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Abstract: Amultiplexer generator is a device that accepts two or more inputs and based on some logic sends
one of them as output. In a special case when inputs to a multiplexer generator are 2k bits and one of them is
selected according to the value of a k-bit number, a multiplexer generator can be regarded as a Boolean
function in + k2k variables. We call this generator a multiplexer Boolean function. Boolean functions serve
as combiners and filters in cryptographic designs. The study of their cryptographic strength attracts the
cryptographer because of the extremely simple and cost effective of their design. The study of algebraic
attacks on multiplexer generators is another major concern to judging the suitability for its use in crypto-
graphic designs. In this article, we calculate the algebraic immunity of the multiplexer Boolean function,
which is not an obvious task in the case of a Boolean function like a multiplexer generator.
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1 Introduction

In telecommunications and computer networks, a multiplexer generator (or simply a mux) is a device [1]
that selects one of several inputs and forwards the selected input into a single line. The main purpose of
employing a multiplexer is to share an expensive resource. In digital circuit design, multiplexers are used to
implement a Boolean logic. Here the inputs to a multiplexer are binary values (0 or 1). Most commonly, such
a multiplexer selects one out of �∈k2 ,k , input lines with the help of k select lines having binary values. A
multiplexer of this kind is called a 2 :1k multiplexer. The working of a 2 :1k multiplexer is described as
follows.

There are 2k possible values that may be used to label the 2k input lines. At a particular instant, the
input whose label matches with the value at select lines is selected to be sent as output. For example, a 8:1
multiplexer is shown in Figure 1. There are eight input lines and three select lines. The eight input lines are
labeled as 000, 001, 010, 011, 100, 101, 110, and 111. In this figure, the select line has values 110 and then the
input at label 110 is sent as output which is 0. A 2 :1k multiplexer takes + k2k binary values and gives the
output as one binary value. Therefore, a 2 :1k multiplexer can be regarded as a Boolean function in + k2k

variables. We call this Boolean function a multiplexer Boolean function. Boolean functions are used as
combiners and filters in cryptographic designs, especially in stream ciphers. A cryptographic Boolean
function should be easy to implement, less resource consuming, and should be cryptographically robust
[2,3]. In the next section, some essential preliminary definitions for the cryptographic analysis of a Boolean
function are presented.
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2 Preliminaries

A Boolean function is a function from the n dimensional vector space �n
2 over �2 into �2. Here the set of all

Boolean functions defined on �n
2 is denoted as �n. A Boolean function �∈f n can be uniquely written as a

multivariate polynomial in � [ ]…x x x, , , n2 1 2 as,

( )
{ }

∏… = ⊕

⊆ …
∈

f x x x a x, , , .n
P n

P
p P

p1 2
1,2,3, , (1)

The above representation of any Boolean function is called its algebraic normal form of f . The algebraic
degree of f , denoted as ( )fdeg , is defined as,

( ) {∣ ∣ { } }= ⊆ … ≠f P P n adeg max : 1, 2, 3, , , 0 ,P

where ∣ ∣P denotes cardinality of the set P. A Boolean function of algebraic degree one or less than one is
called an Affine Boolean function. The set of all Affine Boolean functions in �n is denoted as �n.

Let �∈f g, n. The Hamming distance between f and g is denoted as ( )d f g,H , and it is the number of
points at which values of f and g differ. Mathematically,

�( ) ∣{ ( ) ( )}∣= ∈ ≠d f g f gx x x, : .n
H 2

The nonlinearity of a Boolean function is defined as,

�

( ) ( )=

∈

nl f d f gmin , ,
g

H
n

(2)

where ( )d f g,H is the Hamming distance between f and g , which is equal to the Hamming weight of +f g .
The Walsh transformation of a Boolean function is defined as a real valued function Wf on �n

2 , and

�

( ) ( ) ( )
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∈

+ ⋅W w 1 ,f
x

f x w x
n
2
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where ⋅w x is an inner product of w and �∈x n
2 , which is defined as + + …+w x w x w xn n1 1 2 2 . Walsh trans-

formation and nonlinearity of a Boolean function from �n are connected with the following relation:

�
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2

(4)

Figure 1: An 8:1 multiplexer.
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A Boolean function with flat Walsh spectrum value /2n 2 is called the bent Boolean function [4–6].
Obviously, it exists only for the even values of n. From this we can obtain the upper bound for the
nonlinearity of a bent function which is −

− / −2 2n n1 2 1.
For any Boolean function �∈f n, a nonzero function �∈g n is called an annihilator of f if =fg 0, and

the algebraic immunity of f , denoted by ( )AI f , is the minimum value of degree ( )d such that f or +f 1
admits an annihilator of degree d [7]. It is known that the algebraic immunity of an n-variable Boolean
function is bounded above by ⌈ / ⌉n 2 [8]. To resist algebraic attacks, a Boolean function should have a high
algebraic immunity.

3 Multiplexer Boolean function

In this section, we define a multiplexer Boolean function in rigorous mathematical terms. As discussed
earlier, a ( )≥k2 :1, 1k multiplexer has +k 2k inputs and one output. It may be regarded as a Boolean

function in �
+k 2k. It is known that � � �≅ ×

+k k
2

2
2 2

2k k
. Therefore, �∈

+X k
2

2k
can be written as ( )=X Y Z, , where

�∈Y k
2 and �∈Z 2

2k
. Let f be a ≥k2 :1, 1k , multiplexer Boolean function. Let �( )= … ∈

−
Y y y y, , , k

k
0 1 1 2 and

�( )= … ∈
−

Z z z z, , ,0 1 2 1 2
2k

k
. Then output of the multiplexer Boolean function is zt, where t is the decimal

number whose binary digits are …
−

y y y, , , k0 1 1 in the order of their increasing significance. We identify t with
Y . With this identification, the output of the multiplexer can be written as:

( ) (( ))= =f X f Y Z z, .Y

Another presentation of multiplexer Boolean function, ( ) (( ))=f X f Y Z, may be written as:

�
( ) ( )= ⊕ ⊕ ′

′∈

′f X δ Y Y z ,
Y

Yk
2

(5)

where δ is the Kronecker delta function. It takes value 1 when all inputs are zero and zero otherwise. δ may
be defined as:

( ) ( )( ) ( )= ⊕ ⊕ … ⊕
−

δ Y y y y1 1 1 .k0 1 1

Clearly, the degree of δ is k and hence from (5), algebraic degree of a multiplexer Boolean function f is
+k 1. Trade off between algebraic immunity and degree of a Boolean function is one of the methods to fix its

cryptographic suitability. Here we found that the degree ofmultiplexer Boolean function is quite low, which is
not a common suitable choice for a filter or combiner functions. Further we study the algebraic immunity of
multiplexer Boolean function and present the exact enumeration of algebraic immunity in the next section,
which is quite practical measure in the direct use of multiplexer Boolean function as a filter function.

3.1 Algebraic immunity of multiplexer Boolean function

The statistical independence between input and output of a filter function is one of the preferred strength
for its cryptographic use. Golić and Morgari have proposed the correlation attack on the multiplexer
generator in ref. [9]. The future work on the design of immune multiplexer for enhanced keystream in
stream cipher is emphasized in ref. [10].

The next theorem is an alternative definition of multiplexer Boolean function and with perpetuation of
the notation in ref. [11], here we adopt the same notations.

Theorem 1. A Boolean function

�( )… … ∈
− − +

f y y y z z z, , , , , , , ,k k k0 1 1 0 1 2 1 2k k
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where ≥k 1 represents a 2 : 1k multiplexer Boolean function if and only if it satisfies the recurrence relation:

( ) ( ) ( ) ( )= + ++f Y Z y f Y Z y f Y Z, 1 , , ,k k k k k1
1 2 (6)

where

( )

( )

( )

= …

= …

= …

−

−

+ −
+

Y y y y y

Z z z z

Z z z z

, , , ,

, , , ,

, , , ,

k k0 1 1
1

0 1 2 1

2
2 2 1 2 1

k

k k k 1

and

( )=Z Z Z, .1 2

Proof. We apply induction on k to show that for ≥k 1, ( )…
−

f y y y Z, , , ,k k0 1 1
1 represents a 2 : 1k multiplexer

Boolean function. For =k 1 we have ( ) = + +f y z z y z y z z, ,1 0 0 1 0 0 0 1 0, which is clearly a 2 : 1 multiplexer

Boolean function. Now we assume that the theorem is true for �∈k and let = + + …+
−

−
t y y y2 2k

k
k

k
1

1 0.
Now from the definition of multiplexer Boolean function and the value of t,

( )… =
− −

f y y y Z z, , , ,k k t y0 1 1
1

2k
k (7)

and

( )… =
− + −

f y y y Z z, , , , .k k t y0 1 1
2

2 2k k
k (8)

Using (7) and (8) and from induction hypothesis we have,

( ) ( ( ))= … … = + ++ + − − − + −
+f Y Z f y y y y z z z z y z y, , , , , , , , , 1 .k k k k t y k t y k1 1 0 1 1 0 1 2 1 2 2 2k k

k
k k

k
1 (9)

There are two choices of �∈yk 2 and using them separately on (9), we obtain two following cases:
Case 1: ( =y 0k )

( ) ( )= … … = ⊕ =+ + − −
+f Y Z f y y y y z z z z z, , , , , , , , , 0 .k k k k t t1 1 0 1 1 0 1 2 1k 1

Case 2: ( =y 1k )

( ) ( )= … … = ⊕ =+ + − −
+f Y Z f y y y y z z z z z z, , , , , , , , , . 0 .k k k k t t t1 1 0 1 1 0 1 2 1k 1

Finally from both of the above cases, the multiplexer Boolean function is

( ) ( )= … … =+ + − −
+f Y Z f y y y y z z z z, , , , , , , , , .k k k k t1 1 0 1 1 0 1 2 1k 1

Thus, induction completes the proof. □

In the next theorem, we show the correspondence between the annihilator of multiplexer Boolean
function and its complement from the new representation of this function as discussed in the preceding
theorem.

Theorem 2. Let ( )=X Y Z, , where �∈Y k
2 , �∈Z 2

2k
, and ( ) (( ))=f X f Y Z,k k is a multiplexer Boolean function.

Then there exists a one-to-one correspondence between annihilators of fk and +f 1k , such that each annihi-
lator of fk is mapped onto some annihilator of +f 1k of the same degree.

Proof. Let �∈1 2
2k
denote the vector ( )…1, 1, ,1 . Now from the definition of multiplexer,

( ) =f Y Z z,k Y (10)

and

( ) ( )+ = + = +f Y Z z z1, 1 1.k Y Y (11)
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Now (10) and (11) imply that

( ) ( )+ = +f Y Z f Y Z1, 1 , .k k (12)

Now from (12), it is clear that if ( )g Y Z,k is any annihilator of ( )f Y Z,k of degree d, then ( )+g Y Z 1,k is
an annihilator of degree d of ( )+ f Y Z1 ,k . This ensures one-to-one correspondence of ( )f Y Z,k and

( )+ f Y Z1 ,k . □

The next theorem presents an important information about the algebraic immunity of a multiplexer
Boolean function. It refers to the idea that how the algebraic immunity increases with the increment of the
number of variables in the recurrence relation of a multiplexer Boolean function presented in Theorem 1. To
find the algebraic immunity of fk, we have to find least degree annihilator of fk only. We proceed with the
following lemma which will be used to establish the aforementioned assertions about algebraic immunity of
multiplexer Boolean function. Recall that ��( )f denotes the algebraic immunity of a multiplexer Boolean
function.

Lemma 1. For ≥k 1, let fk be a multiplexer Boolean function. Then

��( ) ≤ +f k 1.k

Proof.We apply induction on k. For =k 1 we have ( ) = + +f y z z y z y z z, ,1 0 0 1 0 0 0 1 0. To find its annihilator, we
see that

( ) ( ) ( ) ( )+ ⋅ = + ⋅ + + =y z y f y z z y z y y z y z z, , 0,0 0 0 1 0 0 1 0 0 0 0 0 0 1 0

which implies that +y z y0 0 0 annihilates f1. Therefore, ��( ) ≤f 21 . Now we assume the theorem to be true for
some �= ∈k m m, . Then from the hypothesis,

��( ) ≤ +f m 1.m

Let ( ) ( )= … …
− −g Y Z g y y y z z z, , , , , , , ,m m m0 1 1 0 1 2 1m be an annihilator of the least degree, where ( )= …

−
Y y y y, , , m0 1 1

and ( )= … −Z z z z, , ,0 1 2 1m , then ≤ +g mdeg 1m . We define function
+

gm 1 as

( ) ( ) ( ) ( )= + + …
+ + −

+g Y y Z y g Y Z y g Y z z z, , 1 , , , , , .m m m m m m1 2 2 1 2 1m m m 1

It is easy to verify that
+

gm 1 annihilates +fm 1. As

≤ ≤ +
+

g g mdeg deg 2,m m 1

we conclude that

��( ) ≤ +f k 1.k

This completes the proof of induction as well as that of lemma. □

Now in the next theorem, we prove the statement made before the preceding lemma.

Theorem 3. For ≥k 1, let fk be a multiplexer Boolean function. Then,

��( ) = +f k 1.k

Proof. We apply induction on k . For =k 1 we have ( ) = + +f y z z y z y z z, ,1 0 0 1 0 0 0 1 0. Let L be the set of all
linear and affine functions in variables y z,0 0, and z1, therefore, {= + + + + +L y z z y z z y z z, 1, , , ,0 0 1 0 0 1 0 0 1

}+ + + + + + + + + + + +y z z y z y z z z z z y z y z1, 1, 1, , 1, , 1, , 1 .0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 It is verified exhaustively
that no one from L annihilates f1. In other words, there is no one degree annihilator of f1, while +y z y0 0 0
annihilates f1. Therefore,

��( ) =f 2.1
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Now we assume the theorem to be true for some �= ∈k m m, . Then from the induction hypothesis

��( ) = +f m 1.m

Let ( )… …
+ −

+g y y y z z z, , , , , , ,m m1 0 1 0 1 2 1m 1 be a least positive degree annihilator of +fm 1. Without loss of gen-
erality, we may assume that

( ( ))… … = + +
+ −

+g y y y z z z y g y g, , , , , , 1 ,m m m m m m1 0 1 0 1 2 1
1 2m 1 (13)

where gm
1 and gm

2 are two polynomials in … …
− −

+y y y z z z, , , , , , , .m0 1 1 0 1 2 1m 1 We have

=+ +
f g 0.m m1 1 (14)

Now (6) and (14) imply that

( )× … … =
− −g f y y y z z z, , , , , , , 0m m m

1
0 1 1 0 1 2 1m (15)

and

( )× … … =
− + −

+g f y y y z z z, , , , , , , 0.m m m
2

0 1 1 2 2 1 2 1m m m 1 (16)

From (15) and the induction hypothesis, we have either =g 0m
1 or ≥ +g mdeg 1m

1 . Similarly from (16) and
induction hypothesis, either =g 0m

2 or ≥ +g mdeg 1m
2 . Observe that both gm

1 and gm
2 cannot be simulta-

neously zero as
+

gm 1 is of positive degree. In view of Lemma 1,

+ ≤ ≤ + + ≤ ≤ +m g m m g m1 deg 2 or 1 deg 2.m m
1 2

Further if any of the gm
1 or gm

2 is zero, other must have degree +m 1. In this case, we have ��( ) = ++f m 2m 1 .
Now we have two cases:
Case 1: { }= +g mdeg 2m

1

Either this is an impossible case (when ( )+ ≥ +g g mdeg 2m m
1 2 ) or ��( ) = ++f m 2m 1 .

Case 2: { }= +g mdeg 1m
1

In this case, gdeg m
2 must be equal to +m 1. For = +g mdeg 2m

2 , = +
+

g mdeg 3m 1 . Here we observe two

things. First, gm
1 must contain a term involving any of the variables … …

− −y y y z z z, , , , , , ,k0 1 1 0 1 2 1m as a
function of …+ −

+z z z, , ,2 2 1 2 1m m m 1 and it cannot annihilate

( )… …
− −

+f y y y y z z z, , , , , , , , .m k k0 1 1 0 1 2 1m 1

The second thing we observe is that ( )… …
− −

+g y y y z z z, , , , , , ,m m
1

0 1 1 0 1 2 1m 1 is a family of annihilators of
( )… …

− −f y y y z z z, , , , , , ,m m0 1 1 0 1 2 1m given by different values of variables …+ −
+z z z, , ,2 2 1 2 1m m m 1 . We claim

that in the ANF of gm
1 , there exists a term of degree +m 1 which does not involve any of the variables

out of …+ −
+z z z, , ,2 2 1 2 1m m m 1 . This holds true because in such case putting = = …= =+ −

+z z z 12 2 1 2 1m m m 1 will
give an annihilator of ( )… …

− −f y y y z z z, , , , , , ,m m0 1 1 0 1 2 1m of a positive degree less than +m 1. Similarly, we
can prove that in the ANF of gm

2 , there exists a term of degree +m 1, which does not involve any of the
variables out of … −z z z, , ,0 1 2 1m . Because of this fact, the degree of ( )… … +

− −
+g y y y z z z, , , , , , ,m m

1
0 1 1 0 1 2 1m 1

( )… …
− −

+g y y y z z z, , , , , , ,m m
2

0 1 1 0 1 2 1m 1 will not be less than +m 1. Consequently, ��( ) = ++f m 2m 1 . Thus,
from induction the theorem is proved. □

It is essential for cryptographic Boolean functions that they should have high nonlinearity and immu-
nity from all algebraic attacks. In this article, we demonstrated the exact calculation of algebraic immunity
of multiplexer Boolean function, which is still quite challenging in case of other well-known key stream
generator such as product generator, Geffe generator, stop and go generator, alternating step generator, A5/1
generator, shrinking generator, and Knapsack generator. We found that multiplexer Boolean function or
multiplexer generator has a significant algebraic immunity. An interesting finding in this work is the equality
of the algebraic immunity and degree of a 2 :1k multiplexer Boolean function. Therefore, the methods [12–17]
based on the concatenation of two or more than two Boolean functions, chosen in some specific manner to
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construct a highly nonlinear Boolean function is recommended in case of direct use of multiplexer Boolean
function [18,19].
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