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Abstract: In this article, we give a digital signature by using Lindner—Peikert cryptosystem. The security of
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methods of Aggarwal et al. and Chen et al.
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1 Introduction

The advent of Quantum computing threatens to break a lot of classical cryptographic schemes. This leads to
innovations in public key cryptography that focus on post-quantum cryptography primitives and protocols
resistant to quantum computing threats. Lattice-based cryptography is a promising post-quantum crypto-
graphy family, both in terms of foundational properties and its application to both traditional and emerging
security problems such as encryption, digital signature, key exchange, homomorphic encryption, etc.

The breakthrough work of Ajtai [1] provides confidence for adopting lattice-based schemes in crypto-
graphy. Ajtai proved that solving NP-hard lattice problems, e.g., Shortest Vector Problem (SVP), in the
average case is as hard as solving the worst-case assumption. It is conjectured that there is no probabilistic
polynomial-time algorithm that can approximate certain computational problems on lattices within poly-
nomial factors [2]. This is the basis for the security of lattice-based schemes. Based on the Ajtai’s works in
the past two decades, great progress has been made in the lattice-based cryptography on various hard
lattice computational problems such as closest vector problem (CVP), Shortest Independent Vectors Problem
(SIVP), bounded distance decoding (BDD), Shortest Integer Solution (SIS), etc. [2-5].

Definition 1.1. Given n linearly independent vectors by, b, ..., b, € R4, the lattice £ is defined as
L ={ah, +--+ayb, | a; € 7}, 1.1

where the set of B = {by, ...,b,} is called a basis for the lattice. The integers n, d are called rank and
dimension of L, respectively. If n = d, then £ is called a full rank (or full dimension) in R4, which is very
common to use in lattice-based cryptography.
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Remark 1.2. A lattice basis B is not unique. For a lattice £ with basis B, and for every unimodular matrix
U e Z™" (i.e., one having determinant +1), B. U is also a basis of L(B).

Due to Regev [6] a large number of cryptographic constructions based on the lattices are built over the
average-case Learning With Errors (LWE) problem.

Definition 1.3. (LWE distribution). Let s be a vector in Zj (which is called secret). The LWE distribution
Ay over Zy x Z 4 is defined by sampling a € Zg uniformly at random and choosing e « y, then outputting
(a, b = (s,a) + e mod q) where (s, a) denotes the inner product of vectors s and a.

There are two main versions of the LWE problem: the search version which is finding the secret
according to the given LWE samples, and the decision version which is distinguishing between LWE
samples and uniformly random samples:

Definition 1.4. (Search-LWE, ;). It is to find s uniformly randomly, from Zg, so that m independent
samples (a;, b;) € Zj x Z, are drawn from A (s is fixed for all samples).

Definition 1.5. (Decision-LWE,, ,, ). It is to distinguish which of the followings is the case (with non-
negligible advantage). m independent samples (a;, b;) € Z x Z, are either distributed according to Asy

where s € Z7 uniformly random (fixed for all samples), or they are distributed uniformly.

The LWE-based schemes, however, are not particularly efficient because LWE-based schemes inherently
give rise to key sizes and/or outputs which are O(A2) in the security parameter A. In 2010, Lyubashevsky et al.
[7] introduced the Ring-LWE Problem that is the ring-based analogue of LWE, and proved the hardness of the
related problems. Ring-LWE is parameterized by a ring R of degree n over Z, a positive integer modulus g that
defines the quotient ring R, = R/q, and an error distribution y over R. Typically, one takes R to be a
cyclotomic ring, and y to be some kind of discrete Gaussian in the canonical embedding of R.

Definition 1.6. (Ring-LWE distribution). For all s € R, called the secret, the Ring-LWE distribution A,
over R; x R; is sampled by choosing a € R; uniformly at random, choosing e < y, and outputting
(a, b =sa + e mod q).

Definition 1.7. (The Ring-LWE Problem, decision version). Let R denote the ring - inlfjl _ forn which is a
power of 2, and R, be the residue ring R/q. Distinguish which of the following is the case (with non-
negligible advantage); for a uniform random secret s < U(R,) and given m samples; each of them is of the
form (a, b = sa + emod q) where the coefficients of e are independently sampled from distribution y, or
they are from uniform distribution (a, b) — U(R,; x Ry).

Remark 1.8. As it is stated before, due to the particularly nice algebraic structure of cyclotomic rings for
Z[X]
<X"+1>
2. Cyclotomic rings also have the feature that the decision version of the Ring-LWE problem in these rings is

hard [8], which makes them even more useful for cryptographic applications.

implementation purposes, most proposals opt to work with this kind of rings such as for n a power of

We conclude this section by introducing the “Short Integer Solution (SIS) Problem” whose hardness is
needed as a part of security of our proposed scheme. (For the hardness of the SIS problem relative to worst-
case lattice problems, see ref. [3, Section 4.1.2].) The SIS Problem is parameterized by positive integers n and
g, which defines the group Zj a positive real number f and a number m of group elements.

Definition 1.9. (The SIS Problem). Given m uniformly random vectors a; € Zj forming the columns of a
matrix A € Zg*™, find a nonzero integer vector z € Z™ of norm ||z|| < B such that Az = } .a;z; = 0 € Z3.
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Inspired by the ideas behind the “NTRU cryptosystem” [9], Micciancio [10] introduced a compact ring-
based analogue of Ajtai’s SIS problem. This analogue has come to be known as the “Ring-SIS Problem" and
is parameterized by a ring R which is often (but not always) taken to be a degree-n polynomial of the form
R= %, a positive integer modulus g, a real norm bound > 0, and a number m of samples.
Definition 1.10. (The Ring-SIS Problem). Given m uniformly random elements a; € R; = R/q, defining a

vector @ € R/, find a nonzero vector Z € R of norm ||Z]| < B such that (d,7) = 2.:aizi = 0 € Ry.

Remark 1.11. Ring-SIS and its associated cryptographic functions can be proved at least as hard as certain
lattice problems in the worst case, similar to SIS ([3], Section 4.3.4).

2 Related works and our contribution

For a long time, lattice-based signatures have been designed so that their security were obtainable only for
inefficiently large parameters, i.e., they were far from practicality, e.g., ref. [11], or were, like GGH [12] and
NTRUSign [13] broken due to flaws in the ad-hoc design approaches [14,15]. Though using the ideal
lattices, introduced by Micciancio [10], and the related computationally hard problems, such as Ring-SIS
and Ring-LWE, one can find many promising digital signatures in this area. In particular, the schemes that
use the Fiat—Shamir approach [16] have led to a family of fast signature schemes with reasonable signature
and key sizes [11,17-20].

In general, for building lattice-based signatures, there are two (seemingly distinct) frameworks: one
using lattice trapdoors [21-23] and the other, as mentioned above, through the Fiat-Shamir heuristic,
whereas, a strong connection between these two approaches has been recently found, see ref. ([24],
Theorem 1.4). In this article, inspiring from the protocol introduced by Lindner—Peikert [25] and using
the Fiat—-Shamir paradigm, we present a lattice-based digital signature scheme whose structure is designed
for a fixed length message, i.e., we will use the hash and sign approach. Our contribution is a straight
applying the Lindner—Peikert scheme [25], which can be seen, to the best of our knowledge, as a novel idea
for constructing digital signature through this primitive. In addition, as we will see in Section 6, we get an
appropriate trade off between the security levels and the key sizes, where the security of the proposed
scheme has been estimated by a very pessimistic approach (from the viewpoint of the defender against a
quantum adversary), namely the core SVP hardness, see Section 5.1. Although we cannot claim that the
proposed signature is the best one (for a summarized comparison between some similar lattice-based
digital signatures, see Section 6), but one may hope for future improvements on this “naive” framework.

Remark 2.1. From sight of the practicality, the only complexity would be related to implementing performance
of the decode—encode function, see Definition 3.1, and to the symmetric primitives, i.e., the hash functions, and
based on this, we expect the proposed scheme has a reasonable implementation speed, whereas we have not yet
implemented that and will be done in the future works. Also, one can consider the “Module-LWE”-based version
of the proposed signature, to achieve a more (expected) secure one, see Remark 6.2.

3 The proposed digital signature

In 2011, as a generalization of the previous LWE-based cryptosystems such as [6,21] and as an instance of
Micciancio’s proposed system in ref. [26], Lindner—Peikert [25] gave a cryptosystem based on LWE and
Ring-LWE problems. The Lindner—Peikert cryptosystem provided smaller keys and ciphertexts by a factor of
about logg and a concrete security stronger than the previous works (by the convention, the base-2
logarithm is denoted by log).
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In this article, using the Lindner—Peikert cryptosystem [25], we give a Ring-LWE-based digital signature
whose public key/signature sizes lie in the range 1-1.5 kilobytes, along with an easier implementation and a
slightly weaker security than the proposed scheme in ref. [25].

_ 7
LetR = 7oy

ties of this ring such as its security and cyclotomic polynomials, including degrees n # 2 of the mentioned
ring, are discussed in detail in ref. [7]. Suppose that the following considerations hold: g € Z is a suffi-
ciently large integer modulus for which f(x) splits into linear (or very low-degree) factors modulo g;

g = if’(l;:;; Xi and x, are error distributions over R which are concentrated on “small” elements of R. Hence,

the error distributions enable rigorous security proofs (see refs [7] and [25]).
Let £ be a message alphabet, e.g., X = {0, 1}. The message encoder and decoder are functions
encode : X" — R, and decode : R; — X", such that

be the cyclotomic polynomial ring where f(X) = X" + 1 with n a power of 2. Other proper-

decode(encode(m) + e mod q) = m, for any small enough e € R. (3.1)

As an example consider an e such that for some integer threshold ¢ > 1, its coefficients as a polynomial in R
are all in [-t, t).

Definition 3.1. [25] For m € {0, 1} and a module g, define the functions encode and decode as follows:

1)

encode: {0,1} —» Z,, decode: Z; — {0, 1}

) qu . 0, ifﬁze[—lij,l
mem=m-: 5’ mem-= 4

1, otherwise.

We extend these functions component-wise to vectors.
Remark 3.2. Note that in the above method the error tolerance is t = L%J.

In this protocol, we use a uniformly random a € R, that can be generated by a trusted source or it is
chosen by the user. Suppose that the signer (from now on will be called Alice) wants to sign the message m
and send it to the verifier (from now on will be called Bob).

e First Alice computes the values 15, 1, < ), and m = encode (H(m)) where H is a collision-resistant hash
function. The public key consists of the pair (p =n — an, a) € R; and the secret key is r,.
 For per-signing, Alice generates ¢; < x,, i = 1,..., 4, and Computes the values ;s as follows:

Ci = pe; + ey,
G = pae, + e3 + m,
C3 =aey + €ey.

Note that following Section 3.1 in ref. [25], we take a, p, m € Z".
¢ The assigned signature to m is the quadruple (Cy, G, G, h), where

h = H(m||H(decode (are,))),

with a collision-resistant hash function H. (Note that computing the value of decode(are;) is meaningful,
since ane; € Ry, see Definition 3.1.)

3.1 Verification

Bob accept a quadruple (C;, G, G, h) as a valid signature for the message m (with m = encode (H(m))) if the
following conditions hold:
(i) decode(G, - aC; + G3) = H(m); note that
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G — aC; + G = pae, + es + m — ape, — ae, + ae; + e, = encode(H(m)) + es + ey,

small

see the relation (3.1).
(i) h = H(m||H(w)), where w = decode(-C;); note that
—Ci = -pe; - e; = (ar, — n)ey — e; = aney + (—ne; — €) € Ry,

small

which implies that decode(-C;) is meaningful as an element of {0, 1}".

Therefore, the signature will be verified as long as the “error terms” e; + e, and —ne; — e, are within the
error threshold of the function decode (see Definition 3.1); these hold with high probability when y, and y;
are sufficiently concentrated.

Remark 3.3. As stated before, the function H in the above scheme is a collision-resistant hash function. For
implementation, one may use SHAKE-128 [27].

3.2 Correctness (decoding)

Based on the error terms which are e; + e, and —ne; — e,, respectively, in equations (3.2) and (3.3), one can
say that the upper bound on the Gaussian parameters of s, s, (respectively, corresponding to y, and y,) in
terms of the desired per-symbol error probability § in [25, Section 3.2] works here:

Lemma 3.4. [25, Lemma 3.1] In the above signature scheme, the error probability per-symbol (over the choice
of secret key) is bounded from above by any desired § > 0, as long as

J2nt
’ 3.4
c-,/2n logé (3.4)

where c is the value that depends only on n (greater than 1), sy, S.: are the Gaussian parameters, n: is the
Z[X]

X"+1’
algorithms in Definition 3.1), and log denotes the base-2 logarithm.

Sk * Se <

dimension of the cyclotomic ring R = t is the error tolerance (which is [%J in the encode—decode

In ref. ([25], Section 3.2) using a per-symbol error probability of § = 0.01, the parameters in the above
lemma (with the decoding failure rate 2-%°) are bounded as in Table 1 below.
We will choose parameters for our proposed digital signature in Section 5.

4 Security

The standard security notion for digital signatures is UF-CMA security, which is unforgeability under
Chosen Message Attacks. In this security model, the adversary gets the public key and has access to a
signing oracle to sign messages of his choice. The adversary’s goal is to come up with a valid signature of a
new message. A slightly stronger security requirement which can be useful sometimes is SUF-CMA (Strong
Unforgeability under Chosen Message Attacks), which also allows the adversary to win by producing a
different signature of a message that he has already seen.

We also take quantum attackers into account. We need to consider the security of the scheme when the
adversary can query the hash function on a superposition of inputs (i.e., security in the quantum random
oracle model QROM). The UF-CMA security of our signature scheme is based on two hard assumptions:
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e The Decision Ring-LWE assumption which is needed to protect against key-recovery.
¢ An “intermediate problem” that is the assumption upon which the new message forgery is based. It is
based on the combined hardness of the Ring-SIS problem and the cryptography hash function H.

By the decision Ring-LWE assumption, the public key (p = r; — an, a) is indistinguishable from (¢, a)
where t is chosen uniformly at random. Hence, to prove UF-CMA security, we only need to analyze the
hardness of the experiment where the adversary receives a random (¢, a) and then needs to output a valid
message/signature pair m, (C{, C3, Cj, h') such that
(i) decode(C; - aC| + C}) = H(m);

(ii) ' = H(m||H(decode(-C)))).

In particular, a (quantum) adversary who is successful at creating a forgery of a new message is able to
find C{ such that H(decode(-C/)) = H(decode(are;)) (corresponding to the fixed message m). But (¢, a) is
completely random, so this is the aforementioned intermediate problem. Note that a standard forking
lemma [28] shows that an adversary solving the above problem in the (standard) random oracle model,
can be used to solve the Ring-SIS problem.

5 Choosing parameters

Recall that our proposed digital signature has been inspired by the Lindner—Peikert cryptosystem [25]. Hence,
we can estimate the concrete security and also compute the space requirements for the Ring-LWE-based
digital signature, completely similar to ref. [25]. Note that for any message m with length (H(m)) = 128 < n,
the public key and signature sizes, respectively, are 2nlog q and 3nlog g + 128 bits.

Remark 5.1. By the convention, the base-2 logarithm is denoted by log.

In the first step we set s, = s, = s > 0, whereas we can use slightly smaller s; and correspondingly
larger s, parameters to get a slightly stronger overall security versus a more complicated implementation,
see [25, Section 6]. Indeed distinguishing the public key and the components of C;s of a signature
(Cy, G, G, h), from the uniform ones, is not equally hard. It is because compared to the signature, the
public key exposes fewer LWE samples (the random polynomials n, r, are fixed, but the error terms e;
change for per-signing).

The modulus g should be chosen large enough (according to the bounds in Table 1) such that for a
Gaussian parameter s > 8, one has the discrete Gaussian Dzr,s that approximates the continuous Gaussian
Dy as well. On the other hand, as in most lattice-based schemes that are based on operations over poly-
nomial rings, we have to choose our ring so that the multiplication operation has a very efficient imple-
mentation via the Number Theoretic Transform (NTT), see e.g., [29,30], which is just a version of FFT that
works over the finite field Z ; rather than over the complex numbers. To enable the NTT, we need to choose a
prime number g so that the group Z; has an element of order 2n or equivalently g = 1(mod 2n). Thereby we

Table 1: Boundaries on parameters taken from [25, Figure 1]

2n c> (Sk- Se) [ t<
256 1.35 0.08936
384 1.28 0.07695
512 1.25 0.06824

640 1.22 0.06253
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Table 2: The proposed parameter sets inspired from security analysis in ref. [25]

Parameters Distinguish Decode Key sizes (in Bytes)
n q s £ ) log(s) ) log(s) Public key Secret key Signature
256 7,681 11.44 2732 1.0064 84 1.0067 76 826 416 1,255
(low_security) 264 1.0070 67 1.0072 63
320 7,681 10.95 2-32 1.0052 130 1.0055 117 1,032 520 1564.8
(recommended) 264 1.0056 109 1.0057 108

“Distinguish” columns show the root-Hermite factors 0 needed to obtain respective distinguishing advantages (over the
random LWE error vector) and the corresponding logarithmic runtime (in seconds) (according to ref. ([25], Section 5)). The
“Decode” columns show the decoding attack introduced in ref. [25], the corresponding root-Hermite factors, and the esti-
mating runtime of the attack (these are by using “LWE-estimator” [33]).

have set ¢ = 7,681, which slightly reduces the security level compared to the ones proposed in ([25], Section
6), (Tables 2 and 3).

5.1 Estimating the security

In cryptanalysis of the lattice-based cryptography, the hardness of Ring-LWE has been analyzed as a LWE
problem. It is because so far the best known attacks do not make use of the ring structure. Indeed, while
some new quantum algorithms against Ideal-SVP recently appeared, they do not seem to affect Ring-LWE,
see ([31], Section 6.1).

In general, there are two different categories for algorithms solving the LWE problem, namely algorithms
solving the LWE problem directly (without targeting the underlying lattice) and solving the LWE problem via
lattices ([32], Section III). From the first approach, following ref. [25], we will analyze the security of our
scheme against two well-known attacks usually referred to as the distinguishing attack and the decoding
attack. In addition, following ref. [31], we also estimate the security of the proposed algorithm against the
lattice-based attacks, the second category, which divide into the primal attack and the dual attack.

In distinguishing attacks, the adversary will be successful if they could distinguish (with some notice-
able advantage) an LWE instance (4, B = A's + e) from a uniformly random instance. Typically, this
distinguishing is enough to break the semantic security of an LWE-based cryptosystem with the same
advantage. The decoding attack, introduced by Lindner—Peikert [25], is stronger than the distinguishing
attack. In this attack, the secret error vector in the LWE instance can actually be recovered (hence the
ciphertext is decrypted) with the same or better advantage. For all the investigated parameter settings in ref.
[25] the decoding attack yields a better total effort as a ratio of time/advantage, and it is significantly more
efficient in the high-advantage regime (see [25, Section 6] for a complete description of these attacks).

In order to estimate the security of our digital signature against distinguishing attacks, we use the
calculations from [25, Section 5]. Following the computations in ref. ([25], Section 5) first a bound

Table 3: Core SVP hardness of our signature scheme

Parameters Primal attack Dual attack
n q & m b Security level m b Security level
256 7,681 4.568 852 174 62 1,060 168 60
320 7,681 3.188 998 206 95 1,123 198 92

The parameters &, b, and m denote the “norm parameter” ([31], Section 6), the block size of the BKZ algorithm [34], and the
number of used samples, respectively.
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Table 4: Comparing some Ring-LWE-based digital signature schemes

Algorithm Security level Key sizes (in Bytes)

(bits) Public key Secret key Signature
Ring-TESLA-1 [38] 79 3,100 1,700 1,400
Ring-TESLA-2 [38] 73 3,300 1,800 1,500
GLYPH [39] 137 2,000 300 1,800
BLISS-I [19] 128 875 250 700
BLISS-II [19] 128 875 250 625
BLISS-III [19] 160 875 375 750
BLISS-IV [19] 192 875 375 812.5
GLP (Set 1) [18] <80 1,500 100 900
GLP (Set II) [18] 91 3,100 300 1,900
TESLA# -1 [40] 64 3,328 2,112 1,616
TESLA#-1I [40] 128 7,168 4,608 3,488

<70 826 416 1,255

Proposed signature
92 1,032 520 1,565

Note that for the proposed scheme, we have considered the “lowest” security level from Tables 2 and 3, namely core SVP
hardness against the dual attack.

B=1(q/s) llog(é) /m on the length of a nonzero vector v € A'(A) is computed. This yields the suitable

(og(®)’
distinguishing advantage over the random LWE error. After that the root-Hermite factor § = Qinlost@) i found,
which gives the needed vector. It should be reminded that this is done under the assumption that the

attacker uses the optimal subdimension m = ”l(l)"gg(g) (the root-hermit factor § > 1 is defined exactly the

same as in ref. [25]). If the optimal subdimension for this § exceeds 2n + 128, then 6 is discarded and instead
of that the one for which ™. gm = B is taken where m = 2n + 128, whereas the latter case does not occur for
our parameter sets. We also calculate a lower bound on the BKZ runtime using the conservative estimator
% - 110.

To implement the analyzing method of decoding attack in ref. [25], we used the “LWE-estimator” [33]
and listed the corresponding results in Table 2.

For estimating the security against the primal and the dual attacks, we use the Core SVP hardness
methodology described in [31, Section 6.1]. Indeed, these two attacks are a subfamily of the BKZ [34]
attacks, where the algorithm BKZ proceeds by reducing a lattice basis using an SVP oracle in a smaller
dimension b. It is known that the number of calls to the oracle remains polynomial, but its evaluating is very
arduous which has led to introducing new heuristic ideas [31, Section 6.1]. Although, from the defender’s
point of view, estimating the security based on the core SVP hardness, the cost of one call to an SVP oracle in
dimension b as considered in [31, Section 6.1], will be the most pessimistic method. The results for esti-
mating security of the proposed scheme, against the primal and dual attacks, are summarized in Table 3.
(For a full detailed description of the primal attack the dual attack and the core SVP hardness methodology
see [31, Section 6].)

from [25, Section 5], namely fgxyzs) =

Remark 5.2. There are also purely combination attacks on LWE, namely BKW types of attacks [35,36] and
linearization attacks [37] that may asymptotically perform better than lattice reduction. Since these attacks
generally require more LWE samples than our signature scheme (there are only n sample available), one
may rule out these attacks.

Remark 5.3. Note that the security estimation of our digital signature scheme (Table 3) includes the Ring-SIS
problem, see Section 4, and the presented method work also for hardness of Ring-SIS problem, see ref. [2].
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6 Comparison

In this section, we give a brief comparison between the proposed signature algorithm and a few other Ring-
LWE-based algorithms [18,19,38-40]. For comparison, we chose those algorithms that to the best of our
knowledge seem more related to our scheme. The results are listed in Table 4, which show that our
proposed algorithm has a good trade off between the key sizes and security levels. In particular, it provides
relatively shorter keys and signatures among most of the similar schemes.

Remark 6.1. In addition to the comparison in Table 4, one can consider more Ring-LWE-based digital
signatures. For instance, the key sizes (public key, secret key, and signature) in refs [13, 41] have O(nlog n)
lengths ([41], Table I), which seem very close to the sizes of parameters in our scheme.

Remark 6.2. As an improvement and continuation of this work, one may consider the “Module-LWE-
based” version of the proposed scheme. The Module-LWE might be able to offer a better level of security
than Ring-LWE and even more compact parameters. Furthermore, Module-LWE has been suggested as an
interesting option to hedge against potential attacks that exploit the algebraic structure of Ring-LWE [42].
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