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Abstract: A key encapsulation mechanism (KEM) that takes as input an arbitrary string, i.e., a tag, is known
as tag-KEM, while a scheme that combines signature and encryption is called signcryption. In this article,
we present a code-based signcryption tag-KEM scheme. We utilize a code-based signature and an
IND-CCA2 (adaptive chosen ciphertext attack) secure version of McEliece’s encryption scheme. The pro-
posed scheme uses an equivalent subcode as a public code for the receiver, making the NP-completeness of
the subcode equivalence problem be one of our main security assumptions. We then base the signcryption
tag-KEM to design a code-based hybrid signcryption scheme. A hybrid scheme deploys asymmetric- as well
as symmetric-key encryption. We give security analyses of both our schemes in the standard model and
prove that they are secure against IND-CCA2 (indistinguishability under adaptive chosen ciphertext
attack) and SUF-CMA (strong existential unforgeability under chosen message attack).
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1 Introduction

In public-key cryptography, the authentication and confidentiality of communication between a sender and
areceiver are ensured by a two-step approach called signature-then-encryption. In this approach, the sender
uses a digital signature scheme to sign a message and then encrypt it using an encryption algorithm. The
cost of delivering a message in a secure and authenticated way using the signature-then-encryption
approach is essentially the sum of the cost of a digital signature and that of encryption.

In 1997, Zheng introduced a new cryptographic primitive called signcryption to provide both authenti-
cation and confidentiality in a single logical step [1]. In general, one can expect the cost of signcryption to
be noticeably less than that of signature-then-encryption. Zheng’s signcryption scheme is based on the
hardness of the discrete logarithm problem. Since Zheng’s work, a number of signcryption schemes based
on different hard assumptions have been introduced, see, for example, [1-12]. Of these, the most efficient
ones have followed Zheng’s approach, i.e., used symmetric-key encryption as a black-box component
[6-8]. It has been of interest to many researchers to study how a combination of asymmetric- and sym-
metric-key encryption schemes could be used to build efficient signcryption schemes in a more general
setting.

To that end, Dent in 2004 proposed the first formal composition model for hybrid signcryption [13] and
in 2005 developed an efficient model for signcryption KEMs in the outsider- and the insider-secure setting
[14,15]. In the outsider-secure setting, the adversary is assumed to be distinct from the sender and receiver,
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while in the insider-secure setting, the adversary is assumed to be a second party (i.e., either sender or
receiver).

To improve the model for the insider-secure setting in hybrid signcryption, Bjgrstad and Dent in 2006
proposed a model based on encryption tag-KEM rather than regular encryption KEM [16]. Their model
provides a simpler description of signcryption with a better generic security reduction for the signcryption
tag-KEM construction. A year after Bjgrstad and Dent’s work, Yoshida and Fujiwara reported the first study
of multi-user setting security of signcryption tag-KEMs [17], which is a more suitable setting for the analysis
of insider-secure schemes.

1.1 Motivation

Most of the aforementioned signcryption schemes are based on the hardness of either the discrete logarithm
or the integer factorization problem and would be broken with the arrival of sufficiently large quantum
computers. Therefore, it is of interest to design signcryption schemes for the postquantum era. Coding
theory has some hard problems that are considered quantum-safe and in this article, we explore the design
of code-based signcryption.

The first attempt for code-based signcryption was presented in 2012 by Mathew et al. [18]. After that
work, an attribute-based signcryption scheme using linear codes was introduced in 2017 by Song et al. [19].
Code-based signcryption remains an active area of research, specifically to study the design of crypto-
graphic primitives like signcryption schemes that are quantum-safe.

1.2 Contributions

In this article, we present a signcryption tag-KEM scheme using a probabilistic full domain hash (FDH) like
code-based signature and a CCA2 secure version of McEliece’s encryption scheme. The underlying code-
based signature in our scheme is called Wave introduced by Banegas et al. [20], while the CCA2 secure
version of the McEliece scheme is based on the Fujisaki—Okamoto transformation introduced by Cayrel et al.
[21]. For the underlying McEliece scheme, we use a generator matrix of permuted Goppa subcodes as
receivers’ public keys. With this feature, we are able to reduce the public key size of our scheme and
include the subcode equivalence problem as one of your security assumptions. Because of the latter, for
the key recovery attack, even if an adversary is able to distinguish whether the underlying code is a Goppa
code, it has to solve the subcode equivalence problem, which is NP-complete. Thus, with well-chosen
parameters, the most efficient attack against our scheme will be a brute-force attack.

Using the signcryption tag-KEM, we design a code-based hybrid signcryption scheme. Then we give
security analyses of these two schemes in the standard model assuming the insider-secure setting. Finally,
we give a comparison of the hybrid signcryption with some relevant lattice-based signcryptions in terms of
key and ciphertext sizes.

1.3 Organization

This article is organized as follows. In Section 2, we first recall some basic notions of coding theory and then
briefly describe relevant encryption and signature schemes that are of interest to this work. Section 3
presents the definition and framework of signcryption and hybrid signcryption, and a brief review of the
relevant security model. We present our signcryption and hybrid signcryption schemes in Section 4 and
then provide security analyses of the proposed schemes in Section 5. We provide a set of parameters for the
hybrid signcryption scheme in Section 6 and then conclude in Section 7.
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1.4 Notations

In this article, we use the following notations:

— [F,: finite field of size g where g = p™ is a prime power.

- C: Fy-linear code of length n.

- x:a word or vector of F7.

— wi(x): weight of x.

— G (resp. H): generator (resp. parity-check) matrix of linear code C.
— Wi.n, is the set of g-ary vectors of length n and weight t.

sks (resp. sk;): sender’s (resp. receiver’s) secrete key for signcryption.
pks (resp. pk;): sender’s (resp. receiver’s) public key for signcryption.

2 Preliminaries

In this section, we recall some notions pertaining to coding theory and code-based cryptography.

2.1 Coding theory and some relevant hard problems

Let us consider the finite field F;. A g-ary linear code C of length n and dimension k over [, is a vector
subspace of dimension k of Fg. It can be specified by a full rank matrix G ¢ [F’;X”, called generator matrix of
C, whose rows span the code. Namely, C = {xG s.t. x € [F’(;}. A linear code can also be defined by the right
kernel of matrix H € [FZIX”, called parity-check matrix of C, as follows:

C={xeF; st Hx =0}

The Hamming distance between two codewords is the number of positions (coordinates) where they
differ. The minimal distance of a code is the minimal distance of all codewords.

The weight of a word or vector x € F7, denoted by wt(x), is the number of its nonzero positions. Then
the minimal weight of a code C is the minimal weight of all nonzero codewords. In the case of linear code C,
its minimal distance is equal to the minimal weight of the code.

Below we recall some hard problems that are relevant to our discussions and analyses presented in this
article.

Problem 1. (Binary syndrome decoding problem) Given a matrix H € F5*", a vector s € F}, and an integer
w > 0, find a vector y € F} such that wi(y) = w and s = yHT.

The syndrome decoding problem was proven to be NP-complete in 1978 by Berlekamp et al. [22]. It is
equivalent to the following problem.

Problem 2. (General decoding problem) Given a matrix G € [F’z‘x", avector y € [}, and an integer w > 0, find
two vectors m € [F’,; and e ¢ [F; such that wt(e) = w and y = mG o e.

The following problem is used in the security proof of the underlying signature that we use in this
article. It was first considered by Johansson and Jonsson in [23]. It was analyzed later by Sendrier in [24].
Problem 3. (Decoding one out of many (DOOM) problem) Given a matrix H € Fg*", a set of vector s,
$2,.0,8N € [F; and an integer w, find a vector e € [FZ and an integer i such that 1<i <N, wt(e) = w
and s; = eHT.
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Problem 4. (Goppa code distinguishing problem) Given a matrix G € FX*", decide whether G is a random
binary or generator matrix of a Goppa code.

Faugeére et al. [25] showed that Problem 4 can be solved in special cases of Goppa codes with high rate.
The following is one of the problems, which the security assumption of our scheme’s underlying
signature mechanism relies on.

Problem 5. (Generalized (U, U + V) code distinguishing problem). Given a matrix H € [F;X", decide whether
H is a parity-check matrix of a generalized (U, U + V) code.

Problem 5 was shown to be hard in the worst case by Debris-Alazard et al. [26] since it is NP-complete.
Below, we recall the subcode equivalence problem, which is one of the problems on which the security
assumption of our scheme is based. This problem was proven to be NP-complete in 2017 by Berger et al. [27].

Problem 6. (Subcode equivalence problem [27]) Given two linear codes C and D of length n and respective
dimension k and k', k' < k, over the same finite field F,, determine whether there exists a permutation o of
the support such that ¢(C) is a subcode of D.

KeyGen

1. Randomly generate a monic irreducible polynomial g(x) € Fom [z] of degree ¢

2. Select a uniform random set of n different elements I' = (ag, ..., an—1) € Fln..

3. Compute a generator matrix Gex € IF];X” of the binary Goppa code from g and I'.

4. Randomly choose a full rank matrix S € ]FéC *k and permutation matrix P € Fy*"
with k£ =n —mt.

5. Set sk = (g,I,S™1,P) and pk = Gpkx = SGP.

Encrypt

Input: Public key pk = Gy of the receiver and clear text m.
Output: A ciphertext c.

1. Yy ﬁ S2,n,t

2. Compute 7 := Ho(y||m)

3. Compute ¢y := rGpx + ¥y

4. Compute ¢1 := m® Hi(y).

5. Parse ¢:= (¢l c1)

6. Return c

Decrypt

Input: Receiver’s secret key sk = (¢,T,S™!,P), a ciphertext ¢ and two hash functions Hg
and Hq .

Output: A clear message m.
1. Parse ¢ into (cg, 1)
2. Compute ¢y = cgP !

McE

3. Compute (7, €) := Vgppa(Sk, €o), where AICE

Goppa 18 @ decoding algorithm for Goppa

code.
Compute m = ¢; ® Hi(e)
Compute 7= Ho(e||m)
frGo®y# ci:

Return L
Return m

® N o o

Figure 1: McEliece’s scheme with Fujisaki-Okamoto transformation.
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2.2 Code-based encryption

The first code-based encryption was introduced in 1978 by McEliece [28]. In Figure 1, we give the McEliece
scheme Fujisaki—Okamoto transformation [21], which comprises three algorithms: key generation, encryp-
tion, and decryption.

The main drawback of the McEliece encryption scheme is its very large key size. To address this issue,
many variants of McEliece’s scheme have been proposed, see, for example, [29-34]. In order to reduce the
size of both public and private keys in code-based cryptography, Niederreiter in 1986 introduced a new
cryptosystem [35]. Niederreiter’s cryptosystem is a dual version of McEliece’s cryptosystem with some
additional properties such that the ciphertext length is relatively smaller. Indeed, the public key in Nie-
derreiter’s cryptosystem is a parity-check matrix instead of a generator matrix. In addition, ciphertexts are
syndrome vectors instead of erroneous codewords. However, the McEliece and the Niederreiter schemes are
equivalent from the security point of view due to the fact that Problems 1 and 2 are equivalent.

Code-based hybrid encryption: A hybrid encryption scheme is a cryptographic protocol that features
both an asymmetric- and a symmetric-key encryption scheme. The first component is known as key
encapsulation mechanism (KEM), while the second is called data encapsulation mechanism (DEM). The
framework was first introduced in 2003 by Cramer and Shoup [36], and later the first code-based hybrid
encryption was introduced in 2013 by Persichetti [37] using Niederreiter’s encryption scheme. Persichetti’s
scheme was implemented in 2017 by Cayrel et al. [38]. After Persichetti’s work, some other code-based
hybrid encryption schemes have been reported, e.g., [39].

2.3 Code-based signature

Designing a secure and practical code-based signature scheme is still an open problem. The first secure
code-based signature scheme was introduced by Courtois et al. (CFS) [40]. It is a FDH like signature with
two security assumptions: the indistinguishability of random binary linear codes and the hardness of
syndrome decoding problem. To address some of the drawbacks of Courtois et al.’s scheme, Dallot proposed

Input: Public key pk = Hpy, secret key sk = (Hg, S, P), dimension % of the generalized
(U,U + V)-code, the dimension ki of the code U, the dimension ky of the code V and
the weight w of error vectors.

Output: sign(m)

Sign

1. r ﬁ Fé\

2. y.=H(m|r)

3. Compute e = Decodep,, (y,(S™1)7)

4. Return sign(m) = (e, 7)

Verif
1. Compute g, = H(m||r)
2. Compute § = quTk.
3. Iy, 44
Return L
4. Else:
Return valid

Figure 2: Wave signature scheme [41].
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a modified version, called mCFS, which is provably secure. Unfortunately, this scheme is not practical due
to the difficulties of finding a random decodable syndrome. In addition, the assumption of the indistin-
guishability of random binary Goppa codes has led to the emergence of attacks as described in [25]. One of
the latest code-based signature schemes of this type is called Wave [41]. It is based on generalized
(U, U + V)-codes. It is secure and more efficient than the CFS signature scheme. In addition, it has a smaller
signature size than almost all finalist candidates in the NIST postquantum cryptography standardization
process [42].

Apart from the FDH approach, it is possible to design signature schemes by applying the Fiat and
Shamir transformation [43] to an identification protocol. To this end, one may use a code-based identifica-
tion scheme like that of Stern [44], Jain et al. [45], or Cayrel et al. [46]. This approach, however, leads to a
signature scheme with a very large signature size. To address this issue, Lyubashevsky’s framework [47]
can apparently be adapted. Unfortunately, almost all code-based signature schemes in Hamming metric
designed by using this framework have been cryptanalyzed [48-53]. The only one that has remained secure
so far is a rank metric-based signature scheme proposed by Aragon et al. [54].

In Figure 2, we recall Debris-Alazard et al.’s signature scheme (Wave), which is of our interest for this
work. In Wave, the secret key is a tuple of three matrices sk = (S, Hg, P), where S ¢ [F;X’ is an invertible
matrix, Hgx € F;*" is a parity-check matrix of a generalized (U, U + V)-code, and P € F}*" is a permutation
matrix. The public key is a matrix pk = Hp,, where Hy = SHgP. Steps for signature and verification
processes are given in Figure 2. For additional details, the reader is referred to [41,55].

3 Signcryption and security model

In this section, we first recall the definition of signcryption followed by the signcryption tag-KEM frame-
work and its security model under the insider setting.

3.1 Signcryption and its tag-KEM framework

Signcryption: A signcryption scheme is a tuple of algorithms SC = (Setup, KeyGen,, KeyGen,, Signcrypt,
Unsigncrypt) [56], where:

+ Setup(1!) is the common parameter generation algorithm with A, the security parameter,

» KeyGen,(resp. KeyGen,) is a key-pair generation algorithm for the sender (resp. receiver),

x Signcrypt is the signcryption algorithm, and

x Unsigncrypt corresponds to the unsigncryption algorithm.

For more details on the design of signcryption, the reader is referred to [57] (Chap. 2, Sec. 3, p. 30).
Signcryption tag-KEM: A signcryption tag-KEM denoted by SCTKEM is a tuple of algorithms [16]:

SCTKEM = (Setup, KeyGen,, KeyGen,, Sym, Encap, Decap),

where

— Setup is an algorithm for generating common parameters.

- KeyGen, (resp. KeyGen,) is the sender (resp. receiver) key generation algorithm. It takes as input the
global information I and returns a private/public keypair (sks, pks) (resp. (sk,, pk;)) that is used to send
signcrypted messages.

— Sym is a symmetric key generation algorithm. It takes as input the private key of the sender sk and the
public key of the receiver pk, and outputs a symmetric key K together with internal state information @.

— Encap takes as input the state information @ together with an arbitrary string 7, which is called a tag, and
outputs an encapsulation E.
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— Decap is the decapsulation/verification algorithm. It takes as input the sender’s public key pks, the
receiver’s private key sk,, an encapsulation E, and a tag 7. It returns either symmetric key K or the
unique error symbol L.

Hybrid signcryption tag-KEM+DEM: It is simply a combination of a sctkem and a regular data encap-
sulation mechanism (DEM).

3.2 Insider security for signcryption tag-KEM

IND-CCA2 game in signcryption tag-KEM: It corresponds to a game between a challenger and a prob-
abilistic polynomial-time (PPT) adversary Accaz such that the latter tries to distinguish whether a given
session key K is the one embedded in an encapsulation. During this game, Acca2 has adaptive access to
three oracles for the attacked user corresponding to algorithms Sym, Encap, and Decap [16,17,57]. The
game is described in Figure 3.

During Step 7, the adversary Accao is restricted not to make decapsulation queries on (E, 7) to the
decapsulation oracle. The advantage of the adversary A is defined by

Adv(Acca) = |Pr(b’ = b) — 1/2].

A signcryption tag-KEM is IND - CCA2 secure if, for any adversary A, its advantage in the IND-CCA2
game is negligible with respect to the security parameter A.

SUF -CMA game for signcryption tag-KEM: This game is a challenge between a challenger and a PPT
adversary (i.e., a forger) Fcma. In this game, the forger tries to generate a valid encapsulation E from the
sender to any receiver, with adaptive access to the three oracles. The adversary is allowed to come up with
the presumed secret key sk, as part of his forgery [17] (Figure 4):

The adversary Fcua wins the SUF -CMA game if

1 # Decap(pks, sk;, E, T)

Oracles

1. Osym is the symmetric key generation oracle with input a public key pk, and computes
(K, w) = Sym(sks, pk). It then stores the value w (hidden from the view of the
adversary, and overwriting any previously stored values), and returns the symmetric
key K.

2. OEncap is the key encapsulation oracle. It takes an arbitrary tag = as input and checks
whether there exists a stored value w. If there is not, it returns | and terminates.
Otherwise, it erases the value from storage and returns E = Encap(w, 7).

3. Opecap corresponds to the decapsulation/verification oracle. It takes an encapsulation
E, a tag 7, any sender’s public key pk as input and returns Decap(pk, sk, F, 7).

IND-CCA2 Game for SCTKEM

I := Setup(1?)

(sky, pk,.) := KeyGen,.(I)

(sks,statey) := A?éyAmQ’OE"“"’ODe”" (pk,.)

(K1, @) = Sym(sks, pk,.), Ko &Kandbd {0,1}
(,stateg) := Agcsﬁ"z’oE"“"’OD“a" (K, stateq)

E := Encap(w, 1)

o= A?CsyAméOEncap,ODecap (E, states)

N oo W

Figure 3: IND-CCA2 game [17].
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SUF-CMA Game for SCTKEM

1. I :=Setup(1?)

2. (sks, pky) := KeyGen,.(I)

3. (B, 7, sky) i= Fapgm Oereem Ooecn ()

Figure 4: SUF-CMA game [17].

and the encapsulation oracle never returns E when he queries on the tag 7. The advantage of Fcua is the
probability that Fcuya wins the SUF-CMA game. A signcryption tag-KEM is SUF-CMA secure if the
winning probability of the SUF-CMA game by Fcua is negligible.

Definition 1. A signcryption tag-KEM is said to be secure if it is IND-CCA2 and SUF - CMA secure.

3.3 Generic security criteria of hybrid signcryption tag-KEM+DEM

Security criteria for hybrid signcryption: The security of a hybrid signcryption tag-KEM+DEM depends
on those of the underlying signcryption tag-KEM and DEM. However, it is important to note that in the
standard model a signcryption tag-KEM is secure if it is both IND - CCA2 and SUF - CMA secure. Therefore,
the generic security criteria for hybrid signcryption tag-KEM+DEM is given by the following theorem:

Theorem 1. [16,17] Let HSC be a hybrid signcryption scheme constructed from a signcryption tag-KEM and a
DEM. If the signcryption tag-KEM is IND-CCA2 secure and the DEM is one-time secure, then HSC
is IND-CCA2 secure. Moreover, if the signcryption tag-KEM is SUF-CMA secure, then HSC is also
SUF-CMA secure.

4 Code-based hybrid signcryption

In this section, we first design a code-based signcryption tag-KEM scheme. Then we combine it with a one-
time (OT) secure DEM for designing a hybrid signcryption tag-KEM+DEM scheme.

4.1 Code-based signcryption tag-KEM scheme

For designing our code-based signcryption tag-KEM scheme, we use the McEliece scheme as the underlying
encryption scheme. More specifically, to achieve the IND - CCA2 security for our schemes, we use McEliece’s
scheme with the Fujisaki-Okamoto transformation [21,58]. The authors of ref. [21] gave an instantiation of
this scheme using generalized Srivastava (GS) codes. Indeed, by using GS codes, it seems possible to choose
secure parameters even for codes defined over relatively small extension fields. However, Barelli and
Couvreur recently introduced an efficient structural attack [59] against some of the candidates in the
NIST postquantum cryptography standardization process. Their attack is against code-based encryption
schemes using some quasi-dyadic alternant codes with extension degree 2. It works specifically for schemes
based on GS code called DAGS [20]. Therefore, in our work, we use the Goppa code with the Classic
McEliece parameters. As for the underlying signature scheme, we use the code-based Wave [41] as
described earlier.

The fact that we use Wave, the sender’s secret key is a generalized (U, U + V)-code over a finite field F,
with g > 2. Its public key is a parity-check matrix of a code equivalent to the previous one. To reduce the
public key size, we use a permuted Goppa subcode for the receiver’s public key. Thus, we include the
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subcode equivalence problem as one of the security assumptions of our scheme. In Figure 5, we describe the
algorithm Setup, which will provide common parameters for our scheme.

We give key generation algorithms in Figure 6, where we denote the sender key generation algorithm by
KeyGen, and that of the receiver by KeyGen,. The receiver algorithm KeyGen, returns as signcryption

public key a generator matrix Gpy r € [F’zzx”' of a Goppa subcode equivalent. It returns as signcryption secret
key the tuple (g,, I, S;, B,), where I, and g, are, respectively, the support and the polynomial of a Goppa
code. S, € [ng’“ is a full rank matrix and P, a permutation matrix. The sender key generation algorithm
KeyGen, returns as private key three matrices Ss € F{s (%) H, o e F{%>" and B, € F*", where
S, ¢ [F%"S’ks)x("fk‘) is an invertible matrix, Hgy 5 € [Fg"s’kS)X"S a parity-check matrix of a random generalized
(U, U + V)-code and P € F}*™ a permutation matrix. The sender public key is a parity-check matrix
Hpy s € F{57%)™ of a generalized (U, U + V) equivalent code given by Hyy s = SsHsk 5P

In Figure 7, we give the design of the symmetric key generation algorithm Sym of our scheme. The
algorithm Sym takes as input the bit length € of the symmetric encryption key. It outputs an internal state
information @ and the session key K, where @ is randomly chosen from F$, and K is computed by using the
hash function H.

Figure 8 provides a description of the encapsulation and decapsulation algorithms of our signcryption
tag-KEM scheme. We denote the encapsulation algorithm by Encap and the decapsulation by Decap. In the
encapsulation algorithm, the sender first performs a particular Wave signature on the message m = 7|,
where @ corresponds to an internal state information and 7 is the input tag. The signature in the Wave
scheme comprises two parts: an error vector e € F%* and a random binary vector y. In our scheme, z is the
hash of a random coin y € [F5. The sender then performs an encryption of m’ = H;(7)||m. The encryption
that we use in our scheme is the IND - CCA2 secure McEliece encryption scheme with the Fujisaki—-Okamoto
transformation introduced by Cayrel et al. [21]. During the encryption, the sender adaptively uses the
random binary vector y as a random coin. The resulting ciphertext is denoted by c. The output is given
by E = (e, ¢).

In the decapsulation algorithm Decap, the receiver first performs recovery of the internal state infor-
mation @ by using the algorithm Decrypt and the second part of the signature of m. Then it verifies the
signature and computes the session K by using @.

The algorithm Decrypt that we use in the decapsulation algorithm of our scheme is described in Figure 9.
It is similar to that described in [21], but we introduce some modifications which are:

Setup

Input: (1*)

Output:

— Parameters of sender’s generalized (U, U + V)-code: code length ns, dimension kg of
U, dimension ky of V, dimension ks = ky + ky of the generalized (U, U + V')-code,
weight of error vector w, cardinality ¢ of the finite field .

—  Parameters of receiver’s Goppa code: degree m of extension Fom of Fa, length n,. of
the Goppa code, degree t of Goppa polynomial g,, dimension & of Goppa subcode.

— A cryptographic hash functions #H; : {0,1}* — {0, 1}’:”'

— A cryptographic hash functions Hg : {0,1}* — {0,1}¢ where ¢ is the bit length of
the symmetric encryption key.

— A hash function Hg : {0,1}* — {0,1,2}"s where 75 = ng — ks.

— A cryptographic hash function Hs : {0,1}* — {0, 1}%“

— An encoding function ¢ : F§ — W, ; where & is a well chosen parameters such
that K = L("")J and Wh .+ is the set of binary vectors of length n, and Hamming

t
weight ¢.

Figure 5: Description of the Setup algorithm for common parameters.



10 —— Jean Belo Klamti and M. Anwarul Hasan DE GRUYTER

KeyGen,.

Input: Integers m,n,,t and k.

Output: sk, and pk,..

1. Randomly generate a monic irreducible polynomial g, (z) € Fam [z] of degree ¢

2. Select a uniform random set of n, different elements I'; = (ag, ..., an,.—1) € Fom.

3. Compute a parity-check matrix Hgy , € antxnr of the binary Goppa code from g,
and T,

4. Randomly choose a full rank matrix S, € F;Xk"

and permutation matrix P, € Fy~*""
with k. = n, — mt.

5. Set sk, = (¢,,I',S;, P;.) and pk, = Gpk,r = Sy G Py
Return sk, and pk,..

KeyGen,

Input: Integers ng, ky and ky .

Output: sks and pkg

1. Choose randomly a parity-check matrix Hgj of a code (U,U + V') over F3 such that
dim(U) = ky and dim(V') = ky.

2. Randomly choose a full rank matrix S € Féﬂs*ks)x(ns*ks) and a monomial matrix
P e Fye e,

3. Set skg = (SS,HSk,PS) and Hpk,s = SsHsk,sPs~

4. Return sks and pk, = Hpy 5.

Figure 6: Description of the key generation algorithms.

Sym
Input: The bit length ¢ of the symmetric encryption key.
Output: An internal state information w and a session key K.

1. zd 4

2. Compute K := Ho(x)
3. Setw: ==

4. Return (K, w)

Figure 7: Description of the Sym algorithm.

e we use an encoding function ¢,
e the output is not only the clear message m, but a pair (m, y), where y is the reciprocal image the error
vector o by the encoding function ¢.

4.1.1 Completeness of our signcryption tag-KEM

Let T be a tag, (sks, pks) (resp. sk, and pk,) be sender’s (resp. receiver’s) key pair generated by the algorithm
KeyGen with input 11 Let (K, @) := Sym(sks, pk,) be a pair of a session key and an internal state informa-
tion. Let E := (e, ¢) be an encapsulation of the internal state information @. Assuming that the encapsula-
tion and decapsulation are performed by an honest user, we have:

— The receiver can recover the pair (7'||m, ¥) from ¢ and verify successfully that



DE GRUYTER A code-based hybrid signcryption scheme

Figure 8:

Figure 9:

— 11

Encap

Input: (w, T) with 7 € F}

Output: An encapsulation of the internal state information .
y & F5 with £ = L10g2 (?)J

Compute z= H;(y)

Compute s:= Ha(7|w| 2)

Compute & := Decodep,,  (s(S™1)7)

Compute e := eP

Compute 7" = H1(7)

Compute r:= Hi(7'||=||y)

® NS oUW

Compute ¢y := rGpk,r + 0, where 0 = ¢(y) with ¢ an constant weight encoding
function.

9. Compute ¢ := Hz(0o) & (7'||w).

10. Parse ¢ := (¢pl|e1)

11. Return E := (e, ¢)

Decap
Input: (sky, Hpk s, E, T)
Output: Session key K

Parse F as (e, c).

Compute (z, y) := Decrypt(sk,, ¢)

Parse x as (7]|@)

If eH!,  # Hao(7|@|[Hi(y)) or 7 # Ha(r):
Return L

Compute K := Ho(w)

Return K.

NSOk W

Description of the Encap and Decap algorithms.

Decrypt
Input: Secrete sk = (g, ', Sy, P) the receiver and a ciphertext ¢ .

Output: The pair (z, y), where ¢ = 7'||w.
Parse ¢ into (o, ¢1)

Compute o := 'ygggpa(sk, o), where 'Yé\;/[:;];:pa is a decoding algorithm for Goppa code.

y=0¢""(0)

Compute = ¢; & Hs (o)

Compute 7= H1(z/|y)

If ;’kaﬂ“ Qo#er:
Return L

Return (z, y)

® NS ot W=

Description of the Sym algorithm.

eHl, . = Htloly) and 7' = Hy(1).

Otherwise, the receiver performs a successful signature verification of message m = 7| signed by an
honest user using the dual version of mCFS signature.
— Therefore, it can compute the session key K = H ().
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4.2 Code-based hybrid signcryption

Here, we use the signcryption tag-KEM described in Section 4.1 for designing a code-based hybrid sign-
cryption. For the data encapsulation, we propose the use of a regular OT-secure symmetric encryption
scheme. We denote the symmetric encryption algorithm being used by SymEncrypt and the symmetric
decryption algorithm by SymDecrypt.

Figure 10 gives the design of our code-based hybrid signcryption tag-KEM+DEM. In this design, algo-
rithms Setup, KeyGen,, and KeyGen, are the same as those of our signcrytion tag-KEM. Algorithms Sym
and Encap are those of our signcryption tag-KEM in Section 4.1.

5 Security analysis

Before discussing the security of our hybrid scheme, let us consider the following assumptions for our
security analysis:

Assumption 1: The advantage of PPT algorithm A to solve the decoding random linear codes problem is
negligible with respect to the length n and dimension k of the code.

Assumption 2: The advantage of PPT algorithm A to solve the (U, U + V) distinguishing problem is
negligible with respect to the length n and dimension k of the code.

Assumption 3: The advantage of PPT algorithm A to solve the subcode equivalence problem is negli-
gible with respect to the length n and dimension k of the code.

Assumption 4: The advantage of PPT algorithm A to solve the DOOM problem is negligible with respect
to the length n and dimension k of the code.

Assumption 5: The advantage of PPT algorithm A to solve the Goppa code distinguishing problem is
negligible with respect to the length n and dimension k of the code.

5.1 Information-set decoding algorithm

In code-based cryptography, the best-known nonstructural attacks rely on information-set decoding. The
information-set decoding algorithm was introduced by Prange [60] for decoding cyclic codes. After the
publication of Prange’s work, there have been several works studying to invert code-based encryption
schemes based on information-set decoding (see [61] Section 4.1).

Signcrypt

Input: A three tuple (sks, pk
Output: The signerypted message ¢ = (E, C).
1. Compute (K, @)=Sym(sks, pk,)

rs M)

2. Compute C' = SymEncrypt(K, m)
3. Compute F = Encap(w, C)
4. Return (E,C)

Unsigncrypt

Input: A three tuple (sk,, pkg, (¢, C))
Output: The clear text m

1. If Decap(sky, pky, ¢)=L return L
2. Compute m = SymDecrypt(K, C)
3. Return m

Figure 10: Code-based hybrid signcryption from sctkem and DEM.



DE GRUYTER A code-based hybrid signcryption scheme =—— 13

For a given linear code of length n and dimension k, the main idea behind the information-set decoding
algorithm is to find a set of k coordinates of a garbled vector that are error free and such that the restriction
of the code’s generator matrix to these positions is invertible. Then, the original message can be computed
by multiplying the encrypted vector by the inverse of the submatrix.

Thus, those k bits determine the codeword uniquely, and hence, the set is called an information set. It is
sometimes difficult to draw the exact resistance to this type of attack. However, they are always lower-
bounded by the ratio of information sets without errors to total possible information sets, i.e.,

(")
Risp = =< o
()
where w is the Hamming weight of the error vector. Therefore, well-chosen parameters can avoid these
nonstructural attacks. In our scheme, we use the parameters of the Wave signature [41] for the sender and
those of Classic McEliece [61] for the receiver in the underlying encryption scheme.

5.2 Key recovery attack

In code-based cryptography, usually, the first step in the key recovering attack is to perform a distin-
guishing attack on the public code in order to identify the family of the underlying code. Once successful,
the attacker can then perform any well-known attack against this family of underlying codes to recover the
secret key. When the underlying code is a Goppa code, the main distinguishing attack technique consists of
evaluating the square code or the square of the trace code of the corresponding public code [25,62,63]. Note
that this technique usually works for a Goppa code with a high rate. Compared to many other code-based
encryption schemes, in which the public code is equivalent to an alternant or a Goppa code, in this work the
public code is a permuted Goppa subcode. Thus, in addition to the indistinguishability of Goppa codes, the
subcode equivalence problem becomes one of our security assumptions. Moreover, to the best of our
knowledge, there is no attack reported in the literature on distinguishing a code equivalent to a Goppa
subcode. Therefore, by using the subcode equivalence problem as a security assumption, we can keep our
scheme out of the purview of the distinguishing attack even though the underlying code is a Goppa code.

Throughout the rest of our analysis, we assume that the attacker knows that the family of the under-
lying code is a Goppa code. In our case, the key recovery attack is at two different levels: the first one is on
the sender side and the second one is on the receiver side.

On the receiver side, the key recovery attack consists of the recovery of the Goppa polynomial g, and the
support y, = (@, ...,®,—1) from the public matrix. Therefore, the natural way for this is to perform a brute-
force attack: one can determine the sequence (ay, ...,a,-1) from g, and the set {ao, ...,a,_1}, or alternatively
determine g, from (ay, ...,a,-1). A good choice of parameters can avoid this attack for the irreducible Goppa
code the number of choices of g, is given by

YU
dlt

By using the parameters of Classic McEliece, we can see that the complexity for performing a brute-
force attack to find Goppa polynomial is more than 28%° for the parameters proposed in [61].

It is also important to note that if the adversary has the knowledge of the underlying Goppa code Cs,
performing the key recovery attack implies solving a computational instance of a subcode equivalence
problem. Indeed, this corresponds to finding the permutation o such that o(Cp) is a subcode of Csx. We can
see that finding the permutation o is equivalent to solving the following system:

ka,rXaHsk,r =0 (2)

where Hgy , is a parity-check matrix of the underlying Goppa code Cs r, Gsk ; is the generator matrix of the
public code Cy and X, = (x;;) is the matrix of the unknown permutation o. Note that solving (2) is
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equivalent to solving a variant of permuted kernel problem [64]. A natural way to solve (2) is to use the
brute force attack, and such an attack is of order O(n!). However, the adversary could use Georgiades’
technique [65], where its complexity is given in our case by

n!
o(ﬁ). 3)

Recently, Paiva and Terada introduced in [66] a new technique for solving (2). The workfactor of their
attack applied to our scheme is given by:

& logn
WF tackpar, = O 20t X losm)--05mn+ 7). (4)

From (3) and (4), we can see that a well-chosen set of parameters can avoid the attack of Georgiades as
well as that of Paiva and Terada.

In the case of the sender, the key recovery attack consists of first solving the (U, U + V) distinguishing
problem for finite fields of cardinality g = 3. Therefore, under Assumption 3 and with a well-chosen set of
parameters, this attack would fail.

5.3 IND-CCA and SUF-CMA security

In code-based cryptography, the main approach to a chosen-ciphertext attack against the McEliece encryp-
tion scheme consists of adding two errors to the received word. If the decryption succeeds, it means that the
error vector in the resulting word has the same weight as the previous one. In our signcryption tag-KEM
scheme, this implies either recovering the session key K or distinguishing encapsulation of two different
session keys from (e, ¢, 7). We see that the recovery of the session key K corresponds to the recovery of
plaintext in aIND - CCA2 secure version of McEliece’s cryptosystem (see [21], Subsection 3.2). We now have
the following theorem:

Theorem 2. Under Assumptions 1, 3, and 5, the signcryption tag-KEM scheme described in Section 4.1 is
IND - CCA2 secure.

Proof. Let Accaz be a PPT adversary against the signcryption tag-KEM scheme described in Section 4.1 in
the signcryption tag-KEMIND-CCAZ2 game. Let us denote its advantage by &ccaz,sctkem. For proving
Theorem 2, we need to bound ecca2,scTkeMm.

Game O: This game is the normal signcryption tag-KEM IND-CCA2 game. Let us denote by X, the
event that the adversary wins Game 0 and Pr(X,) the probability that it happens. Then we have

Pr(Xo) = £cca2,SCTKEM-

Game 1: This game corresponds to the simulation of the hash function oracle. Indeed, it is the same as
Game O except that adversary can have access to the hash function oracle: It looks for some pair
(T, ¥*) € F} x F% such that eH! = H,(t*|@|H(y*)). Then, it tries to continue by computing c¢’. We can
see that it could succeed at least when the following collisions happen:

Hi(t") = Hy(t) and H(T@lHA(y") = HATlw|Hi(y)).
Therefore, if gy, is the number of queries allowed and X; the event that Accas, wins game X, then we have:

IPr(%) - Pr(Xo)| < .
(%)
Game 2: This game is the same as Game 1 except that the error vector e in the encapsulation output is

generated randomly. We can see that the best to proceed is to split ¢ as (co|l¢;) and then try to invert either ¢
for recovering the error o or ¢ for recovering directly the internal state @,. That means that the adversary is
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able either to solve the syndrome decoding problem or to invert a one-time pad function. Therefore, we
have:

IPr(X;) — Pr(Xp)| < &sp + v(0),

where ggp is the advantage of an adversary against the syndrome decoding problem, v is a negligible
function, and ¢ is the bit length of the symmetric encryption.

Game 3: This game is the same as Game 2. However, the change is in the key generation algorithm.
Indeed, a random code is chosen as the underlying code instead of Goppa. We can see that this change is
indistinguishable. In fact, distinguishing this change corresponds to solving in part the Goppa code dis-
tinguishing problem. Thus, we have

[Pr(Xs) — Pr(X)| < egcp(),

where ggcp(A) is the advantage of a PPT adversary in the Goppa code distinguishing problem and A the
security parameter. If there is a PPT adversary A capable of distinguishing this change, we can use it to
construct an adversary Agcp to solve the Goppa code distinguishing problem as follows:
1. Once receiving an instance G € FX" of a generator matrix of a code C in Goppa code distinguishing
problem, Agcp extracts a generator matrix G’ of a subcode C’ of C and forward it to (A.
2. A will reply by 1 if the change has happened, i.e., the underlying code is not a Goppa code. It will reply
by 0 otherwise.
3. If Agcp receives 1 from A, it means that C is not a Goppa code and A gcp outputs 0, otherwise it returns 1,
i.e., C is a Goppa code.
Game 4: This game is the same as Game 3 except that the public key is a random matrix instead of a
generator matrix of a permuted subcode. We can see that this change is indistinguishable according to the
subcode equivalence assumption. Thus, we have:

|Pr(Xs) — Pr(Xs)| < ees(A),

where €g5(A) is the advantage of a PPT adversary in the subcode equivalence problem and A is the security

parameter. Moreover, we can show that if an adversary Accaz wins this game, we can use it to construct an

adversary Ay for attacking the underlying McEliece scheme in the public key encryption IND-CCA2

game (called PKE.Game in Appendix A). For more details on the underlying McEliece encryption scheme

and its IND - CCA2 security proof, the reader is referred to Appendix C. We now proceed as follows:

¢ Given the receiver public key pk, which corresponds to a receiver public key signcryption tag-KEM, A ycg
does the following:

$
» chooses randomly (@, @;) — [}

* chooses randomly 6§ il {0, 1}
* sends the public key pk and @s to Accaz
e Given a tag T from Accaz, A mckE:
* sends the pair (Hy(1)||mo,H:1(T)|®;) to the encryption oracle of PKE.Game
* forwards c received from the encryption oracle to Accaz
e For every decryption query (c;, 1) from Accaz:
* if ¢; = ¢, A ncg return L to Accaz, otherwise it sends ¢; to the decryption oracle of PKE.Game.
* Receiving 7{|w; from the decryption oracle:
> if ] # HY(T), A mee returns L to Accaz, otherwise, it returns m; to Accao.

e When Accas outputs 5= 6, A mce returns 1, otherwise, it returns 0.

Let epgg be the advantage of Ay in the PKE.Game. Note that the target ciphertext ¢ can be uniquely
decrypted to Hy(7)|ws. Therefore, any (c, ') other than (c, T) cannot be a valid signcryption ciphertext
unless collusion of H; takes place, i.e., Hi() = Hi(1). The correct answer to any decryption query with
¢; = ¢ is L. Decryption queries from Accaz are correctly answered since ¢; is decrypted by the decryption
oracle of PKE.Game.
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When Accaz outputs 8, it means that ;s is embedded in ¢; otherwise m;_s is embedded. It means that
the adversary A yg wins game PKE.Game with the same probability as A ccaz wins Game 4 when collision

of H; has happened. Let X be the event collision of #; has happened and X, the event Ay wins the
PKE.Game. Let us denote by & the probability of the event X, and &, that of X. Therefore, we have:

Pr(X41X) = Pr(X,) = Pr(X,) < Pr(X,) + Pr(X).

By putting it all together, we conclude our proof. O

Theorem 3. Under Assumptions 2 and 4, the signcryption tag-KEM scheme described in Section 4.1 is
SUF -CMA secure.

Proof. Let ¥cua be an adversary against our signcryption tag-KEM in the SUF -CMA game and ecya its
advantage. For the forgery of our signcryption, adversary Fcua needs to first find a pair (e, y) € Wy n, o ¥ [F§
such that eHgk,s = Hy(t|m|ly). Then, it will try to find r € F} such that Hy(r) =y, i.e., it wins in the target
pre-image free game (see Appendix B) against the cryptographic hash function #;. We can see that finding

(e,¥) € Wynw % [F’2<~ such that eHgk,S = Hy(t|lm|y) corresponds to the forgery of the underlying Wave sig-
nature scheme. Let €pery be the advantage of an adversary in the pre-image free game against a crypto-
graphic hash function. Let A wayve,cma be an adversary against the Wave signature in the EUF - CMA game

and eyave, ur its advantage. Let X be the event that A wave,cma Wins. Let X be the event that the adversary is
able to find a pre-image x of y by H; such that x € F5. We have:

Pr(Fowa wins) = PrX  and - X) < PrX) + Pr(X) < ewave 0 + o™

Note that due to the fact that #; is a cryptographic hash function, €pem is negligible and that con-
cludes our proof. O

Corollary 1. The signcryption tag-KEM described in Section 4.1 is secure.
The aforementioned corollary is a consequence of Theorems 2 and 3. We then have the following.

Proposition 1. Under Assumptions 1, 3, and 5, the hybrid signcryption tag-KEM+DEM scheme described in
Section 4.2 is IND-CCA2.

Proof. Proposition 1 is a consequence of Theorem 1. Indeed, under Assumptions 1, 3, and 5, the underlying
signcryption tag-KEM isIND - CCA2 secure (Theorem 2). In addition, the symmetric encryption scheme used
is OT-secure. Therefore, a direct application of Theorem 1 allows us to achieve the proof. O

Proposition 2. Under Assumptions 2 and 4, the hybrid signcryption tag-KEM+DEM scheme described in
Section 4.2 is SUF -CMA secure.

Proof. Under Assumptions 2 and 4, the underlying signcryption tag-KEM is SUF - CMA secure and, therefore,
according to the Theorem 1, the proposed hybrid signcryption tag-KEM+DEM is SUF -CMA secure. O

6 Parameter values

For our scheme, we choose parameters such that Ao = A + 210gx(gsign) and Ayce of the underlying Wave

signature and McEliece’s encryption, respectively, satisfy max(Ag, Amcg) < l('ﬁ’)J According to the sender

and receiver keys, the size of our ciphertext is given by
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Table 1: Parameter values of the proposed scheme

Parameter ng ky ky 7] m t ny k 4
Value 8,492 3,558 2,047 7,980 12 64 3,488 1,815 512

Table 2: Key sizes of the proposed scheme

User Public key Secret key
Receiver’s key size kn, mQ@2n, + t - kt) + kn,
Sender’s key size r(ns — r)logy(q) (ns(ns + r) + r?) logxq)

Table 3: Size comparison (in bits) of the proposed scheme with the lattice-based schemes of [9, 67,68]

Construction Receiver’s key size Sender’s key size Ciph. size
Pub. key Sec. key Pub. key Sec. key

SCr [9,67] 8.5 x 107 4.2 x 108 8.4 x 107 4.2 x 108 5.5 x 10°

SCkem [9,67] 5.7 x 107 4.2 x 108 8.5 x 107 4.2 x 108 5.2 x 10°

SCchk [9,68] 2.8 x 107 4.2 x 108 2.8 x 107 4.2 x 108 4.5 x 108

Sato and Shikata [9] 2.8 x 107 4.2 x 108 2.8 x 107 4.2 x 108 4.0 x 10°

Our scheme 6.3 x 106 5.0 x 108 2.6 x 107 1.7 x 108 2.1 x 104

|E| = le| + |c| + |C| = 2ns + n, + k + 2¢.

Table 1 gives suggested values of the parameters of our scheme. These values have been derived using
those of Wave [42] and Classic McEliece [61] for NIST PQC Level 1 security. According to the values given in
Table 1, the ciphertext size in bits of our scheme is in the order of |E| = 2.9 x 10

Table 2 provides key sizes of our scheme in terms of relevant parameters. Then, in Table 3, we give a
numerical comparison of key and ciphertext sizes of our scheme with some existing lattice-based hybrid
signcryption schemes. The rationale behind comparing our scheme against lattice-based schemes is that no
code-based hybrid signcryption scheme exists in the literature and the underlying hard problems in both
codes- and lattice-based schemes are considered quantum safe. For the lattice-based schemes in our
comparison, the parameters, including plaintext size of 512 bits, are from [9, Table 2]. We can see that
for postquantum security level 1, the proposed scheme has the smallest key and ciphertext sizes.

7 Conclusion

In this article, we have proposed a new signcryption tag-KEM based on the coding theory. The security of
our scheme relies on known hard problems in coding theory. We have used the proposed signcryption
scheme to design a new code-based hybrid signcryption tag-KEM+DEM. We have proven that the proposed
schemes are IND-CCA2 and SUF-CMA secure against any PPT adversary. The proposed scheme has a
smaller ciphertext size compared to the pertinent lattice-based schemes.
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Appendix
A PKE.Game

Here, we recall the IND-CCA2 game for PKE called PKE.Game in our scheme. The decryption oracle is
denoted by O (Figure Al).
In Step 4, the adversary A y is restricted not to make request to O on the ciphertext c. Clear texts mg

and m; must have the same length. Ay wins when b = b, and its advantage corresponds to the prob-
ability that it wins this game, which is denoted by &pje.

B Target preimage-free

Target preimage-free function is a special case of universal one-way function. An adversary is given (H, y)
(chosen at random in their domain) and then attempts to find x such that H(x) = y. Let x, = {X} be a

collection of domains and x = {y; hen. Let H={H:X —{0,1}}: X € X} and H = {H}en. Note that X is
identified by the description of H . Let A prein be an adversary playing the following game (Figure A2).
A preim Wins the game when H(x) =y and the advantage of A prm is the probability that it wins

Preimage.Game for a given H — %, and y < {0, 1}*. We say that  is Target Preimage free with regard
to x when the advantage €preim Of A premm is negligible.

C Security of the McEliece encryption with Fujisaki-Okamoto
transformation

For the IND-CCA security of McEliece’s scheme described in Figure 1, we need the following definition:

Definition 2. (y-uniformity [21]) A public key encryption scheme II is called y-uniform and R be the set
where the randomness to be used in the (probabilistic) encryption is chosen. For a given key-pair (pk, sk), x
be a plaintext and a string y, we define

y(y) = Ptlr & R 1 y = Eux. 1),

where the notation Ey(x, r) makes the role of the randomness r explicit. We say that Il is y-uniform if, for
any key-pair (pk, sk), any plaintext x and any ciphertext y, y(x,y) < y for a certain y € R.

We now can state the following lemma.

Lemma 1. The McEliece scheme with the Fujisaki-Okamoto transformation described in Figure 1 is y uni-
form with

PKE. Game

1. Step 1: (pk,sk) +— KeyGen(1*)

2. Step 2: (mg, my, p) «— AS} g (Pk)

3. Step 3: b & {0,1} and ¢ +— PKE.Encrypt,(m;) where PKE.Encrypty, (resp.
PKE. Decrypt,y) is the encryption (resp. decryption) algorithm in the PKE scheme.

4. Step 4: b+— AﬁCE

Figure Al: PKE.Game.
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Preimage. Game

1. Step 1: H — Ha

2. Step 2: y — {0,1}A

3. Step 3: * — Aproim(H, y) such that z € X.

Figure A2: Preimage game.

Proof. For any vector y € FJ', either y is a word at distance ¢ from the code C of generator matrix Gy, r, OF it
isn’t. When y is not a distance t of C, the probability for it to be a valid ciphertext is equal to 0. Else there is
only one choice for  and e such that y = rGp, ® e, i.e.,

Prid(y, Q) =t =

1
2(%)

Theorem 4. Under Assumptions 1, 3, and 5, the McEliece scheme based on a subcode of Goppa code with the
Fujisaki-Okamoto transformation described in Figure 1 is IND-CCA2 secure.

Proof. In Figure 1, the symmetric encryption used is the XOR function which is a one-time pad. Under

Assumptions 1 and 3, the old McEliece encryption scheme is one-way secure. Therefore, according to

Theorem 12 of [58], the McEliece scheme with the Fujisaki—Okamoto transformation is IND - CCA2 secure.
O
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