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Abstract: We introduce a new approach to (deterministic) integer factorisation, which could be described

in the cryptographically fashionable term of “factoring with hints”: we prove that, for any ϵ > 0, given the

knowledge of the factorisations of O(N1/3+ϵ
) terms surrounding N = pq product of two large primes, we

can recover deterministically p and q in O(N1/3+ϵ
) bit operations. This shows that the factorisations of close

integers are non trivially related and that consequently one can expectmore results along this line of thought.
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1 Introduction
The problem of quickly factoring large integers is central in cryptography and computational number theory.

The current state of the art in factoring large integers N, the Number Field Sieve algorithm [5, 6], stems from

the earlier Quadratic Sieve [11] and Continued Fraction [9]. We should alsomention the Elliptic CurveMethod

by H. Lenstra [7], which is particularly useful when N has a small prime factor p. They are all probabilistic
factoring algorithms.

These algorithmshaveheuristic running times respectivelyO
(︀
ec(log N)

1/3

(log log N)2/3)︀
,O

(︀
ec(log N)

1/2

(log log N)1/2)︀
and O

(︀
ec(log p)

1/2

(log log p)1/2)︀
, for some constant c (not always the same). The first two strive to find nontriv-

ial arithmetical relations of the form x2 ≡ y2 (mod N) (which lead to a nontrivial factor by computing

gcd(N, x + y)), whereas the third is a generalisation of Pollard’s p −1method [10], involving computations in

some elliptic curve group instead of Z/N. We should note, however, that there exist probabilistic algorithms

with proved running time O
(︀
exp((1+ o(1))(logN)1/2(log logN)1/2)

)︀
[8]. As far as the author is aware, no such

rigorous bound exists in the form O
(︀
exp

(︀
(logN)c

)︀)︀
for c < 1/2. Similarly, no deterministic subexponential

algorithm is currently known, the best one being Shanks’ square form factorization SQUFOF which runs

in O(N1/4+ϵ
), or in O(N1/5+ϵ

) on the Extended Riemann Hypothesis. Recently Hittmeir [4] has somewhat

improved Shanks’ unconditional result to O
(︀
N1/4

exp(

−C log N
log log N )

)︀
for some explicit constant C > 0. This is

currently the best unconditional deterministic factoring algorithm.

In this work, we want to introduce a new paradigm in integer factorisation, one that doesn’t supersede

previous efforts, but rather complements it by showing that the factorisation of a small number of consecutive

integers is related in a nontrivial way. Therefore, if numbers close to a product N = pq of two primes are easier

to factor than N itself, we can expect a reduction in the time to factor N. Here we content ourselves with a first
nontrivial result.

Theorem 1. Let N = pq a product of two primes. Then, given an arbitrary ϵ > 0, the factors p and q can be
recovered in O(N1/3+ϵ

) bit operations from the knowledge of the factorisations of O(N1/3+ϵ
) integers closest to

N. The memory requirement is polynomial for the computational part.
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Remark that O(N1/3+ϵ
) integers close to N = pq do no contain the factors p or q in the case of a RSAmodulus,

when p, q = O(
√
N). The O(N1/3+ϵ

) bit operations mentioned in the theorem essentially involve the factorisa-

tions of the first O(N1/3+ϵ
) integers, where similarly the factors p, q of a RSAmodulus would not appear. Thus

we can loosely say that our result proves that the factorisation of N = pq is related to the factorisations of the
O(N1/3+ϵ

) integers closest to it and to the O(N1/3+ϵ
) smallest positive integers.

The structure of this article will be as follows. After recalling notations (Section 2) we explain the main

idea of the method: finding a close enough approximation to the value of a multiplicative function σ
1/2

(N)
and deduce a corresponding approximation a to p dividing N (Section 3).

In Section 4, we use generating functions (products of zeta functions) and their inverseMellin transforms

when multiplied by an appropriate kernel to define the quantities that we will be led to evaluate: Fν(x) and
Pν(x).

In Section 6, we obtain a different expression for Fν(x) by making use of the functional equation of the

generating function. We discover that the new expression can be easily computed save for two families of

oscillating series.

Finally, in Section 7, we show that by computing around N1/3+ϵ
terms in the oscillating series, each of

which can be done in polynomial time, one can get a block approximation to σ
1/2

(n) for n = N together with

about N1/3+ϵ
of its neighbours. Therefore, knowing the factorisation of these neighbours would allow us to

find an approximation to σ
1/2

(N) and therefore to a divisor p of N.

2 Notations
In this work N = pq where p, q are distinct prime numbers. We follow standard notations in analytic number

theory and indeed a classical reference on the subject is the treatise of Davenport [3]. In particular, we will

make liberal use of the O notation in Landau’s as well as Vinogradov’s form (≪). Hence, for instance

f (u) = O
(︀
g(u)

)︀
⇐⇒ f (u) ≪ g(u)

means that g(u) > 0 and |f (u)|/g(u) is bounded above (usually as u → ∞ or u → 0

+

, depending clearly on

the context). Unless specified, the implied constants are absolute.

Any sum such as ∑︁
abc=n

a2bc

is to be understood as taken over all positive integers a, b, c such that abc = n. We also define∑︁
a|n

f (a) =
∑︁
ab=n

f (a)

so that for instance the number of divisors of n is
∑︀

d|n 1 and its sumof divisors

∑︀
d|n d.We alsowrite s = σ+ it,

with σ, t ∈ R, according to the established convention in analytic number theory.

Finally, we write a .

= b to signify that a = b + terms that are not necessarily negligible in size but can be

computed in polynomial time (in the bit size of the challenge to be factored), so that they are negligible in

time.

3 Choice of a Multiplicative Function
For λ ∈ R define

σλ(n) =
∑︁
d|n

dλ .
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Our goal will be to compute σ
1/2

(N) = 1+

√
N+√p+

√
N√p within O(1/N). If so, then one gets an approximation

A to

f (p) = √p +
√
N√p = A + O

(︂
1

N

)︂
. (1)

Let us study the function in (0,∞)

f (z) =
√
z +

√
N√
z

⇒ f ′(z) = 1

2

√
z

(︂
1 −

√
N
z

)︂
⇒ f ′′(z) = 1

4z3/2

(︂
3

√
N
z − 1

)︂
.

The function f is convex in (0, 3
√
N) with a unique critical point (and therefore absoluteminimum) at z =

√
N.

We will suppose that N = pq with p <

√
N < q. In fact, we may as well suppose that p ≤

√
N − 2 by inspection.

Note that f ′′(z) ≥ N−3/4/2 for z ≤
√
N and therefore |f ′(z)| ≥ N−3/4/2 for z ≤

√
N − 1. Define a ∈ (0,

√
N − 1]

by f (a) = A. To see that such a exists, notice that f is decreasing in (0,
√
N]. IfA < f (

√
N − 1), then, for some

θ ∈ (

√
N − 2,

√
N − 1), we can write⃒⃒

A − f (p)
⃒⃒
< |f (

√
N − 1) − f (

√
N − 2)| = |f ′(θ)| ≥ 1

2N3/4

,

contradicting (1). Given then a ∈ (0,

√
N − 1] with f (a) = A, we obtain, for some ξ ≤

√
N − 1,

|a − p|
⃒⃒
f ′(ξ )

⃒⃒
=

⃒⃒
f (a) − f (p)

⃒⃒
=

⃒⃒
A − f (p)

⃒⃒
≪ 1

N ⇒ p = a + O
(︂

1

N1/4

)︂
and therefore p = ⌊a⌉, the integer nearest to a.

4 Choice of a Test Function
Consider the Riemann zeta function

ζ (s) =
∑︁
n≥1

1

ns ,

convergent for ℜs > 1. Then

ζ (s)ζ (s − 1/2) =
∞∑︁
n=1

σ
1/2

(n)
ns ,

absolutely convergent whenever ℜs > 3/2. Now let for ν ∈ N¹ with ν ≥ 2,

f (t) =
{︃
(1 − t)ν−1 0 ≤ t ≤ 1,
0 t ≥ 1.

The Mellin transform of f is by definition the beta function

B(ν, s) = Γ(ν)Γ(s)Γ(s + ν) =

∞∫︁
0

f (t)ts−1 dt

hence by the inverse Mellin transform²,

1

2πi

5/2+i∞∫︁
5/2−i∞

ζ (s)ζ (s − 1/2) Γ(ν)Γ(s)Γ(s + ν) x
s ds =

∑︁
n≤x

σ
1/2

(n)f
(︁n
x

)︁
. (2)

1 In fact, ν doesn’t need to be an integer, but it simplifies calculations to assume so.

2 We will also use the notation

∫︁
(c)

instead of

c+i∞∫︁
c−i∞

.
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Call the right-hand side

Fν(x) =
∑︁
n≤x

σ
1/2

(n)f
(︁n
x

)︁
=

∑︁
n≤x

σ
1/2

(n)
(︁
1 −

n
x

)︁ν−1
and note that

Pν(x) = xν−1Fν(x) =
∑︁
n≤x

σ
1/2

(n)(x − n)ν−1

is a piecewise polynomial (given by a different expression between consecutive integers).

5 Functional Equation of the Riemann Zeta Function
The Riemann zeta function is a meromorphic function having a simple pole with residue 1 at s = 1 and

satisfying the functional equation (given here in asymmetric form)

ζ (s) = 1

2πi (2π)
s Γ(1 − s)ζ (1 − s)

(︁
eiπs/2 − e−iπs/2

)︁
=

1

π (2π)s Γ(1 − s)ζ (1 − s) sin
πs
2

.

6 Another Expression for Fν(x)
A standard “integration line moving"³ (to ℜs = −1/4) argument in the integral of (2) will get us to the follow-

ing, after picking up the residues of the integrand at s = 3/2, s = 1 and s = 0,

Fν(x) = ζ (3/2)
Γ(ν)Γ(3/2)
Γ(ν + 3/2) x

3/2

+

ζ (1/2)
ν x + ζ (0)ζ (−1/2) + 1

2πi

∫︁
(−1/4)

ζ (s)ζ (s − 1/2) Γ(ν)Γ(s)Γ(s + ν) x
s ds .

In fact, we can move the line of integration to ℜs = −1/4, since to the right of that line, for any given

ϵ > 0,
|ζ (s)ζ (s − 1/2)| ≪ |t|2+ϵ ,

while ⃒⃒⃒⃒
Γ(s)

Γ(s + ν)

⃒⃒⃒⃒
≪ |t|−ν .

In particular the integral on the right-hand side is absolutely convergent when ν ≥ 4. It is this integral is

the next focus of our investigation. It is natural at this point to use the functional equation. We get quite

straightforwardly

1

2πi

∫︁
(−1/4)

ζ (s)ζ (s − 1/2) Γ(ν)Γ(s)Γ(s + ν) x
s ds = 1

(2πi)3

∫︁
(−1/4)

(2π)s Γ(1 − s)ζ (1 − s) sin
πs
2

× (2π)s−1/2 Γ(3/2 − s)ζ (3/2 − s) sin
(︁πs
2

−

π
4

)︁ Γ(ν)Γ(s)
Γ(s + ν) x

s ds = e−iπ/4

(2πi)3
√
2π

×

∫︁
(−1/4)

(4π2x)seiπsΓ(1 − s)ζ (1 − s)Γ
(︂
3

2

− s
)︂
ζ
(︂
3

2

− s
)︂
Γ(ν)Γ(s)
Γ(s + ν) ds +

eiπ/4

(2πi)3
√
2π

3 This is done by applying Cauchy’s residue theorem to a rectangle whose long sides rest onℜs = 5/2 andℜs = −1/4 and letting
the short sides tend to infinity, where their contribution to the contour integral becomes zero, as justified in the subsequent lines.
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×

∫︁
(−1/4)

(4π2x)se−iπsΓ(1 − s)ζ (1 − s)Γ
(︂
3

2

− s
)︂
ζ
(︂
3

2

− s
)︂
Γ(ν)Γ(s)
Γ(s + ν) ds

−

1

(2πi)3
√
π

∫︁
(−1/4)

(4π2x)sΓ(1 − s)ζ (1 − s)Γ(3/2 − s)ζ (3/2 − s) Γ(ν)Γ(s)Γ(s + ν) ds

=

e−iπ/4x
2πi

√
2π

∫︁
(5/4)

(4π2x)−se−iπsΓ(s)ζ (s)Γ(s + 1/2)ζ (s + 1/2) Γ(ν)Γ(1 − s)Γ(1 − s + ν) ds

+

eiπ/4x
2πi

√
2π

∫︁
(5/4)

(4π2x)−seiπsΓ(s)ζ (s)Γ(s + 1/2)ζ (s + 1/2) Γ(ν)Γ(1 − s)Γ(1 − s + ν) ds

+

x
2πi

√
π

∫︁
(5/4)

(4π2x)−sΓ(s)ζ (s)Γ(s + 1/2)ζ (s + 1/2) Γ(ν)Γ(1 − s)Γ(1 − s + ν) ds .

Using the Legendre duplication formula

Γ(s)Γ
(︂
s + 1

2

)︂
=

√
π 21−2sΓ(2s) ,

together with the functional equations sΓ(s) = Γ(s + 1) and Γ(s)Γ(1 − s) = π csc πs, we obtain

Γ
(︂
s + 1

2

)︂
Γ(s)Γ(1 − s)
Γ(1 − s + ν) = Γ

(︂
s + 1

2

)︂
Γ(s − ν)(cos πν − sin πν cot πs) = (−1)

ν
√
π 21−2sΓ(2s)

(s − 1)(s − 2) · · · (s − ν) . (3)

We can further transform (3) by noting that there exist unique constants c
0,ν = 1, . . . , cν,ν such that

1

(s − 1)(s − 2) · · · (s − ν) =
2

ν

(2s − 2)(2s − 4) · · · (2s − 2ν)

=

2

νc
0,ν

(2s − 1)(2s − 2) · · · (2s − ν) +
2

νc
1,ν

(2s − 1)(2s − 2) · · · (2s − (ν + 1)) + · · ·

+

2

νcν,ν
(2s − 1)(2s − 2) · · · (2s − 2ν)

whenever this expression makes sense. To see this, multiply both sides by (2s − 1)(2s − 2) · · · (2s − 2ν). The
resulting left-hand side is a polynomial of degree ν, expressed as a linear combination of the polynomials

resulting from the right-hand side, which form a basis of the vector space of polynomials of degree ≤ ν. For
instance, c

0,1
= c

1,1
= 1 and c

0,4
= 1, c

1,4
= 10, c

2,4
= 45, c

3,4
= c

4,4
= 105. From (3) we get

(−1)

νΓ
(︂
s + 1

2

)︂
Γ(s − ν) = (−1)

ν√π 2ν+1−2s
ν∑︁

m=0
cm,νΓ(2s − ν − m) .

Putting it together we obtain

1

2πi

∫︁
(−1/4)

ζ (s)ζ (s − 1/2) Γ(ν)Γ(s)Γ(s + ν) x
s ds = (−1)

ν
2

ν+1/2e−iπ/4xΓ(ν)
ν∑︁

m=0
cm,ν

∑︁
n≥1

σ
−1/2

(n)

×

1

2πi

∫︁
(5/4)

(16π2xn)−se−iπsΓ(2s − ν − m) ds + (−1)ν2ν+1/2eiπ/4xΓ(ν)
ν∑︁

m=0
cm,ν

∑︁
n≥1

σ
−1/2

(n)

×

1

2πi

∫︁
(5/4)

(16π2xn)−seiπsΓ(2s − ν − m) ds

+ (−1)

ν
2

ν+1xΓ(ν)
ν∑︁

m=0
cm,ν

∑︁
n≥1

σ
−1/2

(n) 1

2πi

∫︁
(5/4)

(16π2xn)−sΓ(2s − ν − m) ds .
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We have, for y > 0,
1

2πi

∫︁
(1/2)

y−sΓ(s) ds = e−y

and after collecting the residues of the gamma function at the negative integers,

1

2πi

∫︁
(−(2k+1)/2)

y−sΓ(s) ds = e−y −
(︂
1 − y + y

2

2!

+ · · · + (−1)

k yk
k!

)︂
k ≥ 0 .

Remark that if k ≥ 1, since |Γ(s)| < e−π|t|/2|t|−k−1 onℜs = −k−1/2, the left-hand side of theprevious expression
is analytic for ℜy > 0 and continuous up to ℜy = 0. Therefore the previous formula for k ≥ 1 holds in the

closed half-plane ℜy ≥ 0. With this explicit expression we find that

1

2πi

∫︁
(−1/4)

ζ (s)ζ (s − 1/2) Γ(ν)Γ(s)Γ(s + ν) x
s ds = (−1)

ν
2

ν+1/2e−iπ/4xΓ(ν)
ν∑︁

m=0
cm,ν

∑︁
n≥1

σ
−1/2

(n)

×

1

2πi

∫︁
(5/4)

(16π2xn)−se−iπsΓ(2s − ν − m) ds + (−1)ν2ν+1/2eiπ/4xΓ(ν)
ν∑︁

m=0
cm,ν

∑︁
n≥1

σ
−1/2

(n)

×

1

2πi

∫︁
(5/4)

(16π2xn)−seiπsΓ(2s − ν − m) ds

+ (−1)

ν
2

ν+1xΓ(ν)
ν∑︁

m=0
cm,ν

∑︁
n≥1

σ
−1/2

(n) 1

2πi

∫︁
(5/4)

(16π2xn)−sΓ(2s − ν − m) ds

= (−1)

ν
2

ν+1/2e−iπ/4xΓ(ν)
ν∑︁

m=0

cm,ν
2(4πi)ν+mxν/2+m/2

∑︁
n≥1

σ
−1/2

(n) e
−4πi

√
xn

nν/2+m/2
(4)

− (−1)

ν
2

ν−1/2e−iπ/4xΓ(ν) ×
ν∑︁

m=0
cm,ν

ν−1+m∑︁
k=0

(−1)

ν−3+m−k

(ν − 3 + m − k)!(4πi)3+kx3/2+k/2
∑︁
n≥1

σ
−1/2

(n)
n3/2+k/2

+ (−1)

ν
2

ν+1/2eiπ/4xΓ(ν)
ν∑︁

m=0

(−1)

ν+mcm,ν
2(4πi)ν+mxν/2+m/2

∑︁
n≥1

σ
−1/2

(n) e
4πi

√
xn

nν/2+m/2
(5)

− (−1)

ν
2

ν−1/2eiπ/4xΓ(ν)

×

ν∑︁
m=0

cm,ν
ν−1+m∑︁
k=0

(−1)

ν+m

(ν − 3 + m − k)!(4πi)3+kx3/2+k/2
∑︁
n≥1

σ
−1/2

(n)
n3/2+k/2

+ (−1)

ν
2

ν+1xΓ(ν)
ν∑︁

m=0

cm,ν
2(4π)ν+mxν/2+m/2

∑︁
n≥1

σ
−1/2

(n) e
−4π

√
xn

nν/2+m/2

− (−1)

ν
2

νxΓ(ν)
ν∑︁

m=0
cm,ν

ν−1+m∑︁
k=0

(−1)

ν−3+m−k

(ν − 3 + m − k)!(4π)3+kx3/2+k/2
∑︁
n≥1

σ
−1/2

(n)
n3/2+k/2

.

In this last expression, the only terms that we cannot calculate explicitly are the two inner series in (4) and (5).

7 Factoring with Hints
We show here, given 0 < ϵ < 1, how to calculate in O(N1/3+ϵ

) bit operations, assuming the factorisation

knowledge of O(N1/3+ϵ
) integers immediately around N = pq, the quantity σ

1/2
(N) =

√
N + 1 +

√p + √q
within O(N−1), which is sufficient to derive p and q. In the following, we suppose that ν is a fixed (in terms of

N) integer with ν ≥ 20/3ϵ. The work done in the previous section allows us to write
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Pν(x) .= (−1)

ν
2

ν−1/2e−iπ/4xν/2Γ(ν)
ν∑︁

m=0

cm,ν
(4πi)ν+mxm/2

∑︁
n≥1

σ
−1/2

(n) e
−4πi

√
xn

nν/2+m/2
(6)

+(−1)

ν
2

ν−1/2eiπ/4xν/2Γ(ν)
ν∑︁

m=0

(−1)

ν+mcm,ν
(4πi)ν+mxm/2

∑︁
n≥1

σ
−1/2

(n) e
4πi

√
xn

nν/2+m/2
. (7)

In fact, the serieswithout the oscillating exponential terms canbe calculated inpolynomial time towithin

O(x−ν) by methods of [1, 2] because∑︁
n≥1

σ
−1/2

(n)
n3/2+k/2

= ζ
(︂
3

2

+

k
2

)︂
ζ
(︂
2 +

k
2

)︂
.

Having fixed ϵ > 0, we approximate the series∑︁
n≥1

σ
−1/2

(n) e
±4πi

√
xn

nν/2+m/2

by its [x1/3+ϵ/2]-th partial sum, with a corresponding error

≪
∑︁

n≥x1/3+ϵ/2

σ
−1/2

(n)
nν/2

≪
∑︁

n≥x1/3+ϵ/2

1

nν/2−1
≪ x−(1/3+ϵ/2)(ν/2−2)

and therefore (6) and (7) can be replaced by the corresponding expressions where the inner sums in n are
truncated at n ≤ x1/3+ϵ/2 with a total error

≪ xν/2x−(1/3+ϵ/2)(ν/2−2) ≤ xν/3 ,

since ϵν ≥ 20/3 (and ϵ < 1). Remark that the truncated series with y = x1/3+ϵ/2∑︁
n≤y

σ
−1/2

(n) e
±4πi

√
xn

nν/2+m/2
=

∑︁
n
1
n
2
≤y

e±4πi
√xn

1
n
2

nν/2+m/2
1

nν/2+(m+1)/2
2

(8)

can be computed trivially within O(x−ν) in O(x1/3+ϵ) bit operations since there are O(y log y) positive integer
pairs (n

1
, n

2
) with n

1
n
2
≤ y. Computing each term in the sum to the required precision can be achieved by

calculating

exp(4πi
√
xn

1
n
2
)

towithinO(x−ν). This can be done by calculating a ∈ [0, 2π) such that a ≡
√xn

1
n
2
(mod 1)with error≪ x−ν

and then using aMaclaurin expansion of the exponential truncated after ν log x terms. To summarise, we can

compute the right-hand side of (6), (7) within O(xν/3) in O(x1/3+ϵ) bit operations.
On the other hand, let h > 0 and define ∇hPν(x)(= ∇1

hPν(x)) = Pν(x) − Pν(x − h) and ∇k+1
h Pν(x) =

∇h∇k
hPν(x) for k ≥ 1. The following statements can easily be shown by induction.

1. If P is a polynomial of degree d then∇d+1
h P = 0,

2. ∇k
hPν(x) =

∑︀k
i=0

(︀k
i
)︀
Pν(x − ih).

Letting x = N + N1/3+ϵ
and h = N1/3+ϵ

we see that∇ν
hPν(x) can be expressed as

σ
1/2

(N)N(ν−1)(1/3+ϵ)
+ terms involving only σ

1/2
(n) for x − νN1/3+ϵ

≤ n ≤ x,

with n ≠ N. Using (6), (7) again and our discussion on the right-hand side of this equation,we see that∇ν
hPν(x)

can also be computed within O(xν/3) with O(x1/3+ϵ) bit operations.
Therefore we can compute in O(N1/3+ϵ

) bit operations an approximation of N(ν−1)(1/3+ϵ)σ
1/2

(N) within
O(Nν/3). This leads to an approximation of σ

1/2
(N) within

Nν/3−(ν−1)(1/3+ϵ) ≪ N−1

since ϵν ≥ 7/3 . Recovering p | N is explained in Section 3.
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8 Final Considerations
Ourmethod relates the factorisations ofO(Nθ+ϵ) numbers close toN with the factorisations of the firstO(Nθ+ϵ)
integers. The result given here (with θ = 1/3) is rather crude, because the series (6) and (7)were approximated

by trivially computing the partial sum (8). An avenue for improvement would be in the selection of a better

suited test function or another (or more than one) multiplicative function.
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