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Abstract: In this paper we provide a framework for applying classical search and preprocessing to quantum

oracles for use with Grover’s quantum search algorithm in order to lower the quantum circuit-complexity of

Grover’s algorithm for single-target search problems. This has the effect (for certain problems) of reducing

a portion of the polynomial overhead contributed by the implementation cost of quantum oracles and can

be used to provide either strict improvements or advantageous trade-offs in circuit-complexity. Our results

indicate that it is possible for quantum oracles for certain single-target preimage search problems to reduce

the quantum circuit-size from O
(︁
2

n/2
· mC

)︁
(where C originates from the cost of implementing the quantum

oracle) toO(2n/2 ·m
√
C) without the use of quantum ram,whilst also slightly reducing the number of required

qubits.

This framework captures a previous optimisation of Grover’s algorithm using preprocessing [21] applied to

cryptanalysis, providing new asymptotic analysis. We additionally provide insights and asymptotic improve-

ments on recent cryptanalysis [16] of SIKE [14] via Grover’s algorithm, demonstrating that the speedup ap-

plies to this attack and impacting upon quantum security estimates [16] incorporated into the SIKE specifica-

tion [14].
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1 Introduction
Whilst the quantum circuit-complexity of a quantum algorithm is linked to the cost of executing a quantum

algorithm, this link is not yet fully understood owing to the uncertainty regarding the eventual architecture

of quantum computers and the need to perform quantum error-correction to protect the state from environ-

mental noise. The logical quantum circuit-model of computation ignores the issue of noise and has been

the de-facto choice of assigning a cost to quantum algorithms for the cryptographic community as our un-

derstanding of the true costs involved with executing quantum algorithms has been evolving. In particular,

there is the issue of quantum query-complexity versus quantum bit-complexity when assigning a cost to the

best known quantum attack on a cryptosystem for purposes of choosing quantum-resistant cryptographic

parameters in relation to it.
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If a quantum search algorithm requiresO
(︁
2

n/2
)︁
calls to a particular subroutine (a quantumoracle), then

it is clear that this algorithmhas a cost of at leastO
(︁
2

n/2
)︁
. If we assign a cost to this quantumoracle of C, then

it is clear that the full cost of the algorithm is at least O
(︁
2

n/2
· C
)︁
. Whilst there are hard proofs that we cannot

do better than O
(︁
2

n/2
)︁
calls to this quantum oracle if we assume that the quantum oracle is a black-box [28]

(in that we model it simply via input and output), we focus upon redefining what it means for the oracle to

be called. By doing this, we note that for certain problems we can in fact increase the query-complexity but

reduce the total cost of the quantum algorithm itself.

Contributions
We provide a framework for reasoning about how the quantum circuit-complexity of Grover’s algorithm can

be reduced via design principles that can be applied to the quantumoracle, allowing strict gains in allmetrics

for certain problems. This is done via combining classical search with Grover’s algorithm, increasing the cost

of the quantumoracle, but defining it over a smaller search-space. This approach allows for a balancing of the

query-complexity and the cost of the quantum oracle and admits a number of benefits, such as preprocessing

options which strictly improve the efficiency of Grover’s algorithm.

We demonstrate the utility of our framework by applying it to two known quantum attacks on cryptosys-

tems using Grover’s algorithm, demonstrating that it captures and improves upon a known quantum attack

on the Multivariate Quadratic problem over F
2
using Grover’s algorithm and provides new results on quan-

tum cryptanalysis of SIKE [14], providing evidence that the cost of attacking SIKE via Grover’s algorithm is

asymptotically lower than previously estimated [14, 16].

Outline of this paper
In Section 2, we reviewGrover’s algorithm. In Section 3we introduce our framework. In Section 4we examine

several applications to cryptanalysis and give our conclusions in Section 5.

2 Background
Definition 2.1 (The unstructured search problem) Let χ : {0, 1}n −→ {0, 1} be such that Mχ = |χ−1(1)|. The
unstructured search problem defined by χ is the problem of finding an element x ∈ {0, 1}n such that χ(x) = 1

or proving that no such element exists, given only the ability to evaluate χ.

A classical computer requires O( 2
n

Mχ
) calls to a classical circuit which evaluates χ before a solution to the un-

structured search problem (Definition 2.1) is found [1]. In comparison, Grover’s algorithm requires O(
√︁

2
n

Mχ
)

calls to a quantum circuit which evaluates χ and terminates with a solution to the unstructured search prob-

lemwith high probability. It will additionally prove useful to consider another formulation of the search prob-

lem.

Definition 2.2 (The preimage search problem) Let h : {0, 1}n −→ {0, 1}m and Yh ⊆ {0, 1}m. The preimage
search problem is to find an x ∈ {0, 1}n such that h(x) ∈ Yh or prove that no such x ∈ {0, 1}n exists.

Any algorithm that solves arbitrary instances of the preimage search problem can be used to solve the search

problem and vice versa, but it is clear that there is more computational structure in the preimage search

problem compared to the unstructured search problem which can benefit the design of of algorithms.
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Quantum algorithms
Quantum states consist of qubits (quantum bits) and an n qubit quantum state relative to the computational
basis

{︀
|x⟩ : x ∈ {0, 1}n

}︀
can be expressed as

∑︀
x∈{0,1}n αx |x⟩ where αx ∈ C and

∑︀
x∈{0,1}n |αx|

2

= 1. The αx
are the amplitudes of each computational basis state |x⟩ and measurement of this quantum state results in

the bitstring x ∈ {0, 1}n with probability |αx|2. Quantum algorithms therefore consist of increasing the mag-

nitude of αx which encode algorithmically useful information — Grover’s algorithm consists of the repeated

application of a quantum circuit, each of which (up to a point) increases the magnitude of αx which encode
solutions to the search problem.

Cost models and reversibility
Quantum circuits that do not include measurement are equivalent to unitary operators (U such that there

exists U† with the property UU† = U†U = I) and because of this correspondence, quantum circuits which im-

plement χ : {0, 1}n −→ {0, 1} can be designed by considering reversible classical circuits (which implement

permutations and therefore all have inverses), with each reversible gate assigned a cost in terms of quantum

gates.

Much as the universal boolean gate set {¬,⊕,∧} can implement arbitrary classical circuits, quantum

algorithms can be implemented (up to an arbitrary level of precision) by a universal quantum gate set. For rea-
sons of space we deal only with asymptotics in this paper, but illustrate the above in terms of the Clifford+T

universal quantum gate which consists of the Clifford gate set (the Hadamard, Phase and CNOT gates) and

the single T gate. By fixing a universal quantum gate set we can reason about the quantum circuit-complexity

(cost) of a quantum algorithm which consists of the quantum circuit-size (number of quantum gates), quan-

tum circuit-depth (timesteps taken) and quantum circuit-width (quantum bits required). It is plain that the

set of quantum gates

{︀
X,∧

1
(X),∧

2
(X)
}︀
and more generally ∧k(X) for k ≥ 1 acting upon computational basis

states defined by

X |x
1
⟩ ↦→ |x

1
⊕ 1⟩ , ∧k(X) |x1 . . . xk⟩ |xk+1⟩ ↦→ |x

1
. . . xk⟩

⃒⃒
xk+1 ⊕ (x

1
∧ · · · ∧ xk)

⟩︀
(1)

where ∧
0
(X) := X is sufficient to implement all reversible classical circuits on computational basis states,

if we have sufficient ancilla qubits as this gate set corresponds to the universal boolean gate set {¬,⊕,∧}.
The ∧k(X) for k ≥ 2 is simply a useful abstraction. The X and ∧

1
(X) gate each require one Clifford gate to

implement, whilst the ∧
2
(X) (Toffoli gate) can be implemented using 17 Clifford+T gates [2, 24] and the ∧k(X)

gate to require at most 40k − 64 Clifford gates for k > 2 [17] if we have a single ancilla qubit, which can be in
any state.

Definition 2.3 (Cost notation) IfA is any quantum algorithm or quantum gate, we denote the execution cost

of A by the notation CA. Costs will be provided in terms of components that are executed in serial, so that

CA can be substituted for circuit-size, circuit-depth or either metric applied to a subset of quantum gates.

2.1 Quantum oracles and Grover’s algorithm

Definition 2.4 (Quantum bit oracle) The quantumbit oracleO(b)
χ acting upon n+1 qubit computational basis

states |x
1
. . . xn⟩ |b⟩, where b ∈ {0, 1}, maps

O(b)
χ |x

1
. . . xn⟩ |b⟩ ↦→ |x

1
. . . xn⟩

⃒⃒
b ⊕ χ(x

1
. . . xn)

⟩︀
. (2)

Quantum oracles will be used in conjunction with Grover’s algorithm, which we state and provide a cost

for without proof. Our modifications will simply be alterations of the quantum bit oracle and are used with

Grover’s algorithm.

Theorem 2.5 (Grover’s algorithm [4, 12]) Let χ : {0, 1}n −→ {0, 1} define the search problem where M =

|χ−1(1)| is known. Then there exists a quantum algorithm that solves the search problem defined by χ with prob-
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ability at leastmax{1− M
2
n ,

M
2
n } and which has a cost of CH⊗n +

⌊︁
π
4

·

2

n/2
√
M

⌋︁
·

(︀
Cχ + CDn

)︀
, where CH⊗n , Cχ and CDn

are respectively the cost of implementing the Hadamard transform on n qubits, the quantum bit oracleO(b)
χ and

the diffusion operator Dn on n qubits, where cost is either quantum circuit-size or quantum circuit-depth.

H⊗n
is the parallel application of n Hadamard gates, each of which cost 1 Clifford gate and the diffusion

operator on n qubits is can be assigned a circuit-size of 44n − 105 Clifford+T gates for n ≥ 7 [17, 18] and

circuit-depth of 44n − 103. Our framework will enable the cost expressed in Theorem 2.5 to be optimised by

trading off between the cost Cχ+CDn and the query-complexity term

⌊︁
π
4

·

2

n/2
√
M

⌋︁
. Much aswe requirememory to

implement classical functions efficiently, we often require ancilla qubits to implement the action of quantum
bit oracle. In this paper we use a decomposition of the quantum bit oracle that captures this fact.

Definition 2.6 (Bitwise decomposition of the oracle) A bitwise decomposition of quantumbit oracleO(b)
χ con-

sists of the n+1 unitary operators Uχ
*

, Uχn , . . . , Uχ1 acting upon n+w+1 qubits, such that for any x1 . . . xn ∈
{0, 1}n and b ∈ {0, 1}

U†χ
1

· · ·U†χnUχ*Uχn · · ·Uχ1 |g0⟩ |x1 . . . xn⟩ |b⟩
↦→|g

0
⟩ |x

1
. . . xn⟩

⃒⃒
b ⊕ χ(x

1
. . . xn)

⟩︀
, (3)

where Uχi = U′
χi ⊗ I⊗n−i+1 so that U′

χi acts upon w + i qubits, with

U′
χi
⃒⃒
gi−1(x1, . . . , xi−1)

⟩︀
|x
1
. . . xi⟩ ↦→

⃒⃒
gi(x1, . . . , xi)

⟩︀
|x
1
. . . xi⟩ (4)

with gi(x1, . . . , xi) ∈ {0, 1}w derived from x
1
, . . . , xi only, g0 ∈ {0, 1}w and

Uχ
*

⃒⃒
gn(x1, . . . , xn)

⟩︀
|x
1
. . . xn⟩ |b⟩ ↦→

⃒⃒
gn(x1, . . . , xn)

⟩︀
|x
1
. . . xn⟩

⃒⃒
b ⊕ χ(x

1
. . . xn)

⟩︀
. (5)

We there have that

(︁
I⊗w ⊗ O(b)

χ

)︁
= U†χ

1

· · ·U†χnUχ*Uχn · · ·Uχ1 and that Uχi should be interpreted as producing
a memory state gi(x1, . . . , xi) ∈ {0, 1}w computed using only the first i bits of a possible solution to the

search problem. Thememory state g
0
∈ {0, 1}w can be considered as an initial memory-state which does not

depend upon any of the bits x
1
, . . . , xn. Typically, we can take g0 = 0

w
. This decomposition applies trivially

to quantum bit oracles constructed using only reversible boolean primitives (we define Uχi = I⊗n+w+1 and

Uχ
*

= O(b)
χ ) but non-trivial decompositions may require special design. The single-target preimage search

problem (see Definition 2.2) can be modelled by simply by setting Uχn · · ·Uχ1 to compute

⃒⃒
h(x

1
. . . xn)⊕ 1

m⟩︀
and setting Uχ

*

:= ∧m(X).

3 A framework for preprocessing
In this section we present our framework for optimising applications of Grover’s algorithm via modifying

quantum bit oracles to take advantage of classical search and preprocessing. Computational gains will be

made possible via examining the role of memory in implementing the action of the quantum bit oracle and

trading off between query-complexity and computational effort required to implement the action of the quan-

tum bit oracle. With this in mind we can choose an integer 0 ≤ k ≤ n that defines a cut of the bitwise decom-

position of the quantum bit oracle (see Definition 2.6), splitting it into three separate components so that

Un−k := Uχn−k · · ·Uχ1 , Uk := Uχn · · ·Uχn−k+1 and U
*
:= Uχ

*

. (6)
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3.1 Combining classical search with Grover’s algorithm

Theorem 3.1 (Secondary classical search) Given a cut of a quantum oracle parameterised by 0 < k < n, we
can implement a modified quantum bit oracle

O(b)
χ′ |0w⟩ |x

1
. . . xn−k⟩ |0k⟩ |c⟩ ↦→ |0w⟩ |x

1
. . . xn−k⟩ |0k⟩ |c

⨁︁
z
1
...zk∈{0,1}k

χ(x
1
. . . xn−kz1 . . . zk)⟩ (7)

and whose cost is

C
O(b)
χ′
= 2 ·

n−k∑︁
i=1

CUχi + 2 · 2
k
(︃ k∑︁
i=1

CUχn−k+i

)︃
+ 2

k
· CU

*

+ 2

k
· CX . (8)

Proof. We first execute Un−k to compute

Un−k
⃒⃒
0

w⟩︀ |x
1
. . . xn−k⟩ |0k⟩ ↦→

⃒⃒
g(x

1
, . . . , xn−k)

⟩︀
|x
1
. . . xn⟩ |0k⟩ (9)

then simply follow the procedure of executing the sequence U†kU*Uk on all possible assignments of the final

k values of the search-space. This can be performed efficiently via using the k qubits following the register
|x
1
. . . xn−k⟩ as additional input z1 . . . zk ∈ {0, 1}k for U†kU*Uk and simply cycling through all possible values

of z
1
. . . zk ∈ {0, 1}k. If we use a binary reflected Gray Code [11], we can start in the state 0k and cycle through

all 2

k
elements of {0, 1}k, ending in the state 10

k−1
by flipping only a single bit at a time, which can be

accomplished via using an X gate on the relevant qubit and if we wish to return the state to |0k⟩, then we

need only execute an additional X gate for a total cost of 2k X gates. After this, we simply execute the unitary

U†n−k, leaving us with the computational basis state⃒⃒
0

w⟩︀ |x
1
. . . xn−k⟩ |0k⟩ |c

⨁︁
z
1
...zk∈{0,1}k

χ(x
1
. . . xn−kz1 . . . zk)⟩ . (10)

Corollary 3.2 The modified quantum bit oracle O(b)
χ′ as described in Theorem 3.1 can be used with Grover’s

algorithm defined on the search-space of n−k qubits and terminates with an x ∈ {0, 1}n−k that can be extended
to a full solution with probability at least

(︁
1 −

M(M−1)
2
n−k

)︁
· max

{︀
1 −

M
2
n−k ,

M
2
n−k

}︀
if 1 ≤ M ≤ 2(n−k)/2.

Proof. This can easily be seen as the modified quantum oracle will mark any element x
1
. . . xn−k ∈ {0, 1}n−k

such that x
1
. . . xn−k ∈ {0, 1}n−k can be extended to a full solution for some z

1
. . . zk ∈ {0, 1}k. Hence M′

=

|χ′−1(1)| = |χ−1(1)| if there are no collisions on the first n − k bits of solutions, for which a standard lower

bound exists. If M = 1, then there can obviously be no such collision.

Such stategies are possible with classical computation, but require state to be stored. By their nature, re-

versible logic circuits store state implicitly and by using this fact we avoid increasing the number of qubits.

There is no guarantee that a non-trivial advantageous cut will be possible, but we can simply follow a design

heuristic where as much cost as possible is shifted towards Un−k. As we can simply compute the costs CUn−k ,
CUk and CU* as a function of k, we can easily find an optimal k via numerical simulation of the costs involved

(often a simple formula) on all values of 0 ≤ k ≤ n, which is a negligible classical computation.

Example 3.3 We consider the case where CUχ
1

= · · · = CUχn = CUχ
*

and these costs dominate that of the

diffusion step, so that CUn−k = (n − k)D, CUk = kD and CU
*

= D for some constant D. Choosing k = log
2
n and

using Equation (8) in conjunction with the Theorem 2.5 gives us a cost of

π
4

· 2

n/2
·

1√
n
·

(︁
2

(︀
n − log

2
n
)︀
+ n
(︀
2 log

2
n + 1

)︀)︁
· D (11)

which gives us an asymptotic cost of O
(︁
2

n/2
· n1/2(log

2
n)D

)︁
compared to using Grover with the unmodified

oracle for an asymptotic cost of O
(︁
2

n/2
· nD

)︁
.
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Corollary 3.4 (Evaluation via backtracking) Let the conditions be as in Theorem 3.1. The same procedure can
be implemented for a cost of

C
O(b)
χ′
= 2 ·

n−k∑︁
i=1

CUχi + 2 ·
k∑︁
i=1

(︁
2

i
· CUn−k+i

)︁
+ 2

k
· CUχ

*

+ 2

k
· CX . (12)

Proof. This can be easily seen as if we denote via Xi the application of an X gate to the ith qubit of the search-
space then each subsequence of unitary operators

U
*
Uχn · · ·Uχn−k+1Xn−k+iU

†

χn−k+1 · · ·U
†

χnU* (13)

that appears in the unitary Uk can be replaced by the subsequence

U
*
Uχn · · ·Uχn−k+iXn−k+iU

†

χn−k+i · · ·U
†

χnU*. (14)

Corollary 3.5 (Commuting bitwise invariant components) Given a modified quantum bit oracle O(b)
χ′ parame-

terised by 0 ≤ k ≤ n as in Theorem 3.1 such that Uχn−k+1 , . . . , Uχn all commute and the action of each Uχi is
invariant upon any choice of zj ≠ zi, the cost of O(b)

χ′ can be reduced to

C
O(b)
χ′
= 2 ·

n∑︁
i=1

CUχi +
k∑︁
i=1

(︁
2

i
· CUχn−k+i

)︁
+ 2

k
· CUχ

*

+ 2

kCX . (15)

Proof. Again using the notation Xi for the application of an X gate to the ith, we can adapt Theorem 3.1 by

simply replacing any subsequence

U
*
Uχn · · ·Uχi · · ·Uχn−k+1Xn−k+iU

†

χn−k+1 · · ·U
†

χi · · ·U
†

χnU* (16)

that appears in the unitary Uk by

U
*
UχiXn−k+iUχn · · ·Uχn−k+1U

†

χn−k+1 · · ·U
†

χnU
†

χiU* (17)

by the commutingproperty of eachUχi and invarianceof theunitary sequenceUχn · · ·Uχn−k+1 upon the variable
zi. From there it is a simple matter to note that the inner unitaries cancel each other out and we must first

fully compute the sequence Uχn · · ·Uχ1 and end with the sequence U†χ1 · · ·U†χn .

Example 3.6 We again consider the case where each unitary operator a cost of D as in Example 3.3, but

where we can instead apply Theorem 3.5. The choice of k = log
2
n can now be seen to be optimal if we take

the derivative of the full cost equation for Grover’s algorithmwith themodified quantumbit oracle. This gives

an asymptotic cost for Grover’s algorithmwith this modified quantum bit oracle of O
(︁
2

n/2
· n1/2D

)︁
, whereas

Theorem 3.1 gave us a cost of O
(︁
2

n/2
· n1/2 log

2
nD
)︁
and the unmodified quantum bit oracle with Grover was

O
(︁
2

n/2
· nD

)︁
.

3.2 Preprocessing the classical secondary-search procedure

We now turn to the benefits of preprocessing any of the previously described methods of secondary classical

search.

Theorem 3.7 (Ancilla qubits allow shifting of unitary costs) Any component of the circuit that computes
Uχn−k+i for 1 ≤ i ≤ k that is dependent solely on |x

1
. . . xn−k⟩

⃒⃒
z
1
. . . zj

⟩︀ ⃒⃒
gn−k+j(x1, . . . , xn−k , z1, . . . , zj)

⟩︀
for

0 ≤ j < i can be computed and stored on ancilla qubits during the computation of Uχn−k+j .
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Proof. The proof of this is trivial and relies solely upon the definition of the bitwise decomposition of the

quantum bit oracle.

In an ideal situation, the unitary costs will be shifted as much as possible to Un−k.

Theorem 3.8 (Classical preprocessing allows strict gains) Let O(b)
χ′ be a modified quantum bit oracle parame-

terised by 0 < k < n as in Theorem 3.1. Then at the cost of classical storage space and/or classical preprocessing
and without affecting the correctness of this algorithm, the quantum cost of O(b)

χ′ can be reduced and is at worst
unchanged, whilst we reduce the number of qubits required by k.

Proof. Wewill create 2

i
circuits for eachUχn−k+i , each ofwhich are hardcoded to assume that the bits z

1
. . . zi ∈

{0, 1}i are fixed. Thefirst benefit is that aswe are implicitly creating a circuitwhich is hardcodedwith a choice

of z
1
. . . zi, we need not include these qubits or any qubits which interact onlywith them (and not x

1
. . . xn−k

by any circuit-path) in the search-space or the w-bit memory-state.

The second benefit is in a reduction in the complexity of the individual circuits themselves. If we consider

purely reversible circuits, then for any unitary U we have that if any zi appears in the control qubits for∧k(U),
then this can be hardcoded as a either a ∧k−1(U) gate if zi = 1 or removed completely if zi = 0.

The thirdbenefit is that further optimisations arepossible in the sequenceof hardcodedcircuitsUχn−k+1 · · ·Uχn
as a whole. If we consider a simple circuit constructed of multiple ∧k(X) gates, all of which write to the same

target qubit and where no cancellation is posible, then any hardcoding of these ∧k(X) gates that results in a
circuit with r ∧k′ (X) for (k′ < k) gates with identical controls allows them to be removed if r is even or replaced
with a single gate if r is odd.

Thus if we allow for the preprocessing and additional storage or alternatively online computation then

these hardcoded quantum circuits are no more expensive to execute and we can always reduce the number

of qubits by k.

We briefly mention that we could employ parallelism (communication costs allowing), whereby we compute

Un−k, then create 2

k
copies of the resulting state and execute the sequence of unitaries U†kU*Uk upon each

one. This strategy allows us to bypass some of the increase in circuit-size that is a hard-limit if we treat the

quantum oracle as a black-box [28] as this increase only applies to CUk and CU* .

4 Applications to Cryptanalysis
In this section we demonstrate that our framework captures one previously proposed attack using Grover’s

algorithm on Multivariate Quadratic cryptosystems, provides missing asymptotic analysis on its results and

improves upon it. We concludewith demonstrating ourmethodology can be applied to recent quantum crypt-

analysis [16] of the proposed quantum resistant cryptosystem SIKE [14].

4.1 The Multivariate Quadratic problem over F2

Definition 4.1 (The Multivariate Quadratic (MQ) problem over F
2
) We define f (1)(x

1
, . . . , xn), . . . , f (m) (x1,

. . . , xn) ∈ F
2
[x

1
, . . . , xn] be m equations of degree two in n variables over the finite field of size 2. The

Multivariate Quadratic (MQ) problem over F
2
is to find a solution vector (x

1
, . . . , xn) ∈ (F2)n such that

f (1)(x
1
, . . . , xn) = · · · = f (m)(x1, . . . , xn) = 0. (18)

Several quantum resistant signature schemes [13, 20] have been published which rely upon the hardness of

solving the Multivariate Quadratic problem over F
2
. Whilst asymptotically more efficient algorithms exist [3,

9], a basic attack [23] using Grover’s algorithm thatwas later optimised via preprocessing [21] is both captured

and improved upon by our framework. We leave explicit details to Appendix A for reasons of space and to

avoid duplication of preexisting work [21, 23].
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This case-study provides important commentary upon the difficulty in choosing quantum resistant pa-

rameters in relation to Grover’s algorithm as the initial quantum resistant parameters were suggested [20] in

relation to the query-complexity of O
(︁
2

n/2
)︁
for Grover’s algorithm to solve the MQ problem over F

2
. After

publication of an explicit design for a quantum bit oracle to use in conjunction with Grover’s algorithm for

this problem [23] which gave the quantum circuit-size O
(︁
2

n/2
· mn2

)︁
for Grover’s algorithm, new parame-

ters were suggested in a subsequent paper [19] in relation to this cost. These costs were also quoted in several

specifications for quantum-resistant cryptosystems in the NIST competition [6, 8]. Our framework demon-

strates that one optimisation [21] using preprocessing lowers the cost to O
(︁
2

n/2
· mn3/2

)︁
and that by using

our framework this improves to O
(︁
2

n/2
· mn

)︁
by using an additional O(m log

2
n) ancilla qubits. We discuss

the problem of choosing quantum-resistant cryptographic parameters in relation to anything but the query-

complexity of Grover’s algorithm further in Section 5.

4.2 The Computational SuperSingular Isogeny (CSSI) problem

In this sectionwe reexamine the cost of a Grover-based attack upon the quantum-resistant key encapsulation

method SIKE [14], whereby Grover is used to attack the CSSI problem (see Definition 4.2) via searching for a

unique collision between two functions. We demonstrate how this attack fits into, and can be improved upon

by, our framework. We provide an asymptotically better attack using Grover’s algorithm and new estimates

for the hardness of solving the CSSI problem via Grover’s algorithm under various constraints (see Appendix

B). These results impact upon the estimates in [16] which are quoted in the SIKE specification [14].

This problem has previously studied in [16] where the authors argue that whilst Tani’s algorithm [25]

may be the most asymptotically efficient method to solve this problem in terms of query-complexity, once

the implementation of the underlying quantum data structure and memory is taken into account, Grover’s

algorithm may be competitive with Tani’s algorithm.

On the cost of computing an isogeny-path
Isogenies are morphisms that are rational maps between groups of points of elliptic curves. Their degree is

that of their rational map structure, and they are uniquely determined by their kernel. Given the 2

e
-torsion

E[2e] of E, a degree-2e isogeny uniquely corresponds to a x
1
. . . xe ∈ {0, 1}e via a choice of a (cyclic) kernel

in E[2e]. Given a kernel, the total cost of computing the corresponding 2

e
-isogenous curve is in O (e log

2
e)

elliptic curve operations [10].

Definition 4.2 (The Computational SuperSingular Isogeny problem¹ [15])

Let E
1
, E

2
be two supersingular elliptic curves defined over Fp2 such that there is a degree 2

e
isogeny ϕ :

E
1

−→ E
2
(up to isomorphism) with e ≈ log

2

p
2

. Given E
1
, E

2
, p and e, the Computational SuperSingular

Isogeny (CSSI) problem is to find an isogeny between E
1
and E

2
.

Finding (up to isomorphism) a degree-2

e
isogeny ϕ : E

1
−→ E

2
can be solved by finding one degree-2

e
1

isogeny ϕ
1
: E

1
→ E′ and one degree-2e2 isogeny ϕ

2
: E

2
→ E′′ such that e = e

1
+ e

2
and E′ is isomorphic

to E′′. The composition of isogenies ϕ = ϕ
2
∘ ϕ

1
(where ϕ

2
is the dual-isogeny of ϕ

2
) is then the degree-2

e

isogeny we are searching for. Isomorphic classes of curves are identified by their j-invariant in Fp2 . Hence we
define hi : {0, 1}ei −→ Fp2 for i = 1, 2 so that h

1
(x

1
. . . xe

1

) and h
2
(x

1
. . . xe

2

) are the respective j-invariants of
E′ where ϕi : Ei → E′ corresponds to the kernel defined by x

1
. . . xei ∈ {0, 1}ei . Thus, if we find the collision

(x
1
. . . xe

1

, z
1
. . . ze

2

) ∈ {0, 1}e1 × {0, 1}e2 such that h
1
(x

1
. . . xe

1

) = h
2
(z

1
. . . ze

2

), then we have solved the

CSSI problem. As in [16] we work under the assumption that there is a single such isogeny ϕ : E
1
−→ E

2

(hence there is one target in our search-space), which is justified under the arguments of [26].
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Fitting the attack to our framework
When e

1
≈ e

2
≈ e/2 as suggested in [16], we obtain a constant time saving over the simple search case

e
1
= e, e

2
= 0 as 2 ·

e
2

· log
2
(e/2) = e(log

2
e−1). This does not impact the asymptotic complexity of the search

procedure. In our framework, we define the initial unitary Un−k (in this scenario n = e and k = e2) to compute

(where ĝe
1

(x
1
, . . . , xe

1

) is the intermediate memory-state required to compute the j-invariant h
1
(x

1
. . . xe

1

))

|ĝe
1

(x
1
, . . . , xe

1

)⟩ |0w2⟩ |h
1
(x

1
. . . xe

1

)⟩ |x
1
. . . xe

1

⟩ |z
1
. . . ze

2

⟩ (19)

where

⃒⃒
ge

1

(x
1
, . . . , xe

1

)

⟩︀
=

⃒⃒
ĝe

1

(x
1
, . . . , xe

1

)

⟩︀
|0w2⟩ |he

1

(x
1
. . . xe

1

)⟩ in our framework and the unitary Uk
(where k = e

2
) is defined to map this state to

|ĝe
1

(x
1
, . . . , xe

1

)⟩
⃒⃒
ĝe

2

(z
1
, . . . , ze

2

)

⟩︀
|h

1
(x

1
. . . xe

1

)⊕ h
2
(z

1
. . . ze

2

)⟩ |x
1
. . . xe

1

⟩ |z
1
. . . ze

2

⟩ , (20)

where h
2
(z

1
. . . ze

2

) := h
2
(z

1
. . . zk)⊕12⌈log2 p⌉. Theorem3.1 therefore givesus thatwe canperforma secondary

classical search procedure and we can use preprocessing as described in Theorem 3.8 to reduce the cost of

the circuit. As

⃒⃒
g
2
(z

1
, . . . , ze

2

)

⟩︀
depends solely upon z

1
. . . ze

2

at all times, after hardcoding is completed,

the qubits required to represent it can be removed in addition to the e
2
qubits of the search-space Grover is

defined upon. After cancellations of layers of X gates, the 2

k
applications of U†kU*Uk is then simply 2

k
+ 1

layers of 2⌈log
2
p⌉ X gates executed in parallel with 2

k ∧
2⌈log

2

p⌉(X) gates in between each layer.
In relation to the CSSI problem, the security level of SIKE [14] is parameterised by a prime p of the form

2

e
3

f
− 1 where 2

e
≈ 3

f
so that e ≈ p1/2. The problem of breaking an instance of SIKE-p is then equivalent to

finding the unique degree 2

e
isogeny defined by the public-parameters of SIKE-p.

Theorem 4.3 (Grover vs CSSI) Let Ce be the cost (either quantum circuit-size or quantum circuit-depth) of eval-
uating a degree 2e isogeny as a reversible quantum circuit. Solving the CSSI problem via Grover’s algorithm then
has a cost of

O
(︁
p1/4 · Ce1/2

(︀
log

2
p
)︀
1/2

)︁
. (21)

Proof. We can express the asymptotic cost of our attack parameterised by our choice of e
2
(where we recall

e
1
+ e

2
= e) as

O
(︂
p1/42−e2/2 ·

[︀
2Ce ·

log
2
p

log
2
p + 2

e
2

· 2 log
2
p
]︀)︂

(22)

if we assume Ce
1

≤ Ce if all other parameters are fixed and the secondary classical-search procedure is in

O
(︀
2

e
2

· log
2
p
)︀
gates as discussed on the previous page. Taking the derivative of (22) gives our optimal value

of e
2
= log

2

(︁
Ce

log
2

p

)︁
.

This is in comparison to simply using the oracle with Grover’s algorithm for a circuit-size of O(p1/4Ce). Ce
takes O (e log

2
e) curve operations [10], each of which can be assumed to cost O

(︀
(log

2
p)2 log

2
log

2
p
)︀
quan-

tum gates [22, Table 1] (this may be an underestimate). Thus Ce ∈ O
(︀
e(log

2
e)(log

2
p)2(log

2
log

2
p)
)︀
and our

asymptotic speedup is in O
(︀
(log

2
p) · (log

2
log

2
p)
)︀
. In [16], Grover’s algorithm is used to derive estimates on

the cost of attacking SIKE for specific security parameters and in Appendix B, we use our result with their

methodology.

5 Conclusions
The extent to which the overhead of the quantum oracle can be reduced is clearly an important issue if the

cryptographic community is choosing parameters relative to a costing of Grover’s algorithmwhich takes into

account both the query-complexity and the cost of the queries themselves. The safest route is of course to

simply choose the query-complexity as a lower-bound on the circuit-size for such Grover-based attacks and

this protects against our optimisation as we only increase the total number of queries.
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Our gains have instead been enabled via better use of intermediate computations and exploiting classical

computation to create efficient hardcoded circuits, both of which can then be used find an optimal balance

between the cost of the quantum oracle and the query-complexity. Whilst our methods are obviously not

applicable to all quantum oracles, a cautionary half-way measure between using the lower-bound of query-

complexity and the current methodology may be to produce a conservative quantum resource estimate for

the cost of the quantum oracle and use the square root of this for the overhead of the quantum oracle when

choosing cryptographic parameters relative to Grover’s algorithm.
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A Adapting a quantum bit oracle for theMQ problem over F2

A quantum bit oracle for theMQ problem over F2

In this Section we study how an existing quantum oracle design [23] can be modified to fit under our frame-

work. We first describe the original oracle design [23], how a previous optimisation [21] falls under our frame-

work and how this preexisting method can be improved via our framework to reduce the total circuit-size via

use of additional ancilla qubits. We first recall Definition 4.1

Definition 4.1 (The Multivariate Quadratic (MQ) problem over F
2
) We define f (1)(x

1
, . . . , xn), . . . , f (m)(x1,

. . . , xn) ∈ F
2
[x

1
, . . . , xn] be m equations of degree two in n variables over the finite field of size 2. The

Multivariate Quadratic (MQ) problem over F
2
is to find a solution vector (x

1
, . . . , xn) ∈ (F2)n such that

f (1)(x
1
, . . . , xn) = · · · = f (m)(x1, . . . , xn) = 0. (A.1)

A quantum bit oracle for theMQ problem over F2.
We first describe a quantum bit oracle to solve this problem proposed by Schwabe andWesterbaan [23]. They

first perform a classical preprocessing so that 1 is added to each f (k)(x
1
, . . . , xn). In this way the original

system of equations is satisfied when we find an element x
1
. . . xn such that f (k)(x

1
, . . . , xn) = 1 for k =

1, . . . ,m. Their quantum bit oracle evaluates each multivariate polynomial in a separate register and then

uses a single∧m(X) gate to and check if they are satisfied. By noting xixj = xjxi and x2i = xi, eachmultivariate

polynomial can be written

f (k)(x
1
, . . . , xn) =

∑︁
1≤i<j≤n

a(k)i,j xixj ⊕
n∑︁
i=1

b(k)i xi ⊕ c(k), (A.2)

where a(k)i,j , b
(k)
i , c(k) ∈ F

2
. Schwabe and Westerbaan define the quantum bit oracle as acting upon n + m + 2

qubits, so that it uses n qubits for Grover’s search-space, m qubits to store the evaluated equations, 1 ancilla

qubit to allow the efficient evaluation equations and 1 qubit for the output of the quantum bit oracle.

The evaluation of each f (k) is performed via successively adding the sums

xi ·
(︁
a(k)i,i+1xi+1 ⊕ · · ·⊕ a(k)i,nxn ⊕ b(k)i

)︁
(A.3)

onto the m equation registers, one equation at a time. Each step for i = 1, . . . , n (via an ancilla qubit starting
and ending in |0⟩) can be accomplished using at most 1 X gate, n − i ∧

1
(X) gates and a single ∧

2
(X) gate. A

single ∧m(X) gate is used after all equations are evaluated on the m registers and used to write the output of

the quantum bit oracle, which will be 1 if all of the original equations are satisfied.



154 | J.-F. Biasse and B. Pring

Applying our framework

A previously published use of preprocessing exploits only a basic form of secondary classical-search (The-

orem 3.1) combined with preprocessing (Theorem 3.8), which under our framework can be interpreted by

defining Un−k to evaluate m equations of the form

f (k)(x
1
, . . . , xn−k) =

∑︁
1≤i<j≤n−k

a(k)i,j xixj ⊕
n−k∑︁
i=1

b(k)i xi , (A.4)

which is possible as they are simply m equations in n − k variables. Uk is then the addition of

f (k)(x
1
, . . . , xn−k , z1, . . . , zk)⊕ f (k)(x

1
, . . . , xn−k) (A.5)

to each equation register, whilstU
*
is a∧m(X) gate as before. It is easily seen that C∧m(X) isO(m), that the CUn−k

is O(m · (n − k)2) by the discussion on the previous page that CUk is O(m · (n − k)) as hardcoding collapses
sums involving xizj to either 0 or xi and interactions between zizj or zk to a single bit. The asymptotic cost

of Grover’s algorithm with the modified quantum bit oracle using secondary classical search and hardcoded

bits is therefore

O
(︁
2

n/2
2

−k/2
·

(︁
m(n − k)2 + 2k · m(n − k)

)︁)︁
(A.6)

and by taking the derivative and we find that the optimal k ≈ log
2
(n) so that the asymptotic quantum circuit-

size ofGrover using approximately n−log
2
n+m+2qubits and themethoddescribed in [21] isO

(︁
2

n/2
· mn3/2

)︁
.

This asymptotic analysis was not performed in the original paper.

Following a heuristic design pattern with our framework

We use our framework to improve upon this result, obtaining a quantum bit oracle for theMQ problem over

F
2
that uses n + km +m +2 qubits and enables Grover’s algorithm to be implemented with a quantum circuit-

size of O
(︁
2

n/2
· mn

)︁
. This can be done via simply redefining the unitary operators to use Theorem 3.5 in

conjunction with Theorem 3.7. By keeping Un−k as before, but defining each unitary Uχn−k+i for 1 ≤ i ≤ k by the
action of adding only the component

zi ·
(︁
a(k)
1,ix1 ⊕ · · ·⊕ a(k)n−k,ixn−k ⊕ b(k)i

)︁
. (A.7)

It is clear that these linear sums can be computed and stored on ancilla qubits via Theorem 3.7 and that this

cost can be shifted toUn−k.We thenhave these unitary operator fulfil Theorem3.5 and that after the shifting of

costs to Un−k, we have that Uχi consists of simple one∧
1
(X) gate.We can then define U

*
to add the component

which only involves the bits z
1
. . . zk (which collapse to a hardcoded bit and at most m X gates), execute a

∧m(X) gate and uncompute the hardcoded bit again via at most one X gate. In this way the cost for Grover’s

algorithm (see Theorem 3.5) using this quantum bit oracle becomes

O
(︁
2

n/2
2

−k/2
(︁
mn2 + 2km

)︁)︁
, (A.8)

hence after optimisation via taking the derivative again with respect to k and simplifying we obtain that the

optimal cut to choose is k ≈ log
2

(︀
n2
)︀
. This gives us the result that if we allow n + m(2 log

2
n + 1) + 2 qubits

then we have that Grover’s algorithm requires a quantum circuit-size of O
(︁
2

n/2
· mn

)︁
.
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B Cost estimates of the attacks against SIKE

The authors of [16] consider two cost-metrics which are grounded in real-world concerns. They consider

both the total quantum circuit-size (# gates) the algorithm requires and consider a new metric consisting of

the product of the quantum circuit-Depth and ththe quantum circuit-Width (D ×W). The D ×W metric stems

from considering the problems of implementing quantum error-correction and posits that this is a sensible

metric as the cost of performing quantum error-correction will be a dominating factor in terms of real-world

costs and itmust be performed upon qubitswhich are both idle and being acted upon by quantumgates. Both

are important metrics at the current time owing to uncertainty about the eventual architecture of quantum

computers.

Figure 1 gives a table of the costs that we have derived using our preprocessing improvements upon

Grover-based SIKE attack as given in [16]. The first three rows gives the quantum circuit-complexity for

Grover’s algorithm and are optimal in terms of both the circuit-size and the D ×W metric, whilst the last four

rows give both the optimal circuit-size and D ×W versions of both Tani’s algorithm [25] and the van Oorschot-

Wiener approach [27]. We do not examine the issue of constraints as in [16], but note that our comments

about parallelism strategies may allows gains in this area.

SIKE-434 SIKE-610
Attack cost G D W G D W
Grover [16] 132 122 10 177 167 10

Grover (Ours with assumptions from [16]) 126 116 10 171 160 10
Grover (Ours with higher costs) 130 120 10 175 165 10

Tani[16] (optimal # gates) 124 114 25 169 159 25
Tani[16] (optimal D ×W) 131 122 10 177 166 10
VW [16] (optimal # gates) 132 14 128 177 14 173
VW [16] (optimal D ×W) 132 14 128 177 14 173

Figure 1: Comparison between conservative estimations (in log
2
) for quantum-circuit-complexity (Gates, Depth,Width) in log

2

required for various approaches to cryptanalysis of SIKE-p, including the proposed Depth×Width cost-metric [16].

Thefirst rowdetails the quantumcircuit-complexity ofGrover from [16] using the assumption that the cost

of the quantum oracle is derived from computing one degree-2

e/2
isogeny for a cost of e/2 log

2
(e/2) elliptic

curve operations and that these elliptic curve operations cost 4 log
2
p log

2
log

2
p quantum gates, which they

state is a conservative estimate and hence useful to derive security estimates from.

The second row uses our optimisation, but with the cost of computing our degree-2

e
1

isogeny as

e log
2
e elliptic curve operations (recall e

1
+ e

2
= e) and assumes these elliptic curve operations again

cost 4 log
2
p log

2
log

2
p quantum gates.

The third row uses our optimisation and the assumption that the degree-2

e
1

isogeny costs e log
2
e elliptic

curve operations but assumes these curve operations cost 4(log
2
p)2 log

2
log

2
p quantumgates. This estimate,

whilst perhaps still conservative is perhaps more realistic [22]. We note that even though we have increased

the costs, our optimisation still has a lower quantum-circuit complexity and note that row 2 implies that

Grover may be comparable with Tani’s algorithm in the gate-basedmetric and has the potential to beat Tani’s

algorithm in the D ×W metric. This stems from the fact that even though we are assuming higher individual

cost components (row 3), the algorithmic advantages are such that we have a O (log
2
log

2
p) advantage in

circuit-size over that described in row 1 from [16].



156 | J.-F. Biasse and B. Pring

– Grover may be superior in the Depth × Width-cost metric. For SIKE-434 we have a cost of 2

126

for

Grover’s algorithm compared to 2

132

for Tani’s algorithm and for SIKE-610, the cost is 2

170

compared

to Tani’s cost of 2

176

.

– Grover may be competitive in the gate based metric. For SIKE-434 this translates into a cost of 2

126

for

Grover’s algorithm compared to 2

124

for Tani’s algorithm and for SIKE-610, a cost of 2

171

compared to

Tani’s cost of 2

169

.
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