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Abstract: This article makes an important contribution to solving the long-standing problem of whether all
elliptic curves can be equipped with a hash function (indifferentiable from a random oracle) whose running
time amounts to one exponentiation in the basic finite field [F;. More precisely, we construct a new indiffer-
entiable hash function to any ordinary elliptic [F;-curve E, of j-invariant 1728 with the cost of extracting one
quartic root in ;. As is known, the latter operation is equivalent to one exponentiation in finite fields with
which we deal in practice. In comparison, the previous fastest random oracles to E, require to perform two
exponentiations in F,. Since it is highly unlikely that there is a hash function to an elliptic curve without any
exponentiations at all (even if it is supersingular), the new result seems to be unimprovable.
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1 Introduction

Let [, be a finite field of char(F,;) > 3 and E, : y? = x> + ax be an elliptic F,-curve whose j-invariant equals
1728. The curves E, are studied with interest in elliptic cryptography at least at the research level. The point
is that (apart from elliptic curves of j = 0) they have a non-trivial automorphism group, which leads to more
efficient scalar multiplication and pairing computation on them (see details in [1, Sections 6.2.2 and 3.3.2]
respectively). This article focuses on ordinary curves because supersingular ones pose special challenges for
the security of discrete logarithm cryptography by virtue of [1, Remark 2.22]. According to [2, Example V.4.5],
the ordinariness of E, results in the restriction ¢ = 1 (mod 4), i.e., i := V-1 € Fy.

Examples of pairing-friendly curves of j = 1728 are represented, e.g., in [1, Section 4.5.2]. Curiously,
unlike curves of j-invariant 0, some curves E, (e.g., do255e from [3, Section 5.2]) can be so-called double-odd
elliptic curves [3,4], that is, their order equals two times an odd (prime) number. Double-odd curves are a
trade-off between prime order curves and twisted Edwards curves [1, Section 6.4.1] whose cofactor is always
a multiple of four. Thus, double-odd curves enjoy simpler subgroup membership testing than twisted
Edwards ones and, at the same time, faster complete addition formulas than prime order ones. These notions
are discussed in the remarkable article [5] and in references therein.

# https://www.researchgate.net/profile/dimitri-koshelev
https://www.linkedin.com/in/dimitri-koshelev
https://github.com/dishport.

* Corresponding author: Dmitrii Koshelev, Computer Sciences and Networks Department, Télécom Paris, Paris, France,
e-mail: dimitri.koshelev@gmail.com

a Open Access. © 2022 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0
International License.


https://doi.org/10.1515/jmc-2021-0051
mailto:dimitri.koshelev@gmail.com
https://www.researchgate.net/profile/dimitri-koshelev
https://www.linkedin.com/in/dimitri-koshelev
https://github.com/dishport

DE GRUYTER The most efficient indifferentiable hashing to elliptic curves of j-invariant 1728 = 299

Many cryptographic protocols (e.g., the popular aggregate Boneh—-Lynn—-Shacham signature [6]) use a
hash function of the form H : {0, 1} — E,(F,). If it is necessary, the value of H can be subsequently moved
into a prime order subgroup of E.(F,) by clearing the cofactor [7, Section 7]. There is the regularly updated
draft [7] on the topic of hashing to elliptic curves. Due to [7, Section 10], it is highly desirable and often
inevitable that H is indifferentiable from a random oracle in the sense of Maurer et al. [8, Section 4.2]. By the
way, [3, Section 3.7] raises the question of efficient indifferentiable hashing to curves E,, but that article
does not answer this question in an acceptable way.

Almost all previously proposed indifferentiable hash functions are obtained as the composition
H = e® o j of a hash function b : {0, 1} — [Fé and the tensor square

e 1 Fy — Eu(Fy)  e®(to, ) = e(to) + e(ty)

for some map e : F; — E,(F,). Such a map is often called an encoding. For the given H its indifferentiability
follows from [9, Theorem 1] if  is indifferentiable and e®? is admissible in the sense of [9, Definition 4]. It is
worth noting that the admissibility property in particular requires an encoding e to be constant-time, that is,
informally speaking, the computation time of its value is independent of an input argument.

The previous state-of-the-art encoding, valid for any curve E,, is proposed by the author in [10] after a
refinement of the work [11]. This encoding e (resp. e®?) can be implemented by extracting one (resp. two)
square root(s) in F;. As is customary (see, e.g., [1, Section 5.1.7]), a square root is expressed via one
exponentiation in F, at least when g # 1 (mod 8). Taking into account the condition g = 1 (mod 4), we
obtain g = 5 (mod 8).

This work (again, for any a ¢ [F}) directly provides an admissible map h : [F,zl — E,(F,;), which requires
to extract one quartic root in [F;. We will show that for g = 5 (mod 8), this operation is also nothing but one
exponentiation in . In other words, the tensor square is in fact superfluous for curves E,, and, hence, we
get rid of one exponentiation in[F; in comparison with e®2. Moreover, it is worth emphasizing that h is given
by quite simple formulas with small coefficients. Therefore, the new result seems interesting both from
theoretical and practical points of view.

By definition, pairings act from two groups traditionally denoted by G; and G.. As said in [1, Section 3.2.5],
in practice, G; ¢ E,(F,) for a prime g and G, ¢ Ey(F4~) for some n € N and a e [F;;,.. Moreover, the exten-
sion degree n is often even. In this case, due to [1, Algorithm 5.18], a square root in F,» can be expressed
via two square roots in F ;»/2. To our knowledge, there is no analogous expression for a quartic root in [F .
So, unlike e, the new map h is not relevant for hashing to G, whenever 2|n. Fortunately, as explained
in [12, Section 1.2], in combination with clearing the (large) cofactor #E,(F4)/#G, it is sufficient to
apply e : Fgn — Ey(F4n) only once. Thus, the best solution is to utilize the map h (resp. e) in the case
of G; (resp. G,). By looking at [12, Tables 1 and 2], the reader can realize the significance of e and h in the
general classification of maps to elliptic curves.

An approach to produce h is based on an explicit F,-parametrization ¢ : A’>-»T of a (uni-)rational
[Fq-surface [13, Section 4.9] on some algebraic threefold T, that is, dim(T) = 3. Then, h is just the composi-
tion of ¢ (restricted to F,-points) and an auxiliary map k' : T(F;) — E,(F,;). More concretely, there is an
elementary rational F,-map & -» T from a threefold enjoying some elliptic fibration & — A? (see, e.g., [14,
Section 2]). The desired ¢ is immediately obtained from an infinite order F;-section ¥ : A?-»& of this
fibration.

Ideologically, the described approach is almost the same as in [15], but, of course, with different
technique details. In particular, in that article, the suggested threefold is itself elliptic, i.e., T = & in our
notation. There, provided that Jb € [F,, the author constructs one more admissible map from [Ffl to the
F,-point group of an ordinary elliptic curve Ej, : y> = x> + b (of j-invariant 0). Moreover, this map equally
performs only one exponentiation in F;, namely a cubic root extraction.

There is the long-standing open question of whether every elliptic F;-curve E has a random oracle
{0, 1}* — E(F,) with the cost of one exponentiation (cf. [12, Conjecture 1]). Recently, the independent work
[16] arose on this topic. It contains an indifferentiable hash function (under the name SwiftEC) being a
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modification of the classical Shallue-van de Woestijne (SW) encoding [17]. However, SwiftEC is not relevant
for most curves E,, unlike all ordinary curves E, and many others of the remaining j-invariants.

The SW encoding is based on yet another threefold, although a rational F;-curve (of geometric genus 0)
is taken on it instead of a unirational F,-surface. Fortunately, in [18, Lemma 3], Skatba provides such a
surface and hence a (probably admissible) map [Fé — E(F,) whenever j(E) # 0. Unfortunately, the Skatba
map is given by too cumbersome formulas unsuitable as a practical matter. In turn, SwiftEC is produced by
means of another surface admitting a simpler rational [F,-parametrization. This is achieved at the price of
generality loss.

Interestingly, all the threefolds, appeared in the scientific domain under consideration, turn out to be
Calabi-Yau varieties, which are applied over the field C in theoretical physics (see, e.g., [19]). However, since
we will work over non-closed fields, it is also reasonable to cite a source (such as [20]) on the arithmetic of
Calabi-Yau varieties. It is worth noting that one-dimensional Calabi—Yau varieties are exactly elliptic curves.
So, it is not surprising that their high-dimensional analog occurs in the context of elliptic cryptography.

2 Geometric results

As discussed in Section 1, throughout the article, we assume that i = v-1 € [F;. Consequently, the curve
E, : y? = x> + ax possesses the [Fg-automorphism [i](x, y) = (—x, iy) of order 4. Obviously, E,[2] = {0, P,, P.},
where

0=0:1:0), Py:=(0,0), P =(xiva,O).
Besides, any two [F;-curves of j = 1728 are isomorphic (at most over F ) by means of the map
Og,q * E, — Ey oa,a’(X’ Y) = (aZX’ aBy)’

where a == {/a’ /a. As a result, up to an F,-isomorphism, there are exactly four twists for E,, namely E,.; for
je€Z/4andceFy\(Fpi
It is suggested to consider the F,-threefold

5
3 A (X051, Yo Y15 8)*

Sp: )/12 =X

r So 1 ¥g = x5 + ac(t® + at)xo,
B +ac3(t3 + at)x

It seems that T is birationally F;-isomorphic to the quotient of A = E, x E,c x E, by the order 4 diagonal
automorphism 6 := [-1] x [i] x [i]. This quotient is similar to the one from [15, Lemma 1]. Since the given
fact is not necessary for our purposes, we do not prove it. However, this is a useful observation, because
age(8) = 1 (as well as for the automorphism [w]*3 from [15, Section 1]), where the age is defined in [21]. So by
virtue, [21, Theorem 13], the quotient A/§ enjoys at least a rational curve over the algebraic closure F,.
Thus, there is a justified hope of obtaining a rational F;-surface on T.

Curiously, our T (like the one from [15, Lemma 1]) can also be interpreted as a Schoen threefold [22], that
is, the fiber product [23, Section 4.5] of two rational elliptic surfaces with a section [13, Chapter 7]. Indeed,
S c A(ijyyj’t) are nothing but singular del Pezzo surfaces of degree 2 (see, e.g., [24, Section 8.7]) having the

projection to ¢ as an elliptic fibration with the section O. Moreover, they are clearly isomorphic over [ 2,
hence T fits the definition of a banana threefold [25]. To sum up, we see a confirmation that T (or, formally
speaking, some of its smooth projective models) is a Calabi-Yau threefold.

The threefold T is embedded in a weighted projective space as follows:

T =

2_ .3 3 2
B = xgY, + ac(t> + aty;)xo,
{yo 02 2/70 P(1,1,2,2,1,1),

Y. =Xy, + ac’(t® + aty))x
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where the variables y, and y, are of the weight 2. Furthermore, on the affine chart ¢ # 0, the threefold T
possesses the following form:

V¢ = udvy + ac(1 + av¥)uo, s
V= 2 3 3 2 c (o, u1,v0,v1,v2)*
Vi =urvy + ac’(1 + avs)y

Thus, we have the birational isomorphisms

We can look at V as a curve in A?VO,VLVZ) given by the intersection of two quadratic surfaces over the
rational function field F4(uo, u;). The existence of an F,(uo, u;)-point on V is not clear, hence we apply the
base change x : y; = th, which leads to

5
A (to, t1,vo,v1,v2)*

s V= Atévs + ac’(1 + av)t?,
Vi = A3ty + ac*(1 + av)t?

For the sake of compactness, put F := [Fy(fo, t). At infinity, i.e., in [P3\A(3VO,V1,
form

V) there are F-points on & of the

P, = (tacty : ac’ : 1: 0).

It is proposed to take ¥, as the neutral element in the Mordell-Weil group &E(F).

We will rely on some Magma calculations [26] that can be verified in the free calculator on the official
site of this computer algebra system. The next lemmas are proved by means of the reduction to a Weier-
strass form of &.

Lemma 1. [26] The F-curve & is elliptic with the j-invariant

_16(cStE + 12a°c4t - 32a3cgt! + 12a°tR + 16a°¢?)?
a((c’ty - 4aP)(ctg + &)(ctg — &) ~ 4a’c?))?

i®

Lemma 2. [26] The coordinates of the point i = 2P_ are the fractions vj(to, t;) = num;/den, where

numg = ac(-3c*& + 2c23t} + t + 16a3c)t,,  numy = acX(citd + 2c%it! - 3tE + 16a3cA)t,,
num, = c*8 - 2ck5t) + t¥ - 16432, den = 8a’c(c%y + t).
The last lemma can be alternatively proved by using the geometric interpretation of the group law
for &(F), described, e.g., in [2, Exercise 3.10]. Similarly, the reader is invited to check that for
@, = (i\/z, \/3, \/E), the point ¢ from [15, Theorem 1] coincides with 2¢ with respect to ¢ as the

zero point. Among other things, the author verified that a base change for the elliptic threefold T
from [15, Lemma 1] (in contrast to ours y) does not yield a visible F;-section of infinite order if

Jb ¢ F,. Therefore, the restriction Vb ¢ [, in that article seems essential.
Forv, x € F; and j € Z /2, we will need the following F,-curves on A, ,:
G =num;/t, G, =num,-v-den, C, =den,
Djy =t} - num, - den - ¢¥~x*(a - numj + den?), 1)
Li=t. Foruniformity, L;:=P2\A{ ,.

Incidentally, the [F ;2-involution (¢, t;) — (& /+/C, to~/C) gives the isomorphisms C; — Cj,1 and Djx — Dj,1,x.
Note that always

deg(C) = deg(G,,,) =8, deg(Cy) = 4, deg(Dj,) = 16. ()
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and in accordance with [27, Section 2.3.3], the arithmetic genera are equal to
pa(Cj) = pa(CZ,v) =21, pu(Cx) =3, pa(Dj,x) = 105. 3)
In the degenerate cases, we obtain

Go=FEUE, (G.= U Qixsy Coo= U Lj ks (4)
jkez [2 j.kez /2

where B = (iva) ™' and
E =c%§ - t + 4aac,
Lj = (-1 (-Dkic - to + t,
Qs = Ctg + (DI + (-Dk2vECY -,

The curves E. are nothing but Fermat quartics, hence they are non-singular of genus 3. By the way, all the
lines L; ; intersect at the origin (0, 0).

Theorem 1. For v ¢ {0, +f} and x ¢ {0, +i/a}, the curves C;, G, ,, and D; x are absolutely irreducible.

Proof. Since C, =F Cy and Do =F 2 D, 4, it is sufficient to pick j = 0. Throughout the proof, we tacitly use
Magma in order to avoid awkward symbolic computations (see [26]). For instance, it is suggested to resort to
this system to establish the absolute irreducibility of Cy. Furthermore, we need the algebraic curves

CZ,,v(toy tl) = CZ,V(%’ %)5 Dé,x(tO’ tl) = DO,X(Vt—’ %)

of degrees 2 and 4, respectively.
It is readily seen that the conic C;, enjoys the point R == (1 : ¢?: 0) € L,. The projection from it gives
rise to the parametrization as follows:

C’to — 4 _ .
prr: Gy Ay prr= "Cz L ost prR' i Ay-Chy IR = (Pos Piy)s
where
Doy = c?s? + 8a’cvs - 16a° Ly = c(c’? - 8a’cvs — 16a°)
o 16a’cy S 16a%v '

As a result, the curve C;, = {t{' = p;,}j lying in A}, , ) is birationally isomorphic to G, (in the sense of
[23, Section 9.7]) by means of the projection pry, ). In particular, G, , is absolutely irreducible if and only if

5y is so.

It can easily be checked that for v # +f, the discriminants of p;, € F[s] are non-zero. So
JPoy ¢ K = F,(s) and by virtue of [28, Proposition 3.7.3] the extension K' = K(4/po,y) is a Kummer
one of degree 4. Also, the polynomials po, and p;, do not have common roots. Consequently, a root
r of p;, is non-ramified in the extension K'/K. In other words, there are exactly four points
R; = (ifm, r) e Afto,s) over r and the equalities vg(p1,) = v(p1,v) = 1 hold for the discrete valua-
tions. Let us apply Eisenstein’s irreducibility theorem [28, Proposition 3.1.15.(1)] to the polynomial
tf‘ - p1v € K'[t;] and any point R;. Recall that Cz’fv always has the total fraction ring [23, Section 11.10].
In fact, we have just shown that this ring F,(C;,) = K'(4/py,,) is a field. As is well known, this is
equivalent to the absolute irreducibility of C;,.

Now, we proceed to a similar proof in the case of Dy, but intermediate cumbersome formulas will
be omitted for brevity. The quartic Dy, is birationally isomorphic to the non-degenerate conic

Qu=ti+(@a+xX)f +ala+x*>) < Afy
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through an anticanonical map ¢ ., : Déyx--»Qx. Note that Q, has the point R := (0, iv/a) and, as usual, the
projection from it yields a parametrization prg : Q,—AL. It turns out that the map
(er ° Qcan)_l : Aé"'>D6,x S (fO,xafl,x)
is given by the functions fj x = 4; /By such that
Ao x = tivax*(a + x»)s?, By :=c(s* - (a + x?)?),
Ay = 4ivacias* + 2Ja(a + x2)s? + (a + x)a + x»)s? + 2Ja(a + x¥)?*s + a(a + x?)?).
As a result, the curve Dy, = {B,t} = A }j_o lying in A}, , ) is birationally isomorphic to Do, by means of

the projection pry, ). In particular, Dy, is absolutely irreducible if and only if D, is so.
It is shown that

Res(4; x, By) = 28a%c'X0(x? + a)¥(x? — 8a), A(Ayy) = -2'%d’c?%(a + x2)8(x? - 8a),

where Res and A stand for the resultant and discriminant, respectively. So, we restrict ourselves
to x ¢ {0, +iva, +2+/2a}. Since trivially \/E ¢ K = Fy(s), the extension K' = K(Q/fo_,x) is a Kummer
one of degree 4. The polynomials Ag x, 4;x, and B, do not have common roots in pairs. Consequently, a
root r of A;, is non-ramified in the extension K'/K. In other words, there are exactly four points
R; = (if‘{/m ,1) € Afto,s) over r and the equalities vg(fy,x) = v(fi,x) = 1 hold for the discrete valuations.
As mentioned earlier, it remains to apply Eisenstein’s irreducibility theorem to the polynomial t;* - f; , € K'[#]

and any point R;. Finally, the case x = +2+/2a is immediately processed by Magma. O

3 New hash function

This section clarifies how the rational F;-map @ =T o y o ) : A%to,tl)--»T (from the previous one) results in a

constant-time map h : (F;)* — E,(F,). First, given an element y € [F;, we denote by (%) = y@-V/4 the
4

quartic residue symbol [29, Section 4.B]. It is is evidently a group homomorphism Fj — {if}?-zo. Note that

(%) = +1if and only if \/y € F,. Moreover, (%) = 1if and only if 4/y € [F,.
4 4

To be definite, we assigni := ( 2) for a fixed quadratic non-residue c € [Fg. Also, for the sake of compact-
4L

ness, let f:= t> + at and hence T = {yi2 = xj3 + ac¥Yfx; }=0. Note that the isomorphism g2+ , is defined over

[F; whenever (5) = (-=1)/*1i. One of the crucial components of h is the auxiliary map given as follows:
4

(t, Jf) if \f € [F,,

o f .
Oacf.a(X0s V) 1f(— = -,
h, : T(qu) - Ea([Fq) h,(XOa X1, y()’ }/1, t) =9 ach a0, 7o q 4

UaCSf’a(Xl, y) if (5) =1.

4

Unfortunately, in this form, the value of i’ is computed no faster than using two exponentiations in [F: the

first for (5) and the second for \/f , ‘{/c_f , or 4/ c3f respectively. Instead, we provide an equivalent definition of
4

H' (up to the automorphisms [i]/, where j € Z /4) below.
We will restrict ourselves to the case g = 5 (mod 8) justified in Section 1. The next lemma is useful itself.
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Lemma 3. Consider the numbers

3g +1 q—S) .
1, ) ] =5 m0d16,
( 1825 if g =5(mod 16)

(r,n, k) =

q+3 q—B) —
3, s i = 13 (mod 16).
( 16 16 fa ( )

-r
For y € F; and 0 = y", we have 6* = (%)4 -y. In particular, 4/y € F, if and only if 6* = y. Moreover, for

y = u/v (withu, v € Fg), there are the equalities
_JwA@PvBYk if g = 5 (mod 16),
ul(w®k if g = 13 (mod 16).

Proof. If g = 5 (mod 16), then

3
64 — ylm — y(3q+1)/4 — y3(q—1)/4 Yy = (Z) -y,
174
0= u/v)n = utyad-1-n — o . 3ky(13¢-17)/16 _ uv3(u3v13)".

In turn, if g = 13 (mod 16), then

0% = yin = y@+)/4 = y@D/4 .y = (X) -y,
974
0= (u/v)n = yya-1-n = . yky(159-19)/16 _ uvll(uvls)k_

The lemma is proved. O

By the way, the substitution y = i in this lemma gives (é) = i". At the same time, fory = f (i.e.,0 = f")
4
and j € Z /4, we obtain the following criteria:

(= (-0

je{0,d o JfeF, o 6= o Jf=62/J.

Furthermore, when j € {1, 3}, the isomorphism Ogcf,q 18 defined over F, if and only if

—j
‘{/C—ffe[Fq = (i) :(5) & (i) =il e 6*=if.
4 4

q a), q

(E):l e  04=if.
q /4

Therefore,

On the other hand, in accordance with Lemma 3, the condition %/c/f € F, exactly means that 4/c/f = d/6,
where d = c".

Thus, ' can be represented in the following form:
62

[l]m(t, ﬁ) if 6% = if,

X Y . .
Ry 2 T(F) — Ea(F)  hp(x0, %1, Yoo Y1 ) = 5 ( i de")z, ( dg)B) if 9% = i'f,

Pt % . .
(M%ywm%J i
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where m € Z /4. Obviously, the degenerate case f= 0 = 0 is processed by the first condition. More con-
cretely, denote by m the position number of an element f, € 7 in the set {ifto}?-:(, ordered with respect to
some order in[F ;. For example, if q is a prime, then this can be the usual numerical one. Finally, we come to
the desired map

0] if (num, - den)(ty, t;) = O,
h: (F*)? IF, h(ty, t) =
o) = EdFy) hlto, &) {(h,’n o @)(to, t}) otherwise.

It is worth emphasizing that due to Lemma 3, the value 6 can be computed with the cost of one
exponentiation in F; even if f is given as a fraction. Besides, in the definition of h,,, the quartic residue
symbol does not appear. Furthermore, by returning the value of h in (weighted) projective coordinates (as
preferred in practice [1, Sections 2.3.2 and 3.3.2]), we entirely avoid inversions in the field. Also, the
constants i and d are found once at the precomputation stage. Calculating the value 0 every time no matter
whether num, - den - f = 0 or not, we eventually obtain the following remark.

Remark 1. At least when g = 5 (mod 8), the map h is computed in a constant time of one exponentiation
in .

4 Indifferentiability from a random oracle

For the sake of compactness, we introduce the reducible curves
DX = Cz,x'l U Cz,—x'l U DO,X U Dl,x, C() = Cz,o U Coo’
C,=CuCu Cz,ﬁ U Czy,ﬁ, L=LyuUL UL,

consisting of the curves (1).

Theorem 2. For any point P = (x, y) € E,(F;)\E4[2], we have
h [V (P)}-0) = Du(Fp)\L.
In turn,
h(0) = CoFY\L, h''(Po) =@, and h'({R}H = C.(F)\L
ifJa €.

Proof. Recall that the encoding h is defined via ¢ = (xo, X%, ¥, 3> t) : Afro’tl)--->T, where

2
ct; V; 1
j j
Xi=—, Y=—5, t=—, Vo,V V36 Fyllo, t).
V2 V2 V2

We assume everywhere that ¢; € 7.

First, the condition h(ty, t;) = O means by definition that (¢, ) € Co. Furthermore, suppose that
(x, 0) = h(to, ty) € Eg[2]\{O}. Then, y,y, =0 (i.e., vovy=0) or f=0 (i.e,, t € {0, xiva}). The case x =0
does not occur, because x;, t # O (or, equivalently, ¢;, den # 0). In turn, under the condition x = +iv/a € [F,
we obtain (ty, t;) € C, as stated in the theorem.

Now consider the general case P = (x, y) = h(ty, t;) ¢ E;[2]. Whenever \/]7 € [y, we have P = [i]"(t, ﬁ).

In other words, (to, &) € G, U G _,-1. Next, assume that (5) = (-1D/*Yiand P = Uacsz,a(xj, yj). There is the
4

sequence of criteria
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_ . . o 2j+1f | 2 _ 2j+1f | 4 _ 2 2i-1£,2
P =0, 06, %) & x=4c7 X © ctf=vy/cd x e ti=vcix

(1 .
o ti4 = vzczl‘l(—z + a)x2 o t]-“vz =c¥ 1 +a))x> o (to t) € Dj,.
1)

Thus, P = h(ty, t;) if and only if (to, t;) € Dy. O

Lemma 4. For two [F;-curves C, C' ¢ P2 without common components, there are the inequalities
#C(Fy) + #C'(Fy) — deg(C)deg(C") < #(C U C')(Fy) < #C(F,y) + #C'(Fp).
Also, for C' = L, we have
#C(IFg) — 3deg(C) < #(C\L)(Fy).

Proof. For the first part, it is sufficient to apply a weak version of Bezout’s theorem [30, Section 5.3] and the
inclusion-exclusion principle as follows:

#(C n C)(Fy) < deg(C)deg(C), #(Cu C)(Fy) = #C(Fy) + #C'(Fy) — #(C n C)(Fy).
Applying the trivial formula
#C(Fg) — #(C n L)) = #(C\L)(Fy)

and Bezout’s theorem again, we obtain the second part. O

Corollary 1. For any point P € E,(F;)\E,[2], we have
#h7'(P) = #h \([iI(P)), |#h7'(P) - gl <126./q + 243.
In turn,
#hY(0)<6q +12/q +3, #h'(P) =0, and q-42q —239 < #h'(P) = #h"'(P) <59 + 42/q + 5
ifva €.

Proof. All the inequalities follow from Theorem 2, Lemma 4, and the Weil-Aubry—Perret inequality
[#C(Fy) — (g + D] < 2p.(C)/q [31, Corollary 2.4]
for the number of F,-points on a projective (possibly singular) absolutely irreducible F;-curve C. Let us

apply these results below without further mentioning.
Obviously, #h 1(Py) = 0. Besides, according to the decompositions (4), we obtain

#GoF) <2q+1+6q), #Co(Fy) <4q+ 1.

We cannot provide non-trivial lower bounds, because the components of G, o and C,, may be [F;-conjugate.
Therefore, there is only the upper bound
#h™1(0) = #(Co\L)[Fy) < #Co(Fy) < #GC0(Fy) + #Co(Fy) < 69 + 12,/ + 3.
From now on, we focus on the case P = (x, y) = h(to, t) ¢ {Po, O}, where t; € F; as usual. Note that
X/t Y/t t e F,(t5, ) and, in particular, f € Fy(tg, t*). We conclude that
@(ito, &) = (=Xo, X1, Wy, V15 1), @(to, i) = (Xo, X4, ¥p» ¥ )

and therefore,
h(ity, t,) if (5
[{](P) =
h(to, ity) if (i
q
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Also, in the case \/j—r € 5, the weaker property
{iP(P)-o = h({(ito, 6)}-0)

still holds by using the position number m of ty. Taking into account that Dy, C; € [Fq[té‘ , /'], we eventually
obtain

#h'(P) = #h'([{]J(P)) andso 4 - #h™'(P) = #(Dx\L)(Fy)
if P ¢ E,[2] as well as
#h'(P) = #h"'(P) andso 2- #h™(R) = #(C:\L)(F,)

if Ja eF,.
Equalities (2) result in the ones

deg(Co U Cy) = deg(Gg U G, p) = 16, and thus deg(C,) = 32.
As a result, for
N = #Co(Fp + #C(Fy) + #Cp(Fy) + #Cy_p(Fy),
it is true that
N-384=N-2-8-162< #(Co U C)(Fy) + #(Cp U G p)(Fy) — 16? < #C.(Fy).
At the same time, by virtue of equalities (3) and (4) and Theorem 1, we obtain
[#CG(Fp) — (g + V| < 42/q, #GC.p(Fp < 4(qg + D).

We cannot provide a non-trivial lower bound for #G, .4(F,;), because the conics Q; . may be F,-conju-
gate. Thus,

29 - 84,q - 478 =2q + 1 - 42/q) — 384 — 3-32<
#C.(Fy) — 3 - 32 < #(C,\L)(Fp) < #Cu(Fy) < N<10q + 84 /q + 10.
Eventually, we establish the desired inequalities
q- 429 - 239 < #h7'(P) <59 + 42./q +5.
Equalities (2) result in the ones
deg(Czyxfl u CZ,,XA) =16, deg(Dox U D;y) =32, andhence, deg(Dy) = 48.
As a result, for
Ny = #G(Fy) + #Gy_(Fy) + #Do x(Fy) + #D1x(F),
it is true that
Ny - 832 =N, - 8 =162 = 16 - 32 < #(Cyp1 U Gy 1) (Fp) + #(Dox U Dy, )(Fy) — 16 - 32 < #D,(Fy).
At the same time, by virtue of equalities (3) and Theorem 1, we obtain
[#Cy,(Fp) — (g + DI < 42q, [#Djx(Fy) - (g + 1] < 210/q.
Thus,
4q — 504./q — 972 = 4(q + 1) — 504./q — 832 — 3 - 48 < #D,(F;) — 3 - 48 < #(Dy\L)(F,) < #Dx(F,) < Ny <
4(q + 1) + 504./q.
Eventually, we establish the inequalities
|4 - #h7\(P) — 4q| < 504./q + 972, andhence [#h(P) - q| <126./q + 243.

The corollary is proved. O
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Corollary 2. The distribution on E4(F,) defined by h is €-statistically indistinguishable from the uniform one [9,
Definition 3], where € == 27qg71/2 + O(q™).

Proof. For any point P € Eq(F,), put

#hY(P) 1 1 1 [#E.(Fg) — (@ - 1|
8(P) = - <y@P) + | — - = y(P
Br=l - wEE | TP o1 e ‘ Y ) kR
2(Jq +1) 2 2 ( 1 )
< y(P =y(P =y(P — + 0| = |,
YO a2y O T eva-zia sy O e g
where
#H(P) 1 #hP) — (q - )|
P) = — = .
B = gy q—l‘ -1

If P ¢ E,[2] from Corollary 1, we immediately obtain

P < 126./q + 244
T (@-1?

Besides, it is readily seen that §(P,), 6(P.), 8(0) € O(g™"). Thus,

2t

7
and so 5(P)=§— O(i)
q

7 7
Y S(P)<(q+2y7 +1- #Ea([Fq)[Z])(ﬁ + 0(%)) £ Y 8P = ﬁ N 0(5).

PeEy(Fy) PeE,(Fpl2]

The corollary is proved. O

Probably, the coefficient 27 may be reduced even more by analyzing singularities of the curves G, and
D; . For simplicity of the exposition, this analysis is omitted, because the value 2qg~1/2 is still negligible for g
of a cryptographic size.

For t; € Fy, consider the encoding hy, : F; — Ey(F,) of the form hy(to) = h(to, ). Clearly, [9, Algorithm
1] still works well in the case of h. Indeed, for P € E,(F,), pick uniformly at random # € Fj, and then find
uniformly at random ¢, € hy (P). For instance, when P ¢ E,[2], the latter consists in computing a non-zero

Fy-root (if any) of one of the four polynomials G, .-, Dj x € F,[t5] chosen randomly. We eventually obtain
Remark 2. The map h is samplable [9, Definition 4].

Remarks 1 and 2 and Corollary 2 imply that h is an admissible map. Finally, using [9, Theorem 1], we
establish the following corollary.

Corollary 3. Consider the composition H .= h o j : {0, 1}* — E4(F,) of a hash function} : {0, 1}* — ([F’{})2 and
h. The hash function H is indifferentiable from a random oracle if by is so.

If, in the given corollary, one desires to use a random oracle of the form§ : {0, 1}* — [Ff,, the map h can
be (manually) extended to [Ff,, e.g., as for h from [15, Section 2]. It is clear that such an extension does not
affect the admissibility of our h. On the other hand, it is not more difficult to construct a random oracle
h:{0,1} — ([Fj})z, acting by analogy with [9, Lemma 14 and Remark 1]. Indeed, the value of an indiffer-

entiable hash function {0, 1}* — [F; is equal to O with a negligible probability. Even so, it is suggested to
return, e.g., 1. It follows easily that the indifferentiability still holds.
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