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Abstract: This article makes an important contribution to solving the long-standing problem of whether all
elliptic curves can be equipped with a hash function (indifferentiable from a random oracle)whose running
time amounts to one exponentiation in the basic finite field q� . More precisely, we construct a new indiffer-
entiable hash function to any ordinary elliptic q� -curve Ea of j-invariant 1728 with the cost of extracting one
quartic root in q� . As is known, the latter operation is equivalent to one exponentiation in finite fields with
which we deal in practice. In comparison, the previous fastest random oracles to Ea require to perform two
exponentiations in q� . Since it is highly unlikely that there is a hash function to an elliptic curve without any
exponentiations at all (even if it is supersingular), the new result seems to be unimprovable.
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1 Introduction

Let q� be a finite field of char 3q�( ) > and E y x ax:a
2 3

= + be an elliptic q� -curve whose j-invariant equals
1728. The curves Ea are studied with interest in elliptic cryptography at least at the research level. The point
is that (apart from elliptic curves of j 0= ) they have a non-trivial automorphism group, which leads to more
efficient scalar multiplication and pairing computation on them (see details in [1, Sections 6.2.2 and 3.3.2]
respectively). This article focuses on ordinary curves because supersingular ones pose special challenges for
the security of discrete logarithm cryptography by virtue of [1, Remark 2.22]. According to [2, Example V.4.5],
the ordinariness of Ea results in the restriction q 1 mod 4( )≡ , i.e., i 1 q�≔ − ∈ .

Examples of pairing-friendly curves of j 1728= are represented, e.g., in [1, Section 4.5.2]. Curiously,
unlike curves of j-invariant 0, some curves Ea (e.g., do255e from [3, Section 5.2]) can be so-called double-odd
elliptic curves [3,4], that is, their order equals two times an odd (prime) number. Double-odd curves are a
trade-off between prime order curves and twisted Edwards curves [1, Section 6.4.1] whose cofactor is always
a multiple of four. Thus, double-odd curves enjoy simpler subgroup membership testing than twisted
Edwards ones and, at the same time, faster complete addition formulas than prime order ones. These notions
are discussed in the remarkable article [5] and in references therein.
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Many cryptographic protocols (e.g., the popular aggregate Boneh–Lynn–Shacham signature [6]) use a
hash function of the form H E: 0, 1 a q�{ } ( )→

∗ . If it is necessary, the value of H can be subsequently moved
into a prime order subgroup of Ea q�( ) by clearing the cofactor [7, Section 7]. There is the regularly updated
draft [7] on the topic of hashing to elliptic curves. Due to [7, Section 10], it is highly desirable and often
inevitable that H is indifferentiable from a random oracle in the sense of Maurer et al. [8, Section 4.2]. By the
way, [3, Section 3.7] raises the question of efficient indifferentiable hashing to curves Ea, but that article
does not answer this question in an acceptable way.

Almost all previously proposed indifferentiable hash functions are obtained as the composition
H e 2 h≔ ∘

⊗ of a hash function : 0, 1 q
2h �{ } →

∗ and the tensor square

e E e t t e t e t: ,q a q
2 2 2

0 1 0 1� �( ) ( ) ( ) ( )→ ≔ +
⊗ ⊗

for some map e E: q a q� �( )→ . Such a map is often called an encoding. For the given H its indifferentiability

follows from [9, Theorem 1] if h is indifferentiable and e 2⊗ is admissible in the sense of [9, Definition 4]. It is
worth noting that the admissibility property in particular requires an encoding e to be constant-time, that is,
informally speaking, the computation time of its value is independent of an input argument.

The previous state-of-the-art encoding, valid for any curve Ea, is proposed by the author in [10] after a
refinement of the work [11]. This encoding e (resp. e 2⊗ ) can be implemented by extracting one (resp. two)
square root(s) in q� . As is customary (see, e.g., [1, Section 5.1.7]), a square root is expressed via one
exponentiation in q� at least when q 1 mod 8( )≢ . Taking into account the condition q 1 mod 4( )≡ , we
obtain q 5 mod 8( )≡ .

This work (again, for any a q�∈
∗) directly provides an admissible map h E: q a q

2� �( )→ , which requires

to extract one quartic root in q� . We will show that for q 5 mod 8( )≡ , this operation is also nothing but one
exponentiation in q� . In other words, the tensor square is in fact superfluous for curves Ea, and, hence, we

get rid of one exponentiation in q� in comparison with e 2⊗ . Moreover, it is worth emphasizing that h is given
by quite simple formulas with small coefficients. Therefore, the new result seems interesting both from
theoretical and practical points of view.

By definition, pairings act from two groups traditionally denoted by 1� and 2� . As said in [1, Section 3.2.5],
in practice, Ea q1� �( )⊂ for a prime q and Ea q2 n� �( )⊂ ′ for some n �∈ and a qn�′ ∈

∗ . Moreover, the exten-
sion degree n is often even. In this case, due to [1, Algorithm 5.18], a square root in qn� can be expressed
via two square roots in qn 2� / . To our knowledge, there is no analogous expression for a quartic root in qn� .

So, unlike e, the new map h is not relevant for hashing to 2� whenever n2∣ . Fortunately, as explained
in [12, Section 1.2], in combination with clearing the (large) cofactor Ea q 2n� �( )# /#′ it is sufficient to

apply e E: q a qn n� �( )→ ′ only once. Thus, the best solution is to utilize the map h (resp. e) in the case
of 1� (resp. 2� ). By looking at [12, Tables 1 and 2], the reader can realize the significance of e and h in the
general classification of maps to elliptic curves.

An approach to produce h is based on an explicit q� -parametrization φ T: 2� ⇢ of a (uni-)rational
q� -surface [13, Section 4.9] on some algebraic threefold T , that is, Tdim 3( ) = . Then, h is just the composi-
tion of φ (restricted to q� -points) and an auxiliary map h T E: q a q� �( ) ( )′ → . More concretely, there is an

elementary rational q� -map T� ⇢ from a threefold enjoying some elliptic fibration 2�� → (see, e.g., [14,
Section 2]). The desired φ is immediately obtained from an infinite order q� -section ψ : 2� �⇢ of this
fibration.

Ideologically, the described approach is almost the same as in [15], but, of course, with different
technique details. In particular, in that article, the suggested threefold is itself elliptic, i.e., T �= in our

notation. There, provided that b q�∈ , the author constructs one more admissible map from q
2� to the

q� -point group of an ordinary elliptic curve E y x b:b
2 3

= + (of j-invariant 0). Moreover, this map equally
performs only one exponentiation in q� , namely a cubic root extraction.

There is the long-standing open question of whether every elliptic q� -curve E has a random oracle
E0, 1 q�{ } ( )→

∗ with the cost of one exponentiation (cf. [12, Conjecture 1]). Recently, the independent work
[16] arose on this topic. It contains an indifferentiable hash function (under the name SwiftEC) being a
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modification of the classical Shallue–van de Woestijne (SW) encoding [17]. However, SwiftEC is not relevant
for most curves Ea, unlike all ordinary curves Eb and many others of the remaining j-invariants.

The SW encoding is based on yet another threefold, although a rational q� -curve (of geometric genus 0)
is taken on it instead of a unirational q� -surface. Fortunately, in [18, Lemma 3], Skałba provides such a

surface and hence a (probably admissible) map Eq q
2� �( )→ whenever j E 0( ) ≠ . Unfortunately, the Skałba

map is given by too cumbersome formulas unsuitable as a practical matter. In turn, SwiftEC is produced by
means of another surface admitting a simpler rational q� -parametrization. This is achieved at the price of
generality loss.

Interestingly, all the threefolds, appeared in the scientific domain under consideration, turn out to be
Calabi–Yau varieties, which are applied over the field � in theoretical physics (see, e.g., [19]). However, since
we will work over non-closed fields, it is also reasonable to cite a source (such as [20]) on the arithmetic of
Calabi–Yau varieties. It is worth noting that one-dimensional Calabi–Yau varieties are exactly elliptic curves.
So, it is not surprising that their high-dimensional analog occurs in the context of elliptic cryptography.

2 Geometric results

As discussed in Section 1, throughout the article, we assume that i 1 q�≔ − ∈ . Consequently, the curve

E y x ax:a
2 3

= + possesses the q� -automorphism i x y x iy, ,[ ]( ) ( )≔ − of order 4. Obviously, E P P2 , ,a 0�[ ] { }= ± ,
where

P P i a0 : 1 : 0 , 0, 0 , , 0 .0� ( ) ( ) ( )≔ ≔ ≔ ±±

Besides, any two q� -curves of j 1728= are isomorphic (at most over q4� ) by means of the map

σ E E σ x y α x α y: , , ,a a a a a a, ,
2 3( ) ( )→ ≔′ ′ ′

where α a a4
≔ ′/ . As a result, up to an q� -isomorphism, there are exactly four twists for Ea, namely Eac j for

j 4�∈ / and c q q
2� �( )∈ ⧹

∗ ∗ .
It is suggested to consider the q� -threefold

T
S y x ac t at x
S y x ac t at x

: ,
:

.x x y y t
0 0

2
0
3 3

0

1 1
2

1
3 3 3

1
, , , ,

5
0 1 0 1

�
⎧

⎨
⎩

( )

( )
( )≔

= + +

= + +

⊂

It seems that T is birationally q� -isomorphic to the quotient of A E E Ea ac ac3≔ × × by the order 4 diagonal
automorphism δ i i1[ ] [ ] [ ]≔ − × × . This quotient is similar to the one from [15, Lemma 1]. Since the given
fact is not necessary for our purposes, we do not prove it. However, this is a useful observation, because

δage 1( ) = (as well as for the automorphism ω 3[ ]× from [15, Section 1]), where the age is defined in [21]. So by
virtue, [21, Theorem 13], the quotient A δ/ enjoys at least a rational curve over the algebraic closure q� .

Thus, there is a justified hope of obtaining a rational q� -surface on T .
Curiously, ourT (like the one from [15, Lemma 1]) can also be interpreted as a Schoen threefold [22], that

is, the fiber product [23, Section 4.5] of two rational elliptic surfaces with a section [13, Chapter 7]. Indeed,
Sj x y t, ,

3
j j

� ( )⊂ are nothing but singular del Pezzo surfaces of degree 2 (see, e.g., [24, Section 8.7]) having the

projection to t as an elliptic fibration with the section � . Moreover, they are clearly isomorphic over q2� ,
hence T fits the definition of a banana threefold [25]. To sum up, we see a confirmation that T (or, formally
speaking, some of its smooth projective models) is a Calabi–Yau threefold.

The threefold T is embedded in a weighted projective space as follows:

T
y x y ac t aty x
y x y ac t aty x

,
1, 1, 2, 2, 1, 1 ,0

2
0
3

2
3

2
2

0

1
2

1
3

2
3 3

2
2

1
�

⎧

⎨
⎩

( )

( )
( )=

= + +

= + +

⊂
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where the variables y0 and y1 are of the weight 2. Furthermore, on the affine chart t 0≠ , the threefold T
possesses the following form:

V
v u v ac av u
v u v ac av u

1 ,
1

.u u v v v
0
2

0
3

2 2
2

0

1
2

1
3

2
3

2
2

1
, , , ,

5
0 1 0 1 2�

⎧

⎨
⎩

( )

( )
( )≔

= + +

= + +

⊂

Thus, we have the birational isomorphisms

τ V T τ u
v

u
v

v
v

v
v v

τ T V τ x
t

x
t

y
t

y
t t

: , , , , 1 , : , , , , 1 .0

2

1

2

0

2
2

1

2
2

2

1 1 0 1 0
2

1
2⎜ ⎟

⎛

⎝

⎞

⎠

⎛
⎝

⎞
⎠

⇢ ≔ ⇢ =
− −

We can look at V as a curve in v v v, ,
3

0 1 2� ( ) given by the intersection of two quadratic surfaces over the

rational function field u u,q 0 1� ( ). The existence of an u u,q 0 1� ( )-point on V is not clear, hence we apply the

base change χ u ct: j j
2

≔ , which leads to

v c t v ac av t
v c t v ac av t

1 ,
1

.t t v v v
0
2 3

0
6

2
2

2
2

0
2

1
2 3

1
6

2
4

2
2

1
2 , , , ,

5
0 1 0 1 2��

⎧

⎨
⎩

( )

( )
( )≔

= + +

= + +

⊂

For the sake of compactness, put F t t,q 0 1� ( )≔ . At infinity, i.e., in v v v
3

, ,
3

0 1 2� � ( )⧹ , there are F-points on � of the
form

act ac t: : 1 : 0 .0
2

1� ( )≔ ±±

It is proposed to take �+ as the neutral element in the Mordell–Weil group F�( ).
We will rely on some Magma calculations [26] that can be verified in the free calculator on the official

site of this computer algebra system. The next lemmas are proved by means of the reduction to a Weier-
strass form of �.

Lemma 1. [26] The F-curve � is elliptic with the j-invariant

j c t t a c t a c t t a t a c
a c t a ct t ct t t a c

16 12 32 12 16
4 4

.
2

0
8

1
8 3 4

0
8 3 2

0
4

1
4 3

1
8 6 2 3

3 2
0
8 3

0
2

1
2

0
2

1
2

1
8 3 2 2�( )

( )

(( )( )( )( ))
=

+ − + +

− + − −

Lemma 2. [26] The coordinates of the point ψ 2�≔ − are the fractions v t t, num denj j0 1( ) ≔ / , where

ac c t c t t t a c t ac c t c t t t a c t
c t c t t t a c a c c t t

num 3 2 16 , num 2 3 16 ,
num 2 16 , den 8 .

0
4

0
8 2

0
4

1
4

1
8 3 2

0 1
2 4

0
8 2

0
4

1
4

1
8 3 2

1

2
4

0
8 2

0
4

1
4

1
8 3 2 2 2

0
4

1
4

( ) ( )

( )

≔ − + + + ≔ + − +

≔ − + − ≔ +

The last lemma can be alternatively proved by using the geometric interpretation of the group law
for F�( ), described, e.g., in [2, Exercise 3.10]. Similarly, the reader is invited to check that for

φ b b b, ,( )≔ ±
±

, the point φ from [15, Theorem 1] coincides with φ2
−
with respect to φ

+
as the

zero point. Among other things, the author verified that a base change for the elliptic threefold T
from [15, Lemma 1] (in contrast to ours χ) does not yield a visible q� -section of infinite order if

b q�∉ . Therefore, the restriction b q�∈ in that article seems essential.

For v, x q�∈ and j 2�∈ / , we will need the following q� -curves on t t,
2

0 1� ( ):

C t C v C
D t c x a
L t L

num , num den, den,
num den num den ,

. For uniformity, .

j j j v

j x j
j

j j t t

2, 2

,
4

2
2 1 2

2
2 2

2
2

,
2

0 1� �

( )

( )

≔ / ≔ − ⋅ ≔

≔ ⋅ ⋅ − ⋅ +

≔ ≔ ⧹

∞

− (1)

Incidentally, the q2� -involution t t t c t c, ,0 1 1 0( ) ( )↦ / gives the isomorphisms C Cj j 1→ + and D Dj x j x, 1,→ + .
Note that always

C C C Ddeg deg 8, deg 4, deg 16.j v j x2, ,( ) ( ) ( ) ( )= = = =∞ (2)
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and in accordance with [27, Section 2.3.3], the arithmetic genera are equal to

p C p C p C p D21, 3, 105.a j a v a a j x2, ,( ) ( ) ( ) ( )= = = =∞ (3)

In the degenerate cases, we obtain

C F F C Q C L, , ,β
j k

j k
j k

j k2,0 2,
, 2

, ,
, 2

,
� �

= ∪ = ⋃ = ⋃+ − ±

∈ /

± ∞

∈ /

(4)

where β i a 1( )≔
− and

F c t t a a c

L ic t t

Q ct t c a

4 ,

1 1 ,

1 1 2 .
j k

j k

j k
j k

2
0
4

1
4

, 0 1

, , 0
2

1
2 34

( ) ( )

( ) ( )

≔ − ±

≔ − − ⋅ +

≔ + − + − ± −

±

±

The curves F± are nothing but Fermat quartics, hence they are non-singular of genus 3. By the way, all the
lines Lj k, intersect at the origin 0, 0( ).

Theorem 1. For v β0,{ }∉ ± and x i a0,{ }∉ ± , the curves Cj, C v2, , and Dj x, are absolutely irreducible.

Proof. Since C C0 1q2�≃ and D Dx x0, 1,q2�≃ , it is sufficient to pick j 0= . Throughout the proof, we tacitly use
Magma in order to avoid awkward symbolic computations (see [26]). For instance, it is suggested to resort to
this system to establish the absolute irreducibility of C0. Furthermore, we need the algebraic curves

C t t C t t D t t D t t, , , , ,v v x x2, 0 1 2, 0 1 0, 0 1 0, 0 14 4 4 4( ) ( ) ( ) ( )′ ≔ ′ ≔

of degrees 2 and 4, respectively.
It is readily seen that the conic C v2,′ enjoys the point R c L1 : : 02

2( )≔ ∈ . The projection from it gives
rise to the parametrization as follows:

pr C pr c t t
c

pr C pr p p: s.t. : , ,R v s R R s v R v v2,
1

2
0 1

2
1 1

2,
1

0, 1,� � ( )′ ⇢ ≔
−

⇢ ′ =
− −

where

p c s a cvs a
a cv

p c c s a cvs a
a v

8 16
16

, 8 16
16

.v v0,
2 2 2 3

2 1,
2 2 2 3

2
( )

≔
+ −

≔
− −

As a result, the curve C t pv j j v j2,
4

, 0
1{ }″ ≔ =
=

lying in t t s, ,
3

0 1� ( ) is birationally isomorphic to C v2, (in the sense of
[23, Section 9.7]) by means of the projection pr t t,0 1( ). In particular, C v2, is absolutely irreducible if and only if

C v2,″ is so.

It can easily be checked that for v β≠ ± , the discriminants of p sj v q, � [ ]∈ are non-zero. So

p K sv q0, � ( )∉ ≔ and by virtue of [28, Proposition 3.7.3] the extension K K p v0,4( )′ ≔ is a Kummer
one of degree 4. Also, the polynomials p v0, and p v1, do not have common roots. Consequently, a root

r of p v1, is non-ramified in the extension K K′ / . In other words, there are exactly four points

R i p r r,j
j

v t s0, ,
24

0�( ( ) ) ( )≔ ∈ over r and the equalities ν p ν p 1R v r v1, 1,j( ) ( )= = hold for the discrete valua-
tions. Let us apply Eisenstein’s irreducibility theorem [28, Proposition 3.1.15.(1)] to the polynomial
t p K tv1

4
1, 1[ ]− ∈ ′ and any point Rj. Recall that C v2,″ always has the total fraction ring [23, Section 11.10].

In fact, we have just shown that this ring C K pq v v2, 1,4� ( ) ( )″ = ′ is a field. As is well known, this is

equivalent to the absolute irreducibility of C v2,″ .
Now, we proceed to a similar proof in the case of D x0, , but intermediate cumbersome formulas will

be omitted for brevity. The quartic D x0,′ is birationally isomorphic to the non-degenerate conic

Q t a x t a a xx t t0
2 2

1
2 2

,
2

0 1�( ) ( ) ( )≔ + + + + ⊂
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through an anticanonical map φ D Q:can x x0,′ ⇢
−

. Note that Qx has the point R i a0,( )≔ and, as usual, the
projection from it yields a parametrization pr Q:R x s

1�⇢ . It turns out that the map

pr φ D s f f: ,R can s x x x
1 1

0, 0, 1,�( ) ( )∘ ⇢ ′ ↦
−

−

is given by the functions f A Bj x j x x, ,≔ / such that

A i a x a x s B c s a x
A i a c as a a x s a x a x s a a x s a a x

4 , ,
4 2 2 2 .

x x

x

0,
2 2 2 4 2 2

1,
2 4 2 3 2 2 2 2 2 2 2

( ) ( ( ) )

( ( ) ( )( ) ( ) ( ) )

≔ + ≔ − +

≔ + + + + + + + + +

As a result, the curve D B t Ax x j j x j0,
4

, 0
1{ }″ ≔ =
=

lying in t t s, ,
3

0 1� ( ) is birationally isomorphic to D x0, by means of

the projection pr t t,0 1( ). In particular, D x0, is absolutely irreducible if and only if D x0,″ is so.
It is shown that

A B a c x x a x a A a c x a x x aRes , 2 8 , Δ 2 8 ,x x x1,
8 2 12 6 2 8 2

1,
16 7 12 2 2 6 2( ) ( ) ( ) ( ) ( ) ( )= + − = − + −

where Res and Δ stand for the resultant and discriminant, respectively. So, we restrict ourselves

to x i a a0, , 2 2{ }∉ ± ± . Since trivially f K sx q0, � ( )∉ ≔ , the extension K K f x0,4( )′ ≔ is a Kummer

one of degree 4. The polynomials A x0, , A x1, , and Bx do not have common roots in pairs. Consequently, a

root r of A x1, is non-ramified in the extension K K′ / . In other words, there are exactly four points

R i f r r,j
j

x t s0, ,
24

0�( ( ) ) ( )≔ ∈ over r and the equalities ν f ν f 1R x r x1, 1,j( ) ( )= = hold for the discrete valuations.

As mentioned earlier, it remains to apply Eisenstein’s irreducibility theorem to the polynomial t f K tx1
4

1, 1[ ]− ∈ ′

and any point Rj. Finally, the case x a2 2= ± is immediately processed by Magma. □

3 New hash function

This section clarifies how the rational q� -map φ τ χ ψ T: t t,
2

0 1� ( )≔ ∘ ∘ ⇢ (from the previous one) results in a

constant-time map h E: q a q
2� �( ) ( )→

∗ . First, given an element γ q�∈
∗, we denote by γγ

q
q

4
1 4( )

( ) ≔
− / the

quartic residue symbol [29, Section 4.B]. It is is evidently a group homomorphism iq
j

j 0
3� { }→

∗

=
. Note that

1γ
q 4( ) = ± if and only if γ q�∈ . Moreover, 1γ

q 4( ) = if and only if γ q4 �∈ .

To be definite, we assign i c
q 4( )≔ for a fixed quadratic non-residue c q�∈

∗. Also, for the sake of compact-

ness, let f t at3
≔ + and henceT y x ac fxj j

j
j j

2 3 2 1
0

1{ }= = +
+

=
. Note that the isomorphism σac f a,j2 1+ is defined over

q� whenever i1f
q

j
4

1( )( ) = −
+ . One of the crucial components of h is the auxiliary map given as follows:

h T E h x x y y t

t f f

σ x y f
q

i

σ x y f
q

i

: , , , ,

, if ,

, if ,

, if .

q a q

q

acf a

ac f a

0 1 0 1
, 0 0

4

, 1 1
4

3

� �

�

⎜ ⎟

⎜ ⎟

( ) ( ) ( )

⎧

⎨

⎪
⎪⎪

⎩

⎪
⎪
⎪

( )

( ) ⎛

⎝

⎞

⎠

( ) ⎛

⎝

⎞

⎠

′ → ′ ≔

∈

= −

=

Unfortunately, in this form, the value of h′ is computed no faster than using two exponentiations in q� : the

first for f
q 4( ) and the second for f , cf4 , or c f34 respectively. Instead, we provide an equivalent definition of

h′ (up to the automorphisms i j[ ] , where j 4�∈ / ) below.
We will restrict ourselves to the case q 5 mod 8( )≡ justified in Section 1. The next lemma is useful itself.
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Lemma 3. Consider the numbers

r n k

q q if q

q q if q
, ,

1, 3 1
16

, 5
16

5 mod 16 ,

3, 3
16

, 13
16

13 mod 16 .
( )

⎧

⎨

⎪

⎩
⎪

⎛
⎝

⎞
⎠

( )

⎛
⎝

⎞
⎠

( )

≔

+ −
≡

+ −
≡

For γ q�∈
∗ and θ γn

≔ , we have θ γγ
q

r
4

4
( )= ⋅

−

. In particular, γ q4 �∈ if and only if θ γ4
= . Moreover, for

γ u v= / (with u, v q�∈
∗), there are the equalities

θ
uv u v if q
uv uv if q

5 mod 16 ,
13 mod 16 .

k

k

3 3 13

11 15
⎧

⎨
⎩

( ) ( )

( ) ( )
=

≡

≡

Proof. If q 5 mod 16( )≡ , then

θ γ γ γ γ γ
q

γ

θ u v u v u u v uv u v

,

.

n q q

n n q n k q k

4 4 3 1 4 3 1 4

4

3

1 3 13 17 16 3 3 13

⎜ ⎟
⎛

⎝

⎞

⎠

( ) ( )

( ) ( )

( )

= = = ⋅ = ⋅

= / = = ⋅ =

+ / − /

− − − /

In turn, if q 13 mod 16( )≡ , then

θ γ γ γ γ γ
q

γ

θ u v u v u u v uv uv

,

.

n q q

n n q n k q k

4 4 3 4 1 4

4
1 15 19 16 11 15

⎜ ⎟
⎛

⎝

⎞

⎠

( ) ( )

( ) ( )

( )

= = = ⋅ = ⋅

= / = = ⋅ =

+ / − /

− − − /

The lemma is proved. □

By the way, the substitution γ i= in this lemma gives ii
q

r
4( ) = . At the same time, for γ f= (i.e., θ f n

= )

and j 4�∈ / , we obtain the following criteria:

f
q

i f
q

i
q

i f
q

θ i f1 .jr
j j

j

4 4 4 4

4
⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠
= ⇔ = ⇔ = ⇔ =

−

−

Therefore,

j f θ f f θ0, 2 1 .q
4 2�{ }∈ ⇔ ∈ ⇔ = ± ⇔ = / ±

Furthermore, when j 1, 3{ }∈ , the isomorphism σac f a,j is defined over q� if and only if

c f f
q

c
q

f
q

i θ i f .j
q

j
j jr

4 4 4

44 � ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠
∈ ⇔ = ⇔ = ⇔ =

−

−

On the other hand, in accordance with Lemma 3, the condition c fj q4 �∈ exactly means that c f d θj j4
= ,

where d cn
≔ .

Thus, h′ can be represented in the following form:

h T E h x x y y t

i t θ θ f

x
dθ

y
dθ

θ i f

x
d θ

y
d θ

θ i f

: , , , ,

,
1

if ,

, if ,

, if ,

m q a q m

m

r

r

0 1 0 1

2
4

0
2

0
3

4

1
3 2

1
3 3

4

� � ⎜ ⎟

⎜ ⎟

⎜ ⎟

( ) ( ) ( )

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

[ ] ⎛

⎝

⎞

⎠

⎛

⎝ ( ) ( )
⎞

⎠

⎛

⎝ ( ) ( )
⎞

⎠

′ → ′ =

±

= ±

=

= −
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where m 4�∈ / . Obviously, the degenerate case f θ 0= = is processed by the first condition. More con-
cretely, denote by m the position number of an element t q0 �∈

∗ in the set i tj j0 0
3{ }
=

ordered with respect to

some order in q�∗. For example, if q is a prime, then this can be the usual numerical one. Finally, we come to

the desired map

h E h t t
num den t t

h φ t t
: ,

if , 0,
, otherwise.q a q

m

2
0 1

2 0 1

0 1
� �

�
( ) ( ) ( )

⎧

⎨
⎩

( )( )

( )( )
→ ≔

⋅ =

′ ∘

∗

It is worth emphasizing that due to Lemma 3, the value θ can be computed with the cost of one
exponentiation in q� even if f is given as a fraction. Besides, in the definition of hm′ , the quartic residue
symbol does not appear. Furthermore, by returning the value of h in (weighted) projective coordinates (as
preferred in practice [1, Sections 2.3.2 and 3.3.2]), we entirely avoid inversions in the field. Also, the
constants i and d are found once at the precomputation stage. Calculating the value θ every time no matter
whether num den f 02 ⋅ ⋅ = or not, we eventually obtain the following remark.

Remark 1. At least when q 5 mod 8( )≡ , the map h is computed in a constant time of one exponentiation
in q� .

4 Indifferentiability from a random oracle

For the sake of compactness, we introduce the reducible curves

D C C D D C C C
C C C C C L L L L

, ,
,

x x x x x

β β

2, 2, 0, 1, 2,0

0 1 2, 2, 0 1 2

1 1
�≔ ∪ ∪ ∪ ≔ ∪

≔ ∪ ∪ ∪ ≔ ∪ ∪

− ∞

± −

− −

consisting of the curves (1).

Theorem 2. For any point P x y E E, 2a q a�( ) ( ) [ ]= ∈ ⧹ , we have

h i P D L.j
j x q

1
0

3 �({[ ] ( )} ) ( )= ⧹
−

=

In turn,

h C L h P and h P C L, ,q q
1 1

0
1� �� �( ) ( ) ( ) ({ }) ( )= ⧹ = ∅ = ⧹

− − −

± ±

if a q�∈ .

Proof. Recall that the encoding h is defined via φ x x y y t T, , , , : t t0 1 0 1 ,
2

0 1�( ) ( )= ⇢ , where

x
ct
v

y
v
v

t
v

v v v t t, , 1 , , , , .j
j

j
j

q

2

2 2
2

2
0 1 2 0 1� ( )= = = ∈

We assume everywhere that tj q�∈
∗.

First, the condition h t t,0 1 �( ) = means by definition that t t C,0 1 �( ) ∈ . Furthermore, suppose that
x h t t E, 0 , 2a0 1 �( ) ( ) [ ] { }= ∈ ⧹ . Then, y y 00 1 = (i.e., v v 00 1 = ) or f 0= (i.e., t i a0,{ }∈ ± ). The case x 0=

does not occur, because x t, 0j ≠ (or, equivalently, t , den 0j ≠ ). In turn, under the condition x i a q�= ± ∈ ,
we obtain t t C,0 1( ) ∈ ± as stated in the theorem.

Now consider the general case P x y h t t E, , 2a0 1( ) ( ) [ ]= = ∉ . Whenever f q�∈ , we have P i t f,m[ ] ( )= .

In other words, t t C C, x x0 1 2, 2,1 1( ) ∈ ∪
−

− − . Next, assume that i1f
q

j
4

1( )( ) = −
+ and P σ x y,ac f a j j,j2 1 ( )= + . There is the

sequence of criteria
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P σ x y x c f x ct v c f x t v c fx

t v c
v

a x t v c av x t t D

,

1 1 , .

ac f a j j j
j

j
j

j
j

j
j

j
j

j x

,
2 1 2

2
2 1 4

2
2 2 1 2

4
2

2 1

2
2

2 4
2

2 1
2
2 2

0 1 ,

j2 1

⎜ ⎟

( )

⎛

⎝

⎞

⎠
( ) ( )

= ⇔ = ⋅ ⇔ = ⋅ ⇔ =

⇔ = + ⇔ = + ⇔ ∈

+ + −

− −

+

Thus, P h t t,0 1( )= if and only if t t D, x0 1( ) ∈ . □

Lemma 4. For two q� -curves C, C 2�′ ⊂ without common components, there are the inequalities

C C C C C C C Cdeg deg .q q q q q� � � � �( ) ( ) ( ) ( ) ( )( ) ( ) ( )# + # ′ − ′ ⩽ # ∪ ′ ⩽ # + # ′

Also, for C L′ = , we have

C C C L3deg .q q� �( ) ( ) ( )( )# − ⩽ # ⧹

Proof. For the first part, it is sufficient to apply a weak version of Bezout’s theorem [30, Section 5.3] and the
inclusion–exclusion principle as follows:

C C C C C C C C C Cdeg deg , .q q q q q� � � � �( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )# ∩ ′ ⩽ ′ # ∪ ′ = # + # ′ − # ∩ ′

Applying the trivial formula

C C L C Lq q q� � �( ) ( )( ) ( )( )# − # ∩ = # ⧹

and Bezout’s theorem again, we obtain the second part. □

Corollary 1. For any point P E E 2a q a�( ) [ ]∈ ⧹ , we have

h P h i P h P q q, 126 243.1 1 1( ) ([ ]( )) ∣ ( ) ∣# = # # − ⩽ +
− − −

In turn,

h q q h P and q q h P h P q q6 12 3, 0, 42 239 5 42 51 1
0

1 1�( ) ( ) ( ) ( )# ⩽ + + # = − − ⩽ # = # ⩽ + +
− − −

+

−

−

if a q�∈ .

Proof. All the inequalities follow from Theorem 2, Lemma 4, and the Weil–Aubry–Perret inequality

C q p C q1 2 31, Corollary 2.4q a�∣ ( ) ( )∣ ( )# − + ⩽ [ ]

for the number of q� -points on a projective (possibly singular) absolutely irreducible q� -curve C. Let us
apply these results below without further mentioning.

Obviously, h P 01
0( )# =

− . Besides, according to the decompositions (4), we obtain

C q q C q2 1 6 , 4 1.q q2,0 � �( ) ( ) ( )# ⩽ + + # ⩽ +∞

We cannot provide non-trivial lower bounds, because the components of C2,0 and C∞ may be q� -conjugate.
Therefore, there is only the upper bound

h C L C C C q q6 12 3.q q q q
1

2,0� � � �� � �( ) ( )( ) ( ) ( ) ( )# = # ⧹ ⩽ # ⩽ # + # ⩽ + +
−

∞

From now on, we focus on the case P x y h t t P, , ,0 1 0 �( ) ( ) { }= = ∉ , where tj q�∈
∗ as usual. Note that

x tj j
2

/ , y tj j/ , t t t,q 0
4

1
4� ( )∈ and, in particular, f t t,q 0

4
1
4� ( )∈ . We conclude that

φ it t x x iy y t φ t it x x y iy t, , , , , , , , , , ,0 1 0 1 0 1 0 1 0 1 0 1( ) ( ) ( ) ( )= − = −

and therefore,

i P
h it t f

q
i

h t it f
q

i

, if ,

, if .

0 1
4

0 1
4

⎜ ⎟

⎜ ⎟

[ ]( )

⎧

⎨

⎪
⎪

⎩

⎪
⎪

( ) ⎛

⎝

⎞

⎠

( ) ⎛

⎝

⎞

⎠

=

= −

=
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Also, in the case f q�∈ , the weaker property

i P h i t t,j
j

j
j0

3
0 1 0

3{[ ] ( )} ({( )} )=
= =

still holds by using the position number m of t0. Taking into account that Dx, C t t,q 0
4

1
4� [ ]∈± , we eventually

obtain

h P h i P h P D Land so 4 x q
1 1 1 �( ) ([ ]( )) ( ) ( )( )# = # ⋅ # = # ⧹

− − −

if P E 2a[ ]∉ as well as

h P h P h P C Land so 2 q
1 1 1 �( ) ( ) ( ) ( )( )# = # ⋅ # = # ⧹

−

+

−

−

−

± ±

if a q�∈ .
Equalities (2) result in the ones

C C C C Cdeg deg 16, and thus deg 32.β β0 1 2, 2,( ) ( ) ( )∪ = ∪ = =− ±

As a result, for

N C C C C ,q q β q β q0 1 2, 2,� � � �( ) ( ) ( ) ( )≔ # + # + # + # −

it is true that

N N C C C C C384 2 8 16 16 .q β β q q
2 2

0 1 2, 2,
2� � �( )( ) ( )( ) ( )− = − ⋅ − ⩽ # ∪ + # ∪ − ⩽ #− ±

At the same time, by virtue of equalities (3) and (4) and Theorem 1, we obtain

C q q C q1 42 , 4 1 .j q β q2,� �∣ ( ) ( )∣ ( ) ( )# − + ⩽ # ⩽ +±

We cannot provide a non-trivial lower bound for C β q2, �( )# ± , because the conics Qj k, ,± may be q� -conju-
gate. Thus,

q q q q2 84 478 2 1 42 384 3 32( )− − = + − − − ⋅ ⩽

C C L C N q q3 32 10 84 10.q q q� � �( ) ( )( ) ( )# − ⋅ ⩽ # ⧹ ⩽ # ⩽ ⩽ + +± ± ±

Eventually, we establish the desired inequalities

q q h P q q42 239 5 42 5.1( )− − ⩽ # ⩽ + +
−

±

Equalities (2) result in the ones

C C D D Ddeg 16, deg 32, and hence, deg 48.x x x x x2, 2, 0, 1,1 1 ( ) ( )( )∪ = ∪ = =
−

− −

As a result, for

N C C D D ,x x q x q x q x q2, 2, 0, 1,1 1� � � �( ) ( ) ( ) ( )≔ # + # + # + #
−

− −

it is true that

N N C C D D D832 8 16 16 32 16 32 .x x x x q x x q x q
2 2

2, 2, 0, 1,1 1 � � �( ) ( )( ) ( )( )− = − − − ⋅ ⩽ # ∪ + # ∪ − ⋅ ⩽ #
−

− −

At the same time, by virtue of equalities (3) and Theorem 1, we obtain

C q q D q q1 42 , 1 210 .x q j x q2, ,1 � �∣ ( ) ( )∣ ∣ ( ) ( )∣# − + ⩽ # − + ⩽
±

−

Thus,

q q q q D D L D N

q q

4 504 972 4 1 504 832 3 48 3 48

4 1 504 .
x q x q x q x� � �( ) ( ) ( )( ) ( )

( )

− − = + − − − ⋅ ⩽ # − ⋅ ⩽ # ⧹ ⩽ # ⩽ ⩽

+ +

Eventually, we establish the inequalities

h P q q h P q q4 4 504 972, and hence 126 243.1 1∣ ( ) ∣ ∣ ( ) ∣⋅ # − ⩽ + # − ⩽ +
− −

The corollary is proved. □
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Corollary 2. The distribution on Ea q�( ) defined by h is ε-statistically indistinguishable from the uniform one [9,
Definition 3], where ε q O q27 1 2 1( )≔ +

− / − .

Proof. For any point P Ea q�( )∈ , put

δ P h P
q E

γ P
q E

γ P
E q
q E

γ P
q

q q q
γ P

q q q
γ P

q
O

q

1
1 1

1
1 1

1
2 1
1 2 1

2
1 2 1

2 1 ,

a q a q

a q

a q

1

2

3 2 2

� �

�

�

⎜ ⎟

( )
( )

( ) ( )
( )

( )
( )

∣ ( ) ( )∣

( ) ( )

( )
( )

( )( )
( )

( )( )
( ) ⎛

⎝

⎞

⎠

≔
#

−

−

#

⩽ +

−

−

#

= +

# − −

− ⋅ #

⩽ +

+

− − +

= +

− − +

= + +

−

/

where

γ P h P
q q

h P q
q1

1
1

1
1

.
1

2

1

2( )
( )

( )

∣ ( ) ( )∣

( )
≔

#

−

−

−

=
# − −

−

− −

If P E 2a[ ]∉ from Corollary 1, we immediately obtain

γ P
q

q
δ P

q
O

q
126 244

1
and so 2 1 .2

7

3 2 2⎜ ⎟( )
( )

( ) ⎛

⎝

⎞

⎠
⩽

+

−

= +
/

Besides, it is readily seen that δ P0( ), δ P( )± , δ O q 1�( ) ( )∈
− . Thus,

δ P q q E
q

O
q

δ P
q

O
q

2 1 2 2 1 2 1 .
P E

a q
P E

7

3 2 2
2

7

1 2
a q a q

�
� �

⎜ ⎟⎜ ⎟ ⎜ ⎟( ) ( ( )[ ])⎛

⎝

⎛

⎝

⎞

⎠

⎞

⎠

( ) ⎛

⎝

⎞

⎠( ) ( )[ ]

∑ ∑⩽ + + − # + + = +

∈

/

∈

/

The corollary is proved. □

Probably, the coefficient 27 may be reduced even more by analyzing singularities of the curves C v2, and

Dj x, . For simplicity of the exposition, this analysis is omitted, because the value q27 1 2− / is still negligible for q
of a cryptographic size.

For t q1 �∈
∗, consider the encoding h E:t q a q1 � �( )→

∗ of the form h t h t t,t 0 0 11( ) ( )≔ . Clearly, [9, Algorithm
1] still works well in the case of h. Indeed, for P Ea q�( )∈ , pick uniformly at random t q1 �∈

∗ and then find

uniformly at random t h Pt0
1

1
( )∈

− . For instance, when P E 2a[ ]∉ , the latter consists in computing a non-zero
q� -root (if any) of one of the four polynomials C x2, 1

±
− , D tj x q, 0

4� [ ]∈ chosen randomly. We eventually obtain

Remark 2. The map h is samplable [9, Definition 4].

Remarks 1 and 2 and Corollary 2 imply that h is an admissible map. Finally, using [9, Theorem 1], we
establish the following corollary.

Corollary 3. Consider the composition H h E: 0, 1 a qh �{ } ( )≔ ∘ →
∗ of a hash function : 0, 1 q

2h �{ } ( )→
∗ ∗ and

h. The hash function H is indifferentiable from a random oracle if h is so.

If, in the given corollary, one desires to use a random oracle of the form : 0, 1 q
2h �{ } →

∗ , the map h can

be (manually) extended to q
2� , e.g., as for h from [15, Section 2]. It is clear that such an extension does not

affect the admissibility of our h. On the other hand, it is not more difficult to construct a random oracle
: 0, 1 q

2h �{ } ( )→
∗ ∗ , acting by analogy with [9, Lemma 14 and Remark 1]. Indeed, the value of an indiffer-

entiable hash function 0, 1 q�{ } →
∗ is equal to 0 with a negligible probability. Even so, it is suggested to

return, e.g., 1. It follows easily that the indifferentiability still holds.

Acknowledgements: The author is grateful to A. Trepalin for answering some of his questions on rational
surfaces over finite fields.

308  Dmitrii Koshelev



Conflict of interest: The author states no conflict of interest.

References

[1] El Mrabet N, Joye M. Guide to pairing-based cryptography. Cryptography and network security series. New York: Chapman
and Hall/CRC; 2017.

[2] Silverman JH. The arithmetic of elliptic curves. Graduate texts in mathematics. vol. 106. New York: Springer; 2009.
[3] Pornin T. Double-odd elliptic curves. 2020. https://eprint.iacr.org/2020/1558.
[4] Pornin T, Bottinelli P, Doussot G, Schorn E. Double-odd elliptic curves. 2020. https://doubleodd.group.
[5] Hamburg M. Decaf: eliminating cofactors through point compression. In: Gennaro R, Robshaw M, editors Advances in

cryptology – CRYPTO 2015, LNCS. 9215. Berlin, Heidelberg: Springer; 2015. p. 705–23.
[6] Boneh D, Gorbunov S, Wahby RS, Wee H, Wood CA, Zhang Z. BLS signatures. 2022. https://datatracker.ietf.org/doc/draft-

irtf-cfrg-bls-signature.
[7] Faz-Hernandez A, Scott S, Sullivan N, Wahby RS, Wood CA. Hashing to elliptic curves. 2022. https://datatracker.ietf.org/

doc/draft-irtf-cfrg-hash-to-curve.
[8] Maurer UM, Renner R, Holenstein C. Indifferentiability, impossibility results on reductions, and applications to the random

oracle methodology. In: Naor M, editor. Theory of Cryptography Conference 2004. LNCS. vol. 2951. Berlin, Heidelberg:
Springer; 2004. p. 21–39.

[9] Brier E, Coron J-S, Icart T, Madore D, Randriam H, Tibouchi M. Efficient indifferentiable hashing into ordinary elliptic
curves. In: Rabin T, editor, Advances in cryptology – CRYPTO 2010, LNCS. vol. 6223. Berlin, Heidelberg: Springer; 2010.
p. 237–54.

[10] Koshelev D. Optimal encodings to elliptic curves of j-invariants 0, 1728. 2021. https://eprint.iacr.org/2021/1034.
[11] Koshelev D. Hashing to elliptic curves of j-invariant 1728. Cryptogr Commun. 2021;13(4):479–94.
[12] Koshelev D. Some remarks on how to hash faster onto elliptic curves. 2021. https://eprint.iacr.org/2021/1082.
[13] Schütt M, Shioda T. Mordell-Weil lattices. A series of modern surveys in mathematics. vol. 70. Singapore: Springer; 2019.
[14] Hulek K, Kloosterman R. Calculating the Mordell-Weil rank of elliptic threefolds and the cohomology of singular hyper-

surfaces. Annales de l’Institut Fourier. 2011;61(3):1133–79.
[15] Koshelev D. Indifferentiable hashing to ordinary elliptic q� -curves of j 0= with the cost of one exponentiation in q� .

Designs Codes Cryptogr. 2022;90(3):801–12.
[16] Chávez-Saab J, Rodriguez-Henriquez F, Tibouchi M. SwiftEC: Shallue-van de Woestijne indifferentiable function to elliptic

curves. Faster indifferentiable hashing to most elliptic curves. 2022. https://eprint.iacr.org/2022/759.
[17] Shallue A, van de Woestijne CE. Construction of rational points on elliptic curves over finite fields. In: Hess F, Pauli S,

Pohst M, editors. ANTS 2006. vol. 4076. Berlin, Heidelberg: Springer; 2006. p. 510–24.
[18] Skałba M. Points on elliptic curves over finite fields. Acta Arithmetica 2005;117(3):293–301.
[19] Hübsch T. Calabi-Yau manifolds: A bestiary for physicists. Singapore: World Scientific; 1992.
[20] Yui N. The arithmetic of certain Calabi-Yau varieties over number fields. In: Gordon BB, et al. editors. The arithmetic and

geometry of algebraic cycles. NATO science series. vol. 548. Dordrecht: Springer; 2000. p. 515–60.
[21] Im B-H, Larsen M. Rational curves on quotients of abelian varieties by finite groups. Math Res Lett. 2015;22(4):1145–57.
[22] Schoen C. On fiber products of rational elliptic surfaces with section. Mathematische Zeitschrift. 1988;197(2):177–99.
[23] Görtz U, Wedhorn T. Algebraic geometry I: Schemes. Studium Mathematik – Master. Wiesbaden: Springer; 2020.
[24] Dolgachev IV. Classical algebraic geometry: A modern view. Cambridge: Cambridge University Press; 2012.
[25] Bryan J, appendix with Pietromonaco S. The Donaldson-Thomas partition function of the banana manifold. Algebraic

Geometry. 2021;8(2):133–70.
[26] Koshelev D. Magma code. 2021. https://github.com/dishport/The-most-efficient-indifferentiable-hashing-to-elliptic-

curves-of-j-invariant-1728.
[27] Tsfasman M, Vlăduţ S, Nogin D. Algebraic geometric codes: Basic notions. Mathematical surveys and monographs.

vol. 139. Providence: American Mathematical Society; 2007.
[28] Stichtenoth H. Algebraic function fields and codes. Graduate texts in mathematics. vol. 254. Berlin, Heidelberg:

Springer; 2009.
[29] Cox DA. Primes of the form x ny2 2

+ : Fermat, class field theory, and complex multiplication. In: Pure and applied
mathematics. New York: John Wiley & Sons; 2011.

[30] Fulton W. Algebraic curves: An introduction to algebraic geometry. Boston: Addison-Wesley; 2008.
[31] Aubry Y, Perret M. A Weil theorem for singular curves. In: Pellikaan R, Perret M, Vlăduţ SG, editors, Arithmetic, Geometry,

and Coding Theory, Proceedings in Mathematics. Berlin: De Gruyter; 1996. p. 1–7.

The most efficient indifferentiable hashing to elliptic curves of j-invariant 1728  309

https://eprint.iacr.org/2020/1558
https://doubleodd.group
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bls-signature
https://datatracker.ietf.org/doc/draft-irtf-cfrg-bls-signature
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve
https://eprint.iacr.org/2021/1034
https://eprint.iacr.org/2021/1082
https://eprint.iacr.org/2022/759
https://github.com/dishport/The-most-efficient-indifferentiable-hashing-to-elliptic-curves-of-j-invariant-1728
https://github.com/dishport/The-most-efficient-indifferentiable-hashing-to-elliptic-curves-of-j-invariant-1728

	1 Introduction
	2 Geometric results
	3 New hash function
	4 Indifferentiability from a random oracle
	Acknowledgements
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /CreateJDFFile false
  /SyntheticBoldness 1.000000
  /Description <<
    /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
    /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


