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Abstract: The discrete logarithm problem (DLP) in a finite group is the basis for many protocols in crypto-
graphy. The best general algorithms which solve this problem have a time complexity of �( )N Nlog and a

space complexity of �( )N , where N is the order of the group. (If N is unknown, a simple modification

would achieve a time complexity of �( ( ) )N Nlog 2 .) These algorithms require the inversion of some group
elements or rely on finding collisions and the existence of inverses, and thus do not adapt to work in the
general semigroup setting. For semigroups, probabilistic algorithms with similar time complexity have
been proposed. The main result of this article is a deterministic algorithm for solving the DLP in a semi-
group. Specifically, let x be an element in a semigroup having finite order Nx. The article provides an
algorithm, which, given any element ∈ ⟨ ⟩y x , provides all natural numbers m with =x ym , and has time

complexity ( ( ) )O N Nlogx x
2 steps. The article also gives an analysis of the success rates of the existing

probabilistic algorithms, which were so far only conjectured or stated loosely.
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1 Introduction

Let G be a group and assume ∈x y G, are two elements of the group. We refer to x as the base element. The
discrete logarithm problem (DLP) asks for the computation of an integer �∈m (assuming such integers
exist) such that =x ym . The DLP plays an important role in a multitude of algebraic and number theoretic
cryptographic systems. Its use was introduced in the Diffie–Hellman protocol for public key exchange [1]
and has since seen a tremendous amount of development, generalizations, and extensions [2]. Many
modern-day systems for public key exchange use the DLP in a suitable group. The most commonly used
groups have been the multiplicative group of finite fields and the group of points on an elliptic curve.
The DLP in Jacobians of hyperelliptic curves and more general abelian varieties has also been studied
extensively [3].

In this article, we compute complexities using group multiplications as one fundamental step. Thus, an
exponentiation xe is performed in �( )elog steps. We will use the fact that for two lists of length n in which a
match exists, a match can be found in �( )n nlog steps using standard sorting and searching algorithms (for
details, the interested reader may refer to ref. [4]). For a general finite group of order N , there exist

algorithms that solve the DLP in �( )N Nlog steps. Such algorithms are said to produce a square root
attack. The most well-known examples are Shank’s baby step-giant step algorithm [5] and the Pollard-Rho
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algorithm [6]. Note that Shank’s algorithm is a deterministic algorithm having time complexity �( )N Nlog
and space complexity �( )N . In contrast, Pollard’s algorithm is a probabilistic algorithm having time

complexity �( )N Nlog group multiplications and space complexity �( )1 . If N is unknown, a simple

modification of these algorithms would achieve a time complexity of �( ( ) )N Nlog 2 .
Elliptic curve groups have been widely implemented in practice since for a carefully selected elliptic

curve group, the best known classical algorithm for solving DLP has running time �( )N Nlog , where N is
the group order. This is in contrast to many other finite groups such as the multiplicative group of a finite
field and the group of invertible matrices over a finite field where algorithms with subexponential running
time are known [7].

In cryptography the Diffie–Hellman protocol using a finite group has been generalized to situations
where the underlying problem is a DLP in a semigroup or even to situations where a semigroup acts on a set
[8,9]. The interested reader will find more material in a recent survey by Goel et al. [10].

It is naturally interesting to ask whether the DLP also has a square root attack in more generalized
structures such as semigroups. Here, we define a semigroup as any set of elements with an associative
binary operation. Since the best algorithms for the DLP all make use of the existence of inverses, it is
unclear whether they can be generalized to a semigroup. However, when a special type of semigroup
element, called a torsion element, is used as the base, it turns out that the DLP is reducible in polynomial
time to the DLP in a finite group. A torsion element is one whose powers eventually repeat to form a cycle,
and will be defined more precisely in Section 2. This section also elaborates more on why the standard
collision-based algorithms are not directly adaptable to the semigroup case. A semigroup in which every
element is torsion is called a torsion semigroup.

The DLP in semigroups with a torsion base element, in a classical setting, was first discussed by Monico
[11] in 2002, and later in a article by Banin and Tsaban [12] in 2016. While the discussion in the present
article is entirely on classical algorithms, it is also worth mentioning the paper [13], where the authors
independently provide a quantum algorithm that solves the DLP in a torsion semigroup.

Both the algorithm of Monico and the one of Banin and Tsaban are probabilistic and might fail with low
probability. Furthermore, some of their methods are heuristic, dependent on an oracle or some additional
assumption, and their success rates and expected number of steps are either conjectured or stated loosely.
It is therefore of interest to come up with an algorithm which deterministically computes the discrete
logarithm in a semigroup. In this regard, we like to make some analogy to the problem of determining if
an integer is a prime number, a problem of great importance in cryptography. Nowadays, in practice the
algorithm of Miller [14] and Rabin [15] has been implemented for many years. Still it was a great result when
Agrawal et al. [16] came up with a deterministic polynomial time algorithm to achieve this goal.

A key step in finding the discrete logarithm in a semigroup is computing the cycle length of an element.
Both the algorithms of refs [12] and [11] rely on computing some multiple of the cycle length, and then
removing “extra” factors by taking greatest common divisors (gcd’s) until the cycle length is obtained. Once
the cycle length value is obtained, the discrete logarithm may easily be computed with a few more simple
steps. While Monico does not provide further elaboration on how this is done, the paper by Banin and
Tsaban bridges this knowledge gap by showing how the problem is reduced to a DLP in a group once the
cycle length and start values are known. Denote by Nx the order of x (formally defined in Definition 4). The
complexity of the algorithm in ref. [12] is �( ( ) )N N Nlog log logx x x

2 , and that of the one in ref. [11] is

�( ( ) )N Nlogx x
2 . While both of the existing methods seem to succeed with high probability for practical

values, we show that the process of taking successive gcd’s/factors is unnecessary, and that one can
deterministically find the cycle length. The main contribution of this article will be a deterministic algo-
rithm for computing the discrete logarithm of an element y in some semigroup S with respect to some

torsion base element ∈x S. The time complexity of our algorithm is �( ( ) )N Nlogx x
2 .

The article is structured as follows: After providing preliminaries and basic definitions in Section 2, we
will analyse in Section 3 the success rates and expected number of steps involved in the probabilistic
algorithms for cycle length by Banin and Tsaban (Algorithm 1) and Monico (Algorithm 3.1).
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In Section 4, which is the main section of this article, we provide a deterministic algorithm to calculate
the cycle length Lx of a torsion element x of a semigroup and thus to also solve the DLP, without the use of

an oracle. This algorithm has complexity �( ( ) )⋅N Nlog .x x
2 For completeness, we will also demonstrate the

use of Pohlig–Hellman algorithm [17] for a semigroup.

2 Preliminaries

A semigroup S is a set together with an associative binary operation. Like in group theory where a torsion
group consists of elements of finite order only we define:

Definition 1. (Torsion element). Let S be a semigroup. An element ∈x S is called a torsion element if the
sub-semigroup �{ ∣ }⟨ ⟩ ≔ ∈x x kk generated by x is finite. S is called a torsion semigroup if every ∈x S is a
torsion element.

Throughout the article the following definitions will be assumed:

Definition 2. (Cycle start). Let ∈x S. The cycle start sx of x is defined as the smallest positive integer such
that =x xs bx for some �∈b , >b sx.

Definition 3. (Cycle length). Let ∈x S. The cycle length Lx of x is defined as the smallest positive integer
such that =

+x xs L sx x x.

Definition 4. (Element order) Let ∈x S. With notation as above, we define the order Nx of x as the
cardinality of the sub-semigroup ⟨ ⟩x . Note that = + −N s L 1.x x x

Definition 5. (Semigroup DLP). Let S be a semigroup and ∈x S. The semigroup DLP is defined as follows.
Given �{ ∣ }∈ ⟨ ⟩ ≔ ∈y x x kk , find all ∈m N such that =x ym .

We state below a key result first proved in ref. [12].

Lemma 1. [12] Let S be a semigroup and ∈x S be an element with cycle start sx. The set of powers
∣{ }= ≥

+G x k 0x
s kx of x forms a finite cyclic group. The identity element of Gx is given by xtLx, where t is the

minimum positive integer such that ∈x GtL
xx .

The following result is stated in ref. [11] in a slightly different formulation. We provide an equivalent
proof based on the group structure of Gx.

Lemma 2. [11] Let ∈x S have cycle start sx and cycle length Lx. For all integers ≥n m s, x, we have
= ⇔ ≡x x n m Lmodm n

x.

Proof. We can assume without loss of generality that ≥n m, and so we can write = + +n m kL ux , with
≥k 0 and ≤ <u L0 x. First suppose that ≡n m Lmod x, i.e. =u 0. Since ≥m n s, x, we have = =

+x x xn m kL mx .
Conversely, if =x xn m, write = − ≥n n s 0x1 , and = − ≥m m s 0x1 . We have

= = =
+ + + + + + +x x x x .s m s n s m kL u s m ux x x x x1 1 1 1

Now, without loss of generality, ≥m sx1 , because if not, one can always increment m1 and n1 by multiples of
Lx until this happens. So, we can assume that xm1 lies inGx and is thus invertible. Wemultiply by the inverse
on both sides to finally obtain
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=
+x x .s s ux x

Thus, we must have =u 0 or ≡n m Lmod x, as required. □

Remark 1. It becomes clear from the above discussion that the standard collision-based algorithms for
order and discrete log computations in a group do not adapt directly to a general semigroup. Collision-
based algorithms for the computation of the order N of a group element x (for instance, see ref. [18]) are
based on the principle that whenever N can be expressed in the form = −N A B for non-negative integers A
and B, the collision =x xA B always occurs. However, this principle does not work in a semigroup, where
there are two independent components of the order. More specifically, for a semigroup element x with cycle
length Lx and cycle start sx, whenever Lx may be expressed in the form −A B for non-negative integers A
and B, the equality =x xA B holds if and only if ≥A B s, x. As an example, consider a semigroup element x
with cycle length =L 12x and cycle start =s 5x . Then, = −L 15 3x , but ≠x x15 3. Thus without prior knowl-
edge of the cycle start, the semigroup order Nx or cycle length Lx cannot directly be found using the same
collision-based algorithms for groups.

Similarly, collision-based algorithms fail for discrete log computations in a semigroup. As an example,
consider a semigroup element x with cycle length =L 15x and cycle start =s 10x , and suppose that the
discrete log of =y x5 is to be found. Then ⋅ = =y x x x6 11 26 is obtained as a collision. However, unlike in the
group case, the conclusion = =

−y x x26 6 20 is wrong since ≠x x5 20. This happens because even though x is
torsion and forms a cycle of powers, it is not invertible.

This concludes the prerequisite knowledge on torsion elements in semigroups. In the next section, we
study the existing probabilistic algorithms for cycle lengths and analyse their assumptions, working, and
complexities.

3 Existing probabilistic algorithms

3.1 Banin and Tsaban’s algorithm

In this section, we study the probabilistic algorithm described in ref. [12] for computing the cycle length of a
torsion element in a semigroup. While the authors of the original article describe their theory only for
torsion semigroups, it will become clear that the same discussion holds true for any semigroup when the
base element chosen is torsion.

Let S be a semigroup and x be a torsion element of S. Let sx denote the cycle start of x and Lx its cycle
length. Then, recall from Lemma 1 that { }≔ …

+ + −G x x x, , ,x
s s s L1 1x x x x is a cyclic group, and that it has order Lx.

The authors of ref. [12] assume the availability of a “Discrete Logarithm Oracle” for the group Gx, which
returns values hlogx for ∈h Gx. They state that these values need not be smaller than the group order but are
polynomial in the size of Gx and the element x. The representation of the identity in Gx is unknown, and a
method to compute inverses is not available.

The authors claim that the well-known algorithms for discrete logarithm computations in groups do not
explicitly require inverses, or can easily be modified to work without the use of inverses. While it is true that
these algorithms make use of mainly the existence of inverses rather than their explicit computation, we
believe that the fact that easy modification is possible is not immediate without some justification. In fact, it
will become clear in the later sections that the modified baby-step-giant-step algorithm devised by Monico
[11] (and also the deterministic algorithm presented in Section 4) is a crucial and non-trivial part of any
such modification.

We make the following observation from the proof of Lemma 1 found in ref. [12]. For any ≥k 0, denote
by vk the smallest positive integer such that

≥ +v L s k2 .k x x
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We then have ∈
− −x Gv L s k

xk x x and

= =
+ − −x x x x ,s k v L s k v L tLx k x x k x x (1)

so the inverse of the element +xs kx of Gx is given by ( )− −xv L s kk x x . In particular, the computation of inverses
requires prior knowledge of the cycle start. As will be explained below, the cycle start may be computed
only once the value of the cycle length is known, using a binary search. This explains why the authors insist
that their discrete logarithm oracle does not need to use the computation of inverses.

Below, we describe Algorithm 1, which is the algorithm suggested in ref. [12] to compute the order of the
group Gx, i.e. the cycle length Lx of x.

Algorithm 1: Banin–Tsaban algorithm for cycle length

Input A semigroup S and a torsion element ∈x S; a DLP oracle for groups
Output The cycle length Lx of x

1: Initialize ←i j g L, , , 1x , ≫ +N s Lx x. Fix bounds > >r s1, 1.
2: while <j s

1. Fix a random { }∈ ⌊ / ⌋ …z M M2 , , and set =h xz.
2. while <i r
(a) Choose a random number >k 0i .

(b) Use the DLP oracle to compute ( )′ =k hlogi h
ki .

(c) Set ( ) ( ( ) )← − ′ = − ′ − ′
≤ <g k k k k k kgcd gcd gcd ,j i j j j i j j i i .

(d) Set ← +i i 1.
3. end while
4. Set ( )←L L glcm ,x x , ← +j j 1.

6: Return Lx.

We first note that the authors state complexities in terms of Lx, which are valid when the bound N for Nx
is known. If the algorithm fails for a value of N , the authors suggest to double N and try again. In this case,
which we will assume from now on, we assert that the complexities need to be taken in terms of Nx instead

of Lx. The oracle may be assumed to have the standard complexity of ( )O N Nlogx x steps for discrete
logarithm calculations. Step (2.2(c)) takes � �( ( ( )) ( )− =≤ k k Nlog max logj i j i x integer operations by the
assumption on the oracle, which does not contribute to the total complexity. Thus, the total complexity

of Step (2.2) comes from the oracle alone and is �( )N Nlogx x . Now, the authors of ref. [12] remark that r and
s can be taken to satisfy �( )=r 1 and �( )=s Nlog log x . Thus, the total complexity is �( )Nlog x times the
complexity of Algorithm 1, and thus �( ( ) )N Nlog log logx x times the complexity of Step (2.2). Therefore, we
obtain the total complexity of �( ( ) )N N Nlog log logx x x

2 .
Finally, in Algorithm 2, we present the application of the binary search method to find the cycle start

once Lx is known. This algorithm is formulated as below for this purpose in ref. [12], though the idea to use a
binary search is also originally mentioned in ref. [11].

Algorithm 2: Calculating cycle start (binary search)

Input A semigroup element x with cycle length Lx
Output Cycle start sx of x

1: Initialize ←s 1x
2: while ≠

+x xs L sx x x do
←s s2x x
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3: end while
4: Set ← /a s 2x
5: while ∣ ∣− ≥a s 2x

( )← + /c a s 2x

if ≠
+x xc L cx then

←a c
else

←s cx
6: end while

Lemma 3. Let Nx be the order of the element x. Then Algorithm 2 requires

�(( ) )Nlog x
2

steps.

Proof. Each of Steps (2) and (5) of Algorithm 2 involves �( )Nlog x iterations. Each iteration, in turn, requires
�( )Nlog x semigroup multiplications and one comparison. The total complexity is thus �(( ) )Nlog x

2 . □

3.2 Monico’s algorithm

In his PhD thesis [11], Chris Monico provides a probabilistic algorithm (described below as Algorithm 3.1) that
calculates the cycle length of an element in a finite ring of order N . This algorithm makes use of the multi-
plicative semigroup structure of the finite ring and of the availability of the explicit bound N for every cycle
length, and is in fact applicable to any semigroup where such a bound N is available. In this subsection, we
analyse this algorithm, provide a more concrete bound on its success rate, and compute its complexity in
terms of N . We will discuss this algorithm in terms of torsion semigroups, as opposed to finite rings.

We first note that if >L mx and the table in Step (2) has repeated entries =
+ +x xq i m q i m1 2 , then numbers b1

and b2 may not exist below m. In this case, the algorithm needs to be modified to take ( )← −g i i m1 2 .
However, whenever this case does not arise, it can be shown that Steps (3) and (4) are always successful in
finding a collision.

We further remark that in Step (6), the list of divisors of g is kept fixed, while g is updated to /g d
whenever the condition is satisfied. In the subsequent steps, non-divisors of /g d can be immediately
discarded. However, the end result depends on the order in which divisors are tested, which the algorithm
does not mention explicitly. However, we note that it is, in fact, possible to restrict the testing to only the
prime power divisors of g below B, and with this setting, the optimal performance is obtained by taking
divisors in decreasing order. We will assume this set-up for the rest of the analysis. For completeness, we
restate Algorithm 3.1 with the above clarifications in Algorithm 3.2.

Algorithm 3.1: Monico’s baby step-giant step for cycle length

Input A finite semigroup S with ∣ ∣ =S N and an element ∈x S
Output The cycle length Lx of x

1: Set = ⌈ ⌉m N . Choose a prime >q N .
2: For ≤ ≤i m0 , compute and store in a table the pairs ( )+i x; q im .

Sort the table by the second component.
3: Find the least positive integer b1 such that +xq b1 is in the table: =

+ +x xq b q a m1 1 . (Note: < <b m0 1 .)

146  Simran Tinani and Joachim Rosenthal



4: Find the least positive integer b2 such that +x q b2 2 is in the table: =
+ +x xq b q a m2 2 2 . (Again, < <b m0 2 .)

5: Compute ( )= − − −g a m b a m b qgcd ,1 1 2 2 .
6: For each divisor d of g below some bound B, do the following.

If =
+ /x xN g d N :

set ← /g g d;
7: Output =L gx and stop.

Algorithm 3.2: Restated: Monico’s baby step-giant step for cycle length

Input A finite semigroup S with ∣ ∣ =S N and an element ∈x S
Output The cycle length Lx of x

1: Set = ⌈ ⌉m N . Choose a prime >q N .
2: For ≤ ≤i m0 , compute and store in a table the pairs ( )+i x; q im .

Sort the table by the second component. If a collision =
+ +x xq i m q i m1 2 occurs, set ( )= −g i i m1 2 and go to

Step (6).
3: Find the least positive integer b1 such that +xq b1 is in the table: =

+ +x xq b q a m1 1 . (Note: < <b m0 1 .)
4: Find the least positive integer b2 such that +x q b2 2 is in the table: =

+ +x xq b q a m2 2 2 . (Again, < <b m0 2 .)
5: Compute ( )= − − −g a m b a m b qgcd ,1 1 2 2 .
6: Fix a bound B and compute all the divisors of g below B. Denote these by > >…>d d dr1 2 .
7: For = …i r1, , , do the following.

If =
+ /x xN g d Ni :

set ← /g g di.
8: Output =L gx and stop.

Note that Step (2) involves�( )Nlog steps to compute xq and xm andanother�( )N multiplications to compute

⋅ ⋅ … ⋅x x x x x x x, , , ,q q m q m q m2 2
. Step (3) involves at most m multiplications = ⋅ ⋅ …

+ + + −x x x x x x, , ,q q q q m1 1 1,

with complexity �( )N , and match-finding with the first list, with complexity �( )N Nlog with stan-
dard sorting and search algorithms. The same is true for Step (4). Step (5) has complexity
� �( ( )) ( )− − − =a m b a m b q Nlogmax , log1 1 2 2 and so does not contribute to the overall complexity.
Step (6) involves B iterations of a multiplication and an exponentiation /xg d, and thus has a time
complexity of � �( ( )) ( )+ =B g B Nlog 1 log multiplications.

In the original work, Monico states that the bound B of Algorithm 3.1 can always be chosen so that

< −B a m b1 1 . We remark that this claim does not hold in the current setting of the algorithm. For
example, with a cycle length value of 4, and − =a m b 1041 1 , − − =a m b q 522 2 , we obtain =g 52. If

< − = <B a m b 104 111 1 , then we would only test divisors d below 11, and would never factor out 13
to obtain the true cycle length. For such a bound to work, one needs to modify the algorithm to test both
divisors d and /g d in Step (6). However, we will show in Lemma 4 that it is almost always sufficient to take
B to be a reasonably large fixed constant, thus the complexity of Step (6) can be counted as �( )Nlog , and

does not contribute to the overall complexity. Thus, the overall time complexity is �( )N Nlog . If N is
unavailable, the algorithm can also be modified to update the value of N step-by-step until a large enough

value is found. In this case, Algorithm 3.1 has a total complexity of �( ( ) )N Nlogx x
2 .

Furthermore, Monico suggests a modification to the above algorithm, viz. to find several such ai and bi
and compute all the gcd’s. It is clear that this suggestion is exactly the method used in Banin and Tsaban’s
algorithm as discussed in Section 3.1.

We now analyse the probability of success. The algorithm first looks for collisions of the form
=

+ +x xq a m q b1 1. The working principle is that in this case, the cycle length Lx divides −a m b1 1. Similarly,
if also =

+ +x xq a m q b22 2 then ( )= − − −g a m b a m b qgcd ,1 1 2 2 is a multiple of Lx.
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So far, the process is essentially the same in both Algorithms 1 and 3.1: while the former uses a discrete
logarithm oracle to obtain multiples of the cycle length, the latter directly finds these multiples by finding
collisions. However, in Algorithm 3.1, we do not proceed with computing multiple factors of Lx, but work
with the fixed multiple g of Lx, whereas in Algorithm 1 this multiple shrinks several times.

Algorithm 3.1 then proceeds by fixing a bound B and iterating over every number d below B to check if
∣d g . If yes, it executes the next part, i.e. checks if =

+ /x xN D d N , and if this holds, it sets ← /D D d. Note that if
the factorization of the number g is known (or if g can be factored in time negligible compared to ( )O N ,
then we do not need this fixed bound B, and can instead iterate over every prime factor d of g . It is well-
known that the number of prime factors of g counted with multiplicity is �( )glog , so Step (5) of the
algorithm can find Lx in �( )Nlog steps. However, in general, factoring g may be difficult, so we assume
from here on that the algorithm proceeds by fixing a bound B for the divisors of g . Below we analyse the
probability of the algorithm succeeding in terms of B and g .

Lemma 4. The probability that Algorithm 3.2 succeeds is bounded below by ( )−1 B
g1 log
.

Proof.We write = ⋅g L Fx for some number F and suppose that the algorithm fails. This means that there is
a divisor, and hence also a prime power divisor of F , which the algorithm fails to factor out. Let p be a prime
dividing F , αp denote its largest power dividing F , and βp be its largest power below the fixed bound B. So,
we have ∣p Fαp , ∤

+p Fα 1p , <p Bβp , >
+p Bβ 1p .

Note that the number of times the algorithm divides g by p is

( )∑ = ⋅ + /

=

i β β 1 2.
i

β

p p
1

p

Since divisors are taken in decreasing order, we must have ( )⋅ + / <β β α1 2p p p if the algorithm fails. So, the
algorithm succeeds as long as ( )⋅ + / ≥β β α1 2p p p for every prime divisor p of F . Thus, the probability of
success for the algorithm can be bounded below by

⎜ ⎟
⎛

⎝

( ) ⎞

⎠∣

∏

⋅ +

≥

β β
αProb

1
2

.
p g

p p
p

Write
( )

=

+

vp
β β 1

2
p p for simplicity. We may assume that g is a random multiple of Lx below the bound B,

so F is a random number in { }…1, , B
Lx

. We have,

⎜ ⎟

( ) ∣

⎛

⎝ ( )
⎞

⎠

( )

( )≤ = −

= −
/

/

= − / = −

+

+

+

+

+

α v p F

B L
p B L

p
p

Prob 1 Prob

1

1 1 1 1 .

p p
v

x
v

x

v

1

1

1
1

p

p

p
βp βp 1

2

Hence, a lower bound for the probability of the algorithm’s success is

⎛

⎝
⎜

⎞

⎠
⎟

∣

( )∏ −

+

⋅ +

p
1 1 .

p F 1
βp βp 1

2

Now, we have

( )
> ⇔ < ⇒ − > − > −

+

+
+ +

+
p B

p B p B B
1 1 1 1 1 1 1 1 .β

β
1

1 1 1
p

p βp βp βp1
2 2
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We further make the following observation. Let ( )ω n denote the number of distinct prime divisors of
integer n (note, however, that the same statement also holds if counted with multiplicity). Then clearly,

( )
≤ n2 ,ω n and so, taking logarithms, ( ) ≤ω n nlog .2
Collecting all the above results, we conclude that the probability of success Prob (success) of Algorithm

3.1 is bounded below as follows:

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

∣

( )

∏( ) ≥ −

= − ≥ −

≥ −

B

B B

B

Prob success 1 1

1 1 1 1

1 1 . □

p F
ω F F

g

log

log

Note that this bound shows that Algorithm 3.1 is indeed successful with overwhelming probability, as
conjectured by the author. For example, with =B 106, even when g is several orders of magnitude larger
than B, say =g 2 4,000 , the probability of success is greater than 99.6%, by the bound derived in Lemma 4.

4 Deterministic solution of the DLP

The solution of the DLP in a semigroup involves two parts: the calculation of the cycle length and start of
the base element x, and the use of this value to find the discrete log.

4.1 Deterministic algorithm for cycle length computation

We now present our deterministic algorithm for the computation of the cycle length. It works by finding a
suitable collision, and also guarantees finding the actual cycle length rather than just a multiple of it, in a
fixed number of steps.

Algorithm 4: Deterministic algorithm for cycle length

Input A semigroup S and a torsion element ∈x S. Assume Nx is the order of x.
Output Cycle length Lx of x

1: Initialize ←N 1.
2: Set ← ⌈ ⌉q N .
3: Compute, one by one, …

+ +x x x, , ,N N N q1 and check for the equality =
+x xN N j at each step ≥j 1. Store

these values in a table as pairs ( )+
+N j x, N j , ≤ <j q0 . If =

+x xN N j for any <j q, then set ←L jx and
end the process. If not, proceed to the next step.

4: For ≤ ≤i q0 , compute, one by one, the values …
+ + +x x x, , ,N q N q N iq2 and at each step i, look for a

match in the table of values calculated in Step (3).
5: Suppose that a match =

+ +x xN iq N j is found, and i is the smallest integer such that this happens. Set
← −L iq jx and end the process.

6: If no match is found in Steps (3) or (5), set ← ⋅N N2 and go back to Step (2).

Theorem 1. Let S be a semigroup and ∈x S a torsion element with order Nx. If an upper bound on Nx is known,
Algorithm 4 returns the correct value of the cycle length Lx with

�( ( ) )⋅N Nlogx x
2

steps. The total space complexity is �( )Nx semigroup elements.
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Proof. We first assume ( )≥N L smax ,x x and show that Steps (1)–(5) succeed in finding Lx. We have

= ⌈ ⌉q N . If <L qx , then the equality =
+x xN N Lx is found in the first step and the statement of the theorem

follows. Else if ≥L qx , we can write uniquely

= −L iq j,x

for some positive integers >i 0, ≤ <j q0 . Now, we must have ≤i q, because otherwise if ≥ +i q 1, we
would have

( )≥ + − > + − = ≥L q q j q q q q N1 ,x
2 2

a contradiction.
We have

= − < ≤ ≤ <

⇒ + + = +

⇒ = =
+ + + +

L iq j i q j q
N j L N iq
x x x

, 0 , 0

,

x

x
N j N j L N iqx

where the last step follows because >N sx by assumption. So, such a collision always occurs between
elements of the two lists in the algorithm.

We now claim that for the smallest such integer i computed in Step (5) of Algorithm 4, = −L iq jx .
To see this, let i be the smallest positive integer such that

=
+ +x x .N j N iq

Also let = ′ − ′L i q jx , < ′ ≤i q0 , ≤ ′ <j q0 . We have already shown above that such integers ′i and ′j exist for
our choice of N . By the definition of Lx, we must have ∣ −L iq jx . Now suppose that ′ >i i. Then,

( ) ( )′ − ′ ≥ + − ′ = + − ′ > ≥ −i q j i q j iq q j iq iq j1 .

But, ∣= ′ − ′ −L i q j iq jx , so we must have − = ′ − ′iq j i q j . Since ′ >i i, this means that

( ) ( )≤ ′ − = ′ − < ′q i i q j j j ,

which is a contradiction because ≤ ′ <j q0 . So, we must have ′ =i i, ′ =j j. This proves the claim.
We have shown above that the algorithm finds the correct cycle length when ( )>N s Lmax ,x x . Since the

algorithm doubles the value of N until a match is found, it always terminates and outputs the correct cycle
length. We now look at the time complexity.

For a given N , Step (2) involves one exponentiation, or �( )Nlog multiplications to find xN and then at

most another �( )=q N multiplications and equality checks for ⋅ ⋅ … ⋅x x x x x x, , ,N N N q2 . This step also

needs a storage space of at most �( )=q N elements. Step 5 needs one exponentiation or �( )Nlog multi-
plications to find xq, and then another �( )=q N multiplications to find ⋅ ⋅ …

+ + +x x x x x, ,N q q N q q N q2 2
.

Finding matches in Steps (3) and (5) can be done in � �( ) ( )=q q N Nlog log comparisons with the
use of sorting and efficient look-up methods. Thus, clearly, Steps (1)–(5) in Algorithm 4 have a total

complexity of �( )N Nlog .
Moreover, the algorithm starts at =N 1 and doubles N until the cycle length is found, i.e. until

( )>N s Lmax ,x x . Thus, the number of times Steps (2)–(5) are performed is

� �( ( )) ( ( ( ) ( ))) ( )⌈ ⌉ = =L s L s Nlog max , max log , log logx x x x x

Thus, the total number of steps involved is

�( ( ) )⋅N Nlog .x x
2

Clearly, Step (3) involves the storage of � �( ( ) ) ( )= ⌈ ⌉ = =q N s L Nmax ,x x x elements, so this value
gives the total space complexity. This completes the proof. □
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Remark 2. If a bound N on the order Nx is known a priori, then Algorithm 4 can clearly be completed in a

single round, with time complexity �( ( ))⋅N Nlog .

Remark 3. For the case of a group, there exist better algorithms for the computation of the order of an
element even when the total group order is unbounded. For instance, Algorithm 3.3 in ref. [18] uses a
growth function ( )d t , which generalizes the square root function used above, to compute the order N of a

group element x, and achieves time and space complexities of �( )N , thus eliminating the additional Nlog
multiplier introduced by the method in Algorithm 4.

However, this method fails when used for a general semigroup due to the presence of two independent
unknown components of the order. To see this, note that the algorithmwould need to bemodified for a semigroup
as follows. At stage t, one has ( ) ( )− ≤ <g t N g t1 x . On the completion of the baby steps, one has a table with the
powers ( ) ( ) ( ) ( )

…
+ +x x x, , ,g t g t g t b t1 (the addition of ( )g t is necessary in the semigroup case to ensure that the loop is

entered). The giant steps compute ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
… =

+ − + ⋅ + − + ⋅ + − + ⋅x x x x, , ,g t g t b t g t g t b t g t g t d t b t g t1 1 2 1 2 . Now, while Nx
is guaranteed to have a unique expression as ( ) ( )− + −g t ib t j1 with ( )< ≤i d t0 and ( )≤ ≤j b t0 , this does not
necessarily lead to a collision. In fact, if ( ) ( )< < −b t L g t 1x and ( ) ( ) ( ) ( )> = − + ⋅L g t g t d t b t2 1x , then neither
the baby steps nor the giant steps leads to a collision, and the cycle length is never found (note that this can
happen only if >L sx x). Moreover, if a collision ( ) ( ) ( ) ( )

=
+ − + +x xg t g t ib t g t j1 is obtained in the giant step phase, the

only conclusion that can be drawn is that ∣ ( ) ( )− + −L g t ib t j1x . If instead we forced the condition
( ) ( )− ≤ <g t N g t1 x , a collision again may never occur because there is no control on the cycle start (For

instance, in matrix semigroups over finite simple semirings, the cycle start is often found to be much larger
than the cycle length. In such cases, adapting group-based algorithms would fail.) See Remark 1 for further
details.

4.1.1 Experimental results for cycle length computations

We used Algorithm 4 to compute cycle length values in several common semigroups, such as matrix
semigroups over finite fields, matrix semigroups over the finite simple semiring S20 (see ref. [19] for a
construction and ref. [9] for the addition and multiplication tables), and the symmetric and alternating
groups (where the cycle length is precisely the order of the element). We further used the obtained cycle
lengths to compute the cycle start values using Algorithm 2. The working code may be found at https://
github.com/simran-tinani/semigroup-cycle-length.

4.2 Solving the DLP once the cycle length is known

In this section, we demonstrate the solution of the DLP for a torsion element x in the semigroup S once the
cycle length is known. As before let Nx be the order of the sub-semigroup⟨ ⟩x , let Lx be the cycle length of the
torsion element x (which we assume is already computed), and let ∈ ⟨ ⟩y x be an element.

In ref. [12], the authors demonstrate the next steps in solving for ( )ylogx , via a reduction to a DLP in the
group Gx, once Lx and sx are known. The procedure is described in Algorithm 5, which has been adapted
from the original formulation in ref. [12].

Algorithm 5: Algorithm for discrete logarithm

Input A semigroup S, a torsion element ∈x S, with cycle length Lx and cycle start sx, and ∈y S
with =y xm

Output The discrete logarithm m of y with base x
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1: Compute ⎡
⎢

⎤
⎥

=t s
L

x

x
and define ′ = ∈

+x x GtL
x

1x .

2: Find the minimum number ≤ ≤b t0 such that ′ = ⋅ ∈y y x GbL
xx using binary search.

3: Use Shank’s baby step–giant step algorithm for the group ⟨ ′⟩ ⊆x Gx to compute { }′ ∈ … −m L0, 1, , 1x

such that ( )′ = ′
′x ym .

4: Find the maximum number ≥c 0 such that ( )
∈

+ −′x GtL m cL
x

1x x using binary search.
5: Return ( ) ( )= ′ + − +m m tL b c L1x x.

Since authors of ref. [12] do not give an explicit proof of correctness Step (5) in Algorithm 5, we provide
it in Theorem 2. Before this, we will need the following technical result.

Lemma 5. Let Lx be the cycle length of ∈x S, and n, a, and ′a be fixed positive integers. Suppose that

= ∈
+x x GbL n a

xx , where b is the minimum number such that ∈
+x GbL n

xx , and = ∈
−

′x x Gn cL a
xx , where c the

maximum number such that ∈
−x Gn cL

xx . Then

+ ≤ − ≤ ′bL n a and n cL a .x x

Proof. First let =
+x xbL n ax with b minimal such that ∈

+x GbL n
xx . Suppose, to the contrary, that + >bL n ax .

We must have, by the minimality of b, ( )
∉

− +x Gb L n
x

1 x , so ( )− + <b L n a1 x .

( )

( )

= ∈

⇒ + − = ≥

⇒ − + =

⇒ = ∈ ≥

+

− +

x x G
bL n a kL k
b k L n a

x x G k

But,
, 1

, 1.

bL n a
x

x x

x
b k L n a

x

x

x

This is a contradiction to the minimality of b. So, + ≤bL n ax . Now suppose that = ∈
−x x Gx cL a

xx , with c
maximal, and suppose that − > ′n cL ax . We argue as above:

∣

( )

( )

− − ′

⇒ − + = ′ ≥

⇒ = ∈
− +

′

L n cL a
n k c L a k
x x G

, for some 1
,

x x

x
n k c L a

xx

which is a contradiction to the maximality of c. Thus, − ≤ ′n cL ax . □

Theorem 2. Let S be a semigroup, ∈x S a torsion element, and ∈ ⟨ ⟩y x any element. Assume the cycle length
Lx and cycle start sx of x are known. Then Algorithm 5 returns the correct values of the discrete logarithm

( )=m ylogx in �( ( ) )+L Nlogx x
2 semigroup multiplications, with a required storage of �( )Lx semigroup

elements.

Proof.We use the notations of Algorithm 5 and also write =n ylogx . We will show that the outputm is equal
to the correct discrete logarithm value n. Recall that we have a group Gx, generated by ′ ≔

+x xtL 1x , and with

identity xtLx. The parameter t is given by the formula ⎡
⎢

⎤
⎥

=t s
L

x

x
. Inverses inGx can be computed in polynomial time

using formula (1). Note that membership in Gx can be tested with one equality check: ∈ ⇔ ⋅ =y G y x yx
Lx .

There are now two cases:
1. When ∈y Gx, we have =b 0. Here, it is possible to use Shank’s baby step–giant step algorithm [5], which

is a deterministic algorithm and requires �( )Lx semigroup multiplications and storage space �( )Lx ,
in order to compute ( )′ ylogx . This is done in Step (3). From this value, ( )=n ylogx is readily computed, as
shown below. Note that in this case, ( )ylogx is determined modulo Lx.
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2. When ∉y Gx, Algorithm 5 first computes, using binary search, the smallest power b of x Lx such that the

product ⋅y xbLx lies in the groupGx, and then proceeds as in case 1 via the baby step–giant step algorithm

to find the discrete logarithm ′m of ⋅y xbLx with base ′x (i.e. ( )′ = ⋅
′x y xm bLx). Note that in this case, the

value of ( )ylogx is less than sx, and is thus determined uniquely in �. Again, the time and space

complexity are both �( )Lx .

In both aforementioned cases, we have the maximal value c such that ( )
∈

+ −′x Gm tL cL
x

1x x , and so
≤ + + = +c L s N1 1x x x , since ′ ≤m Lx and ≤ +tL L sx x x. We also clearly have ≤ ≤b t Nx. Since the compu-

tations of both b and c are done via binary searches, they contribute �(( ) )Nlog x
2 steps to the overall time

complexity. Now,

( )( ) ( )
= = ′ =

+ − + +
′ ′ ′x x x x .m tL cL m tL m bL n1 1x x x x

Applying Lemma 5 to the above equation, we must have

( ) ( )′ + − ≤ + + ≤ ′ + −m tL cL bL n bL n m tL cL1 , and 1 .x x x x x x

Therefore, ( )+ = ′ + −bL n m tL cL1x x x, or ( ) ( )= ′ + − +n m tL b c L1 ,x x which is precisely equal to m, the
value returned by Algorithm 5. Thus, =m n. This completes the proof. □

Combining Theorem 1, Lemma 3, and Theorem 2 we arrive at the main proposition of the article:

Proposition 1. Let S be a semigroup, ∈x S a torsion element, and ∈ ⟨ ⟩y x any element. The discrete logarithm
( )=m ylogx can be computed deterministically in

�( ( ) )⋅N Nlogx x
2

steps, with a required storage of �( )Nx semigroup elements.

Proof. For the solution, one begins by finding Lx. This can be done using Algorithm 4 and according to

Theorem 1 this requires �( ( ) )⋅N Nlogx x
2 steps and the storage of �( )Nx elements.

By Lemma 3 the computation of the cycle start sx is achieved in �(( ) )Nlog x
2 semigroup multiplications,

which does not contribute to the overall cost of the algorithm.

By Theorem 2, the discrete logarithm m can then be retrieved using Algorithm 5, in �(( ) )+N Llog x x
2

steps, with a required storage of �( )Lx semigroup elements.
As ≤L Nx x, the overall complexity is dominated by the computation of the cycle length, and the proof of

the result is now clear. □

4.3 Solving the DLP once the factorization of the cycle length is known

Wementioned in the introduction that for a general group of order N the best general known algorithms for

solving the DLP have complexity �( )N operations.
In case the order N has a prime factorization into small primes there is the famous Pohlig–Hellman

algorithm [17] for solving the DLP whose complexity is dominated by the largest prime factor in the integer
factorization of N .

In case that we have available the integer factorization of the cycle length Lx we can adapt the
Pohlig–Hellman algorithm for groups to a Pohlig–Hellman algorithm for solving the DLP in a semigroup.
Algorithm 6 represents this adapted Pohlig–Hellman algorithm.
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Algorithm 6: Pohlig–Hellman algorithm for solving the DLP in a semigroup

Input A semigroup S, a torsion element ∈x S, with cycle length = ∏
=

L px i
r

i
e

1
i and cycle start sx, and

∈y S with =y xm

Output The discrete logarithm m of y with base x
1: Compute ⎡

⎢
⎤
⎥

=t s
L

x

x
and define ′ = ∈

+x x GtL
x

1x .

2: Find the minimum number ≤ ≤b t0 such that ′ = ⋅ ∈y y x GbL
xx using binary search.

3: for { }∈ …i r1, ,

1. Compute the values ( )′ = ′
/x xi

L px i
ei
, ( )′ = ′

/y yi
L px i

ei
, and ( )≔ ′

−γ xi i
pei 1

.

2. Calculate the inverse zi of ′xi in Gx using (1).
3. Set ←k 0 and ←n 00 .
4. while <k ei do

(a) Compute ( )′ = ′ ∈ ⟨ ⟩

− −y y z γk i i
n p

i
k ei k1

.

(b) Use Shank’s baby step-giant step algorithm for the group ⟨ ⟩ ⊆γ Gi x to compute

{ }∈ … −d p0, 1, , 1k i such that = ′γ yi
d

kk .

(c) Set ← ++n n p dk k i
k

k1 , and ← +k k 1.
5. end while
6. Set ≔m ni ei.

4: end for
5: Use the Chinese Remainder Theorem to solve the congruence equations

{ }( )′ ≡ ∀ ∈ …m m p i rmod , 1, ,i i
ei

uniquely for ′m Lmod x. This gives the discrete logarithm of ′y with respect to the base ′x in the
group Gx.

6: Find the maximum number ≥c 0 such that ( )
∈

+ −′x GtL m cL
x

1x x using binary search.
7: Return ( ) ( )= ′ + − +m m tL b c L1x x.

Theorem 3. Let S be a semigroup, ∈x S a torsion element, and ∈ ⟨ ⟩y x any element. Assume the cycle start sx

of x is known and assume the integer factorization of the cycle length Lx is known to be = ∏
=

L px i
r

i
e

1
i. Then

Algorithm 6 computes the discrete logarithm ylogx requiring � ( ) ( )(∑ + + )=
e L p Nlog logi

r
i x i x1

2 steps. The

space complexity of the algorithm consists in �(∑ )=
e pi

r
i i1 semigroup elements.

Proof. Steps (1) and (2) are in analogy to the corresponding steps of Algorithm 5. Steps (3)–(5) represent the
Pohlig–Hellman algorithm for groups with the implied complexity dominated by the largest prime factor pi
of the integer factorization of Lx (for a reference on Pohlig–Hellman in groups, see in [20, Theorem 2.32]). It
follows that the running time of the algorithm is � ( )(∑ + )=

e L plogi
r

i x i1 steps. The computation of b and c
requires in addition ( )Nlog x

2 steps. The total space complexity is �(∑ )=
e pi

r
i i1 semigroup elements and that

completes the proof. □

5 Conclusion

The DLP in a finite group has noteworthy significance for cryptography, and so an extension of existing
solutions to other algebraic structures like semigroups, where inverses may not be available, is of natural
interest. In particular, the DLP in a semigroup has been discussed before in two places, namely refs [12] and
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[11]. Both these authors provide probabilistic generalizations of existing collision-based methods for the

case of a semigroup. The time complexity of the algorithm in ref. [12] is �( ( ) )N N Nlog log logx x x
2 , and the

one in ref. [11] is �( ( ) )N Nlogx x
2 . Both these methods rely on computing a multiple of the cycle length and

then taking gcd’s or factors and could fail with a small probability that depends on the parameters chosen.
In this article, we provided a deterministic solution of the semigroup DLP, which computes the cycle length

directly and does not rely on finding a factor of it. The time complexity of our algorithm is �( ( ) )N Nlogx x
2 .

We further demonstrated the application of the Pohlig–Hellman algorithm to semigroups. A direct conse-
quence of our findings is that for cryptographic purposes, generalizing the type of algebraic structure for the
DLP offers no additional advantage, at least in the torsion case, both in a classical and a quantum setting.
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