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Abstract: In this paper we provide a framework for applying classical search and preprocessing to quantum
oracles for use with Grover’s quantum search algorithm in order to lower the quantum circuit-complexity of
Grover’s algorithm for single-target search problems. This has the effect (for certain problems) of reducing
a portion of the polynomial overhead contributed by the implementation cost of quantum oracles and can
be used to provide either strict improvements or advantageous trade-offs in circuit-complexity. Our results
indicate that it is possible for quantum oracles for certain single-target preimage search problems to reduce
the quantum circuit-size from O (2"/ 2. mC) (where C originates from the cost of implementing the quantum

oracle) to 0(2"/?-m+/C) without the use of quantum ram, whilst also slightly reducing the number of required
qubits.

This framework captures a previous optimisation of Grover’s algorithm using preprocessing [21] applied to
cryptanalysis, providing new asymptotic analysis. We additionally provide insights and asymptotic improve-
ments on recent cryptanalysis [16] of SIKE [14] via Grover’s algorithm, demonstrating that the speedup ap-
plies to this attack and impacting upon quantum security estimates [16] incorporated into the SIKE specifica-
tion [14].
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1 Introduction

Whilst the quantum circuit-complexity of a quantum algorithm is linked to the cost of executing a quantum
algorithm, this link is not yet fully understood owing to the uncertainty regarding the eventual architecture
of quantum computers and the need to perform quantum error-correction to protect the state from environ-
mental noise. The logical quantum circuit-model of computation ignores the issue of noise and has been
the de-facto choice of assigning a cost to quantum algorithms for the cryptographic community as our un-
derstanding of the true costs involved with executing quantum algorithms has been evolving. In particular,
there is the issue of quantum query-complexity versus quantum bit-complexity when assigning a cost to the
best known quantum attack on a cryptosystem for purposes of choosing quantum-resistant cryptographic
parameters in relation to it.
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If a quantum search algorithm requires O (2"/ 2) calls to a particular subroutine (a quantum oracle), then
itis clear that this algorithm has a cost of at least O (2"/ 2) . If we assign a cost to this quantum oracle of C, then
itis clear that the full cost of the algorithm is at least O (2"/ 2.¢c ) . Whilst there are hard proofs that we cannot

do better than O (2”/ 2) calls to this quantum oracle if we assume that the quantum oracle is a black-box [28]
(in that we model it simply via input and output), we focus upon redefining what it means for the oracle to
be called. By doing this, we note that for certain problems we can in fact increase the query-complexity but
reduce the total cost of the quantum algorithm itself.

Contributions

We provide a framework for reasoning about how the quantum circuit-complexity of Grover’s algorithm can
be reduced via design principles that can be applied to the quantum oracle, allowing strict gains in all metrics
for certain problems. This is done via combining classical search with Grover’s algorithm, increasing the cost
of the quantum oracle, but defining it over a smaller search-space. This approach allows for a balancing of the
query-complexity and the cost of the quantum oracle and admits a number of benefits, such as preprocessing
options which strictly improve the efficiency of Grover’s algorithm.

We demonstrate the utility of our framework by applying it to two known quantum attacks on cryptosys-
tems using Grover’s algorithm, demonstrating that it captures and improves upon a known quantum attack
on the Multivariate Quadratic problem over [, using Grover’s algorithm and provides new results on quan-
tum cryptanalysis of SIKE [14], providing evidence that the cost of attacking SIKE via Grover’s algorithm is
asymptotically lower than previously estimated [14, 16].

Outline of this paper
In Section 2, we review Grover’s algorithm. In Section 3 we introduce our framework. In Section 4 we examine
several applications to cryptanalysis and give our conclusions in Section 5.

2 Background

Definition 2.1 (The unstructured search problem) Lety : {0, 1}" — {0, 1} be such that My = |y (1)|. The
unstructured search problem defined by y is the problem of finding an element x € {0, 1}" such that y(x) = 1
or proving that no such element exists, given only the ability to evaluate y.

A classical computer requires O(fd—:) calls to a classical circuit which evaluates y before a solution to the un-

structured search problem (Definition 2.1) is found [1]. In comparison, Grover’s algorithm requires O(, /f,l—"x)
calls to a quantum circuit which evaluates y and terminates with a solution to the unstructured search prob-
lem with high probability. It will additionally prove useful to consider another formulation of the search prob-
lem.

Definition 2.2 (The preimage search problem) Let h : {0, 1}" — {0, 1}"" and Y}, C {0, 1}™. The preimage
search problem is to find an x € {0, 1}" such that h(x) € Y}, or prove that no such x € {0, 1}" exists.

Any algorithm that solves arbitrary instances of the preimage search problem can be used to solve the search
problem and vice versa, but it is clear that there is more computational structure in the preimage search
problem compared to the unstructured search problem which can benefit the design of of algorithms.
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Quantum algorithms

Quantum states consist of qubits (quantum bits) and an n qubit quantum state relative to the computational
basis {|x) : x € {0, 1}"} can be expressed as er{o,l}n ax |xy where ay € C and er{o,m |ax|? = 1. The ay
are the amplitudes of each computational basis state |x) and measurement of this quantum state results in
the bitstring x € {0, 1}" with probability |ax|?>. Quantum algorithms therefore consist of increasing the mag-
nitude of ax which encode algorithmically useful information — Grover’s algorithm consists of the repeated
application of a quantum circuit, each of which (up to a point) increases the magnitude of ay which encode
solutions to the search problem.

Cost models and reversibility

Quantum circuits that do not include measurement are equivalent to unitary operators (U such that there
exists U" with the property UU' = U'U = I) and because of this correspondence, quantum circuits which im-
plement y : {0, 1}" — {0, 1} can be designed by considering reversible classical circuits (which implement
permutations and therefore all have inverses), with each reversible gate assigned a cost in terms of quantum
gates.

Much as the universal boolean gate set {-, &, A} can implement arbitrary classical circuits, quantum
algorithms can be implemented (up to an arbitrary level of precision) by a universal quantum gate set. For rea-
sons of space we deal only with asymptotics in this paper, but illustrate the above in terms of the Clifford+T
universal quantum gate which consists of the Clifford gate set (the Hadamard, Phase and CNOT gates) and
the single T gate. By fixing a universal quantum gate set we can reason about the quantum circuit-complexity
(cost) of a quantum algorithm which consists of the quantum circuit-size (number of quantum gates), quan-
tum circuit-depth (timesteps taken) and quantum circuit-width (quantum bits required). It is plain that the
set of quantum gates {X , M (X)), /\Z(X)} and more generally A, (X) for k > 1 acting upon computational basis
states defined by

Xy paol),  AdX) X1 xpe) X)) = X1 X0 [Xpr © (0 A== Axg)) 6]

where Ag(X) := X is sufficient to implement all reversible classical circuits on computational basis states,
if we have sufficient ancilla qubits as this gate set corresponds to the universal boolean gate set {-, &, A}.
The Ap(X) for k = 2 is simply a useful abstraction. The X and A(X) gate each require one Clifford gate to
implement, whilst the A, (X) (Toffoli gate) can be implemented using 17 Clifford+T gates [2, 24] and the A (X)
gate to require at most 40k — 64 Clifford gates for k > 2 [17] if we have a single ancilla qubit, which can be in
any state.

Definition 2.3 (Cost notation) If A is any quantum algorithm or quantum gate, we denote the execution cost
of A by the notation C 4. Costs will be provided in terms of components that are executed in serial, so that
C 4 can be substituted for circuit-size, circuit-depth or either metric applied to a subset of quantum gates.

2.1 Quantum oracles and Grover’s algorithm

Definition 2.4 (Quantum bit oracle) The quantum bit oracle O)((b ) acting upon n+1 qubit computational basis
states |x1...xn)|b), where b € {0, 1}, maps

O)((b) IX1...Xn) |b) = |x1...Xn) | D@ x(x1 ... Xn)) . )]
Quantum oracles will be used in conjunction with Grover’s algorithm, which we state and provide a cost

for without proof. Our modifications will simply be alterations of the quantum bit oracle and are used with
Grover’s algorithm.

Theorem 2.5 (Grover’s algorithm [4, 12]) Let x : {0,1}" — {0, 1} define the search problem where M =
lx~1(1)| is known. Then there exists a quantum algorithm that solves the search problem defined by x with prob-
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2n/2
VM
are respectively the cost of implementing the Hadamard transform on n qubits, the quantum bit oracle O)((b) and
the diffusion operator Dy on n qubits, where cost is either quantum circuit-size or quantum circuit-depth.

ability at least max{1 - %, M1 and which has a cost of Cyyen + {’—g . J - (Cy + Cp, ), where Cyen, Cy and Cp,

H®" is the parallel application of n Hadamard gates, each of which cost 1 Clifford gate and the diffusion
operator on n qubits is can be assigned a circuit-size of 44n — 105 Clifford+T gates for n > 7 [17, 18] and
circuit-depth of 44n - 103. Our framework will enable the cost expressed in Theorem 2.5 to be optimised by
trading off between the cost Cy + Cp, and the query-complexity term {% . %J . Much as we require memory to
implement classical functions efficiently, we often require ancilla qubits to implement the action of quantum

bit oracle. In this paper we use a decomposition of the quantum bit oracle that captures this fact.

Definition 2.6 (Bitwise decomposition of the oracle) A bitwise decomposition of quantum bit oracle O)((b) con-
sists of the n+ 1 unitary operators Uy., Uy,, ..., Uy, acting upon n+w+ 1 qubits, such that forany x; ... xn €
{0,1}"and b € {0, 1}

Uy, -+~ Uy, Uy. Uy, -+ Uy, 80) X1 . .. xn) |b)
g0 X1+ .. Xn) [b B X(X1 ... Xn)), 3)

where Uy, = Uy, ® 9"*1 so that Uy, acts upon w + i qubits, with

Uy, 8ia(xa, s xic)) Ixa e xq) = |gilxa, -y X)) X0 xq) (4)
with g;(x1,...,x;) € {0, 1}" derived from x4, ..., x; only, go € {0, 1} and

Uy. ‘gn(xl, ooy Xn)) X1 ... Xn) |B) — |gn(x1, cees Xn)) |X1 . Xn) |b O X(X1 ... Xn)). (5)

We there have that (J®W ® O)((b)> = U}, -+ U} Uy Uy, - - - Uy, and that Uy, should be interpreted as producing
a memory state gi(xy,...,x;) € {0,1}" computed using only the first i bits of a possible solution to the
search problem. The memory state go € {0, 1}" can be considered as an initial memory-state which does not
depend upon any of the bits x4, .. ., xx. Typically, we can take go = 0. This decomposition applies trivially
to quantum bit oracles constructed using only reversible boolean primitives (we define Uy, = 3®™*"*! and
Uy. = O)((b)) but non-trivial decompositions may require special design. The single-target preimage search
problem (see Definition 2.2) can be modelled by simply by setting Uy, - - - Uy, to compute |h(x1 coXn) @ 1)
and setting Uy. := Am(X).

3 Aframework for preprocessing

In this section we present our framework for optimising applications of Grover’s algorithm via modifying
quantum bit oracles to take advantage of classical search and preprocessing. Computational gains will be
made possible via examining the role of memory in implementing the action of the quantum bit oracle and
trading off between query-complexity and computational effort required to implement the action of the quan-
tum bit oracle. With this in mind we can choose an integer O < k < n that defines a cut of the bitwise decom-
position of the quantum bit oracle (see Definition 2.6), splitting it into three separate components so that

Un_k = UXn—k e UXl! Uk = UXn e UXn—k+1 and U := UX*' (6)
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3.1 Combining classical search with Grover’s algorithm

Theorem 3.1 (Secondary classical search) Given a cut of a quantum oracle parameterised by 0 < k < n, we
can implement a modified quantum bit oracle

O 10") Ix1 - Xoie) 105 €)= [0) [x1 ... Xnoie) 10%) e DX K1 -+ XoieZn - - 20)) @
z1...2,€{0,1}k

and whose cost is
n-k k
Com =2- >y, +2-2F (Z CUX”H_> +2K. ¢y + 2% ¢y, 8)
X i=1

i=1
Proof. We first execute U,_; to compute
Up-ic [0") X1+ o Xpge) 10Ky |81, vy Xpoi)) X1+ o Xn) 10k 9)

then simply follow the procedure of executing the sequence U,t U+ U, on all possible assignments of the final
k values of the search-space. This can be performed efficiently via using the k qubits following the register
X1 ... X,_x) as additional input z; .. . z; € {0, 1}* for U; U+Uj and simply cycling through all possible values
of z; ...z € {0, 1}*. If we use a binary reflected Gray Code [11], we can start in the state 0% and cycle through
all 2% elements of {0, 1}¥, ending in the state 10"! by flipping only a single bit at a time, which can be
accomplished via using an X gate on the relevant qubit and if we wish to return the state to |0%), then we
need only execute an additional X gate for a total cost of 2¥ X gates. After this, we simply execute the unitary
U' ,, leaving us with the computational basis state

|0™) Ix1 ... Xpi) 105y ¢ @ XOX1 e X g 21 e Z)) (10)
z1...2€{0,1}k

O

Corollary 3.2 The modified quantum bit oracle O)((l/’) as described in Theorem 3.1 can be used with Grover’s
algorithm defined on the search-space of n -k qubits and terminates withan x € {0, 1 }”’k that can be extended
to a full solution with probability at least (1 - %) max {1- M, M Vif1 <M< 2002,

Proof. This can easily be seen as the modified quantum oracle will mark any element x; ... x,_ € {0, 1}””‘
such that x; ... x,_x € {0, 1}" ¥ can be extended to a full solution for some z; ... z; € {0, 1}X. Hence M’ =
' "1(1)| = [x"(1)] if there are no collisions on the first n — k bits of solutions, for which a standard lower
bound exists. If M = 1, then there can obviously be no such collision. O

Such stategies are possible with classical computation, but require state to be stored. By their nature, re-
versible logic circuits store state implicitly and by using this fact we avoid increasing the number of qubits.
There is no guarantee that a non-trivial advantageous cut will be possible, but we can simply follow a design
heuristic where as much cost as possible is shifted towards U,,_. As we can simply compute the costs Cy__,,
Cy, and Cy, as a function of k, we can easily find an optimal k via numerical simulation of the costs involved
(often a simple formula) on all values of O < k < n, which is a negligible classical computation.

Example 3.3 We consider the case where C U, == Cy,, = Cy, and these costs dominate that of the
diffusion step, so that Cy, , = (n - k)D, Cy, = kD and Cy, = D for some constant D. Choosing k = log, n and
using Equation (8) in conjunction with the Theorem 2.5 gives us a cost of

m 1
Z~2"/2~ﬁ-(Z(n—logzn)+n(zlog2n+1))-D (11)

which gives us an asymptotic cost of O (2"/ 2.t/ 2(log, n)D) compared to using Grover with the unmodified

oracle for an asymptotic cost of O (2”/ Z. nD).
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Corollary 3.4 (Evaluation via backtracking) Let the conditions be as in Theorem 3.1. The same procedure can
be implemented for a cost of

n-k k
Cow =2+ Cy, +2- (2‘ : CU"_M) +2k. g, + 2% Cy. (12)
X i=1 i=1
Proof. This can be easily seen as if we denote via X; the application of an X gate to the i qubit of the search-

space then each subsequence of unitary operators

U« UXn te U)(n—kﬂXn—kHUJr

ok *** U Us (13)
that appears in the unitary U, can be replaced by the subsequence

UsUy, *** Ugp o XnoksiUyy s+ + Uy, Us. (14)
O

Corollary 3.5 (Commuting bitwise invariant components) Given a modified quantum bit oracle O)((lf) parame-
terised by O < k < n as in Theorem 3.1 such that Uy,_,.,, ..., Uy, all commute and the action of each Uy, is
invariant upon any choice of zj # z;, the cost of O)((l,’) can be reduced to

n k
Copp =23 Cu, + > (2'-C, ) +2" Cy, +2°C 15)
i=1 i=1

Proof. Again using the notation X; for the application of an X gate to the i, we can adapt Theorem 3.1 by
simply replacing any subsequence

UeUy, -+ Uy, -+ anmen—kHU;n,m . U;i ... U;n U (16)
that appears in the unitary U by
UsUy, Xn 1iUpn ** * U Upy iy +* - Uy Uy, Us 17)

by the commuting property of each Uy, and invariance of the unitary sequence Uy, - - - Uy,_,., upon the variable
z;. From there it is a simple matter to note that the inner unitaries cancel each other out and we must first
fully compute the sequence Uy, - - - Uy, and end with the sequence U;l cee U;n. O

Example 3.6 We again consider the case where each unitary operator a cost of D as in Example 3.3, but
where we can instead apply Theorem 3.5. The choice of k = log, n can now be seen to be optimal if we take
the derivative of the full cost equation for Grover’s algorithm with the modified quantum bit oracle. This gives
an asymptotic cost for Grover’s algorithm with this modified quantum bit oracle of O (2”/ 2.t/ 2D) , whereas

Theorem 3.1 gave us a cost of O (2"/ 2.2 log, nD) and the unmodified quantum bit oracle with Grover was
0 (2"/ 2. nD).

3.2 Preprocessing the classical secondary-search procedure

We now turn to the benefits of preprocessing any of the previously described methods of secondary classical
search.

Theorem 3.7 (Ancilla qubits allow shifting of unitary costs) Any component of the circuit that computes
Uy, v for 1 < i < k that is dependent solely on |xy ... Xy i) |21 ... 2}) |n-kej(X1s + + + s Xnok> 215 -+ -5 Z))) fOr
0 < j < i can be computed and stored on ancilla qubits during the computation of Uy, _, ...
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Proof. The proof of this is trivial and relies solely upon the definition of the bitwise decomposition of the
quantum bit oracle. O

In an ideal situation, the unitary costs will be shifted as much as possible to U,,_y.

Theorem 3.8 (Classical preprocessing allows strict gains) Let O)((l? ) bea modified quantum bit oracle parame-
terised by O < k < n as in Theorem 3.1. Then at the cost of classical storage space and/or classical preprocessing
and without affecting the correctness of this algorithm, the quantum cost of O)((l/’) can be reduced and is at worst
unchanged, whilst we reduce the number of qubits required by k.

Proof. We will create 2! circuits for each Uy, ,.;, each of which are hardcoded to assume that the bits z; . .. z; €
{0, 1}! are fixed. The first benefit is that as we are implicitly creating a circuit which is hardcoded with a choice
of z1 ... z;, we need not include these qubits or any qubits which interact only with them (and not x; . .. x,_x
by any circuit-path) in the search-space or the w-bit memory-state.

The second benefit is in a reduction in the complexity of the individual circuits themselves. If we consider
purely reversible circuits, then for any unitary U we have that if any z; appears in the control qubits for A, (U),
then this can be hardcoded as a either a A;_;(U) gate if z; = 1 or removed completely if z; = 0.

The third benefit is that further optimisations are possible in the sequence of hardcoded circuits Uy,,_,,, - - - Uy,
as a whole. If we consider a simple circuit constructed of multiple A;(X) gates, all of which write to the same
target qubit and where no cancellation is posible, then any hardcoding of these A;(X) gates that results in a
circuit with r A/ (X) for (k" < k) gates with identical controls allows them to be removed if r is even or replaced
with a single gate if r is odd.

Thus if we allow for the preprocessing and additional storage or alternatively online computation then
these hardcoded quantum circuits are no more expensive to execute and we can always reduce the number
of qubits by k. O

We briefly mention that we could employ parallelism (communication costs allowing), whereby we compute
U,_x, then create 2 copies of the resulting state and execute the sequence of unitaries U; U«Uj upon each
one. This strategy allows us to bypass some of the increase in circuit-size that is a hard-limit if we treat the
quantum oracle as a black-box [28] as this increase only applies to Cy, and Cy,.

4 Applications to Cryptanalysis

In this section we demonstrate that our framework captures one previously proposed attack using Grover’s
algorithm on Multivariate Quadratic cryptosystems, provides missing asymptotic analysis on its results and
improves upon it. We conclude with demonstrating our methodology can be applied to recent quantum crypt-
analysis [16] of the proposed quantum resistant cryptosystem SIKE [14].

4.1 The Multivariate Quadratic problem over [F,

Definition 4.1 (The Multivariate Quadratic (MQ) problem over F,) We define fP(xq, ..., xn), ..., ™ (x1,

..., Xn) € Fy[xq,...,xn] be m equations of degree two in n variables over the finite field of size 2. The
Multivariate Quadratic (MQ) problem over [F; is to find a solution vector (x1, ..., xn) € (F2)" such that
f(l)(xl,...,xn)=~- =f(m)(x1,...,xn)=0. (18)

Several quantum resistant signature schemes [13, 20] have been published which rely upon the hardness of
solving the Multivariate Quadratic problem over IF,. Whilst asymptotically more efficient algorithms exist [3,
9], a basic attack [23] using Grover’s algorithm that was later optimised via preprocessing [21] is both captured
and improved upon by our framework. We leave explicit details to Appendix A for reasons of space and to
avoid duplication of preexisting work [21, 23].
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This case-study provides important commentary upon the difficulty in choosing quantum resistant pa-
rameters in relation to Grover’s algorithm as the initial quantum resistant parameters were suggested [20] in
relation to the query-complexity of O (2"/ 2) for Grover’s algorithm to solve the MQ problem over F,. After
publication of an explicit design for a quantum bit oracle to use in conjunction with Grover’s algorithm for
this problem [23] which gave the quantum circuit-size O n/2. mnz) for Grover’s algorithm, new parame-
ters were suggested in a subsequent paper [19] in relation to this cost. These costs were also quoted in several
specifications for quantum-resistant cryptosystems in the NIST competition [6, 8]. Our framework demon-
strates that one optimisation [21] using preprocessing lowers the cost to O (2"/ 2. mn3/ 2) and that by using

our framework this improves to O (2"/ 2. mn) by using an additional O(m log, n) ancilla qubits. We discuss
the problem of choosing quantum-resistant cryptographic parameters in relation to anything but the query-
complexity of Grover’s algorithm further in Section 5.

4.2 The Computational SuperSingular Isogeny (CSSI) problem

In this section we reexamine the cost of a Grover-based attack upon the quantum-resistant key encapsulation
method SIKE [14], whereby Grover is used to attack the CSSI problem (see Definition 4.2) via searching for a
unique collision between two functions. We demonstrate how this attack fits into, and can be improved upon
by, our framework. We provide an asymptotically better attack using Grover’s algorithm and new estimates
for the hardness of solving the CSSI problem via Grover’s algorithm under various constraints (see Appendix
B). These results impact upon the estimates in [16] which are quoted in the SIKE specification [14].

This problem has previously studied in [16] where the authors argue that whilst Tani’s algorithm [25]
may be the most asymptotically efficient method to solve this problem in terms of query-complexity, once
the implementation of the underlying quantum data structure and memory is taken into account, Grover’s
algorithm may be competitive with Tani’s algorithm.

On the cost of computing an isogeny-path

Isogenies are morphisms that are rational maps between groups of points of elliptic curves. Their degree is
that of their rational map structure, and they are uniquely determined by their kernel. Given the 2°-torsion
E[2°¢] of E, a degree-2€ isogeny uniquely corresponds toa x; ... xe € {0, 1}° via a choice of a (cyclic) kernel
in E[2°]. Given a kernel, the total cost of computing the corresponding 2°-isogenous curve is in O (elog, e)
elliptic curve operations [10].

Definition 4.2 (The Computational SuperSingular Isogeny problem? [15])

Let E1, E, be two supersingular elliptic curves defined over F,. such that there is a degree 2° isogeny ¢ :
E1 — E, (up to isomorphism) with e = logsz. Given Eq, E,, p and e, the Computational SuperSingular
Isogeny (CSSI) problem is to find an isogeny between E; and E.

Finding (up to isomorphism) a degree-2€ isogeny ¢ : E; — E, can be solved by finding one degree-2¢
isogeny ¢ : E; — E’ and one degree-2° isogeny ¢, : E; — E” such that e = e; + e, and E’ is isomorphic
to E”. The composition of isogenies ¢ = ¢, o ¢1 (Where ¢, is the dual-isogeny of ¢,) is then the degree-2°
isogeny we are searching for. Isomorphic classes of curves are identified by their j-invariant in [F,.. Hence we
define h; : {0, 1}* — Fp. fori = 1, 2sothat hy(x; ... xe;) and ho(x; . . . Xe,) are the respective j-invariants of
E’ where ¢; : E; — E’ corresponds to the kernel defined by x; . .. xe; € {0, 1} Thus, if we find the collision
(X1...Xey,21...2¢,) € {0,1}° x {0, 1}°2 such that hy(xy ...xXe,) = ha(z1 ... ze,), then we have solved the
CSSI problem. As in [16] we work under the assumption that there is a single such isogeny ¢ : E; — E;
(hence there is one target in our search-space), which is justified under the arguments of [26].
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Fitting the attack to our framework

When e; =~ e, = e/2 as suggested in [16], we obtain a constant time saving over the simple search case
e1=e,e; =0as2-% log,(e/2) = e(log, e-1). This does not impact the asymptotic complexity of the search
procedure. In our framework, we define the initial unitary U,_; (in this scenario n = e and k = e;) to compute

Q

(where 8¢, (x1, ..., Xe,) is the intermediate memory-state required to compute the j-invariant hq(x1 . . . Xe,))
|8e, (X1, ...y Xey)) [0"2) |y (xq ..o Xe)) X1 v n o Xey) |21 0+ - Zey) (19)
where [ge,(X1,...,Xe,)) = |8e;(X1,...,Xe;)) [0"2) |he, (X1 ... Xe,)) in our framework and the unitary Uy

(where k = e,) is defined to map this state to
|§e, (X1, ..., Xe,)) |&es (214 - v v s Ze)) [ha(X1 oo Xe) D Ma(21 ... Ze,)) X1 2o Xey ) |21+ 2 Zey) s (20)

where hy(z1 . . . Ze,) i= ha(z1 . . . 2;)B1211°%: 1 Theorem 3.1 therefore gives us that we can perform a secondary
classical search procedure and we can use preprocessing as described in Theorem 3.8 to reduce the cost of
the circuit. As | g (z1,... ,zez)> depends solely upon z; ... ze, at all times, after hardcoding is completed,
the qubits required to represent it can be removed in addition to the e, qubits of the search-space Grover is
defined upon. After cancellations of layers of X gates, the 2X applications of U; U.Uy is then simply 2% + 1
layers of 2[log, p] X gates executed in parallel with 2% A, Mog, p] (X) gates in between each layer.

In relation to the CSSI problem, the security level of SIKE [14] is parameterised by a prime p of the form
2¢3f — 1 where 2¢ ~ 3 so that e ~ p'/2. The problem of breaking an instance of SIKE-p is then equivalent to
finding the unique degree 2°¢ isogeny defined by the public-parameters of SIKE-p.

Theorem 4.3 (Grover vs CSSI) Let Ce be the cost (either quantum circuit-size or quantum circuit-depth) of eval-
uating a degree 2€ isogeny as a reversible quantum circuit. Solving the CSSI problem via Grover’s algorithm then
has a cost of

0 (p"*- e’ (108, p)"%). 1)

Proof. We can express the asymptotic cost of our attack parameterised by our choice of e, (where we recall
ei1+ey=e)as

1/4-e3/2 log, p
0 (p 2741 [2Ce - log, p +2% -Zlogzp]) (22)
if we assume Ce, < C if all other parameters are fixed and the secondary classical-search procedure is in
0 (2% - log, p) gates as discussed on the previous page. Taking the derivative of (22) gives our optimal value

of e, = log, (mgﬁ)- O

This is in comparison to simply using the oracle with Grover’s algorithm for a circuit-size of O(p/*Ce). Ce
takes O (elog, e) curve operations [10], each of which can be assumed to cost O ((log, p)?log, log, p) quan-
tum gates [22, Table 1] (this may be an underestimate). Thus C. € O (e(log, e)(log, p)*(log, log, p)) and our
asymptotic speedup is in O ((log, p) - (log, log, p)). In [16], Grover’s algorithm is used to derive estimates on
the cost of attacking SIKE for specific security parameters and in Appendix B, we use our result with their
methodology.

5 Conclusions

The extent to which the overhead of the quantum oracle can be reduced is clearly an important issue if the
cryptographic community is choosing parameters relative to a costing of Grover’s algorithm which takes into
account both the query-complexity and the cost of the queries themselves. The safest route is of course to
simply choose the query-complexity as a lower-bound on the circuit-size for such Grover-based attacks and
this protects against our optimisation as we only increase the total number of queries.
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Our gains have instead been enabled via better use of intermediate computations and exploiting classical
computation to create efficient hardcoded circuits, both of which can then be used find an optimal balance
between the cost of the quantum oracle and the query-complexity. Whilst our methods are obviously not
applicable to all quantum oracles, a cautionary half-way measure between using the lower-bound of query-
complexity and the current methodology may be to produce a conservative quantum resource estimate for
the cost of the quantum oracle and use the square root of this for the overhead of the quantum oracle when
choosing cryptographic parameters relative to Grover’s algorithm.
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A Adapting a quantum bit oracle for the MQ problem over I,
A quantum bit oracle for the MQ problem over I,

In this Section we study how an existing quantum oracle design [23] can be modified to fit under our frame-
work. We first describe the original oracle design [23], how a previous optimisation [21] falls under our frame-
work and how this preexisting method can be improved via our framework to reduce the total circuit-size via
use of additional ancilla qubits. We first recall Definition 4.1

Definition 4.1 (The Multivariate Quadratic (MQ) problem over F,) We define f Oy ey xn)y e es fO(xq,
..., Xn) € Fylxq,...,xn] be m equations of degree two in n variables over the finite field of size 2. The
Multivariate Quadratic (MQ) problem over [, is to find a solution vector (x1, ..., xn) € (IF2)" such that

FO%q, ey xn) = =M™ (xq, ..., xn) = 0. (A)

A quantum bit oracle for the MQ problem over F,.

We first describe a quantum bit oracle to solve this problem proposed by Schwabe and Westerbaan [23]. They
first perform a classical preprocessing so that 1 is added to each f®(x,, ..., x»). In this way the original
system of equations is satisfied when we find an element x; ... x, such that f(k)(xl, .o, Xp) = 1fork =
1,..., m. Their quantum bit oracle evaluates each multivariate polynomial in a separate register and then
uses a single Am(X) gate to and check if they are satisfied. By noting x;x; = x;x; and xi2 = X;, each multivariate
polynomial can be written

n
FO0, .. xn) = Z a{k}xixj & Z bE")xi @ W, (A.2)

1<i<jsn i=1

where al(.f‘].), bgk), c® ¢ F,. Schwabe and Westerbaan define the quantum bit oracle as acting upon n + m + 2
qubits, so that it uses n qubits for Grover’s search-space, m qubits to store the evaluated equations, 1 ancilla
qubit to allow the efficient evaluation equations and 1 qubit for the output of the quantum bit oracle.

The evaluation of each f®) is performed via successively adding the sums

X+ (ag?_FlXiJrl DD ag(r)an &) bgk)> (A.3)

onto the m equation registers, one equation at a time. Each step fori = 1, ..., n (via an ancilla qubit starting
and ending in |0)) can be accomplished using at most 1 X gate, n — i A1(X) gates and a single A, (X) gate. A
single Am(X) gate is used after all equations are evaluated on the m registers and used to write the output of
the quantum bit oracle, which will be 1 if all of the original equations are satisfied.
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Applying our framework

A previously published use of preprocessing exploits only a basic form of secondary classical-search (The-
orem 3.1) combined with preprocessing (Theorem 3.8), which under our framework can be interpreted by
defining U,,_; to evaluate m equations of the form

n-k
FO0, ey X)) = ZaEf‘,-)xixj b Zb?‘)xi, (A4)
1<i<jsn-k i=1

which is possible as they are simply m equations in n — k variables. Uy, is then the addition of
R0, X 21, 20 & F 0, L x0s) (A.5)

to each equation register, whilst Ux is a Am(X) gate as before. It is easily seen that C,, (y)is O(m), thatthe Cy, ,
is O(m - (n - k)?) by the discussion on the previous page that C v, is O(m - (n - k)) as hardcoding collapses
sums involving x;z; to either O or x; and interactions between z;z; or z; to a single bit. The asymptotic cost
of Grover’s algorithm with the modified quantum bit oracle using secondary classical search and hardcoded
bits is therefore

0 (2"/22”‘/2 . (m(n -k +2% . mn - k))) (A.6)

and by taking the derivative and we find that the optimal k = log, (n) so that the asymptotic quantum circuit-
size of Grover using approximately n-log, n+m+2 qubits and the method described in [21]is O (2”/ 2. mn3/ 2) .
This asymptotic analysis was not performed in the original paper.

Following a heuristic design pattern with our framework

We use our framework to improve upon this result, obtaining a quantum bit oracle for the MQ problem over
IF, that uses n + km + m + 2 qubits and enables Grover’s algorithm to be implemented with a quantum circuit-
size of O (2"/ 2. mn). This can be done via simply redefining the unitary operators to use Theorem 3.5 in
conjunction with Theorem 3.7. By keeping U,,_j as before, but defining each unitary Uy, ,,; for 1 < i < k by the
action of adding only the component

1

zZi- (a(llf)ixl @@ ag"}k’-xn_k ® bgk)) . (A7)

It is clear that these linear sums can be computed and stored on ancilla qubits via Theorem 3.7 and that this
cost can be shifted to U,,_. We then have these unitary operator fulfil Theorem 3.5 and that after the shifting of
costs to U,,_x, we have that Uy, consists of simple one A1 (X) gate. We can then define Ux to add the component
which only involves the bits z; ... z; (which collapse to a hardcoded bit and at most m X gates), execute a
Am(X) gate and uncompute the hardcoded bit again via at most one X gate. In this way the cost for Grover’s
algorithm (see Theorem 3.5) using this quantum bit oracle becomes

0 (2”/22”‘/2 (mn2 + ka)) , (A.8)

hence after optimisation via taking the derivative again with respect to k and simplifying we obtain that the
optimal cut to choose is k = log, (nz). This gives us the result that if we allow n + m(2 log, n + 1) + 2 qubits

then we have that Grover’s algorithm requires a quantum circuit-size of O (2"/ 2. mn) .
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B Cost estimates of the attacks against SIKE

The authors of [16] consider two cost-metrics which are grounded in real-world concerns. They consider
both the total quantum circuit-size (# gates) the algorithm requires and consider a new metric consisting of
the product of the quantum circuit-Depth and ththe quantum circuit-Width (D x W). The D x W metric stems
from considering the problems of implementing quantum error-correction and posits that this is a sensible
metric as the cost of performing quantum error-correction will be a dominating factor in terms of real-world
costs and it must be performed upon qubits which are both idle and being acted upon by quantum gates. Both
are important metrics at the current time owing to uncertainty about the eventual architecture of quantum
computers.

Figure 1 gives a table of the costs that we have derived using our preprocessing improvements upon
Grover-based SIKE attack as given in [16]. The first three rows gives the quantum circuit-complexity for
Grover’s algorithm and are optimal in terms of both the circuit-size and the D x W metric, whilst the last four
rows give both the optimal circuit-size and D x W versions of both Tani’s algorithm [25] and the van Oorschot-
Wiener approach [27]. We do not examine the issue of constraints as in [16], but note that our comments
about parallelism strategies may allows gains in this area.

SIKE-434 SIKE-610
Attack cost G D w G D w
Grover [16] 132 122 10 | 177 167 10
Grover (Ours with assumptions from [16]) | 126 116 10 | 171 160 10
Grover (Ours with higher costs) 130 120 10 | 175 165 10
Tani[16] (optimal # gates) 124 114 25 | 169 159 25
Tani[16] (optimal D x W) 131 122 10 | 177 166 10
VW [16] (optimal # gates) 132 14 128 | 177 14 173
VW [16] (optimal D x W) 132 14 128 | 177 14 173

Figure 1: Comparison between conservative estimations (in log,) for quantum-circuit-complexity (Gates, Depth, Width) in log,
required for various approaches to cryptanalysis of SIKE-p, including the proposed DepthxWidth cost-metric [16].

The first row details the quantum circuit-complexity of Grover from [16] using the assumption that the cost
of the quantum oracle is derived from computing one degree-2¢/2 isogeny for a cost of e/2 log,(e/2) elliptic
curve operations and that these elliptic curve operations cost 4 log, p log, log, p quantum gates, which they
state is a conservative estimate and hence useful to derive security estimates from.

The second row uses our optimisation, but with the cost of computing our degree-2¢' isogeny as
elog, e elliptic curve operations (recall e; + e; = e) and assumes these elliptic curve operations again
cost 4log, p log, log, p quantum gates.

The third row uses our optimisation and the assumption that the degree-2° isogeny costs e log, e elliptic
curve operations but assumes these curve operations cost 4(log, p)? log, log, p quantum gates. This estimate,
whilst perhaps still conservative is perhaps more realistic [22]. We note that even though we have increased
the costs, our optimisation still has a lower quantum-circuit complexity and note that row 2 implies that
Grover may be comparable with Tani’s algorithm in the gate-based metric and has the potential to beat Tani’s
algorithm in the D x W metric. This stems from the fact that even though we are assuming higher individual
cost components (row 3), the algorithmic advantages are such that we have a O (log, log, p) advantage in
circuit-size over that described in row 1 from [16].
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— Grover may be superior in the Depth x Width-cost metric. For SIKE-434 we have a cost of 212 for
Grover’s algorithm compared to 2132 for Tani’s algorithm and for SIKE-610, the cost is 217° compared
to Tani’s cost of 2176,

— Grover may be competitive in the gate based metric. For SIKE-434 this translates into a cost of 212 for
Grover’s algorithm compared to 212“ for Tani’s algorithm and for SIKE-610, a cost of 217! compared to
Tani’s cost of 2169,
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