DE GRUYTER Journal of Mathematical Cryptology 2022; 16: 1-13 a

Research Article

Yu Zhou*, Jianyong Hu, Xudong Miao, Yu Han, and Fuzhong Zhang
On the confusion coefficient of Boolean

functions

https://doi.org/10.1515/jmc-2021-0012
received April 02, 2021; accepted July 11, 2021

Abstract: The notion of the confusion coefficient is a property that attempts to characterize confusion
property of cryptographic algorithms against differential power analysis. In this article, we establish a
relationship between the confusion coefficient and the autocorrelation function for any Boolean function
and give a tight upper bound and a tight lower bound on the confusion coefficient for any (balanced)
Boolean function. We also deduce some deep relationships between the sum-of-squares of the confusion
coefficient and other cryptographic indicators (the sum-of-squares indicator, hamming weight, algebraic
immunity and correlation immunity), respectively. Moreover, we obtain some trade-offs among the sum-of-
squares of the confusion coefficient, the signal-to-noise ratio and the redefined transparency order for a
Boolean function.
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1 Introduction

Side-channel attacks (SCAs), which can use physical emanation from the device, are based on the fact that
cryptographic algorithms are implemented on a physical device. Differential power analysis (DPA) is the
most widely used attack method in SCA [1]. Since DPA was proposed, many algorithms have been attacked,
like DES, LILI-128 [2]. In these attacks, S-boxes (or multiple output nonlinear Boolean functions, or named
by (n, m)-functions) are prominent targets for these attacks. This is because they allow us to distinguish
clearly between correct and incorrect hypotheses on key guesses [1,3-5]. Some links between indicators of
(n, m)-functions and SCAs were established in a mathematical point of view, and these indicators included
the signal-to-noise ratio (denoted by SA'R) [4], the transparency order (denoted by 70) [1] or the redefined
transparency order (denoted by R70) [6] and the confusion coefficient (denoted by CC) [7].

In 2004, when Guilley et al. studied noise sources occurring during DPA and electrical simulation of the
DPA, they introduced SAR for (n, m)-functions and gave some bounds on SA'R for different S-boxes.
Known results implied that the S-box could resist against DPA attack very well, if an S-box has a small
SNR. In refs [8,9], they obtained an upper bound on SANR of balanced (n, m)-functions, and some deep
relationships between SNR of (n, m)-functions and three other cryptographic indicators (the maximum
value of the absolute value of the Walsh transform, the sum-of-squares indicator and the nonlinearity of its
coordinates), respectively, and they proved that SNR of (n, m)-functions is not affine invariant.
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In 2005, 70 was introduced for (n, m)-functions based on single-bit DPA and the Hamming distance
model in ref. [1]. The lower bound on 70 for an (n, m)-function was obtained. In the same year, a relation-
ship between 70 and the nonlinearity of an (n, m)-function was given in ref. [3]. Later, a fast method for
computing 70 was given in ref. [10]. In 2017, Chakraborty et al. found a redundancy in 70, and put up
RTO [6], and deduced a lower bound on R70 using Walsh spectrum only. The new indicator was used in
multi-bit DPA attack and is better than the original definition in ref. [1]. From the two definitions, we know
that 70 and R70 are the same for an (n, 1)-function (i.e, a Boolean function). In 2019, some bounds on 70
for only one Boolean function were obtained in ref. [11], including some tight upper bounds on 7O for
certain Boolean functions. Meanwhile, a relationship of 70 between any Boolean function and its decom-
position Boolean functions was given in ref. [12], and the distributions of 7O for 4-variable and 5-variable
balanced Boolean functions are obtained.

In 2012, CC was proposed when they studied the confusion property of cryptographic algorithms in
ref. [7]. Some experimental results of DPA and CPA on both AES and DES verify the statistical model with
high accuracy and demonstrate effectiveness of the algorithmic confusion analysis in ref. [13]. A novel heuristic
technique to generate S-boxes with better values of the confusion coefficient in terms of improving their side-
channel resistance is given in ref. [14]. Some new methods for generating almost optimal 8-bit S-boxes having
good theoretical DPA metrics (including SNR, 70 and CC, etc.) are obtained in ref. [15].

So far, many results about SNR and 70 for (n, m)-functions are obtained in a mathematical point of
view, but little attempt has been made to analyze CC for (n, m)-functions. How to characterize CC for
(n, m)-functions? What is the bound on CC for (n, m)-functions? When further investigating the in-depth
relationships between the CC and other cryptography indicators it still appears to be an important issue. In
this article, we will investigate these questions for (n, 1)-functions (a Boolean function with n variables).

The organization of this article is as follows. In Section 2, the basic concepts and notions are presented.
In Section 3, we deduce a equivalent characterization of the confusion coefficients. In Section 4, we give
some relationships between the sum-of-squares of the confusion coefficients and other cryptographical
indicators. In Section 5, some relationships among the sum-of-squares of the confusion coefficient, the RTO
and the SNR are given. Finally, Section 6 concludes this article.

2 Preliminaries

Let B ,, denote the set of n-variable Boolean functions. The support of a Boolean function f € B, is defined as
Supp(f) = {(x,...,xp) € F5|f(x,...,x,) = 1}. The Hamming weight of f is denoted by wt(f), that is,
wt(f) = |Supp(f)|. We say that a Boolean function f is balanced if its truth table contains equal numbers
of ones and zeros, i.e., wt(f) = 2""1. A Boolean function f € B, is affine if the algebraic degree of f is at most
one, and the set of all affine functions is denoted by A ,. An affine function with constant term equalling to
zero is called a linear function.

In this article, let 0" = {0, O, ...,0} be a zero vector.

Definition 2.1. Let f € B,. The Walsh spectrum of f is defined as
F(fo @)= Y -1/, acFy,

n
xelF;

where @, = ax = a1 ® WX &+ ® ApXy, & = (4, ..., An), X = (X, ..., Xp).
Based on the Walsh spectrum, the nonlinearity of f € B, can be determined by

1
N =21 - —max|F(f ® @)
2 acF?%

Let f, g € B,,. The cross-correlation function of f and g is defined as

Argla) = ) (-1)fWesken) g ¢ Fh,

xeF%
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If f = g, then the autocorrelation function of f is defined as

A(@) = z (-)fWefen) g ¢ FZ.

xeF}

Definition 2.2. The two indicators (o5, Af) are called the global avalanche characteristics of a Boolean
function f € B, (GAC [16]):

o = Ad(@)]?, Ar= max |A«a).

i a;g[ ()] % aeH‘,a#O”l ()]

For any Boolean function f € B, the smaller Ar and oy, the better the GAC.

In 2012, Fei et al. proposed a statistical model for DPA that has taken characteristics of both the physical
implementation and cryptographic algorithm into consideration and established a quantitative relation
between the success rate of DPA and a cryptographic system. Finally, they point that the side-channel
property of the cryptographic algorithm is extracted by a novel algorithmic confusion analysis and pre-
sented a definition of confusion coefficient for S-boxes [7].

Definition 2.3. [7] Let k;, k; € F} be two keys. The confusion coefficient (CC) x over (k;, k;) is defined as:

Nepik£pli)

k= x(ki, k) = Pri(Plks) # (hlk)] = ——=
t

where N; is the total number of values for the relevant ciphertext bits, and Nyj)+y|x) is the number of
occurrences for which different key hypotheses k; and k; result in different i values.

Picek et al. [14] pointed that the low confusion coefficient values (also referred to as high collision
values) can make SCAs harder, i.e., they may require an increase in number of traces to yield the correct key
candidate.

Carlet et al. studied the intrinsic resiliency of S-boxes against SCAs, and further gave the concrete form
of the confusion coefficient for a Boolean function f € B, (e.g., a coordinate function of the S-box) [17]:

1

x(k, k*) = TIE

Y Ifte k) - f(te kP,

teF}

where t € F} is one known plaintext, k* € [F} is the correct key and k € F} is the key.

In other words, this equation gives a characterization relationship between the confusion coefficient
and a Boolean function. In this article, we will study the confusion coefficient of a Boolean function based
on this equation.

3 General bounds on CC of Boolean functions

In this section, we give one equivalent characterization of the confusion coefficient and give an upper and a
lower bound on the confusion coefficient. Finally, we get some relationships between the confusion coeffi-
cient and the nonlinearity (propagation criterion).

Lemma 3.1. Let f € B,. Then

L

1
K(k, k ) = g s

Ai(d),

whered = k* @ k, k*, k € F5.
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Proof. According to Definition 2.3, we have

1
Kk k) =55 Y [fte k) - f(te kP
teFs
1 1 . 1 2
= 2n+2 [E(l - (_1)f(t®k )) - 5(1 - (_1)f(t$k)):|
teFs
— 1 1 tok tok™) |2
=iz Z " [(_1)f( ok) _ (—1)f(te )]
teFs
1 1 .
= — 1 = (=1 ek )ef (tek)
_2n+222[1 (l)eee]
teF3
— 1 tok” tok
= >3 Z [1 — (-1)ftei)ef(te )]
teF}
_ L z 1-— 1 Z (_1)f(tek*)eaf(tek)
- 2n+3 2n+3
teF} teF}
1 1
— 3 «2n — ﬁ z (_1)f(teakead)ef(taak)
teF3
11 Y (-fvedero
- 23 2n+3
t=yokeF}
1 1
- g - 2n+3Af(d)' O

From Lemma 3.1, we can obtain the distribution of the confusion coefficient of a Boolean function, if we
calculate the distribution of autocorrelation function of this Boolean function. Here we give an example of
3-variable Boolean functions, since there are 30 different distributions of autocorrelation function [18], thus
we can give the distributions of the confusion coefficient in Table 1 (the distribution of autocorrelation
function for a Boolean function is denoted by D-of-A, and the distribution of confusion coefficient for one
distribution of autocorrelation function is denoted by D-of-CC).

Based on Lemma 3.1, we can give an upper bound and a lower bound on the confusion coefficient for
any Boolean functions.

Theorem 3.2. Let f € B,,. For k*, k € [F}, then
1
0 < x(k, k*) < —,
(k, k) 4

where the left equation holds if and only if As(k & k*) = 2", and the right equation holds if and only
if Ap(k @ k) = -2".

Proof. From the autocorrelation function, we know —-2" < Ag(a) < 2" for any a € F}. Thus, we have

11 6ol 1 1
0= 2 - 552 < xlk, k) < 5 2=

Furthermore, we havek(k, k*) = Oifand only if A¢(k @ k*) = 2" and x(k, k*) = %if and only if Af(k & k*) = -2".
O

Particularly, for any Bent function f € B, we have x(k, k*) = é for any k ® k* # 0", and x(k, k*) = O for
any k & k* = 0", For any linear Boolean function f € B, we have x(k, k*) = 0 or% for any k, k* € F}, it is

because that |As(a)| = 2" for any a € 3. For any constant Boolean function f(x) € F}, thatis, f=0or f=1,
we have x(k, k*) = 0.
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Table 1: The distribution of CC for 3-variable Boolean functions

Class D-of-A Num D-of-CC
1 ®,8,8,8,8,8,8,8) 2 {0}
2 (8,8,0,0,0,0,0,0) 8 {0, 0.125}
3 8,0,8,0,0,0,0,0) 8 {0, 0.125}
4 (8,0,0,8,0,0,0,0) 8 {0, 0.125}
5 8,0,0,0,8,0,0,0) 8 {0, 0.125}
6 (8,0,00,0,8,0,0) 8 {0, 0.125}
7 (8,0,0,0,0,0,8,0) 8 {0, 0.125}
8 (8,0,0,0,0,0,0,8) 8 {0, 0.125}
9 (8,4,4,4,4,4,4,4) 16 {0, 0.0625}
10 (8,4, 4,4, 4, —4, —4, —4) 16 {0, 0.0625, 0.1875}
1 (8, 4, -4, -4, 4,4, -4, -4) 16 {0, 0.0625, 0.1875}
12 (8, —4, 4, —4, 4, 4, 4, —4) 16 {0, 0.0625, 0.1875}
13 (8, =4, =4, 4,4, 4, 4,-4) 16 {0, 0.0625, 0.1875}
14 (8, -4, -4,4,4,-4,-4,4) 16 {0, 0.0625, 0.1875}
15 (8, —4, 4, —4, —4, 4, -4, 4) 16 {0, 0.0625, 0.1875}
16 (8, 4,-4,-4,-4,-4,4,4) 16 {0, 0.0625, 0.1875}
17 8,0,0,0,0,-8,0,0) 8 {0, 0.125, 0.25}
18 (8,0,0,0,-8,0,0,0) 8 {0, 0.125, 0.25}
19 (8,0,0,0,0,0,-8,0) 8 {0, 0.125, 0.25}
20 8,0,0,0,0,0,0,-8) 8 {0, 0.125, 0.25}
21 8,0,0,-8,0,0,0,0) 8 {0, 0.125, 0.25}
22 (8,0,-8,0,0,0,0,0) 8 {0, 0.125, 0.25}
23 8,-8,0,0,0,0,0,0) 8 {0, 0.125, 0.25}
24 ®,8,8,8,-8,-8,-8,-8) 2 {0, 0.25}
25 8,8,-8,-8,8,8,-8,-8) 2 {0, 0.25}
26 8,8,-8,-8,-8,-8,8,8) 2 {0, 0.25}
27 8, -8,8,-8,8,-8,8,-8) 2 {0, 0.25}
28 @8, -8,8,-8,-8,8,-8,8) 2 {0, 0.25}
29 8, -8,-8,8,8,-8,-8,8) 2 {0, 0.25}
30 8, -8,-8,8,-8,8,8,-8) 2 {0, 0.25}
Lemma 3.3. Let f € By, k*, k € F§ and k & k* + O". Then
n 2
k(k, k*) > % - —[2 znfivf ]
Proof. From ref. [19], we have
Ny < on-1 _ —VZM_A““”‘,
2
where Apmay = max{|Ag(a)| : a € F}, a # 0"}. And from Lemma 3.1, we have
2n — 23k (k, k*) = Ap(d) < Amax < (2" — 2Np)? - 20,
Thus, this result is proved. O

From Lemma 3.3, we know that the confusion coefficients become larger, if Ny becomes larger. That is
to say that the two indicators (the confusion coefficients and nonlinearity) cannot achieve the best for a
given Boolean function at the same time. Moreover, for any balanced Boolean function f € B, we have

k(k, k*) > é —2n/2_ 2"1,1, it is because that Ny < 2n-1 - 2n/2-1_ 2,
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Lemma 3.4. Let f € B, satisfy the propagation criterion with respect to all but a subset R ¢ F5, k*, k € F3.
Then

1 1
k(k, k) = — - =|R|.
(k k) = o = IR

Lemma 3.4 is easy to be proved by the following relation in ref. [19]:
Nf > Zn—l _ 2n/2—1|R|1/2.

Theorem 3.2 gives the upper and the lower bounds on confusion coefficient. At the same time, we will
also analyze the value of the sum of the confusion coefficients.

Theorem 3.5. Let f € B,,. For a given k* € F}, we have

n _ 2
Y xik, k) = 203 - L2 2VTY
keF3 2m

Proof. For any Boolean function f € B,, we have

3 Af(d) = [2" - 2wi(f)P.

deF}

Thus,

3 ke k)= Y [é - #Af(k ® k*)]

keF5 keF5

=% Y1- - Y Mlke k)

on+3
keF% keF}

S L Y Adke k)
2 keF3

s [2 2wt (P -
2n+3

Remark 3.6. From Theorem 3.5, we know that the value of the sum of the confusion coefficients for a given
Boolean function f € B,, if we give the hamming weight of this Boolean function. In particular, for a
balanced Boolean function f € B,, we have Zkgﬂk(k, k*) = 2773 for a given k*.

4 Bounds on the sum-of-squares of the confusion coefficient of one
Boolean function

In order to establish some new relationships between the confusion coefficient and the traditional crypto-
graphy indicators (such as the sum-of-square indicator, hamming weight, algebraic immunity, correlation
immunity, etc.), we need to use the sum-of-squares of the confusion coefficient. At first, we give the
relationship between the sum-of-squares of confusion coefficient and the sum-of-square indicator for a
Boolean function.

For the convenience of description and research in the following, for a given k* € F5 we denoted the
sum-of-squares of the confusion coefficient for a Boolean function by

Kr(k*) = Z K2(k, k*).

keF5
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Theorem 4.1. Let f € B,,. For a given k* € F}, we have

. 6 [2"-2wt(H) | o
%f(k ) =2"0 - on+5 + 22n+6 :

Proof. From Lemma 3.1, we have

Ar(k @ k* 2 Ac(k @ k* Nk @ k*
Kz(k,k*):[%_M] _ 1 Mkek) byke k)

2n+3 64 2n+5 22n+6
Then
1 Mke kv AMpke k)
Ke(k*) = — - +
f( ) k§§[64 n+5 22n+6
B Z Z Ak o k) k) z Nk o k)
keF% 64 keF% 2o ke[Fg' 226
—_ 9yn-6 _ * 2 *
=on 2n+5 Y Mko k) + 22% Y ke k)
keF% keF}
_ 2
= Jn-6 _ [2" - 2wt(f)] " i . O
n+5 22n+6

Based on Theorem 4.1, we can give the upper bound and the lower bound on the sum-of-squares of the
confusion coefficient for a Boolean function.

Theorem 4.2. Let f € B, be a nonconstant Boolean function. For a given k* € [F%, we have

26 4 276 - [2—227W5f<f>12 < g0y < 5 - 2" —22n\A+/5t(f)]2

3

where the left equation holds if and only if f is a bent function, and the right equation holds if and only if f is a
linear Boolean function.

Proof. Zhang and Zheng [16] obtained 22" < gy < 2°" for any non-constant Boolean function f € B, where
o = 2?"if and only if f is a bent function, and o = 23" if and only if f is a linear function. Thus, this result is
easy to be proved. O

If f € B, is a constant Boolean function, that is, f = 0 or f = 1. Then A¢(a) = 2" for any a € F}, we have
k(k, k*) = O for any given k* € F3. Thus, Kp(k*) = 0

For any r-order plateaued Boolean function [20], we have g; = 2>""", and wt(f) = 0, or2"-1 + 2"-7/2-1 or
21— onr/271 Thus, Kjp(k*) = 2"~6 — 27776 or 276 + 2776 for a given k* € 2.

For any balanced Boolean function f € B,(n > 3), gr > 22 + 2"+3 [21]. By this result, we have Corol-
lary 4.3.

Corollary 4.3. Let f € B, be a balanced Boolean function (n > 3). For a given k* € F}, we have
2"+ 8

-6 4 < Kp(k) < 2.

For n = 3, we find 56 balanced Boolean functions reaching this lower bound Ky(k*) = 26 + 248

on+6
0.15625 for a given k* € [F5.

Based on Corollary 4.3, we have Table 2.

Recall the definition of algebraic immunity given in [22, Definition 73]. Let f € B,, the minimum
algebraic degree of nonzero annihilators of f or of f @ 1 (i.e., of nonzero multiples of f ® 1 or of f), is called
the algebraic immunity of f and is denoted by AI(f). Based on this definition, we have Corollary 4.4.
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Table 2: The bounds on Ky(k*) for balanced Boolean functions

n Lower bound on %(k*) Upper bound on %(k*)
3 0.15625 0.25

4 0.2734275 0.5

5 0.5195531 1

6 1.0175781 2

7 2.0166016 4

8 4.0161133 8

9 8.0158691 16

10 16.015747 32

Corollary 4.4. Let f € B, be a balanced Boolean function and AI(f) = k. For a given k* € F} we have

Z;z:—kk_l<n;1>]2

Ky(k*) < 276 + [ S

Corollary 4.4 is easy to be proved by the following relation in ref. [23]:

n-k 2
of < 2n+2[ Z (n - 1)] .
=1y 1

And if a balanced Boolean function satisfies the propagation criterion, then we have Corollary 4.5 by using
Theorem 3 in ref. [24] and Theorem 4.1.

Corollary 4.5. Let f € B,, be a balanced Boolean function (n > 3) and f satisfy the propagation criterion with
respect to A c F5 and t = #A, k* € F5. Then

2n 6(Hn _ 1 _
L2211

n-6
2 22n+6

, 0<t<2n—2n3 _ 1, t(even),

2+ 22"+ 2 - t)
+ Q2n+6

2n—6+276+;, M3 _ <t 22,
202" —1- 1)

Kr(k*) = {2n-¢ , 0<t<2m-2"3_1, t(odd),

Example 4.6. In Corollary 4.5, we can find some balanced Boolean functions reaching the lower bound.

(1) There are 10,080 4-variable balanced Boolean functions reaching Kp(k*) = 276 +

M4 20Qn-1-0) _
22n+6 -

0.2734375 for t =9 and a given k* ¢ [Fé‘, and 37,330,944 5-variable Boolean functions reaching

K = 216 + 2210 - 053125 for ¢ = 15 and a given k* € F3;

(2) There are 1,920 4-variable balanced Boolean functions reaching Kj(k*) = 2"°¢ + % = 0.3046875
for t = 0 and a given k* € F3;

(3) There are 27,776 5-variable balanced Boolean functions reaching Ky(k*) = 2"¢ + 276 + m = 0.53125

for t = 30 and a given k* ¢ [F3.

Corollary 4.7. Let f € B, be a balanced mth order correlation immune function (1 < m < n - 2). For a given
k* € F5, we have

Ky(k*) > 2176 4 22m-n-2,
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Proof. From [25], we know of > 2"*2"+4 for any mth order correlation immune balanced function f.
By Theorem 4.1, we have this result. (|

Remark 4.8. Let f € B, and a given k* € F5. In Theorem 4.1, Corollary 4.4 and Corollary 4.7, we find the
following facts.

(1) Kr(k*) becomes bigger, if m becomes bigger.

(2) Ki(k*) becomes smaller, if oy becomes smaller.

(3) Kr(k*) becomes smaller, if AI(f) becomes bigger.

As designers, we want m to be bigger, AI(f) to be bigger, or to be smaller and Kp(k*) to be smaller for
one Boolean function, thus these indicators cannot be the best at the same time. However, the best values of
AI(f), or and Kf(k*) may be achieved at the same time. These results can provide theoretical support for
S-box design and evaluation.

5 Relationships among CC, SNR and R70

In the section, we give three relationships among the confusion coefficient, the SNR and the RTO.
In 2004, Guilley et al. [4] presented the SNR of (n, m)-function in Definition 5.1.

Definition 5.1. [4] Let F = (fi, ...,fm) be an (n, m)-function and f; e B, (1 <i < m). The SNR of F is
defined by
m- 22n

ST @ g

If m = 1 in Definition 5.1, then F is an n-variable Boolean function (let F = f). We have

SNR(F) =

22n
JEerlFF @ @I

In 2017, Chakraborty et al. [6] presented the RTO of (n, m)-function in Definition 5.2.

SNR(f) =

Definition 5.2. [6] Let F = (f}, ...,fn) be a balanced (n, m)-function and f; € B,, (1 < i < m). The R70 of F,
based on the cross-correlation properties of F, is defined by:

If m = 1 in Definition 5.2, then F is an n-variable Boolean function (let F = f). We have

1 m
RTO(F) = max{m T >y

m
Y (-DPehiAs p(a)
BeFy aeFy"j=1i=1 '

RTO(f) =1~ o ¥ 16s(a0)].

2n _ 9yn
2 2 aeF%*

Based on Definition 5.1 and Theorem 4.1, we have Theorem 5.3.

Theorem 5.3. Let f € B,. For a given k* € [F5, we have

1 ] _ R -2awm(HP
SNRZ(f) on+5 :

Ke(k™) = 2“6[1 +
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Proof. According to the definition of SA'R for any Boolean function, we have

T T ) = —
Ffeo@p)=—7"—.
aeFs : SNRZ(f)
And from [19] we know
1
0 ==Y Fifeq).
2 aeF}
Thus, for any balanced Boolean function f, we have
o onee _ [27=2wt(H)P of
Kf(k )_ 2 ¢ - 2n+5 + 22n+6
4
o 2wt Laa” SO 9
=2"° — +
2n+5 23n+6
ne 2" =2wt(f)P 24n
=2 - 2n+5 + 23"+63NR2(f)
e, 272 2wt(H)P g
SNRZ(f) n+5 .

From Theorem 5.3, on one hand, we know that the sum-of-squares of the confusion coefficients
becomes larger, if the SANR becomes smaller. That is to say that the two indicators (the sum-of-squares
of the confusion coefficients and SA‘R) cannot achieve the best for a given Boolean function at the same
time. On the other hand, if we have a value of SNR, then we can easily know the value of the sum-of-
squares of the confusion coefficients for a given Boolean function. It can be seen from Theorem 5.3 that
SNR and the sum-of-squares of the confusion coefficients are mutually determined for the same Boolean
function.

Thus, for any balanced Boolean function, we have Corollary 5.4.

Corollary 5.4. Let f € B, be a balanced Boolean function. For a given k* € F5, we have

¥\ _ HJn-6 1
Kp(k*) =2 [1 + SNRAD) ]
From [9], we have 1 < SNR(f) < 2"/2 for any Boolean function f € B, thus we obtain the same result
with Theorem 4.2 based on Corollary 5.4.
In Table 3, we find 18 different values of K(k*) for all balanced 5-variable Boolean functions and the
number of Boolean functions in every value, this classification is consistent with Table 2 in ref. [12].
Based on Definition 5.2 and Theorem 4.1, we have Theorem 5.5.

Theorem 5.5. Let f € B, be a balanced Boolean function. For a given k* € F3, we have

[2" - 2" - DRTO(f)
on+6 :

Ki(k*) = 6 4

Proof. According to the definition of R7O(f) for any Boolean function f, we have
Y. Bs(@)] = [22" = 2"[1 - RTO(f)].

aeF5*
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Table 3: The distribution of K(k*) for 5-variable balanced Boolean functions

Class Kr(k*) Number Percentage
1 1.000000 62 0.00001
2 0.794922 15872 0.00264
3 0.671875 59520 0.00990
4 0.666016 833280 0.13863
5 0.625000 8680 0.00144
6 0.607422 555520 0.09242
7 0.595703 9999360 1.66356
8 0.589844 8888320 1.47872
9 0.583984 1666560 0.27726
10 0.578125 1145760 0.19062
11 0.572076 6249600 1.03973
12 0.560547 73773056 12.27341
13 0.554687 90549760 15.06450
14 0.548828 66662400 11.09043
15 0.542969 133324800 22.18086
16 0.537110 166656000 27.72608
17 0.531250 39025280 6.49252
18 0.525391 1666560 0.27726

And from the definition of or for any Boolean function f and the aforementioned equation, we know

o =Y N(a)
acFs
Zaeng’lAf(a)lz Zae[Fg'lz
- -
2
500
2 - =
2"
2
R
- >
[2" + (2" - 2M(1 - RTO(f))P

2n
According to Theorem 4.1, we have

Ki(k*) = 276 — [27 - 2wt (f)]? of

2n+5 22n+6
2"+ % - 201 - RTO(f NP
6 n
22"° -0+ 22n+6
_ s, 1+ Q"= 1A = RTO()P
- on+6
n _ n _ 2
s 2= Q- DRTONP
2n+6

Based on Corollary 5.4 and Theorem 5.5, we have Theorem 5.6.

Theorem 5.6. Let f € B, and wt(f) = 2"\, Then
SNR(HH2" - 2" - DRTO(f)] < 2.



12 — YuZhouetal. DE GRUYTER

Through the confusion coefficient of any Boolean function, we establish a relationship between SAR
and R70. For any (n, m)-function, a relationship between SNR and R70O was obtained in ref. [8]. If m = 1,
Theorem 5.6 improves the result in ref. [8].

6 Conclusions

In this article, we give some bounds on the confusion coefficient for a Boolean function. And we also give
some relationships between the confusion coefficient and other cryptographic properties. Moreover, some
links among the confusion coefficient, the SNR and RTO are determined first. From the designer point of
view, we hope to construct S-boxes with low the confusion coefficient, but a good S-box cannot make the
confusion coefficient and some cryptographic indicators reaching the best at the same time, we hope that
these results of Boolean functions will help us to construct good (n, m)-functions or S-box in the next step.
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