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Abstract: We introduce a new approach to (deterministic) integer factorisation, which could be described
in the cryptographically fashionable term of “factoring with hints”: we prove that, for any € > 0, given the
knowledge of the factorisations of O(N/3*€) terms surrounding N = pq product of two large primes, we
can recover deterministically p and g in O(N'/3*€) bit operations. This shows that the factorisations of close
integers are non trivially related and that consequently one can expect more results along this line of thought.
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1 Introduction

The problem of quickly factoring large integers is central in cryptography and computational number theory.
The current state of the art in factoring large integers N, the Number Field Sieve algorithm [5, 6], stems from
the earlier Quadratic Sieve [11] and Continued Fraction [9]. We should also mention the Elliptic Curve Method
by H. Lenstra [7], which is particularly useful when N has a small prime factor p. They are all probabilistic
factoring algorithms.

These algorithms have heuristic running times respectively O (16 ¥ )" (log log N)*? ), 0(ectos N )"/*(l0glog N)'/* )
and O(ecaogl’)l/zaog logp)l/z)’ for some constant ¢ (not always the same). The first two strive to find nontriv-
ial arithmetical relations of the form x> = y? (mod N) (which lead to a nontrivial factor by computing
gcd(N, x +y)), whereas the third is a generalisation of Pollard’s p — 1 method [10], involving computations in
some elliptic curve group instead of Z/N. We should note, however, that there exist probabilistic algorithms
with proved running time O (exp((1 + o(1))(log N)Y2(loglog N)Y/ 2)) [8]. As far as the author is aware, no such
rigorous bound exists in the form O (exp ((log N)°)) for ¢ < 1/2. Similarly, no deterministic subexponential
algorithm is currently known, the best one being Shanks’ square form factorization SQUFOF which runs
in O(N'/%*€), or in O(N/>*€) on the Extended Riemann Hypothesis. Recently Hittmeir [4] has somewhat
improved Shanks’ unconditional result to O(N 1/4 exp(l'fgllgill\\’,)) for some explicit constant C > 0. This is
currently the best unconditional deterministic factoring algorithm.

In this work, we want to introduce a new paradigm in integer factorisation, one that doesn’t supersede
previous efforts, but rather complements it by showing that the factorisation of a small number of consecutive
integers is related in a nontrivial way. Therefore, if numbers close to a product N = pg of two primes are easier
to factor than N itself, we can expect a reduction in the time to factor N. Here we content ourselves with a first
nontrivial result.

Theorem 1. Let N = pq a product of two primes. Then, given an arbitrary € > 0, the factors p and q can be
recovered in O(N'/3*€) bit operations from the knowledge of the factorisations of O(N'/3*€) integers closest to
N. The memory requirement is polynomial for the computational part.
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Remark that O(N'/3*€) integers close to N = pg do no contain the factors p or g in the case of a RSA modulus,
when p, ¢ = O(v/N). The O(N'/3*€) bit operations mentioned in the theorem essentially involve the factorisa-
tions of the first O(N'/3*€) integers, where similarly the factors p, g of a RSA modulus would not appear. Thus
we can loosely say that our result proves that the factorisation of N = pq is related to the factorisations of the
O(N'/3+*€) integers closest to it and to the O(N'/3*€) smallest positive integers.

The structure of this article will be as follows. After recalling notations (Section 2) we explain the main
idea of the method: finding a close enough approximation to the value of a multiplicative function o, ,(N)
and deduce a corresponding approximation a to p dividing N (Section 3).

In Section 4, we use generating functions (products of zeta functions) and their inverse Mellin transforms
when multiplied by an appropriate kernel to define the quantities that we will be led to evaluate: Fy(x) and
Py(x).

In Section 6, we obtain a different expression for F,(x) by making use of the functional equation of the
generating function. We discover that the new expression can be easily computed save for two families of
oscillating series.

Finally, in Section 7, we show that by computing around N 1/3+€ terms in the oscillating series, each of
which can be done in polynomial time, one can get a block approximation to g, ,,(n) for n = N together with
about N'/3*€ of its neighbours. Therefore, knowing the factorisation of these neighbours would allow us to
find an approximation to g,/,(N) and therefore to a divisor p of N.

2 Notations

In this work N = pg where p, g are distinct prime numbers. We follow standard notations in analytic number
theory and indeed a classical reference on the subject is the treatise of Davenport [3]. In particular, we will
make liberal use of the O notation in Landau’s as well as Vinogradov’s form («). Hence, for instance

fw) = 0(gw)) = f(u) < g(u)

means that g(u) > 0 and |f(u)|/g(u) is bounded above (usually as u — oo or u — 0%, depending clearly on
the context). Unless specified, the implied constants are absolute.

Any sum such as
Z a’bc

abc=n

is to be understood as taken over all positive integers a, b, ¢ such that abc = n. We also define

Y f@=>" fl@

aln ab=n

so that for instance the number of divisorsof nis 3 _ ;,, 1 and its sum of divisors 3 _ ;,, d. We also write s = o+it,
with o, t € R, according to the established convention in analytic number theory.

Finally, we write a = b to signify that a = b + terms that are not necessarily negligible in size but can be
computed in polynomial time (in the bit size of the challenge to be factored), so that they are negligible in
time.

3 Choice of a Multiplicative Function

For A € R define

o)=Y "d* .

din
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Our goal will be to compute 04 /,(N) = 1+ VN+p+ % within O(1/N). If so, then one gets an approximation
Ato

VN 1
f(p)=\/ﬁ+ﬁ=/{+0(ﬁ) . 1)
Let us study the function in (0, oo)
\/N / 1 \/N 7 1 3\/N
f@-va+ Y 5@ (1- 7) S @)= (7 g 1)

The function f is convex in (0, 3v/N) with a unique critical point (and therefore absolute minimum) at z = v/N.
We will suppose that N = pg with p < /N < g. In fact, we may as well suppose that p < v/N — 2 by inspection.
Note that f”(z) > N3/%/2 for z < v/N and therefore |f'(z)| > N-3/*/2 for z < /N - 1. Define a € (0, VN - 1]
by f(a) = A. To see that such a exists, notice that f is decreasing in (0, v/N]. If A < f(v/N - 1), then, for some
0 € (VN -2,+VN - 1), we can write

1
2N3/4

contradicting (1). Given then a € (0, v'N - 1] with f(a) = A, we obtain, for some & < v/N -1,

A~f)] < If(VN-1) - f(VN-2)| = |f'(0)| =

a=p|[F )] - @) )| - |4~ < g = p-a+0 ()

and therefore p = | a], the integer nearest to a.

4 Choice of a Test Function

Consider the Riemann zeta function

(=3,

n=1

convergent for s > 1. Then

S

()5 -1/2)=)

n=1

’

01/2(n)
nS

absolutely convergent whenever Rs > 3/2. Now let for v € N'with v = 2,

— V-1 <t<
f(t)z{(l Ol o0sts1,
0 t>1.

The Mellin transform of f is by definition the beta function

CTOI(S) [ s
B(v,s) = TG+ —/f(t)t Lat
0

hence by the inverse Mellin transform?,

5/2+ico
o [ -1 T as - S oy ptr (1) ®
5/3—ico nsx

1 In fact, v doesn’t need to be an integer, but it simplifies calculations to assume so.
C+ioco

2 We will also use the notation / instead of / .

(o) c—ioco
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Call the right-hand side
R0 = Y 000f (2) = Y ayppm (1- 1)
nsx nsx

and note that
Py() = X" Fy(0) = Y 0y (m)(x - )"

nsx

is a piecewise polynomial (given by a different expression between consecutive integers).

5 Functional Equation of the Riemann Zeta Function

The Riemann zeta function is a meromorphic function having a simple pole with residue 1 at s = 1 and
satisfying the functional equation (given here in asymmetric form)

{(s) = =— (2n) r(1-s)¢(1- ( els/2 _ e"iﬂs/z) = % (2m)° I'(1 - s){(1 - s)sin % .

6 Another Expression for F,(x)

A standard “integration line moving"3 (to s = —1/4) argument in the integral of (2) will get us to the follow-
ing, after picking up the residues of the integrand at s = 3/2,s =1ands =0

R = ¢/ O 0 S congear e ok [ gosts - 12 T2 s
(-1/4)

In fact, we can move the line of integration to ®s = —1/4, since to the right of that line, for any given
€>0,

1€(s)¢(s - 1/2)| < |t|**€

while

<t .

I'(s)
I'(s+v)

In particular the integral on the right-hand side is absolutely convergent when v > 4. It is this integral is
the next focus of our investigation. It is natural at this point to use the functional equation. We get quite
straightforwardly

1 I'(V)I'(s) e 1 s . 7S

o / (s - 1/2) TS ds = s / @7’ (1 - )¢ - s)sin ™2
Cira) i/4)

(51l ~ e (s N\ TWIS) s, et

@m 61290612 -9)sin (5 - 7) i) ¥ = G van

2 NS ims 3 3 T(W)I(s) ein/4
x( .//)(471 x)*e™r1 -s)¢(1-s)r (E —s)(<5—5> TG +v) ds + PIENGT
-1/4

3 This is done by applying Cauchy’s residue theorem to a rectangle whose long sides rest on s = 5/2 and Rs = -1/4 and letting
the short sides tend to infinity, where their contribution to the contour integral becomes zero, as justified in the subsequent lines.
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y / (4?x)°e ™ T(1 - $){(1 - )T @ - s) ¢ (% - s)

(-1/4)

Ir(WI(s)
I'(s+v)

TW)I'(s)
I'(s+v)

/ U2 T(1 - $)¢(1 - T3/2 = $){(3/2 - 5) ds

(-1/4)

_ e /4y 2 _\-s _-ins
" e //) (4 Se TS I(s)E($)I(s + 1/2)¢(s + 1/2)
5/4

ein/4X 2 \-S ifts
iR (4 x)°e™I(s){(s)I(s + 1/2){(s + 1/2)
(5/4)
/ (Urx) S T($)C(S)I(s + 1/2)((s + 1/2)
(5/4)

1
@mi)*v/n

IrWIr@-s)
Irl-s+v)

rWIr@-s)

* Ir'l-s+v)

IrW)r(a-s)

X
" oniva TA-s+v)

Using the Legendre duplication formula

1

Ir(s)r (s + 5) =Vm275rQ2s) ,

together with the functional equations sI'(s) = I'(s + 1) and I'(s)I'(1 — s) = m csc 7ts, we obtain

VAT 2172T(2s)

1\ I'(s)f(1-s) _ 1 B o (W
r (s + f) T s+v) " I'(s+ 3 I'(s —v)(cos v —sinmvcots) = (-1) G062 Gv 3)
We can further transform (3) by noting that there exist unique constants co,, = 1, ..., cv,y such that
1 _ 2
(s-1)(s-2)---(s-v) (2s-2)2s-4)---(2s-2v)
2Vco,y 2c1y

(2s-1)2s-2)---2s-v)  2s-D@2s-2)---Q2s-w+1)
2Vcyy
T 2s-1D@2s-2)---(2s5-2v)

whenever this expression makes sense. To see this, multiply both sides by (2s — 1)(2s — 2) - -+ (2s — 2v). The
resulting left-hand side is a polynomial of degree v, expressed as a linear combination of the polynomials
resulting from the right-hand side, which form a basis of the vector space of polynomials of degree < v. For
instance, co,1 = c1,1 =1and co4 = 1, €1,4 = 10, C2,4 = 45, €3,4 = C4,4 = 105. From (3) we get

~D'r <s + %) I(s-v) = (-1)"/m2"+=2s Z:;)cm,vF(ZS -v-m) .

Putting it together we obtain

1
2mi

Tr(w)I(
1%

/ s -1/2) 1 s))xs ds = (12" 2 0) S ena 3 0 ()

(-1/4) m=0 n=1

v
x % / (1677 xn) e "™ I(2s - v - m)ds + (-1)"2"" 2" *xI(v) Y " cmy D 0_1)5(n)
(5/4) m=0 n=1
1 2 -s ins oy
xﬁ/(mn xn)*e™r(2s-v-m)ds
(5/4)

v
1 1 2.\
+(-1)V2" X (v) E Cmyv E o,l/z(n)ﬁ /(1671 xn)5r(2s-v-m)ds .
m=0 n=1 (5/4)
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We have, fory > 0,
1

2mi
(1/2)

and after collecting the residues of the gamma function at the negative integers,

y*I'(s)ds =e”

2mi
(-(2k+1)/2)

SI(s)ds=e” - (1- +ﬁ+---+(—1)ky—k k
Y T k!

>

0.

DE GRUYTER

Remark thatifk = 1, since |I'(s)] < e™” It/ 2\t|”"1 onNs = -k-1/2, theleft-hand side of the previous expression
is analytic for ®y > 0 and continuous up to Ry = 0. Therefore the previous formula for k > 1 holds in the

closed half-plane Ry = 0. With this explicit expression we find that

L / ()¢5 - 1/2) BTN s g5 _ (1) 21277 (1) 3 iy S 0y o ()

F(S * V) m=0 n=1

(-1/4)

\4
1 2. \-s i 1/2 in/4
o / (16m°xn) e ™r(2s —v-m)ds + (-1)V2V* /e xF(v)Zcm,vZU_l/z(n)

(5/4) m=0 n=1
x ﬁ / (16°xn) %™ I'(2s - v - m) ds
(5/4)
4
+(-1)"2" %I (v) Z Cm,v Z 0_1/2(n)2im. (16m%xn)°*I'(2s - v - m) ds
m=0 n=1 (5'/4)
) v —471i\/XN
_ (_1\VoHV+1/2 -in/4 Cm,v e
- ( 1) 2 e XF(V) ZO 2(47-“')v+mxv/2+m/2 Zl 0_1/2(7’1) nv/2+m/2 (4)
m= n=
v v-1+m —3+m-k
_(_4\VoV-1/2 in/4 (-1)" 0_1/2(n)
(-1)"2 e AT (v) x Z Cm,v Z (v = 3 + m - K)\(4mi)3+kx3/2+k/2 n3/2+k/2
m=0 k=0 n=1
—1)v+m 47tiA/XN
(-1) Cm,v e (5)

v
n (_1)v2v+1/2ein/4xl—-(v) Z
m=0

2(4ni)v+mxv/2+m/2 Z G’l/z(n) nv/i2+m/2
=i n=1

_ (_1)v2v—1/2 ein/4xl—~(v)

v-1+m

(_1)v+m

v
X E Cm,v
m=0

Cm,v

Z Z 0_1/,(n)
P (v = 3 + m - k)\(4mi)3+kx3/2+k/2 n3/2+k/2

n=1

e—4ﬂ\/xn

v
V4v+l
+(=1)"2"xI(v) Z 2(4m)v+myvi2+m/2 Z 0‘1/2(n) nv/2+m/2
m=0 n=1

v-1+m

(_1)v—3+m—k 0—1/2(")

- (-1)"2"XT(v) > cmyv
m=0

Z _ Y] 3+ky3/2+k/2 3/2+k/2
P (v=-3+m-Ik)\(4m)3+kx3/2+ e n3l

In this last expression, the only terms that we cannot calculate explicitly are the two inner series in (4) and (5).

7 Factoring with Hints

We show here, given 0 < € < 1, how to calculate in O(N 1/3+ey pit operations, assuming the factorisation
knowledge of O(N'/3*¢) integers immediately around N = pq, the quantity ,,,(N) = VN + 1+ /D + /g
within O(N1), which is sufficient to derive p and q. In the following, we suppose that v is a fixed (in terms of
N) integer with v > 20/3¢. The work done in the previous section allows us to write
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. v ~47ti\/Xn
. - - C e
Py(x) = (-1)V2" Y2 iml4xVI2 p(y) Z W Z 01N —mas nvizem/2 ©
m=0
+m 4n1\/ﬁ
vov-1/2 /4, v[2 Cm,v
+-1)"2 F(V)Z Wza 11200 nvizemiz "

In fact, the series without the oscillating exponential terms can be calculated in polynomial time to within
O(x™Y) by methods of [1, 2] because

O'_l/z(n) _ 3 k k
> ~$(3+2) 422
n=1

Having fixed € > 0, we approximate the series

etlmz\/ﬁ
n)———-
ZO’ 1/2( nv/2+m/2

n=1

by its [x'/3*€/2]-th partial sum, with a corresponding error

-1/2(71) —(1/3+¢/2)(v/2-2)
< Z 2 Z /2 T <X

naxl/3+e/2 n>X1/3+€/Z

and therefore (6) and (7) can be replaced by the corresponding expressions where the inner sums in n are
truncated at n < x*/3*€/2 with a total error

v/2,-(1/3+€/2)(v/2- 2) /3

< x"*x
since ev > 20/3 (and € < 1). Remark that the truncated series with y = x/3*¢/2
( ) +4m\/ﬁ _ eil}ﬂl\/m (8)
ZU 1/2 n nv/2+m/2 - Z nv/2+m/2 v/2+(m+1)/2
n<y ninasy °1

can be computed trivially within O(x™*) in O(x'/3*€) bit operations since there are O(y log y) positive integer
pairs (ny, n) with nyn, < y. Computing each term in the sum to the required precision can be achieved by
calculating

exp(4mi/xniny)

to within O(x™"). This can be done by calculating a € [0, 27) such thata = /xn;n; (mod 1) with error < x™
and then using a Maclaurin expansion of the exponential truncated after v log x terms. To summarise, we can
compute the right-hand side of (6), (7) within O(x"/3) in O(x'/3*€) bit operations.

On the other hand, let h > 0 and define V;Py(x)(= VjPy(x)) = Py(x) - Py(x — h) and V’ﬁ”Pv(X) =
Vh V’}‘,Pv(x) for k = 1. The following statements can easily be shown by induction.

1. IfPisa polynomial of degree d then Vg”P =0,
2. V"Pv(x) = Zl o( )Py(x - ih).

Letting x = N + N/3*¢ and h = N'/3*¢ we see that V% Py(x) can be expressed as
01/2(N)N(""1)(1/3+€) + terms involving only g, ,(n) for x - VN3 < p < x,

with n # N. Using (6), (7) again and our discussion on the right-hand side of this equation, we see that V' P,(x)
can also be computed within O(x*/3) with O(x'/3*€) bit operations.

Therefore we can compute in O(N/3*€) bit operations an approximation of NV-D(1/3+€)g, /2(N) within
O(N"/3). This leads to an approximation of g, ;,(N) within

Nv/3—(v—1)(1/3+e) < N—l

since ev > 7/3 . Recovering p | N is explained in Section 3.
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8 Final Considerations

Our method relates the factorisations of O(N?*€) numbers close to N with the factorisations of the first O(N?*€)
integers. The result given here (with 8 = 1/3) is rather crude, because the series (6) and (7) were approximated
by trivially computing the partial sum (8). An avenue for improvement would be in the selection of a better
suited test function or another (or more than one) multiplicative function.
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