( ) .

By Lemma 3.2 (4), there is ∈v̄ minΓ such that ≤ ′v w¯ ¯ and ∈ ⊆v v¯ supp ¯ Γ�( ( )) , so applying Lemma 2.7, we
have ∉ ⊊y v Xsupp ¯( ) , which contradicts the fact that ∈X minΔ. □

Proposition 3.5. If ∈X minΔ, ≤ ≔ ≤ −k X m1 1∣ ∣ and >g 0
k

, then for every ∈y X , the block Py is not hier-
archically inferior or equivalent to any block ≠P Px y in the access structure =Γ Γ Π, , Δ�( ).

Proof. Let ∈y X and let us suppose that ≼P Py x for some ∈x J . By Proposition 3.4, we have ∈ ⧹x J X . Let us
consider a vertex vector w̄ with basic set X and =w gy 0

. Obviously, ∈w̄ Γ by Lemma 3.2 (5). Then, the vector
′ ≔ − +w w e e¯ ¯ ¯ ¯

y x( ) ( ) also belongs to Γ.
By Lemma 3.2 (4), there exists a minimal authorized vector v̄ such that ≤ ′v w¯ ¯ , ∈v v¯ supp ¯�( ( )) and

∈vsupp ¯ Δ( ) . If >g 1
0

, then Lemma 2.8 implies ⊆ ⧹v X ysupp ¯( ) { }, but this contradicts the assumption ∈X minΔ.

If =g 1
0

, then = =g g g
k0 1
, and by Lemma 2.8, we have ⊆ ⧹ ∪v X y xsupp ¯( ) ( { }) { }. For ∈Y minΔ such that

⊆Y vsupp ¯( ), we have ∪ ⊆ ∪X Y X x{ }, so ∪ ≤ +X Y k 1∣ ∣ . Applying Lemma 3.3 yields =X Y but ∈y X and
∉y Y , which is a contradiction. □

Lemma 3.6. Let us assume that ∈X minΔ with ≔k X∣ ∣, and there are ∈x y J, , ≠x y such that ∪ ≥X x y, 3∣ { }∣

and the blocks Py and Px are hierarchically comparable in the access structure Γ. Furthermore, we assume that
=g g

k1
and >g 0

l
for certain ≤ <l m1 . If ∩ ≠ ∅X x y,{ } or =g g

0 1
, then =g g

l1
.

Proof. If =g 1
1

, then the claim is obvious.
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Assume that >g 1
1

and assume that this is not the case. Let l be the least positive integer that does not
satisfy the claim. That means, = > >−g g g 0

l l1 1
. Obviously, + ≤ ≤ −k l m1 1. This implies ≤ −k m 2. Without

loss of generality, we can assume that ≼P Py x . By Proposition 3.5, we have ∉y X . Let now ⊆Y J be a set with

+l 1 elements that contains ∪X x y,{ }. Moreover, let us take an element ∈ ⧹z X x y,{ }.
Let us consider a vertex vector w̄ with basic set Y and =w gx 0

and =w gz l
. Obviously, =w Ysupp ¯( ) , as

>g 0
l

. Under the aforementioned assumptions, =w gt 1
for all ∈ ⧹t Y x z,{ }; in particular, we have =w gy 1

. For
every < ≤j l0 , we have

∑= = + −
=

−

h g g j g1 .j

i

j

i

0

1

0 1
( ) (5)

Let us note that ∈Y Δ as ⊆X Y . Hence, ∈w̄ Γ by Lemma 3.2 (5). Moreover, = = + − ++h w g l g g¯ 1l l1 0 1
∣ ∣ ( ) . Since

≼P Py x , we have ′ ≔ − + ∈w w e e¯ ¯ ¯ ¯ Γy x( ) ( ) . Let us note ′ =w Ysupp ¯( ) . Now by Lemma 3.2 (4), there exists a
minimal authorized vector v̄ such that ≤ ′v w¯ ¯ , ∈v v¯ supp ¯�( ( )) and ≔ ∈W vsupp ¯ Δ( ) . Lemma 2.7 implies
∉y W , i.e., ⊆ ⧹W Y y{ }, so ≤W l∣ ∣ . Let ∈Z minΔ such that ⊆Z W .
Thus, ∪ ⊆ ∪ ⊆ ⧹X Z X W Y y{ }, so ∪ ≤X Z l∣ ∣ and applying Lemma 3.3 yields =X Z or both X and W are

singletons. If ∩ ≠ ∅X x y,{ } , then ∈x z X, , so X is not a singleton; thus, =X Z . If =g g
0 1

, then =X Z . Thus, in
both cases, we have ∈ = ⊆z X Z W , so applying Lemma 2.6 (1), we obtain ≤∣ ∣−g v

W z1
. Note also that

≤ ′ = = < ≤− ∣ ∣−v w w g g gz z z l l W1 1
, a contradiction that proves that =g g

l1
. □

Proposition 3.7. Let us assume that the height of � equals ≥n 3. If there are ∈X minΔ such that ≤ ≤ −X n1 2∣ ∣

and ∈ ⧹x y J X, such that the blocks Px and Py are hierarchically comparable in the access structure Γ,
then = =⋯= > =−g g g g 0

n n0 1 1
.

Proof. If =g 1
0

, then let us observe that

= = ≥ ≥⋯≥ ≥−h g g g1 1.
n1 0 1 1

Hence, = =⋯= > =−g g g g 0
n n0 1 1

.
Thus, we assume ≥g 2

0
. If the blocks Px and Py are hierarchically comparable, then one can assume

without loss of generality that ≼P Py x . Let us consider a vertex vector w̄ with basic set ∪X y{ } such that
=w gy 0

. Obviously, by Lemma 3.2 (5), we have ∈w̄ Γ. Then, the vector ′ ≔ − +w w e e¯ ¯ ¯ ¯
y x( ) ( ) belongs to Γ. By

Lemma 3.2 (4), there exists a minimal authorized vector v̄ such that ≤ ′v w¯ ¯ , ∈v v¯ supp ¯�( ( )) and ∈vsupp ¯ Δ( ) .
By Lemma 2.8, we have ⊆v Xsupp ¯( ) , but X is minimal in Δ, so =v Xsupp ¯( ) . Thus, we have

∑= ≤ ′ = = = −
=

+h v w w g h g¯ ¯ ¯ ,k X X

i

k

i k

1

1 0
∣ ∣ ∣ ∣ ∣ ∣

so ≤ − =+g h h gk k k0 1 . The sequence g is nonincreasing, so = =⋯=g g g
k0 1
. Thus, we have shown that

= =g g…
k1
. To complete the proof, it is enough to apply Lemma 3.6, assuming = −l n 1. □

Proposition 3.8. Let us assume that the height of � equals ≥n 3. If there are ∈X minΔ with ≤ ≤ −X n2 1∣ ∣ and
∈x X and ∈ ⧹y J X such that the blocks Px and Py are hierarchically comparable in the access structure Γ,

then =⋯= > =−g g g 0
n n1 1

.

Proof. If the blocks Px and Py are hierarchically comparable, then it follows from Proposition 3.5 that ≼P Py x .
Let us consider a vertex vector w̄ with basic set ∪X y{ } such that =w gx 0

and =w gy 1
. Obviously, ∈w̄ Γ by

Lemma 3.2 (5). Then, also the vector ′ ≔ − +w w e e¯ ¯ ¯ ¯
y x( ) ( ) belongs to Γ and ′ ⊆ ∪w X ysupp ¯( ) { }. Hence, by Lemma

3.2 (4), there is a minimal authorized vector v̄ , such that ≤ ′v w¯ ¯ , ∈v v¯ supp ¯�( ( )), and ≔ ∈Y vsupp ¯ Δ( ) . Let us
observe ⊆ ′ ⊆ ∪Y w X ysupp ¯( ) { }.
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By Lemma 2.7, we have ∉y Y that shows ⊆Y X , but X is minimal in Δ, so =Y X . Thus, we have

∑= ≤ + = −
=

+h v g g h g¯ ,k

i

k

i k0

2

1 1
∣ ∣

where ≔k X∣ ∣. Hence, ≤ − =+g h h gk k k1 1 and =g g
k1
as the sequence g is nonincreasing. To complete the

proof, it is enough to apply Lemma 3.6, assuming = −l n 1. □

Corollary 3.9. Let n be the height of � . If there are ∈x y J, such that Px and Py are hierarchically comparable
and ≤ ∪ ≤X x y n3 ,∣ { }∣ for a certain ∈X minΔ, then = −g g

m1 1
.Moreover, if ∩ = ∅X x y,{ } , then = = −g g g

m0 1 1
.

Proof. Assuming with no loss of generality that ≼P Py x , we obtain that x y,{ } is not contained in X , by
Proposition 3.4, so ≤ −X n 1∣ ∣ . Applying Proposition 3.5 yields ∉y X . If ∈x X , then ≤ ≤ −X n2 1∣ ∣ , and
applying Proposition 3.8 yields = > =−g g g 0

n n1 1
. If ∉x X , in particular =X 1∣ ∣ , then applying Proposition

3.7 yields = = > =−g g g g 0
n n0 1 1

.
Suppose, contrary to our claim, that <n m. Then, there is a subset ⊆Z J such that = +Z n 1∣ ∣ and

∪ ⊆X x y Z,{ } . Let us choose ∈ ⧹z X x y,{ } and denote ′ = ⧹Z Z z{ }. Lemma 2.12 (1) implies that the set ′Z belongs
to Δ but it is not minimal as ∈ ′x y Z, . So there is ∈Y minΔ such that ⊊ ′Y Z . Applying again Proposition 3.5, we

obtain ∉y Y , so ∪ ⊆ ⧹X Y Z y{ }; thus, ∪ ≤X Y n∣ ∣ . If >X 2∣ ∣ , then we can apply Lemma 3.3 to obtain
= ⊆ ′X Y Z , which is a contradiction as ∈z X but ∉ ′z Z . If =X 1∣ ∣ , then ∩ = ∅X x y,{ } , and by Proposition

3.7, we have =g g
0 1

, and applying again Lemma 3.3 yields = ⊆ ′X Y Z , a contradiction as mentioned earlier.
This completes the proof. □

Corollary 3.10. Any multipartite access structure determined by uniform polymatroid � does not admit hier-
archically equivalent blocks unless the height of � is 1 or =⋯= −g g

m0 1
.

Proof. It is shown in Example 3.1 that all blocks are hierarchically equivalent in any access structure deter-
mined by a uniform polymatroid with height 1. Let ≥n 2 be the height of � and suppose that there are ∈x y J,

such that Px and Py are hierarchically equivalent. Let us consider a subset ⊆X J such that ∈x y X, and =X n∣ ∣ .
Lemma 2.12 (1) and Proposition 3.4 imply that ∈X Δ but X is not minimal, so there is ∈Y minΔ such that
⊊Y X . By Proposition 3.5 ∉x y Y, . If =n 2, then = ∅Y , which is a contradiction. Hence, we obtain ≥n 3 and
≤ ∪ ≤Y x y n3 ,∣ { }∣ , and applying Corollary 3.9 yields = −g g

m0 1
. □

4 Hierarchical preorder determined by access structure

In this section, we present some properties of the access structure =Γ Γ Π, , Δ�( ) depending on conditions
imposed on � and Δ. Theorem 4.1 states that Γ is connected if the increment sequence of � is not constant.
Assuming that > −g g

m1 1
, we prove in the next two theorems that the structures are compartmented provided

that the height of the polymatroid is maximal or the family Δ does not contain any singleton (Theorems 4.2 and
4.3). Theorems 4.6, 4.8, 4.9, and 4.11 contain complete descriptions of Γ Π, , Δ�( ) in the following cases: the
height of the polymatroid is equal to 2, = >−g g 0

m1 1
and Δ is generated by a singleton. The section ends with

Theorem 4.12 stating that each ≺-preorder chain in the access structures defined by a uniform polymatroid has
at most two elements.

Theorem 4.1. Let =Γ Γ Π, , Δ�( ) and let = ∈g g
i i Im

( ) be the increment sequence of a uniform polymatroid � . If
> −g g

m0 1
, then the access structure =Γ Γ Π, , Δ�( ) is connected.

Proof. Given ∈x J , we want to show that there is ∈w̄ minΓ such that ≠w 0x . If there is ∈ ∈X x XminΔ, , and
≔i X∣ ∣, then >−g 0

i 1
by Lemma 2.12 (2). It is easy to see that any vertex vector w̄ with basic set X belongs to

minΓ and ≠w 0x . Now, we assume that ∉x X for all ∈X minΔ. Let us denote ≔ ∈ >l i I g gmin :m i0
{ }. By
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assumption, ≤ −l m 1. Let us take ∈X minΔ such that ≔ =k X μ Δ∣ ∣ ( ) and consider ⊆Y J such that
= +Y k lmax , 1∣ ∣ { } and ∪ ⊆x X Y{ } . Let w̄ be a vertex vector with basic set Y such that =w gx 0

and =w gy l

for a certain ∈y X . Lemma 3.2 (5) implies that ∈w̄ Γ as ∈Y Δ. Thus, there is ∈v̄ minΓ such that ≤v w¯ ¯ . Since

∈vsupp ¯ Δ( ) , there is ∈W minΔ such that ⊆W vsupp ¯( ). By assumption, ∉x W , so ⊆ ⧹W Y x{ }.

It turns out that =W X . Indeed, if ≥k l, then ⧹ =Y x X{ } , and by the minimality of X in Δ, we have =W X .

For the case <k l, we have ≥l 2, =g g
0 1

, and ∪ ⊆ ⧹X W Y x{ }; thus, ∪ ≤X W l∣ ∣ , and consequently, =X W by
Lemma 3.3.

If =g 0
l

, then ≤ = =v w g 0y y l
, i.e., ∉y vsupp ¯( ), which contradicts the fact that ∈ = ⊆y X W vsupp ¯( ).

If ≠g 0
l

and ≠v 0x , then we have the claim. Let us suppose =v 0x , i.e., ∉x vsupp ¯( ). Thus, for =Z vsupp ¯( ),
we have

∑ ∑ ∑ ∑= = ≤ = + = − −

= − − ≤ ∪ ⧹ − − <

∈ ∈ ∈ ⧹ ∈ ∪ ⧹

∪ ⧹

h Z v v w w w w w w

w w w h Z x y g g h Z

¯

¯ ,

Z

z Z

z

z Z

z y

z Z y

z

z Z x y

z x y

Z x y x y l0

( ) ∣ ∣ ( )

∣ ∣ ( ) (( { }) { }) ( ) ( )

{ } ( { }) { }

( { }) { }

which is a contradiction as = ∪ ⧹Z Z x y∣ ∣ ∣( { }) { }∣ and − >g g 0
l0

. □

This theorem shows that the access structures determined by uniform polymatroids are connected except
for the ones in the column D of Table 1.

Theorem 4.2. Let = ∈g g
i i Im

( ) be the increment sequence of a uniform polymatroid � and let =Γ Γ Π, , Δ�( ). If
≥m 3 and > >−g g 0

m1 1
and ≠ xminΔ {{ }} for any ∈x J , then the access structure Γ is compartmented.

Proof. Let us suppose that there are ∈x y J, such that the blocks Px and Py are hierarchically comparable.
According to Proposition 3.4, no minimal set in Δ can contain both x and y, so ≤ −X m 1∣ ∣ for every ∈X minΔ.
By assumption, the height of � equalsm. If ∉x y X, for a certain ∈X minΔ, then by Proposition 3.7, we obtain
= = = −g g g…

m0 1 1
, a contradiction.

If does not exist any set X in minΔ such that ∉x y X, , then without loss of generality, we can assume that
∈x X and ∉y X for a certain ∈X minΔ. If ≥X 2∣ ∣ , then by proposition 3.8, we obtain = = −g g…

m1 1
, which is a

contradiction again. If =X 1∣ ∣ , then = xminΔ {{ }}, as otherwise both x and y would be outside a certain
minimal set in Δ, but this is not the case now. □

Let us note that if >−g 0
m 1

, then the aforementioned theorem implies that the appearance of non-com-
partmented access structure can be expected in the first row or in the last column of Table 1. In the next

Table 1: Hierarchical (pre)orders of access structures obtained form uniform polymatroids

T : Threshold; C : Compartmented; H : Hierarchical.
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theorem, we shall prove that the access structures that appear in the last row of Table 1 are compartmented
excluding the cells A3 and D3.

Theorem 4.3. Let = ∈g g
i i Im

( ) be the increment sequence of a uniform polymatroid � and let =Γ Γ Π, , Δ�( ). If
≥m 3 and > −g g

m1 1
and ≔ >k μ Δ 1( ) , then the access structure Γ is compartmented.

Proof. Suppose to the contrary that Γ is not compartmented, i.e., there are two blocks that are hierarchically
comparable. For simplicity, we assume ≼P Py x for certain ∈x y J, and ≠x y. By Proposition 3.4, no set in minΔ

contains both x and y; in particular, there is a subset of J with k elements that do not belong to minΔ. This and
Lemma 2.12 (1) imply >g 0

k
. Let n be the height of � . Obviously, ≤ < ≤k n m2 and =g 0

n
. Proposition 3.5

implies ∉y X for every ∈X minΔ with ≤ −X n 1∣ ∣ .
If there exists ∈X minΔ such that =X k∣ ∣ and ∈x X , then ≤ ∪ = + ≤X x y k n3 , 1∣ { }∣ . Now, we assume

that ∉x X for every ∈X minΔ with =X k∣ ∣ . Suppose =+g 0
k 1

. Let us fix ∈X minΔ with =X k∣ ∣ and ∈z X . Let

us consider ≔ ⧹ ∪Z X z x y,( { }) { }. From Lemma 2.12 (1), we have ∈Z Δ as = +Z k 1∣ ∣ . By Proposition 3.4, the set
Z cannot be minimal as it contains x y,{ }, so there is ∈Y minΔ such that ⊊Y Z , and hence, =Y k∣ ∣ . Obviously,

∉x y Y, , which implies ⊆ ⧹Y X z{ }, a contradiction. This shows that >+g 0
k 1

, so + <k n1 . Thus, we have
≤ ∪ = + ≤X x y k n4 , 2∣ { }∣ for arbitrary ∈X minΔ with =X k∣ ∣ .
In both cases, we can apply Corollary 3.9, which implies = −g g

m1 1
, which is a contradiction. This completes

the proof. □

The following table presents a general arrangement of multipartite access structure determined by
monotone increasing families contained in ⧹ ∅J�( ) { } and uniform polymatroids. The cells A1, B1, and A3 do
not contain any objects since the suitable monotone increasing families and polymatroids are not compatible.
A monotone increasing family, which is not compatible with given polymatroid, can occur in every cell of the
table. A complete overview of hierarchical orders of all access structure obtained from uniform polymatroids
with =m 4 can be found in Table A1.

To describe the hierarchical order determined by an access structure Γ in a partition Π of the set of
participants P, we introduce the following notations Y XOrd ,( ) and ∗ Y XOrd ,( ), which are defined as follows.

Definition 4.4. Let = ∈PΠ x x J( ) be a partition of the set P and let Y and X be two disjoint subsets of J . The
hierarchical preorder ≼ in Π is said to be of type Y XOrd ,( ) if

≼ ⇔ = ∈ ∈P P x y y Y x Xor and .y x ( ( ))

In particular, no different blocks are hierarchically equivalent, i.e., ≼ is an order. Moreover, if X orY is empty,
then the order Y XOrd ,( ) is compartmented.

Definition 4.5. Let = ∈PΠ x x J( ) be a partition of the set P and let X and Y be two disjoint subsets of J . The
hierarchical preorder ≼ in Π is said to be of type ∗ Y XOrd ,( ) if

≼ ⇔ = ∈ ∈ ∈P P x y x y Y y Y x Xor , or and .y x ( ( ))

The preorder ∗ Y XOrd ,( ) is not an order (unless ≤Y 1∣ ∣ ). In particular, Px and Py are hierarchically equivalent
whenever ∈x y Y, , but no different blocks Px and Py with ∈ ⧹x y J Y, are hierarchically equivalent.

One can note that if the set Y is empty, then every two blocks are hierarchically independent in
the preorder ∅∗ XOrd ,( ). If the set X is empty, then we obtain ∅∗ YOrd ,( ), which means each two
blocks are hierarchically equivalent (cf. Example 3.1). Noteworthy is also the observation that if ≤Y 1∣ ∣ ,
then = ∗Y X Y XOrd , Ord ,( ) ( ). The defined preorders can be presented in the form of the following Hasse
diagrams.
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Now, we want to describe the hierarchical orders of multipartite access structures determined by some
special type of uniform polymatroids. In Example 3.1, we considered the case of polymatroids with height 1. We
will now deal with polymatroids = gJ h, ,� ( ) of height equal to 2, i.e., ≥ > =g g g 0

0 1 2
. The result presented in

the following refers to some access structures in the column B of Table 1.

Theorem 4.6. Let = = gJ hΠ , ,� �( ) ( ) be a uniform polymatroid with the increment sequence = ∈g g
i i Im

( ) such
that the height of � is equal to 2.
• If >g g

0 1
, then a monotone increasing family ⊆ ⧹ ∅JΔ �( ) { } is compatible with the polymatroid � if and only if

there is a subset ⊆X J such that = ∪ ⧹X J XminΔ 1 2� �( ) ( ).

• If =g g
0 1

, then a monotone increasing family ⊆ ⧹ ∅JΔ �( ) { } is compatible with the polymatroid � if and only if

there is a subset ⊆X J , ≤X 1∣ ∣ such that = ∪ ⧹X J XminΔ 1 2� �( ) ( ).
• Let =Γ Γ Π, , Δ�( ) be the access structure determined by the polymatroid � and the monotone increasing

family ⊆ ⧹ ∅JΔ �( ) { } such that = ∪ ⧹X J XminΔ 1 2� �( ) ( ) for some ⊆X J , then the hierarchical order induced

by Γ on the set Π is of the type ⧹J X XOrd ,( ).

Proof. (1) and (2). (⇒). If the monotone increasing family Δ is compatible with the polymatroid � , then Lemma
2.12 (1) and the assumptions =g 0

2
shows that all subsets of J with two elements belong to Δ. Thus, all sets in

minΔ have one or two elements. Let ⊆X J denote the collection of those elements that form single-element
minimal sets. Hence, the remaining sets in minΔ have two elements and do not contain any elements
belonging to X . Therefore, = ∪ ⧹X J XminΔ 1 2� �( ) ( ). If =g g

0 1
, then it follows from Lemma 3.3 that ≤X 1∣ ∣ .

(1) and (2). (⇐). To show the reverse implication, consider the monotone increasing family Δ such that
= ∪ ⧹X J XminΔ 1 2� �( ) ( ) for some ⊆X J . Let us recall that every set with two elements belongs to Δ. It is easy

to see that = +h Y g g
0 1

( ) for all ⊆Y J with ≥Y 2∣ ∣ . We shall apply the Csirmaz lemma. If ⊆ ⊆W Y J such that
∉W Δ and ∈Y Δ, then = ∅W and ≥Y 1∣ ∣ or =W 1∣ ∣ and ≥Y 2∣ ∣ . In the former case, we have = <h W0 ( )

≤g h Y
0

( ), and in the latter case, = < + =g h W g g h Y
0 0 1

( ) ( ). Similarly, if ∈Y Z, Δ and = ∩ ∉W Y Z Δ, then
≤W 1∣ ∣ . If =W 1∣ ∣ , then ≥Y Z, 2∣ ∣ ∣ ∣ . Hence,

+ ∪ = + + < + + + = +h W h Y Z g g g g g g g h Y h Z .
0 0 1 0 1 0 1

( ) ( ) ( ) ( ) ( ) ( ) ( )

Now, we assume = ∅W , so ∪ ≥Y Z 2∣ ∣ and ≥Y Z, 1∣ ∣ ∣ ∣ . If >g g
0 1

, then

∪ = + < + ≤ +h Y Z g g g g h Y h Z .
0 1 0 0

( ) ( ) ( )

In case =g g
0 1

, we assumed that there is at most one singleton in Δ, so >Y 1∣ ∣ or >Z 1∣ ∣ . Hence,

∪ = + < + + ≤ +h Y Z g g g g g h Y h Z .
0 1 0 0 1

( ) ( ) ( )

Thus, both conditions of the Csirmaz lemma are satisfied, which completes the proof of (1) and (2).
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(3) If = ∅X , then =μ Δ 2( ) . For =m 2, we have = JΔ { }, and by Proposition 3.4, the blocks Px and Py are
hierarchically independent, so Γ is compartmented. Assuming ≥m 3, we can apply Theorem 4.3 and we
conclude that the obtained access structure is compartmented, i.e., ∅JOrd ,( ).

We now turn to the case ≠ ∅X . By assumption ∈x minΔ{ } for all ∈x X , so applying Proposition 3.5, we
see that Px cannot be hierarchically inferior or equivalent to any other Pz. In particular, Px and Py are mutually

hierarchically independent whenever ∈x y X, and ≠x y. If ∈ ⧹x y J X, , then ∈x y, minΔ{ } , so Px and Py are
hierarchically independent by Proposition 3.4. In particular, if =X J , then we obtain the compartmented
order ∅ JOrd ,( ).

It remains to show that ≺P Py x for ∈x X and ∈ ⧹y J X with ∅ ⊊ ⊊X J . Let w̄ be a minimal vector in Γ

such that ≠w 0y . If such a vector does not exist, then the block Py is redundant so ≺P Py x . Otherwise, applying
Lemma 3.2 (3) yields ∈w w¯ supp ¯�( ( )) and ∈wsupp ¯ Δ( ) . Note that ∉y minΔ{ } , so ≥wsupp ¯ 2∣ ( )∣ . According to
equation (3), we obtain ∈ ⊆w w J¯ , supp ¯ ,� � � �( ( )) ( ). Lemma 2.9 shows that ′ ≔ − + ∈w w e e J¯ ¯ ¯ ¯

y x �( )( ) ( ) or

there exist a set ⊆ ⧹Y J y{ }, ∈x Y and a vector ∈v Y¯ ,� �( ), such that ≤ ′v w¯ ¯ . In the first case, we have ′ ∈w̄ Γ

by Lemma 3.2 (1). If the second case occurs, then we note that ⊆ ∈x Y Δ{ } , so from Lemma 3.2 (1), we obtain
∈v̄ Γ; hence, ′ ∈w̄ Γ. This proves that ≺P Py x . In this way, we showed that the order on the set ≼Π,( ) is of the

type ⧹J X XOrd ,( ). □

Remark 4.7. The aforementioned theorem combined with Example 3.1 is strong enough to classify all bipartite
access structure determined by uniform polymatroids with =m 2. If the polymatroid height is equal to 1, then
we have a threshold access structure (cf. Example 3.1). If the polymatroid height is equal to 2, then we consider
three monotone increasing families = x JΔ ,1 {{ } }, = x y JΔ , ,2 {{ } { } }, and = JΔ3 { } of subsets of ≔J x y,{ }. Let us
note that ′ = y JΔ ,1 {{ } } is hierarchically equivalent to Δ1 as it can be obtained by the permutation of x and y. It is
easy to see that Δ1 is compatible with every polymatroid gJ h, ,( ) with >g 0

1
and the resulting access structures

induce on P P,x y{ } the order of the type y xOrd ,({ } { }). Moreover, Δ2 is not compatible with a polymatroid such
that =g g

0 1
but in the remaining cases, the resulting access structures are compartmented.

The following theorem describes the hierarchy on the access structures determined by uniform polyma-
troids with = =⋯= >−g g g 0

m0 1 1
. This result corresponds to the access structures that appear in the column D

of Table 1.

Theorem 4.8. Let = gJ h, ,� ( ) be a uniform polymatroid with ≔ ≥m J 3∣ ∣ and the increment sequence
= ∈g g

i i Im
( ) such that = >−g g 0

m0 1
.

(1) A monotone increasing family ⊆ ⧹ ∅JΔ �( ) { } is compatible with the polymatroid � if and only if = XminΔ { }

for a certain ∅ ≠ ⊆X J .
(2) Let =Γ Γ Π, , Δ�( ) be the access structure determined by the polymatroid � and the monotone increasing

family ⊆ ⧹ ∅JΔ �( ) { } such that = XminΔ { } for a certain ∅ ≠ ⊆X J , then
(2a) The vector ∑ ∈ g ēx X

x

0

( ) is the only minimal authorized vector in the access structure Γ.
(2b) The hierarchical preorder induced by Γ on the set Π is of the type ⧹∗ J X XOrd ,( ).

Proof. (1) Since = −g g
m0 1

, i.e., the height of � is equal to m, we can apply Lemma 3.3, which implies that if Δ is
compatible with the polymatroid � , then minΔ contains only one set. To prove the reverse implication, it is
enough to apply Lemma 2.13.

(2a) We apply Lemma 2.6 (1) for an arbitrary ∈Y Δ and an arbitrary ∈w Y¯ �( ). For ≔l Y∣ ∣, we have
≥ ≥ = =−h w g g hz l1 1 0 1, and consequently, = =w h gz 1 0

for every ∈z Y . Since ⊆X Y , so ≥ ∑ ∈w g e¯ ¯x X
x

0

( ) for
every set ∈Y Δ and for every vector ∈w Y¯ �( ). This shows that the vector ∑ ∈ g ēx X

x

0

( ) is the only minimal
authorized vector.

(2b) According to Proposition 3.4, the blocks indexed by the elements in X are hierarchically independent.
In particular, if =X J , then the hierarchical order on Π induced by Γ is of the type ∅∗ JOrd ,( ).
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Now, we assume <X m∣ ∣ . It is shown above that∑ ∈ g ēx X
x

0

( ) is the only minimal authorized vector, so all the
blocks Py with ∉y X are redundant. In particular, they are mutually hierarchically equivalent and every block

∈P x X,x is hierarchically superior but not equivalent to ∈ ⧹P y J X,y , which follows from Proposition 3.5.
Moreover, all blocks in ∈P x X:x{ } are hierarchically independent by Proposition 3.4. We conclude that the
hierarchical order of Π induced by Γ is of the type ⧹∗ J X XOrd ,( ). □

Now, we shall prove a similar theorem that describes the hierarchical order of access structures deter-
mined by uniform polymatroids with > =⋯= >−g g g 0

m0 1 1
and monotone increasing families compatible

with them. This theorem describes access structures located in column D of Table 1.

Theorem 4.9. Let = gJ h, ,� ( ) be a uniform polymatroid with the increment sequence = ∈g g
i i Im

( ) such that
≔ ≥m J 3∣ ∣ and > = >−g g g 0

m0 1 1
.

(1) A monotone increasing family ⊆ ⧹ ∅JΔ �( ) { } is compatible with � if and only if = XminΔ { } for a certain
⊆X J or = JminΔ 1� ( ).

(2) Let =Γ Γ Π, , Δ�( ) be the access structure determined by the polymatroid � and the monotone increasing

family ⊆ ⧹ ∅JΔ �( ) { }. Then,
(2a) If = XminΔ { } for a certain ∅ ≠ ⊆X J , then the hierarchical order induced by Γ on Π is of the

type ⧹J X XOrd ,( ).
(2b) If = JminΔ 1� ( ), then the hierarchical order induced by Γ on Π is of the type ∅ JOrd ,( ).

Proof. (1) Let us assume that Δ is compatible with � . It is enough to consider the case where Δ has at least two
different minimal sets. From the assumption >−g 0

m 1
, we have that the height of � is equal to m, so applying

Lemma 3.3, we conclude that those sets must be singletons. Let ∈x y, minΔ{ } { } for some ∈x y J, . Suppose that
there is ∈z J such that ∉z minΔ{ } . Of course, ∈x z y z, , , Δ{ } { } , but ∩ = ∉x z y z z, , Δ{ } { } { } . Using the Csirmaz
lemma yields

+ < +h z h x y z h x z h y z, , , , .({ }) ({ }) ({ }) ({ })

Hence, we obtain − < −h h h h3 2 2 1, and consequently, <g g
2 1

, which is a contradiction, so every singleton
belongs to minΔ. To show the reverse implication, let us consider two cases:

If = XminΔ { } for some ⊆X J , then we refer to Lemma 2.13.
If = JminΔ 1� ( ), then the claim it follows from Lemma 2.14.
(2a) Assume = XminΔ { } for some ∅ ≠ ⊆X J . The fact that Px and Py are hierarchically independent for

arbitrary ∈ ≠x y X x y, , is obtained directly from Proposition 3.4. In particular, if =X J , then the ordered set
≼Π,( ) is of the type ∅ JOrd ,( ).
Now, we assume that <X m∣ ∣ . Consider ∈x X and ∉y X . According to Proposition 3.5, the blocks Py and Px

are hierarchically independent or ≺P Py x . We shall show that ≼P Py x .
Let us assume that w̄ is an arbitrary minimal vector in Γ such that ≠w 0y . The existence of such vectors is

ensured by Theorem 4.1. Then, from Lemma 3.2 (3), we have ∈w w¯ , supp ¯� �( ( )) and ∈wsupp ¯ Δ( ) , so
⊆X wsupp ¯( ), in particular, ∈x wsupp ¯( ). Note that ≔ ≥k wsupp ¯ 2∣ ( )∣ , because ∈y x w, supp ¯( ). According to

Lemma 2.6 (1), we obtain ≥ −w gy k 1
. By assumption, we have =−g g

k 1 1
; hence, we can consider two cases:

(i) =w gy 1
, so according to Lemma 2.6 (2), we have ≔ − ∈ ⧹v w w e w y¯ ¯ ¯ , supp ¯y

y � �( ( ) { })( ) , but

⊆ ⧹X w ysupp ¯( ) { }, so from Lemma 3.2 (1), we obtain ∈v̄ Γ. Then, of course, ≤ ′ ≔ − +v w w e e¯ ¯ ¯ ¯ ¯
y x( ) ( ), so ′ ∈w̄ Γ.

(ii) >w gy 1
and denote ≔Y wsupp ¯( ). According to Lemma 2.9, we obtain ′ ≔ − + ∈w w e e Y¯ ¯ ¯ ¯ ,y x � �( )( ) ( ) or

there is a set ⊆ ⧹ ∈Z Y y x Z,{ } such that ≔ ∈v w Z¯ ¯ ,Z � �( ). In particular, we have = = ∣ ∣w v h¯ ¯Z Z∣ ∣ ∣ ∣ . Let

= ∪ ∪Y Z W y{ } be the union of three disjoint sets, where = ⧹ ∪W Y Z y( { }). Then, using Lemma 2.6 (1) and
assumptions, we obtain that each coordinate of the vector w̄ is at least g

1
; hence,

= = + + > + + = + + =∣ ∣ ∣ ∣ ∣ ∣h w w w w v W g g h W g g h¯ ¯ ¯ ¯ ,Y Z W y Z Y1 1 1 1
∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣

where the last equality is obtained from equation (4) in the following way:
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∣ ∣

A contradiction we have obtained shows that ′ ∈ ⊆w Y¯ Γ�( ) . In both of the aforementioned cases, we have
received that ′ ∈w̄ Γ. Since this holds for all ∈w̄ minΓ with >w 0y , we conclude ≼P Py x .

It remains to show that Py and Px are hierarchically independent when ∉x y X, . If it were otherwise, then
assuming ≔n m and applying Proposition 3.7, we would obtain =g g

0 1
contrary to the assumption made here.

In this way, we showed that the order on Π is of type ⧹J X XOrd ,( ).
(2b) Assume = JminΔ 1� ( ). If ≼P Py x for some ∈x y J, , then Py is hierarchically inferior or equivalent to Px

and ∈x y, minΔ{ } { } , which contradicts Proposition 3.5. In this way, we showed that the order on Π is of type
∅ JOrd ,( ). □

Remark 4.10. The result of (2b) can be generalized to all monotone increasing families Δ with = JminΔ k� ( ),
where =k m1,…, . According to Lemma 2.14 (cf. [12, Lemma 6.1]) such Δ is compatible with a uniform poly-
matroid = gJ h, ,� ( ) if and only if >−g g

k k1
. Let =Γ Γ Π, , Δ�( ). If =k 1 and >g 0

1
, then Γ is compartmented

by Proposition 3.5. If ≥k 2, then ≥μ Δ 2( ) , so Γ is compartmented, which follows from Theorem 4.3. In both
cases, the hierarchical order induced by Γ in Π is of the type ∅ JOrd ,( ). A similar class, called uniform
multipartite access structures, was also considered by Farràs et al. [12].

Another theorem describes the hierarchy of blocks in the access structures determined by polymatroids,
for which >−g 0

m 1
and monotone increasing families with one minimal set that contains exactly one element.

This theorem deals with the existence and hierarchy of access structures placed in the first row of Table 1.

Theorem 4.11. Let = gJ h, ,� ( ) be a uniform polymatroid with the increment sequence = ∈g g
i i Im

( ) and let
⊆ ⧹ ∅JΔ �( ) { } be a monotone increasing family such that = xminΔ {{ }} for a certain ∈x J .

(1) Then, Δ is compatible with the polymatroid � if and only if >−g 0
m 1

.
(2) Let =Γ Γ Π, , Δ�( ) be the access structure determined by the polymatroid � such that >−g 0

m 1
and the

monotone increasing family Δ. Then,
(2a) If = −g g

m0 1
, then the hierarchical order induced by Γ on Π is of the type ⧹∗ J x xOrd ,( { } { }).

(2b) If > −g g
m0 1

, then the hierarchical order induced by Γ on Π is of the type ⧹J x xOrd ,( { } { }).

Proof. (1) The fact that Δ is compatible with � can be obtained from Lemma 2.13. Conversely, let us suppose
that =−g 0

m 1
. Then, every subset of J with −m 1 elements belongs to Δ by Lemma 2.12 (1). But this contradicts

the fact that ⧹ ∉J x Δ{ } . This implies Δ is not compatible with � whenever =−g 0
m 1

.

(2) We shall show that ≺P Py x for every ∈ ⧹y J x{ }. From Proposition 3.5, it follows that Px is not hier-
archically inferior to any block in Π so Px is not hierarchically equivalent to any other block. Let us fix ∈y J

and ≠y x . If =w 0y for every minimal vector ∈w̄ Γ, then the block Py is redundant, so ≼P Py x . Let us assume
that w̄ is a minimal vector in Γ such that ≠w 0y . Then, from Lemma 3.2 (3), we have ∈w w¯ , supp ¯� �( ( )) and

∈wsupp ¯ Δ( ) , so ∈x wsupp ¯( ). From Lemma 2.9, it follows that ′ ≔ − + ∈w w e e w¯ ¯ ¯ ¯ , supp ¯
y x � �( ( ))( ) ( ) or there

is a set ⊆ ⧹Y w ysupp ¯( ) { }, ∈x Y such that ≔ ∈v w Y¯ ¯ ,Y � �( ). In the former case, we obtain ′ ∈w̄ Γ from
Lemma 3.2 (1). If the latter case is fulfilled, then we note that ∈Y Δ, so from Lemma 3.2 (1), we obtain
∈v̄ Γ and ≤ ′v w¯ ¯ . This means that in both cases, ′ ∈w̄ Γ. Since this holds for all ∈w̄ minΓ with >w 0y , we

conclude ≼P Py x . This shows that the (pre)order on Π is of the type ⧹∗ J x xOrd ,( { } { }) or ⧹J x xOrd ,( { } { }).
(2a) Since = −g g

m0 1
, applying Theorem 4.8 (2b) yields the claim.

(2b) If the preorder onΠ were of the type ⧹∗ J x xOrd ,( { } { }), then the blocks Py and Pz would be hierarchically

comparable for some ∈ ⧹y z J x, { }. This and Proposition 3.7, for =n m, imply = =⋯= −g g g
m0 1 1

. But this is a

contradiction to > −g g
m0 1

, so the order on Π is of type ⧹J x xOrd ,( { } { }). □
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The results in this chapter provide information about the hierarchy induced on the set of participants by
various access structures contained in Table 1, except the cell B2. That area contains objects obtained from
monotone increasing families ⊆ ⧹ ∅JΔ �( ) { } with =μ Δ 1( ) and compatible polymatroids = gJ h, ,� ( ) with the
polymatroid height n such that ≤ ≤ −n m3 1. Computer calculations show that this area contains both
compartmented and hierarchical access structures, and some of them are different of those considered in
the aforementioned theorems. Some examples can be seen in Table A1.

Every linearly ordered subset of a partially (pre)ordered set is called a chain. A chain that contains only
one element is referred to as trivial. We assume that a chain in a partition of participants does not contain
hierarchically equivalent blocks. Let us observe that every non-trivial chain of blocks in the access structures
investigated earlier contains two blocks. The next theorem shows that all hierarchical access structures
obtained from uniform polymatroids have this property.

Theorem 4.12. Every chain in the hierarchical access structure determined by arbitrary uniform polymatroid
contains one or two blocks.

Proof. Let n denote the polymatroid height. For =n 1, i.e., > =g g 0
0 1

, it follows from Example 3.1 that
=Γ Γ Π, , Δ�( ) is a threshold access structure, so all blocks of participants are mutually hierarchically equiva-

lent; thus, every chain is trivial.
Suppose that ≥n 2 and Π contains a chain of blocks composed of three hierarchically non-equivalent

blocks, i.e., ≺ ≺P P Pz y x for some ∈x y z J, , . Let ⊆X J such that =X n∣ ∣ and ∈y z X, . By Lemma 2.12 (1), we
have ∈X Δ, but Proposition 3.4 implies that ∉X minΔ. Thus, there is ⊊Y X such that ∈Y minΔ, in particular,

<Y n∣ ∣ . If =n 2, then =Y 1∣ ∣ , but neither y{ } nor z{ } is minimal in Δ, which follows from Proposition 3.5, a
contradiction. If ≥n 3, then by Proposition 3.5, we know that ∉y z Y, . Thus, ≤ −Y n 2∣ ∣ . Using Proposition 3.7,
we obtain = −g g

n0 1
, and this combined with Corollary 3.9 shows that = −g g

m0 1
. Now from Theorem 4.8, we

conclude that every chain in Π contains at most two blocks, which contradicts our assumption. □

The aforementioned theorem seems quite surprising, because for other polymatroids, one can construct
hierarchical access structures with chains of arbitrary length. For instance, such objects can be found in
[11–13,16] and others.

5 Ideal access structures obtained from uniform polymatroids

In this section, we shall prove that the access structures studied in Theorems 4.6, 4.8, 4.9, and 4.11 are not only
κ-ideal, but actually ideal. To do this, we apply the method outlined in Remark 2.5 to show that all one point
extensions of suitable uniform polymatroids are representable over sufficiently large finite fields. Then, it
suffices to apply [10, Theorem 2.1, and Theorem 6.1]. In Theorems 5.1, 5.2, and 5.4, we prove, respectively, that if
the height of polymatroid equals 2 or Δ is generated by a single element or = = >−g g… 0

m1 1
, then the resulting

access structures are ideal.
We begin by recalling Example 3.1 where we noted that every uniform polymatroid with height 1 deter-

mines a threshold access structure, which is known to be ideal as it is realized by the Shamir threshold secret
sharing scheme. Now, we shall consider the case of polymatroids with height equals 2.

Theorem 5.1. All access structures determined by any uniform polymatroid = gJ h, ,� ( ) with height equals 2
are ideal.

Proof. The assumption implies ≥ > =g g g 0
0 1 2

. Let ⊆ ⧹ ∅JΔ �( ) { } be a monotone increasing family compatible
with � . It is enough to show that the one point extension ′� of � induced by Δ is a representable polymatroid.
Let � be a finite field with ≔ >q m�∣ ∣ . By an abuse of notation, we will use θ to denote the zero vector in any
vector space n� . Let us consider a collection ∈ax x J( ) of pairwise different non-zero elements of � . For every
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∈x J , we define { }≔ ∈V α a α α, :x x
g

1�( ) . It easy to check that Vx is a vector subspace of ×g g
1 1� � and

=V gdim x 1
. Assume ≠x y and ∈ ∩α α V V, x y1 2( ) . Hence, =α a αx2 1 and =α a αy2 1, so = − =θ a α a αx y1 1 −a a αx y 1( ) .

Since − ≠a a 0x y , so =α θ1 . This shows ∩ =V V θx y { }. Hence, + = + − ∩ =V V V V V Vdim dim dim dimx y x y x y( ) ( )

+ =V V gdim dim 2x y 1
. In particular, + = ×V Vx y

g g
1 1� � for all ∈ ≠x y J x y, , . Thus, ∈Vx x J( ) is a vector space

representation of the polymatroid � provided =g g
0 1

. According to Theorem 4.6 (2), we have two cases. If

= ∪ ⧹x J xminΔ 2�{{ }} ( { }), then we take ≠ ∈θ β Vx . For a certain ∉x J0 , we define ≔V βspanx0
( ). It is easily seen

that ∈ ∪Vx x J x0
( ) { } is a vector space representation of ′� induced by Δ.

If = JminΔ 2� ( ), then we take ∈ × ⧹⋃ ∈β Vg g
x J x

1 1� � . It is possible as ⋃ ≤ < ≤ =∈
+V mq q qx J x

g g g1 2
1 1 1∣ ∣

×g g
1 1� �∣ ∣. Now, we define ≔V βspanx0

( ). It is easily seen that ∈ ∪Vx x J x0
( ) { } is a vector space representation of

′� induced by Δ.
Now, we assume >g g

0 1
and define ≔ × ⊆ × ×− −U Vx

g g
x

g g g g
0 1 0 1 1 1� � � � for every ∈x J . For simplicity of

notation, the vector space × ×−g g g g
0 1 1 1� � � will be identified with +g g

0 1� . It is clear that =U gdim x 0
.

Moreover, ( ) ( )+ = × + × =− − +U U V Vx y
g g

x
g g

y
g g

0 1 0 1 0 1� � � and ∩ = × ×−U U θ θx y
g g

0 1� { } { }. In particular,
≔ ∈ε U1, 0, …,0 x( ) for all ∈x J .

If Δ is compatible with � , then by Theorem 4.6.1, there is ⊆X J such that = ∪ ⧹X J XminΔ 1 2� �( ) ( ).
To explain the general idea of the next step of the proof, we use projective geometry. Every subspace Ux

can be considered as −g 1
0

( )-dimensional subspace of the projective space of dimension + −g g 1
0 1

. The
projective point ≔E εspan( ) belongs to the intersection of all subspacesUx (Figure 1). Now, we take a projective
point ≔ ∗B βspan( ) that does not belong to any subspaceUx and the translation φ of the whole space sending E

to B. Then, the family of ∈φ Ux x X( ( )) together with the family ∈ ⧹Ux x J X
( ) form another vector space representa-

tion of � (Figure 2). Now, we only need to add ≔ ∗U βspanx0
( ) to those families to obtain a representation of ′� .

Now, we can do the formal calculations. Let ⟶+ν : g g
0 1� � be defined by ( )= =+ν α ν a a a, …, g g1 1

0 1
( ) for

every ( )= ∈+
+α a a, …, g g

g g
1

0 1

0 1� . Let ∈ × ⧹⋃ ∈β Vg g
x J x1

1 1� � and ≔ ∈ +β θ β, g g

1
0 1�( ) . Obviously, ∉β Ux for

every ∈x J .
Now, we define ⟶+ +φ : g g g g

0 1 0 1� � by setting = +φ α α ν α β( ) ( ) for all ∈ +α g g
0 1� . Let us note that φ is an

isomorphisms of vector spaces, so = =φ U U gdim dimx x 0
( ) . Moreover, =φ α α( ) for all ∈ × ×α θ g g

1 1� �{ } and
≔ = + ∉∗β φ ε ε β Ux( ) for all ∈x J .

Figure 1: Basic representation of �

Figure 2: Modified representation of �
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Let x0 be any element not in J and let ≔ ∗U βspanx0
( ). Then, the family { }∪ ∪∈ ∈ ⧹φ U U Ux x X x x J X x0

( ( )) ( )

is a vector space representation of the one point extension of � induced by Δ. Indeed, if ∉x X ,
then =h x x, 0({ }) ( )+ > = =U U U h x gdim dimx x x 00

({ }) as ∉∗β Ux . Thus , ∉x minΔ{ } . For ∈x X we have
=h x x, dim0({ }) ( )+ = = =φ U U U h x gdimx x x 00

( ) ({ }) , so ∈x minΔ{ } .
From the fact that φ is a vector space isomorphism, it follows + = + = +φ U φ U φ U Ux y x y

g g
0 1�( ) ( ) ( ) for all

∈x y X, . For ∈x X and ∈ ⧹y J X , we have + ⊇ × +φ U U φ θ Vx y x( ) ({ } ) = × + = × + =−U θ V U V Vy x y
g g

x y
0 1�({ } ) ( )

+g g
0 1� . In every case =h x y x, , 0({ }) ( )+ = ++ U g gdim g g

x 0 1
0 1

0
� , i.e., ∈x y, Δ{ } . If ∉x y X, , then ∈x y, minΔ{ } . □

In the next proof, we will need the following well-known property of vector spaces over finite fields. Let
V V,…, n1 be the proper subspaces of a vector spaceV over a finite field � . If > n�∣ ∣ , then ∪ ∪ ≠V V V… n1 . Let
us recall that every uniform polymatroid is representable.

Theorem 5.2. All access structures determined by any uniform polymatroid = gJ h, ,� ( ) with height m and
monotone increasing family ⊊ JΔ �( ) such that =minΔ 1∣ ∣ are ideal.

Proof. Let = XminΔ { } for a suitable∅ ≠ ⊆X J and let ≔k X∣ ∣. The assumption that the height of � equals m is
equivalent to >−g 0

m 1
, and this implies <h Y h Z( ) ( ) for all ⊊ ⊆Y Z J . It follows from Lemma 2.13 that Δ is

compatible with � .
Let � be a finite field and let ∈Vx x J( ) be a � -vector space representation of = gJ h, ,� ( ). Then, Vx are the

subspaces of the vector space hm� and = =V h gdim x 1 0
for every ∈x J . Given any ⊆Y J , we define ≔ ∑ ∈V VY y Y y.

If ∈Y Δ, then ⊆X Y and ⊆V VX Y . If ∉Y Δ, then ⊄X Y and so ∪ >X Y Y∣ ∣ ∣ ∣. Hence, + =V Vdim X Y( )

= ∪ > =∪V h X Y h Y Vdim dimX Y Y( ) ( ) . This shows that ⊄V VX Y . Thus, ∈Y Δ if and only if ⊆V VX Y . Since
∩V VY X is a proper subspace of VX whenever ∉Y Δ and, so assuming > − −2 2m m k�∣ ∣ , we have
∩ ⋃ = ⋃ ∩∈ ⧹ ∈ ⧹V V V VX Y J Y Y J X YΔ Δ� � ( )( ) ( ) is a proper subset of VX . This shows that there is ∈β VX such that
∉β VY for all ∉Y Δ. Setting ≔V βspanx0

( ), we obtain ∈ ∪Vx x J x0
( ) { }, which is a vector space representation of the

one point extension of � induced by Δ. □

The aforementioned proof is not constructive. Using the fact that every uniform polymatroid is a sum of
uniform matroids, one can efficiently build a vector space representation of � and then determine a vector β

that spans the space Vx0
but the calculations are more complicated. A general outline of this procedure is

sketched out in [12, sections III and VI].
Let us note that if =X minΔ{ } , then X determines a set of distinguished blocks, whose representatives

must be present in all authorized sets. Indeed, if ∈v̄ Γ is an authorized vector, then ∈vsupp ¯ Δ( ) , so
⊆X vsupp ¯( ); thus, ≠v 0x for all ∈x X . If ≥X 2∣ ∣ , then the access structures Γ is compartmented by

Theorem 4.3, so all blocks are mutually hierarchically independent.
For the sake of completeness, we recall the following result obtained by Farràs et al. in [12] who char-

acterized the uniform multipartite access structures mentioned in Remark 4.10 and proved that they are ideal.
Contrary to the aforementioned case, all participants in any uniform access structure have the same rights but
different blocks are hierarchically independent. Here, we reformulate that result as follows.

Theorem 5.3. [12, Lemma 6.2] If the monotony increasing family ⊆ JΔ �( ) such that = ≤ ≤J k mminΔ , 1k� ( ) is
compatible with a uniform polymatroid � , then the access structure determined by Δ and � is ideal.

Let us note that Theorem 5.2 shows that the access structures presented in Theorem 4.11 are ideal. Now, we
turn to the objects considered in Theorems 4.8 and 4.9.

Theorem 5.4. All access structures determined by any uniform polymatroid = gJ h, ,� ( ) with the increment
sequence = ∈g g

i i Im
( ) such that ≥J 3∣ ∣ and ≥ = >−g g g 0

m0 1 1
are ideal.
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Proof. We want to prove that for every increasing family ⊆ ⧹ ∅JΔ �( ) { } that is compatible with � , the access
structure determined by � and Γ is ideal. The assumption ≥ = >−g g g 0

m0 1 1
combined with Theorems 4.8 and

4.9 implies that = JminΔ 1� ( ) or =minΔ 1∣ ∣ . In the former case, the claim follows from Theorem 5.3. In the
latter case, applying Theorem 5.2 completes the proof. □

6 Conclusion

This article contains selected results from the first author’s PhD thesis [20]. It is intended to initiate research on
the access structures obtained from polymatroids. This choice is motivated by the fact that access structures
determined by polymatroids are matroid ports, i.e., they satisfy a necessary condition to be ideal. In this article
our investigation is limited to uniform polymatroids. We are particularly interested in the hierarchical order
on the set of participants determined by the access structures considered here. Most of the results in the
literature that is devoted to discussing this subject consider access structures that are compartmented or
totally hierarchical. We showed that all non-compartmented access structure with at least three parties
considered in this work are partially hierarchical. It is worth pointing out that some examples of partially
hierarchical access structures are presented by Farràs et al. [12], but they are not determined by uniform
polymatroids. There is good reason to deal with uniform polymatroids. In contrast to general polymatroids,
every uniform polymatroid determines ideal access structures. It follows from the fact that every uniform
polymatroid is representable. This allows building one point extensions of such polymatroids, which are also
representable. Then, according to [10, Theorem 2.1, and Theorem 6.1], the suitable access structures obtained
from those polymatroids are ideal.

The conditions presented in Section 3 are used to prove Theorems 4.2 and 4.3, which show that most of the
access structures obtained from uniform polymatroids are compartmented (they are placed in the cells C2 and
B3–C3 of Table 1). The exact hierarchy in access structures in the cells A2, B2, C1-D1, and D2-3 is described in
Theorems 4.6–4.11.

The most diverse collection of objects contains the cell B2 where both compartmented and hierarchical
access structures can be found but further precise investigation of that area is necessary. In general, the results
presented here do not exhaust the topic and leaves space for further research.

Conjecture 6.1. Let = ∈PΠ x x J( ) be a partition of a set of participants P and let = gJ h, ,� ( ) be a uniform
polymatroid of height n such that ≤ <n m2 . Additionally, let ⊆ ⧹ ∅JΔ �( ) { } be a monotone increasing family
with =μ Δ 1( ) that is compatible with � . The hierarchical order in Π induced by =Γ Γ Π, , Δ�( ) is of the type

Y XOrd ,( ) for a certain disjoint subsets X and Y of J .

This conjecture is partially confirmed by Theorem 4.12 that states that every chain in hierarchical access
structure contains one or two elements. This fact applies only to access structures induced by uniform
polymatroids. For other polymatroids, one can construct hierarchical access structures with chains of arbi-
trary length.

Some multipartite access structures determined by uniform polymatroids contain redundant blocks or
different blocks that are equivalent. We treat such objects as improperly constructed. Fortunately, they appear
only as extreme cases (cf. Corollary 3.10 and Theorem 4.1).

The results presented in Section 4 do not depend on the particular values of the rank function of � (or
equivalently the values of g ). The only impact on the hierarchy of the described structures has the sequence of
signatures of differences of consecutive entries of g . This observation is additionally confirmed by computer
calculations that suggest the following unproved conjecture.

Conjecture 6.2. Let = ∈g g
i i Im

( ) and ′ = ′ ∈g g
i i Im

( ) be the increment sequences of uniform polymatroids � and
′� with the ground set J , respectively, such that − = ′ − ′− −g g g gsgn sgn

i i i i1 1
( ) ( ) for all =i m1,…, . If a monotone

increasing family Δ is compatible with � and ′� , then the hierarchical preorders on Π determined by
Γ Π, , Δ�( ) and ′Γ Π, , Δ�( ) are equal.
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Investigating which of the structures considered in this article are ideal is another open issue. A sufficient
condition can be obtained by proving that the one point extension of a given uniform polymatroid is repre-
sentable (cf. [10, Corollary 6.7]). This idea has been used to show that the access structures discussed in
Theorems 4.6 and 4.8–4.11 are ideal. By analyzing the structure of the vector space representation of the
polymatroid, one can also prove the ideality of many other access structures. However, we cannot rule out the
existence of non-ideal access structures derived from uniform polymatroids. In this case, we have the fol-
lowing question. Is it true that upper bound for the information ratio of access structures obtained from
uniform polymatroids can be significantly less than the upper bound for the information ratio of arbitrary
matroid ports? Let us recall that the information ratio of a secret sharing scheme is the ratio between the
maximum length of the shares and the length of the secret with a finite domain of shares. The information
ratio of an access structure Γ is the infimum of all information ratios taken over all secret sharing schemes
with the access structure Γ.

Acknowledgement: The authors would like to thank the anonymous reviewers for many helpful comments.

Funding information: The authors state no funding involved.

Author contributions: Both authors have accepted responsibility for the entire content of this manuscript and
approved its submission.

Conflict of interest: The authors state no conflict of interest.

References

[1] Blakley GR. Safeguarding cryptographic keys. The National Computer Conference 1979. AFIPS. Vol. 48; 1979. p. 313–7.
[2] Shamir A. How to share a secret. Commun. ACM. 1979;22:612–3.
[3] Beimel A. Secret-sharing schemes: a survey. In: Third International Workshop. IWCC 2011. Lecture Notes in Computer Science. vol.

6639; 2011. p. 11–46.
[4] Padró C. Lecture notes in secret sharing. IACR Cryptol. ePrint Arch. 2012;2012:674.
[5] Ito M, Saito A, Nishizeki T. Secret sharing schemes realizing general access structure. In: Proceedings on the IEEE GLOBECOM’87.

1987. p. 99–102.
[6] Benaloh J, Leichter J. Generalized secret sharing and monotone functions. In: Advances in Cryptology. CRYPTO’88. Lecture Notes in

Computer Science. vol. 403; 1990. p. 27–35.
[7] Kothari S.C. Generalized linear threshold scheme. Advances in Cryptology - CRYPTOa84. Lecture Notes in Computer Science. Vol.

196; 1985. p. 231–41.
[8] Simmons GJ. How to (really) share a secret. Advances in Cryptology - CRYPTO88. Lecture Notes in Computer Science. Vol. 403; 1990.

p. 390–448.
[9] Farràs O, Metcalf-Burton JR, Padró C, Vázquez L. On the optimization of bipartite secret sharing schemes. Des. Codes Cryptogr.

2012;63:255–71.
[10] Farràs O, Martí-Farré J, Padró C. Ideal multipartite secret sharing schemes. J Cryptol. 2012;25:434–63.
[11] Farràs O, Padró C. Ideal hierarchical secret sharing schemes. IEEE Trans Inform Theory. 2012;58:3273–86.
[12] Farràs O, Padró C, Xing C, Yang A. Natural generalizations of threshold secret sharing. IEEE Trans Inform Theory 2014;60:1652–64.
[13] Tassa T. Hierarchical threshold secret sharing. J Cryptol. 2007;20:237–64.
[14] Brickell EF. Some ideal secret sharing schemes. J Combin Math Combin Comput. 1989;6:105–13.
[15] Brickell EF, Davenport DM. On the classification of ideal secret sharing schemes. J Cryptol. 1991;4:123–34.
[16] Kula M. Access structures induced by polymatroids with extreme rank function. Cryptology ePrint Archive, Paper 2023/962 (https://

eprint.iacr.org/2023/962).
[17] Csirmaz L., Matús F, Padró Bipartite secret sharing and staircases. 2021. ArXiv/2103.04904.
[18] Csirmaz L. The size of a share must be large. J Cryptol. 1997;10:223–31.
[19] Seymour P.D. On secret-sharing matroids. J Combin Theory Ser B. 1992;56:69–73.
[20] Kawa R. Hierarchity of multipartite access structures. PhD Thesis. 2015. Katowice: University of Silesia; (Polish).

24  Renata Kawa and Mieczysław Kula

https://eprint.iacr.org/2023/962
https://eprint.iacr.org/2023/962


Appendix

Table A1 presents hierarchical (pre)orders of access structures determined by uniform polymatroids = gJ h, ,� ( ),
where =J 1, 2, 3, 4{ }. It is worth pointing out that types of orders are invariant with respect to permutations of
elements of J , so monotony increasing families appearing in the table are the representatives of invariant
classes of the permutation group S4 acting on J . For example, the monotone increasing families Δ1 and Δ2 such
that =minΔ 1 , 2, 31 {{ } { }} and =minΔ 2 , 3, 42 {{ } { }} represent the same invariant class. Assuming that Conjecture
6.2 is true, the table presents a complete overview of hierarchical orders of all access structures obtained from
uniform polymatroids gJ h, ,( ) with =J 4∣ ∣ . If the monotonic family appearing in the first column is not
compatible with the polymatroid represented by the values of g in the top rows, then the suitable cell of
the table contains −. Otherwise, the types of (pre)orders are denoted according to the following key. It is worth
pointing out that according to Remark 2.5, every column of the table contains at least one ideal access
structure. More ideal access structures can be obtained form theorems of Section 5.

Table A1: Access structures in the case =m 4
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