DE GRUYTER Journal of Mathematical Cryptology 2022; 16: 98-102 a

Research Article

Daniel R. L. Brown, Neal Koblitz*, Jason T. LeGrow

Cryptanalysis of “MAKE”

https://doi.org/10.1515/jmc-2021-0016
received May 18, 2021; accepted December 22, 2021

Abstract: Rahman and Shpilrain proposed a Diffie-Hellman style key exchange based on a semidirect
product of n x n-matrices over a finite field. We show that, using public information, an adversary can
recover the agreed upon secret key by solving a system of n? linear equations.

Keywords: public key cryptography, key exchange, matrix-based, cryptanalysis
MSC 2020: 94A60, 11T71, 15B33

1 Introduction

Ever since the invention in 1976 of the Diffie-Hellman key exchange [1] based on the multiplicative group of
a finite field, researchers have investigated other groups and algebraic structures that can be used for
similarly constructed key exchanges. A natural candidate was the general linear groups over the finite
field F, of g elements. However, in 1997 Menezes and Wu [2] proved that the discrete log problem in the
group GL(n, q) of invertible n x n matrices is not more difficult than the discrete log problem in [F;;
therefore, a Diffie-Hellman key exchange in GL(n, g) has no advantage over the original Diffie-Hellman
construction.

Despite this result of Menezes and Wu, researchers have continued to look for ways to use matrix
groups and semigroups for Diffie-Hellman style key exchange. Many of the specific constructions using
such ideas have been broken, basically by exploiting an underlying linear structure. For example, Stickel’s
nonabelian key exchange [3] was cryptanalyzed by Shpilrain [4] 3 years later; and the instantiation of a key
exchange based on semidirect products in ref. [5] was cryptanalyzed shortly later in refs [6,7].

A recent construction of this type is the MAKE key exchange of Rahman and Shpilrain [8]. We analyze
the latest posted version (February 2021) and show that MAKE also succumbs to a linear algebra attack — an
adversary can recover the shared secret key by solving a system of n? linear equations. After describing the
MAKE key exchange, we explain how the adversary can obtain such a linear system. We then give an
alternative attack that leads to a system of n* linear equations that can be solved to give the entries in an
(n? x n?)-matrix from which the shared key can immediately be found.

Remark 1. An earlier version of MAKE (in which H, = H;) was cryptanalyzed by Monico and Mahalanobis
[9].

* Corresponding author: Neal Koblitz, Department of Mathematics, University of Washington, Box 354350, Seattle, WA 98195,
United States of America, e-mail: koblitz@uw.edu

Daniel R. L. Brown: BlackBerry, Mississauga, Canada, e-mail: danibrown@blackberry.com

Jason T. LeGrow: Department of Mathematics, University of Auckland, Auckland, New Zealand,

e-mail: jason.legrow@auckland.ac.nz

a Open Access. © 2022 Daniel R. L. Brown et al., published by De Gruyter. This work is licensed under the Creative Commons
Attribution 4.0 International License.

https://doi.org/10.1515/jmc-2021-0016
mailto:danibrown@blackberry.com
mailto:koblitz@uw.edu
mailto:jason.legrow@auckland.ac.nz

DE GRUYTER Cryptanalysis of “MAKE” = 99

2 MAKE

The MAKE key exchange is based on the semidirect product of the additive group M,, of n x n matrices and
the product of two multiplicative semigroups consisting of powers of fixed H;, H, € M,,. More concretely, the
analog of the kth power of a matrix M € M, (where M plays the role of a generator of F in the classical
Diffie-Hellman protocol) is the sum

M + H\MH, + HMH? + ---+ H'MHS .

In the protocol, Alice and Bob agree on three n x n matrices M, H;, and H, over the prime field of p elements
(with p large), where H; and H, have determinant zero and do not commute with M. These three matrices
are public. Alice chooses a secret positive integer x and Bob likewise chooses y. Alice can efficiently
compute

A=M+ HlMHZ + HizMsz IR HlelMHZX*l’ (1)
and Bob computes the analogous sum B with x replaced by y. The shared key is then
z =M + BMH, + HIMH} + -+ H™"'MH;"" = A + H{BH; = B + H/AHj,)

which Alice and Bob can each compute using their secret key. Here H;, H,, and M are fixed parameters.

3 Telescoping

Note that although H'BHJ is not publicly known, an adversary can multiply equation (1) by H; on the left
and by H, on the right and then subtract equation (1) to obtain

HAH, - A = H'MH - M, 3)

and so the cryptanalyst can immediately compute HMH) from the publicly known H;, H,, A, and M.
Knowing H{MH; opens the way to a linear algebra attack.

4 Attack using Cayley—Hamilton

If we can find the entries in the matrix H'BH, , we are done by equation (2), because the shared secret key is
obtained simply by adding A.

For a matrix H € M, let H; denote its ij-entry, O < i, j < n - 1. Let vec(H) denote the column vector of
height n? whose (jn + i)th entry is Hy; thus, vec(H) is obtained by simply stringing the second column of H
under the first column, the third column under the second column, and so on.

We now regard Hj, H, € M, and a positive integer x as fixed, and define a function L(Y) = Ly, 5,(Y) from
M, to M,2 by setting

LY jnsihnrg = (HEYHYYj, O <i,j,g h<n-1

In other words, the (hn + g)th column of L(Y) is vec(Hf YHD).

The Cayley—Hamilton theorem states that if Py(A) = det(Al, — H) is the characteristic polynomial of an
n x n matrix H, then Py(H) = 0. This allows one to express H* for x > n in terms of H!, 0 < i < n. By the
Cayley—Hamilton theorem we can write

n-1 n-1

B = Y pHf and Hi= Y g,
g=0 h=0

Define S € M, by S;; = p;qj and set s = vec(S).

100 —— Daniel R. L. Brown et al. DE GRUYTER

Lemma 1. For Y € M,

L(Y)s = vec(H{'YH").
Proof. The proof follows by an elementary computation. O

Remark 2. Of course, the cryptanalyst does not know x, H, or HY, and so cannot compute s. The purpose of
Lemma 1 is to ensure existence of a solution. The characteristic polynomials of H and Hy are used only for
existence. The cryptanalyst does not compute the characteristic polynomial of any matrix.

Lemma 2. If u is any vector such that
L(Y)u=0,
then for any positive integer £ we also have

L(HYH)u = 0.
Proof. It follows from the definitions that

n-1
L(H{YH)u = vec[D uhmg(ng(HfYHf)th)]
g,h=0

g,h=0

n-1
= VE‘C[H{{ z uhmg(ngYth))sz]
= vec(Hvec {(L(Y)u)Hy)
=0. O

The adversary first computes H'MH; by equation (3) and then solves the system of n? linear equations

L(M)t = vec(HMHS)

for t. By Lemma 1 with Y = M, this system has at least one solution s; and by Lemma 1 with Y = B, the same
vector s also solves the system

L(B)s = vec(H;'BHY). (4)
We claim that the adversary’s vector t also satisfies

L(B)t = vec(H{'BHY).
To see this, we set u = t — s. We apply Lemma 2 withY =M for ¢ =0, 1,...,y — 1, and add. We find that

0=L(M)u + LEEMH)u + -+ L(H "MH} Yu
= L(M + HMH, + -+ H'""MH})u
= L(B)u.

Hence, L(B)t = L(B)s + L(B)u = vec(H;'BHY) by equation (4). From B and ¢ the adversary can now recover
HBH) and hence the shared key z = A + HBHJ'.

Remark 3. A similar argument is used in Section 3 of ref. [7].

DE GRUYTER Cryptanalysis of “MAKE” =— 101

5 Attack by simulating Bob

Recall that the tensor product of an (m; x n;)-matrix X and an (m, x ny)-matrix Y is the (mym, x nn,)-
matrix X ® Y given by

XY Xy - XinY
XY Xy - XnY
XY XY - Xmyn Y

We have the following identity for three matrices X, Y, Z whenever the product XYZ is defined:
vec(XYZ) = (ZT ® X)vec(Y). (5)
We also note that (X ® Y)* = X* ® Y*. In particular,
vec(H{YHS) = (H ® Hy)'vec(Y).

From this and equation (2) it follows that if we can determine the unknown (n? x n?)-matrix H = (Hf ® H,)*,
we just have to compute Hvec(B) + vec(A) to get the shared private key.

We find the n* unknown entries of H by obtaining n* independent linear equations that they satisfy. We
do this in two ways: (1) by using a general commutativity property and (2) by simulating Bob with various
choices of his secret y.

(1) The first method for finding equations uses only the parameters H;, H, and not the values A, B of a
particular exchange of keys. Let I, denote the n x n identity matrix. The commutation relations

(e H)H ® H)*(I)=(Iz)H © H)@,© H)
(B © L)H o H)*(Iz)=(L)(H o H)H @ L)

give us equations (6), where we again let H = (Hf ® H;)* denote our unknown (n? x n?)-matrix and apply
equation (5):

(e (ne H) - (ye H)® Lz)vec(H)=0

6
(Inz ® (Hfeo I)-He I)e InZ)VEC(H) =0. (©)

In numerical experiments with randomly chosen rank-(n — 1) matrices H; and H,, these give n*(n?> - 1)
independent equations for the n* entries of H, that is, just n®> fewer than we need.

(2) Perhaps the simplest identity satisfied by H is HM = H{MH5, where the right side is publicly known
by equation (3). This gives n? linear equations for the entries of H. We can regard this as the case y = 0 of the
key exchange, that is, B = 0, z = A. For any integer y > 0, we can write the equation

H(H!MH)) = H*VMH},

where the adversary, simulating Bob, chooses arbitrary! y and then knows both sides except for the entries
of H. If the value y = 0 does not give n? independent equations that are also independent of the n?(n? - 1)
equations from the commutation relations, then the adversary continues with y = 1, 2, 3,... until they get
the required number of independent equations. Numerical experiments indicate that a very few small
values of y are sufficient.

Remark 4. In Section 4, our first method was proved to give a system of linear equations any of whose
solutions leads to the secret key. In Section 5, we have heuristics and numerical evidence, but no proof, to
support the belief that the method quickly leads to the required number of independent equations.

1 In the actual protocol, Bob chooses a very large integer y, but in the cryptanalysis algorithm y can be very small.

102 —— Daniel R. L. Brown et al. DE GRUYTER

6 Conclusion

The MAKE key exchange is insecure; the shared key can be recovered by linear algebra in polynomial time.
This shows once again that even a matrix-based protocol that seems much more complicated than a
standard Diffie-Hellman key exchange may have an essential linearity that makes it vulnerable. Caution
seems to be especially necessary when considering matrix-based cryptosystems.

Acknowledgements: The authors thank Vladimir Shpilrain for helpful correspondence.
Funding information: Jason T. LeGrow’s research is funded in part by MBIE fund UOAX1933.

Conflict of interest: Authors state no conflict of interest.

References

[1] Diffie W, Hellman M. New directions in cryptography. IEEE Trans Inform Theory. 1976;1T-22:644-54.

[2] Menezes A}, Wu Y-H. The discrete logarithm problem in GL(n,q). Ars Combinatoria. 1997;47:23-32.

[3] Stickel E. A new method for exchanging secret keys. In: Proceedings of the Third International Conference on Information
Technology and Applications (ICITA 05), Contemporary Mathematics; vol. 2; 2005. p. 426-30.

[4] Shpilrain V. Cryptanalysis of Stickelas key exchange scheme. Computer Science in Russia 2008. LNCS. 2008;5010:283-8.

[5] Habeeb M, Kahrobaei D, Koupparis C, Shpilrain V. Public key exchange using semidirect product of (semi)groups. ACNS
2013. LNCS. 2013;7954:475-86.

[6] Myasnikov AG, Roman’kov V. A linear decomposition attack. Groups Complexity Cryptol. 2015;7:81-94.

[7] Roman’kov V. Linear decomposition attack on public key exchange protocols using semidirect products of (semi)groups.
http://arxiv.org/abs/1501.01152.

[8] Rahman N, Shpilrain V. MAKE: a Matrix Action Key Exchange. https://eprint.iacr.org/2021/116.pdf.

[9] Monico C, Mahalanobis A. A remark on MAKE - a Matrix Action Key Exchange, https://arxiv.org/pdf/2012.00283.pdf.

http://arxiv.org/abs/1501.01152
https://eprint.iacr.org/2021/116.pdf
https://arxiv.org/pdf/2012.00283.pdf

	1 Introduction
	2 MAKE
	3 Telescoping
	4 Attack using Cayley-Hamilton
	5 Attack by simulating Bob
	6 Conclusion
	Acknowledgements
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /POL (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 /ENU (Versita Adobe Distiller Settings for Adobe Acrobat v6)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

