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Abstract: We initiate the study of partial key exposure in Ring-LWE (RLWE)-based cryptosystems. Specifi-

cally, we (1) Introduce the search and decision Leaky R-LWE assumptions (Leaky R-SLWE, Leaky R-DLWE), to
formalize the hardness of search/decision RLWE under leakage of some fraction of coordinates of the NTT

transform of the RLWE secret. (2) Present and implement an efficient key exposure attack that, given certain

1/4-fraction of the coordinates of the NTT transform of the RLWE secret, along with samples from the RLWE

distribution, recovers the full RLWE secret for standard parameter settings. (3) Present a search-to-decision

reduction for Leaky R-LWE for certain types of key exposure. (4) Propose applications to the security analysis
of RLWE-based cryptosystems under partial key exposure.
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1 Introduction
There has been a monumental effort in the cryptographic community to develop “post-quantum” cryptosys-

tems that remain secure even in the presence of a quantum adversary. One of the foremost avenues for viable

post-quantum public key cryptography is to construct schemes from the Ring-Learning with Error (RLWE)

assumption—currently 3 out of 26 of the second round NIST submissions are based on assumptions in the

ring setting. RLWE is often preferred in practice over standard LWE due to its algebraic structure, which al-

lows for smaller public keys and more efficient implementations. In the RLWE setting, we typically consider

rings of the form Rq := Zq[x]/(xn + 1), where n is a power of two and q ≡ 1 mod 2n. The (decisional) RLWE

problem is then to distinguish (a, b = a · s + e) ∈ Rq × Rq from uniformly random pairs, where s ∈ Rq is
a random secret, a ∈ Rq is uniformly random and the error term e ∈ R has small norm. A critical question

is whether the additional algebraic structure of the RLWE problem renders it less secure than the standard

LWE problem. Interestingly, to the best of our knowledge—for the rings used in practice and practical param-

eter settings—the best attacks on RLWE are generic and can equally well be applied to standard LWE [28]. In

this work, we ask whether improved attacks on RLWE are possible when partial information about the RLWE

secret is exposed, though the secret retains high entropy.
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The NTT transform.
One key method for speeding up computations in the RLWE setting is usage of the NTT transform (similar

to the discrete Fourier transform (DFT), but over finite fields) to allow for faster polynomial multiplication

over the ring Rq. Specifically, applying the NTT transform to two polynomials p, p′ ∈ Rq—resulting in two

n-dimensional vectors, ̂︀p, ̂︀p′ ∈ Znq—allows for component-wise multiplication and addition, which is highly

efficient. In this work, we consider leakage of a fraction of NTT coordinates of the RLWE secret. Since the

RLWE secret will typically be stored in NTT form (to facilitate fast computation), [4, 7] leakage of coordinates

of the NTT transform is a natural model for partial key exposure attacks.

This work.
The goal of this work is to initiate a study of partial key exposure in RLWE based cryptosystems and explore

both positive and negative results in this setting. Specifically, we (1) define search and decision versions of

Leaky RLWE assumptions, where the structured leakage occurs on the coordinates of the NTT transform of

the RLWE secret; (2) present partial key exposure attacks on RLWE, given 1/4-fraction of structured leakage

on the secret key; (3) present a search to decision reduction for the Leaky RLWE assumptions; and (4) propose

applications of the decision version of the assumption to practical RLWE-based cryptosystems.

1.1 Leaky RLWE Assumptions–Search and Decision Versions

We next briefly introduce the search and decision versions of the Leaky RLWE assumptions. For p ∈ Rq :=

Zq[x]/(xn + 1), we denote ̂︀p := NTT(p) := (p(ω1

), p(ω3

), . . . , p(ω2n−1
)), where ω is a primitive 2n-th root of

unity modulo q, and is guaranteed to exist by choice of prime q, s.t. q ≡ 1 mod 2n. Note that ̂︀p is indexed

by the set Z*
2n.

The search version of the RLWE problem with leakage, denoted Leaky R-SLWE, is parametrized by (n′ ∈
{1, 2, 4, 8, . . . n}, S ⊆ Z*

2n′ ). The goal is to recover the RLWE secret s = NTT−1(̂︀s), given samples from the dis-

tribution Ds
real,n′ ,S which outputs

(︁̂︀a, ̂︀a · ̂︀s + ̂︀e, [̂︀si]i≡αmod 2n′ |∀α∈S

)︁
, where a, s, and e are as in the standard

RLWE assumption (see Appendix A.2 and [26] for the precise definition).

The decision version of the RLWE problem with leakage, denoted Leaky R-DLWE is parametrized by

(n′ ∈ {1, 2, 4, 8, . . . n}, S ⊆ Z*
2n′ ). The goal is to distinguish the distributions Ds

real,n′ ,S and Ds
sim,n′ ,S, where

Ds
real,n′ ,S is as above and Ds

sim,n′ ,S outputs

(︁̂︀a, ̂︀u, [̂︀si]i≡αmod 2n′ |∀α∈S

)︁
, where ̂︀ui = ̂︀ai · ̂︀si + ̂︀ei for i ≡ α

mod 2n′, α ∈ S and ̂︀ui is chosen uniformly at random from Zq, otherwise. Note that only the coordinates of̂︀u corresponding to unleaked positions are required to be indistinguishable from random.

When S = {α} consists of a single element, we sometimes abuse notation and write the Leaky-RLWE

parameters as (n′, α). Leaky-RLWEwith parameters (n′, S) where S = {α
1
, α

2
, . . . , αt}, is equivalent to Leaky-

RLWE with parameters (n′, S′), where S′ = α−1
1
· S (multiply every element of S by α−1

1
). It is also not hard to

see that leaky search and decision are equally hard when secret s is uniform random from Rq versus drawn
from the error distribution (the same reduction for standard RLWE works in our case).

1.2 Our Results

Partial key exposure attacks.
We present attacks on Leaky R-SLWE and test them on various practical parameter settings, such as the

NewHope [7] parameter settings as well as the RLWE challenges of Crockett and Peikert [12]. Our attacks

demonstrate that Leaky R-SLWE is easy for leakage parameters (n′ = 4, α = 1), (n′ = 8, S = {1, 7}) and
(n′ = 8, S = {1, 15}), under (1) NewHope parameter settings of n = 1024, q = 12289, and χ = Ψ

16
(centered

binomial distribution of parameter 16); (2) The same parameters above, but with χ = D√
8

(discrete Gaussian

with standard deviation of

√
8,whichhas the same standard deviation asΨ

16
), since this is the recommended

setting in the case where the adversary gets to see many RLWE samples [3]; (3) For parameters of several of
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the Crockett and Peikert challenges, including those classified as “very hard.” In all the above cases, we fully

recover the RLWE secret with high probability, given the corresponding 1/4-fraction of the positions in the

NTT transform of the RLWE secret. See Section 3.2 for details on the experimental results.

A search-to-decision reduction.
Define Tn′ (n) to be the time required to solve Leaky R-SLWE for dimension n, given positions [ŝi]i≡α mod 2n′ .

Assuming search R-LWEwithout leakage is subexponentially 2Ω(n
ϵ
)

-hard for some constant ϵ ≤ 1 and polyno-
mialmodulus q, then Tn(n) ∈ 2Ω(n

ϵ
)

,¹ i.e. there is a constant c such that, for sufficiently large n, Tn(n) ≥ 2c(n
ϵ
)

.

Also, T
1
(n) ∈ poly(n), since the entire s is leaked. So there is some constant c′ such that, for sufficiently large

n, there exists n* = n*(n) ∈ {2, 4, 8, 16, . . . , n} such that Tn* (n) ≥ 2c
′
(nϵ)

and

Tn* (n)
Tn*/2(n)

≥ n.²

Theorem 1.1 (Informal). Assume n* := n*(n) > 4, s← Rq, then:

(1) Ds
real,n* ,{α} ≈ D

s
sim,n* ,{α} OR

(2) Ds
real,n* ,{α,(n*−1)·α} ≈ D

s
sim,n* ,{α,(n*−1)·α} OR

(3) Ds
real,n* ,{α,(2n*−1)α} ≈ D

s
sim,n* ,{α,(2n*−1)α}.

While at first glance itmay seem that the conclusions (1), (2), (3) are redundant, in fact they are incomparable;

Indeed, conclusion (1) does not imply (2) (resp. (3)), since the adversary in (2) (resp. (3)) is given additional

leakage. Conversely, conclusion (2) (resp. (3)) does not imply (1), since the set of NTT coordinates that are

indistinguishable from random is smaller in (2).

Note that our experimental results show that for our chosen parameter settings Ds
real,4,{1} /≈D

s
sim,4,{1},

Ds
real,8,{1,7} /≈D

s
sim,8,{1,7} and D

s
real,8,{1,15} /≈D

s
sim,8,{1,15} (since we in fact fully recover the secret in all these

cases). This indicates that n* ≠ 4 and, if n* = 8 for our chosen parameter settings (as supported by our

experiments), then it must be the case that Ds
real,8,{1} ≈ D

s
sim,8,{1}.

Applications.
The Leaky R-DLWE assumption is a useful tool for analyzing the security of RLWE-based cryptosystems sub-

ject to partial key exposure, and guaranteeing a graceful degradation in security. In particular, the Leaky

R-DLWE assumption was used to analyze the NewHope protocol of [7] in the ePrint version of this paper [14].

The assumption is applicable to schemes in which the RLWE assumption is used to guarantee that a certain

outcome is high-entropy (as opposed to uniform random), such as NewHope without reconciliation [6].

Practicality of our attack.
We note that an attack on Leaky R-SLWE yields an attack on standard search R-LWE by guessing each possible
leakage outcome, running the Leaky R-SLWE attack and checking correctness of the recovered secret. There-
fore, we believe this line of research is interesting beyond the context of leakage resilience, since if the attack

can be made to work successfully for sufficiently low leakage rate (far lower than the 1/4-leakage rate of our

attacks), then one could potentially obtain an improved attack on standard search R-LWE.
We chose to consider partial exposure of theNTT transform of the R-LWE secret, since in practical schemes

the secret key is often stored in the NTT domain and certain types of side-channel attacks allow recovering

large portions of the secret key stored in memory. E.g., in their analysis of “cold boot attacks” on NTT cryp-

1 Search R-LWE can be solved given a subroutine that solves Leaky R-SLWE by first guessing the leakage on s, then running the

Leaky R-SLWE attack. Thus, by guessing the value of the single leaked position we obtain a Tn(n) · q-time attack on search R-LWE
without leakage.
2 Otherwise for every n

1
∈ N, there exists an n

2
≥ n

1
such that Tn

2

(n
2
) < 2

c′(nϵ
2

)

· nlog n2
2

< 2

c(nϵ
2

)

.
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tosystems, Albrecht et al. [4] considered bit-flip rates as low as 0.2%. However, the highly structured leakage

required for our attack is unlikely to occur in a practical leakage setting such as a “cold boot attack,” where

one expects to recover the values of random locations inmemory. We leave open the question of reducing the

structure of the leakage in our attack. Specifically, as a starting point it will be interesting to see if our attack

can extend to leakage patterns of n′ = 16, |S| = 4 or n′ = 32, |S| = 8, etc. While the leakage rate remains the

same (1/4) in each case, these patterns capture leakage that is less and less structured, since at the extreme,

one can view leakage of a random 1/4-fraction of the NTT coordinates as an instance of Leaky R-SLWE with
parameters n′ = n and |S| = n/4.³

1.3 Comparison with Concurrent Work of Bolboceanu et al. [9]

One of the settings considered by [9] is sampling the RLWE secret from an ideal I ⊆ qR. It is straightforward to
see that sampling the RLWE secret uniformly at random from Rq and then leaking the NTT coordinates i such
that i = α mod 2n′ is equivalent to sampling the RLWE secret from the ideal I that contains those elements

whose NTT transform is 0 in positions i such that i = α mod 2n′.
Nevertheless, our decisional assumption is weaker than the assumption of [9], since [9] require that the

entire vector u be indistinguishable from uniform random, whereas we only require that the NTT transform

of u is indistinguishable from uniform random at the positions i that are not leaked. Our assumption lends

itself to a search-to-decision reduction while the assumption of [9] does not. While [9] do provide a direct

security reduction for their decisional assumption, the required standarddeviation of the error (in polynomial

basis, tweaked and scaled by q) is ω(q1/n
′
· n3/2), which would be far higher than the noise considered in the

NewHope and RLWE Challenges settings. In contrast, our assumption can be applied in practical parameter

regimes and is sufficient to argue the security of several practical cryptosystems under partial key exposure.

Finally, we compare our attack to that of [9]. For fixed n, q, our attack works for noise regimes that are

not covered by the attack of [9]. For example, for NewHope settings of n = 1024, q = 12289, the attack of [9]

has success rate at most 1/1000 when the standard deviation of noise distribution is less than 0.00562. ⁴ In

contrast, our attack works (with success ranging from 82/200 to 2/1000) when the standard deviation of the

noise is

√
8 ≈ 2.83.⁵ Our attack applies only for certain leakage patterns corresponding to certain ideals I,

whereas the attack of [9]works for any ideal. The techniques of the two attacks are entirely different. [9] obtain

a “good” basis for the ideal via non-uniform advice, perform a change of basis and then use Babai’s roundoff

algorithm to solve the resulting BDD instance. We use the algebraic structure of the problem to convert RLWE

instances over high dimension into CVP instances over constant dimension n′. We then exactly solve the CVP

instances over constant dimension and determine the “high confidence” solutions that are likely to be the

correct values of the RLWE error. Assuming all high confidence solutions are correct, we obtain a noiseless

system of linear equations w.r.t. the RLWE secret, allowing efficient recovery of the secret.

1.4 Related Work

Leakage-resilient cryptography.
The study of provably secure, leakage-resilient cryptographywas introduced by thework of Dziembowski and

Pietrzak in [19]. Pietrzak [29] also constructed a leakage-resilient stream-cipher. Brakerski et al. [11] showed

3 We thank an anonymous reviewer for bringing this research direction to our attention.

4 Note that [9] provides an upper bound of norm of error with respect to canonical basis for its attack to succeed. Using a variant

of Chernoff’s bound, we derive an upper bound of standard deviation of error for success rate at most 1/1000. To make the bound

comparable to NewHope setting, we further convert to tweaked polynomial representation and to RLWE instance in the form of

(as + e) instead of (as/q + e).
5
√
8 is the more conservative setting in the original NewHope specification [7]. The NIST submission uses lower standard devi-

ation of 2, which is still not covered by the attack of [9].
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how to construct a scheme secure against an attacker who leaks at each time period. There are other works

as well considering continual leakage [17, 22]. There are also work on leakage-resilient signature scheme [10,

21, 27].

Leakage-resilience and Lattice-based Cryptography.
Goldwasser et al. [20], and subsequently [2, 16, 18] studied the leakage resilience of standard LWE based

cryptosystems in the symmetric and public key settings.

Leakage Resilience of Ring-LWE.
Dachman-Soled et al. [13] considered the leakage resilience of a RLWE-based public key encryption scheme

for specific leakage profiles. This was followed by Albrecht et al. [4], they investigated cold boot attacks and

compared the number of operations for implementing the attack when the secret key is stored as polynomial

coefficients versus when encoding of the secret key using a number theoretic transform (NTT) is stored in

memory. Recently, [30] showed that given multiple samples of RLWE instances such that the public key for

every instance lies in some specific subring, one can reduce the original RLWE problem to multiple indepen-

dent RLWE problems over the subring. In this workwe do not place any such restriction on the RLWE samples

required to mount partial key exposure attack.

2 Preliminaries
For a positive integer n, we denote by [n] the set {0, . . . , n −1}. We denote vectors in boldface x andmatrices

using capital letters A. For vector x over Rn or Cn, define the ℓ
2
norm as ‖x‖

2

= (

∑︀
i |xi|

2

)

1/2

. We write as ‖x‖
for simplicity. We use the notation ≈t(n),p(n) to indicate that adversaries running in time t(n) can distinguish

two distributions with probability at most p(n).
We present the background and standard definitions related to lattices, algebraic number theory, RLWE,

and NTT transform in Appendix A.

3 Partial Key Exposure Attack on Ring-LWE

3.1 Reconstructing the secret given (α mod 8) leakage.

Recall that for p ∈ Zq[x]/(xn + 1), the NTT transform, ̂︀p, is obtained by evaluating p(x) mod q at the powers
ωi for i ∈ Z*

2n, where ω is a 2n-th primitive root in Zq. For n′ ∈ {1, 2, 4, 8, . . . , n}, let u = n/n′. For α ∈ Z*
2n′ ,

consider pαu(x) be the degree u − 1 polynomial that is obtained by taking p(x) modulo (xu − (ωα)u). We may

assume WLOG that α = 1. We abbreviate notation and write pu, instead of p1u.
We consider attacks in which the adversary learns all coordinates i of ̂︀s such that i ≡ 1 mod 2n′ where

n′ ∈ {1, 2, 4, 8, . . . , n}, and aims to recover the RLWE secret s. First, we note that in NTT transform notation

the equation ̂︀a ·̂︀s+̂︀e = ̂︀u holds component-wise. Therefore, given leakage on certain coordinates of̂︀s, we can
solve for the corresponding coordinates of ̂︀e. We also get to see multiple RLWE samples (which we write in

matrix notation–where the Aj matrices are the circulant matrices corresponding to the ring element aj’s) as
(A1

,A1s + e1 = u1), . . . , (Aℓ
,Aℓs + eℓ = uℓ

). Thus, for the j-th RLWE sample we learn all the coordinates ̂︀eji,
for i ≡ 1 mod 2n′. Note that the leaked coordinates are the evaluation of the polynomial eu(x) at the ωi for
i ≡ 1 mod 2n′. We can then reconstruct the polynomial eu(x) using Lagrange Interpolation.

For i ∈ {0, . . . , u − 1}, the (i + 1)-st coefficient of eu(x), i.e. eu,i is equal to

ei + ωu · ei+u + ω2·u
· ei+2·u + . . . + ω(n′−1)·u

· ei+(n′−1)·u
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The coefficients of e can be partitioned into u groups of size n′, forming independent linear systems,

each with n′ variables and one equation. Given only the leakage, the set of feasible secret keys is a cartesian
product S

1
× · · · × Su, where for i ∈ [u], the set Si is the set of vectors ei := {ei , ei+u , ei+2u , . . . , ei+(n′−1)u} that

satisfy the i-th linear system:[︁
1 ωu ω2·u

· · · ω(n′−1)·u
]︁
·

[︁
ei ei+u ei+2·u · · · ei+(n′−1)·u

]︁T
=

[︁
eu,i

]︁
Since each coordinate of e is drawn independently from χ and since each linear system above has small

dimension n′, we can use a brute-force-search to find the most likely solution and calculate its probability.

Given this information, we will carefully choose the solutions eji (from all possible sets of solutions

[eji]j∈[ℓ],i∈[u]) that have a high chance of being the correct values of the RLWE error. To obtain a full key recov-

ery attack, we require the following: (1) In total, wemust guess at least u number of n′-dimensional solutions,

eji, from all the obtained solutions [eji]j∈[ℓ],i∈[u]; (2) With high probability all our guesses are correct. Observe
that if our guess of some eji is correct, we learn the following linear system of n′ equations and n variables
(Aj,i ·s = uj,i −ej,i), where Aj,i is the submatrix of Aj consisting of the n′ rows i, i+u, i+2·u, . . . , i+(n′−1)·u,
and uj,i , ej,i are vectors consisting of the i, i + u, i + 2 · u, . . . , i + (n′ − 1) · u coordinates of uj and ej. So
assuming (1) and (2) hold, we learn u noiseless systems of n′ linear equations, each with n = u · n′ number

of variables. We then construct a linear system of n variables and n equations, which can be solved to obtain
the candidate s.

In order to ensure that (2) holds, we only keep the guess for eji when we have “high confidence” that it is
the correct solution. The probability of a particular solution eji := (eji , e

j
i+u , . . . , e

j
i+(n′−1)u), is the ratio of the

probability of eji being drawn from the error distribution (which is coordinate-wise independent) over the sum

of the probabilities of all solutions. For small dimension n′, this can be computed via a brute-forcemethod. In

our case, we keep the highest probability solution when it has probability at least, say 0.98. The probability

that all guesses are correct is therefore 0.98u = 0.98

n/n′
.

Since computing the exact probability as above is computationally intensive, we develop a heuristic that

performsnearly aswell and ismuch faster. Note that finding the “most likely” solution is equivalent to solving

a CVP problem over an appropriate n′-dimensional lattice. We then calculate the probability of the solution

under the discrete Gaussian and set some threshold . If the probability of the solution is above the threshold

we keep it, if not we discard it. Experimentally, we show that by setting the threshold correctly, we can still

achieve high confidence. See Figure 1 for the exact settings of the threshold for each setting of parameters.

Our experiments also show that (1) also holds given a reasonable number of RLWE samples. See Section 3.2

for a presentation of our experimental results. We describe our attack in cases where the leakage is on all

coordinates i such that i ≡ α
1

mod 2n′ or i ≡ α
2

mod 2n′ in Appendix B.1.

Complexity of the attack.
Weprovide the pseudocode for the attack in Appendix D, Figure 3.While our attackworkswell in practice, we

do not provide a formal proof that our attack is polynomial time for a given setting of parameters. Within the

loop beginning on line 5, all the steps (or subroutines) shown in Figure 3 can be computed in polynomial time.

Note that even step 12 (CVP.closest_vector), which requires solving a CVP instance, can be computed in

polynomial time because for the leakage patterns we consider, the dimension of the CVP instance will always

be either 4 or 8–a constant, independent of n. However, our analysis does not bound the number of iterations

of the loopbeginningon line 5. Specifically,wedonot analyzehow large the variableRLWESamplesmust be set

in order to guarantee that the attack is successful with high probability. Bounding this variable corresponds

to bounding the number of RLWE samples needed in order to obtain a sufficient number of “high confidence”

solutions. In practice, the number of RLWE samples was always fewer than 200 for all parameter settings. In

future work, we plan to compute the expected number of RLWE samples needed to obtain a sufficient number

of high confidence solutions for a given parameter setting. Assuming this expected number of samples is

polynomial in n, we obtain an expected polynomial time attack.
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3.2 Experimental Results

We first assess the performance of our attack on the RLWE challenges published by Crockett and Peikert [12],

with various parameters, ranging from “toy” to “very hard” security levels. For each parameter setting, a cut-

and-choose protocol was used by [12] to prove correctness of the challenges: They committed to some number

(e.g. N = 32) of independent RLWE instances, a random index i was chosen, and the secret key for all except
the i-th instancewas revealed. For each of the 31 opened challenges, we simulate the Leaky RLWE experiment

and attempt to recover the full secret s using our attack. We next measure the performance of our attack on

RLWE instances generated using the dimension, modulus and noise distribution proposed in the original

NewHope scheme [7]. These parameters are more conservative than the ones chosen for the later submission

to the NIST competition [5]. When multiple RLWE samples are released, bounded error distributions are less

secure [3]. We therefore tested our attack in the more difficult setting of Gaussian error, in addition to the

original binomial error distribution of [7].

The experiments were run using server with AMD Opteron 6274 processor, with a python script using all

the cores with Sage version 8.1. We used fplll [15] library for CVP solver and the source code of all the attacks

are available online at [1]. The results of our attacks are summarized in Figure 1.We report the total number of

instanceswebroke and the average number of RLWE samples needed for those instances. To decidewhether a

solution is kept or discarded, its probabilitymass under the error distribution χ is calculated and compared to

the threshold. The threshold for each parameter setting is set heuristically so that minimal weight solutions

passing the threshold are correct with high confidence (see Figure 1 for the exact threshold settings). We

tested leakage patterns of (n′ = 4, S = {1}), (n′ = 8, S = {1, 7}) and (n′ = 8, S = {1, 15})–all corresponding
to 1/4-fraction leakage—for each parameter setting and were able to break multiple Leaky RLWE instances

for every parameter setting/leakage pattern shown in Figure 1. We also report the maximum time it took to

break a single instance for each parameter setting in Figure 1. Overall, the maximum amount of time to break

a single instancewas 6 hours for the hardest instance, i.e. Challenge ID 89.We attempted to launch our attack

given only 1/8-fraction of leakage (leakage pattern (n′ = 8, α = 1)), but were only successful for the easiest

case, i.e. Challenge ID 1. For, e.g. Challenge ID 89, the attack failed since for 5000 number of linear systems,

the maximum confidence of any solution was 0.28, meaning that we expect to recover the secret key with

probability at most 0.28

2048/8

≈ 2

−470

, which is well beyond feasible.

Chall ID
(hardness)

n q χ n′ Pattern
(S)

min-max
RLWE #

Avg. RLWE # Broken
Instances

Threshold Maximum
Time (s)

128 769 D
0.40

4 {1} 2-2 2 31 of 31 7e−5 2.24
1 8 {1, 15} 1-2 1.93 29 of 31 7e−6 2.18

(toy) 8 {1, 7} 1-2 1.93 29 of 31 7e−6 1.23
8 {1} 1-1 1 4 of 31 1e−8 1.3

5 (toy) 128 3329 D
0.80

4 {1} 2-3 2.38 31 of 31 7e−5 2.53
8 {1, 15} 2-3 2.09 31 of 31 7e−6 1.99
8 {1, 7} 2-3 2.09 31 of 31 7e−6 1.88

45 (moderate) 256 7681 D
0.80

4 {1} 2-3 2.61 31 of 31 7e−5 8.83
8 {1, 15} 2-2 2 31 of 31 7e−8 8.78
8 {1, 7} 2-2 2 31 of 31 7e−8 6.97

85 (very hard) 1024 59393 D
3.59

4 {1} 6-7 6.05 17 of 31 7e−5 1914
8 {1, 15} 39-60 51.88 26 of 31 7e−9 2000
8 {1, 7} 39-59 50.76 17 of 31 7e−9 2682

89 (very hard) 2048 86017 D
3.59

4 {1} 6-7 6.16 30 of 31 7e−5 5523
8 {1, 15} 44-58 52.29 31 of 31 7e−9 11766
8 {1, 7} 44-58 52.29 31 of 31 7e−9 20837

NewHope 1024 12289

D√
8

4 {1} 35-37 36 3 of 200 3e−4 745
8 {1, 15} 147-220 180.85 82 of 200 7e−8 2226
8 {1, 7} 189-204 196.5 2 of 1000 7e−8 1238

Ψ
16

4 {1} 34-36 34.16 6 of 200 3e−4 796
8 {1, 15} 149-217 183.20 94 of 200 7e−8 2039
8 {1, 7} 177-193 184.8 5 of 1000 7e−8 975

Figure 1: Performance of attack against RLWE Challenges [12] and NewHope [7] parameter settings. For each parameter setting,
we report the following: min/max and average number of RLWE samples required for successful break, total number of broken
instances, and max run-time (in seconds) for successful break. Threshold is set such that the minimal weight solutions to the
linear systems given in Section 3 have high confidence with suflciently high probability.
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4 Search and Decisional Ring-LWE with Leakage
Definition 4.1 (Search RLWE (R-SLWE) with Leakage) The search version of the R-LWE problemwith leak-

age, denoted Leaky R-SLWEq,ψ,n′ ,S, is parameterized by (n′ ∈ {1, 2, 4, 8, . . . n}, S ⊆ Z*
2n′ ). The experiment

chooses s ← Rq uniformly at random, where s = NTT−1(̂︀s). The goal of the adversary is to recover s, given
independent samples from the distribution Ds

real,n′ ,S, which outputs
(︁̂︀a, ̂︀a · ̂︀s + ̂︀e, [̂︀si]i≡αmod 2n′ |∀α∈S

)︁
where

a, e are obtained from As,ψ as in standard RLWE (see Definition A.2).

Definition 4.2 (Decision RLWE (R-DLWE) with Leakage) The decision version of the R-LWE problem with

leakage, denoted Leaky R-DLWEq,ψ,n′ ,S, is parameterized by (n′ ∈ {1, 2, 4, 8, . . . n}, S ⊆ Z*
2n′ ). The experi-

ment chooses s ← Rq uniformly at random, where s = NTT−1(̂︀s). The goal of the adversary is to distinguish
between independent samples from the distributions Ds

real,n′ ,S and D
s
sim,n′ ,S, where D

s
real,n′ ,S is the same as

above, and Ds
sim,n′ ,S outputs

(︁̂︀a, ̂︀u, [̂︀si]i≡αmod 2n′ |∀α∈S

)︁
, where a, e are obtained from As,ψ as in standard

RLWE (see Definition A.2) and

̂︀ui = ̂︀ai · ̂︀si + ̂︀ei | i ≡ αmod2n′ ∀α ∈ S and ̂︀ui ← Zq

chosen uniformly random, otherwise.

5 Search to Decision Reduction With Leakage
Let the RLWE secret be denoted by ŝ and assume WLOG that there exists an adversary that obtains leakage

[ŝi]i≡1 mod 2n′ and distinguishes û = â · ŝ+ ê from û′
, where ûi = âi · ŝi+ êi for i ≡ 1 mod 2n′ and otherwise is

uniform random⁶. It is not hard to see, using techniques of [23–25], that this implies an attacker that learns a

single index j ∈ Z*
2n, j ≡ b mod 2n′ of the RLWE secret, where b /≡1 mod 2n′. We call this theBasic Attack.

Due to limited space, we refer readers to Appendix C for description of Basic Attack.

Theorem 5.1 (Existence of Basic Attack). If, for any (n′, S ⊆ Z*
2n′ ) adversaryA running in time t := t(n) distin-

guishes Ds
real,n′ ,S from Ds

sim,n′ ,S with probability p := p(n), then there is some index j such that j ≠ α′ mod n
for all α′ ∈ S and an attack Basic Attack with parameters (n′, S, j, t, p), that learns NTT coordinate ŝj with
probability 1 − 1/poly(n) and takes time poly(n) · t · 1/p.

Our attack Attack 1 uses the Basic Attack to learn all the values [ŝi]i≡br mod 2n′ for r ∈ [n′/2]. Let ŝ1 := ŝ.
The main idea of Attack 1 is to learn all [ŝ1i ]i≡b mod 2n′ in the first round, then apply an automorphism to

shift the positions i ≡ b2 mod n′ into the positions i ≡ b mod 2n′, resulting in a permuted RLWE secret,

denoted ŝ2. Note that applying the automorphism causes the positions ŝ1i such that i ≡ b mod n′ to shift
into the positions i ≡ 1 mod 2n′. This means that we are now back where we started, and the reduction

is now able to provide the required leakage (on [ŝ2i ]i≡1 mod 2n′ ) to the adversary and thus can learn the val-

ues of [ŝ2i ]i≡b mod 2n′ = [ŝ1i ]i≡b2 mod n′ in the second iteration, [ŝ3i ]i≡b mod 2n′ = [ŝ1i ]i≡b3 mod n′ in the third

iteration, etc. We next formalize the necessary properties of the automorphisms.

For i, j ∈ Z*
2n, let ϕi→j be the automorphism that maps v̂ to v̂′ such that v(ωi) = v′(ωj). ϕi→j induces

a permutation on the elements of v̂, denoted ρi→j. Specifically, ϕi→j(v̂) maps v̂ℓ to v̂ρi→j(ℓ) for i, j, ℓ ∈ Z*
2n,

where ρi→j(ℓ) = i−1ℓj.

Definition 5.2 A probability distribution ψ : Z(ζm) → R is automorphically closed in K if for all i, j ∈
Z*m , ϕi→j(ψ) = ψ.

6 Note that the problem is identical when the adversary obtains leakage [ŝi]i≡α mod 2n′ , for α ∈ Z*
2n′ since, as we shall see next,

an automorphism can be applied to shift all indices i such that i ≡ α mod 2n′ to positions i ≡ 1 mod 2n′.
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We remark that RLWE error distribution χ is automorphically closed [23].

We formally define Attack 1 in Figure 3. We next sketch how Attack 1 can be used to complete the proof.

For dimenstion n and parameter n′ ∈ {1, 2, 4, 8, . . . n}, let Tn′ := Tn′ (n) be the (non-uniform) time to solve

Leaky R-SLWE for dimension n and parameters (n′, S = {α} = {1}), i.e. given positions [ŝ1i ]i≡1 mod 2n′ , with

probability 1/2.

Assume subexponential 2

Ω(nϵ)
-hardness of search RLWE without leakage for some constant ϵ ≤ 1 and

polynomial modulus q. Then we also have that Tn(n) ∈ 2

Ω(nϵ)
, and as discussed in the intro, there must

exist a constant c′ such that for sufficiently large n, there exists n* = n*(n) ∈ {2, 4, 8, 16, . . . , n} such that

Tn* (n) ≥ 2c
′
(nϵ)

and

Tn* (n)
Tn*/2(n)

≥ n. The above implies that T
(n*/2) ∈ o(Tn* ).

Now, if given [ŝ1i ]i≡1 mod 2n* leakage, there exists a (t(n), p(n))-distinguishing adversary (where t(n) =√︀
Tn* /poly(n) and p(n) = 1/

√︀
Tn* ), then we will show that there is an adversary solving the R-SLWE

w.h.p. given positions [ŝ1i ]i≡1 mod 2n* in time less than Tn* , leading to contradiction. We begin by running

Attack 1, which takes time at most o(Tn* ) for our settings of t(n) and p(n). If b ∈ Z*
2n* is such that for some

r ∈ [n*/2], br ≡ n* +1 mod 2n*, then we can combine the reconstructed values of ŝ1i from Attack 1with our
knowledge of [ŝ1i ]i≡1 mod 2n* to obtain all values [ŝ1i ]i≡1 mod n* . This means that we can then run the search

attack for 2/n*-fraction of leakage to recover all of ŝ in time T
(n*/2) ∈ o(Tn* ). But then the entire attack for (1

mod 2n*)-leakage can be run in time o(Tn* ), contradicting the definition of Tn* .
For n* > 4, the only cases in whichAttack 1 does not recover [ŝi]i≡n*+1 mod 2n* , is when b ∈ {n*−1, 2n*−

1}. For such b, we do not know how to rule out the possibility that given [ŝi]i≡1 mod 2n* , the positions i ≡ b
mod 2n* of û do not look random. In this case, however, we argue that given leakage on both [ŝi]i≡1 mod n* ,

and [ŝi]i≡b mod n* , all other positions are indistinguishable from random, since otherwise a modified version

of Attack 1 can be run. We next state the formal theorem of this section.

Attack 1:

Given access to Dsreal,n′ ,S={1} (i.e. RLWE samples with leakage [ŝi]i≡1 mod 2n′ ) and the distinguishing index j ∈ Z*
2n, where j ≡ b

mod 2n′, for the Basic Attack:
1: for all Leaky-RLWE samples do
2: Set â1 := â, û1 := û, [ŝ1i := ŝi]i≡1 mod 2n′ .

3: end for
4: for r ∈ [1, 2, . . . , n′/2] do ◁ [ŝri ]i≡1 mod 2n′ are now known.

5: for all j′ such that j′ ≡ j mod 2n′ do
6: Run the Basic Attackwith parameters (n′ , {1}, j, t, p) on RLWE samples of the form (â := ϕj′→j(âr), û := ϕj′→j(ûr)),

leakage set [ŝi := ŝrρj′→j (i)
]i≡1 mod 2n′ to recover ŝrj′ .

◁ All these values of ŝrρj′→j (i)
are now known: If i ≡ 1 mod 2n′ then ρj′→j(i) ≡ 1 mod 2n′, since j ≡ j′ mod 2n′.

7: end for ◁W.h.p. all ŝrj′ s.t. j
′ ≡ b mod 2n′ are now known.

8: Choose an ℓ ∈ Z*
2n such that ℓ ≡ b2 mod 2n′.

9: for all Leaky RLWE samples do
10: Set âr+1 := ϕℓ→j(âr) and ûr+1 := ϕℓ→j(ûr).
11: end for

◁ [ŝr+1i ]i≡1 mod 2n′ , are now known since ŝri′ s.t. i
′ ≡ b mod 2n′ are now in position ŝr+1i s.t. i ≡ 1 mod 2n′.

12: end for ◁ All values si such that i ≡ br mod 2n′ and r ∈ [n′/2] are now known.

Figure 2: Description of Attack 1.

Theorem 5.3. Assume n* := n*(n) > 4, s← Rq, then:

– Ds
real,n* ,{α} ≈t(n),p(n) D

s
sim,n* ,{α} OR

– Ds
real,n* ,{α,(n*−1)·α} ≈t(n),p(n) D

s
sim,n* ,{α,(n*−1)·α} OR

– Ds
real,n* ,{α,(2n*−1)α} ≈t(n),p(n) D

s
sim,n* ,{α,(2n*−1)α}.
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where, t(n) =
√︀
Tn* /poly(n), p(n) = 1/

√︀
Tn* .

Proof. We assume WLOG that α = 1. Assume Ds
real,n* ,{1} /≈

√
Tn* /poly(n),1/

√
Tn* )

Ds
sim,n* ,{1}. Then this means

there must be an adversary A running in time

√︀
Tn* /poly(n), that distinguishes on index j ∈ Z*

2n, where

j ≡ b mod 2n′ with probability at least 1/
√︀
Tn* .

Case 1: b is such that br ≡ n* + 1 mod 2n* for some r ∈ [n*/2]. In this case, with appropriate setting of

poly(n), we can use Attack 1 to recover the positions i such that i ≡ n* + 1 mod 2n* (w.h.p.) in time o(Tn* ).
Now we can run the attack that takes as input [ŝi]i≡1 mod n* and recovers all of ŝ. By assumption, this attack

runs in time T
(n*/2) ∈ o(Tn* ). Thus, we can to recover the whole ŝ (w.h.p. greater than 1/2) in time o(Tn* ),

which is a contradiction.

By properties of the group Z*
2n* , where n

*

is a power of two, for all b ∈ Z*
2n* \ {1, n

*

− 1, 2n* − 1}, it is the
case that br ≡ n* + 1 mod 2n* for some r ∈ [n*/2]. Thus, Case 1 holds for all b ∈ Z*

2n* \ {n
*

− 1, 2n* − 1}.
Case 2: b = n* − 1. In this case, with appropriate setting of poly(n), we can use Attack

1 to recover the positions i such that i ≡ n* − 1 mod 2n* (w.h.p.) in time o(Tn* ). Assume

Ds
real,n* ,{1,(n*−1)} /≈

√
Tn* /poly(n),

√
Tn* /poly(n)

Ds
sim,n* ,{1,(n*−1)}, then there must be some adversary A′

that distin-

guishes on index j′ ∈ Z*
2n, where j′ ≡ b′ ∈ Z*

2n* \ {1, n
*

− 1}. We can combine this with the previous attack

as follows:

Case 2(a): b′ ∈ Z*
2n* \ {1, n

*

− 1, 2n* − 1}. Due to essentially the same argument as before, by appropriately setting poly(n), we
can (w.h.p.) learn all [ŝi]i≡(b′)r mod 2n* for r ∈ [n*/2] in time o(Tn* ) and then apply the same argument as above.

Specifically, given the initial leakage [ŝ1i ]i≡1 mod 2n* , the attack will first learn [ŝ1i ]i≡n*−1 mod 2n* , then learn

[ŝ1i ]i≡b′ mod 2n* , then, for some (j, j′) such that j ≡ b′ mod 2n* and j′ ≡ 1 mod 2n*, apply automorphism ϕj→j′ to get ŝ2,
learn [ŝ2i ]i≡n*−1 mod 2n* , then learn [ŝ2i ]i≡b′ mod 2n* , etc. thus ultimately learning [ŝi]i≡(b′)r mod 2n* for r ∈ [n*/2]. At this point,
we will have [ŝi]i≡1 mod n* and thus can learn all of ŝ in additional time T

(n*/2) ∈ o(Tn* ). Thus, in total the attack takes time

o(Tn* ), leading to contradiction.
Case 2(b): b′ = 2n* − 1. Due to essentially the same argument as before, with appropriate setting of poly(n), we can (w.h.p.)

recover the positions i such that i ≡ 2n* − 1 mod 2n* in time o(Tn* ). The adversary now knows [ŝi]i≡n*−1 mod n* . We can thus

learn all of ŝ in additional time T
(n*/2) ∈ o(Tn* ). Thus, in total the attack takes time o(Tn* ), leading to contradiction.

Case 3: b = 2n* − 1. This essentially follows identically to Case 2.
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A Additional Preliminaries

A.1 Algebraic Number Theory

For a positive integerm, themth cyclotomic number field is a field extension K = Q(ζm) obtained by adjoining
an element ζm of order m (i.e. a primitive mth

root of unity) to the rationals.

Ring of Integers R and Its Dual R∨

Let R ⊂ K denote the set of all algebraic integers in number field K defined above. This set forms a ring (under

the usual addition and multiplication operations in K), called the ring of integers of K.
An (integral) ideal I ⊆ R is a non-trivial (i.e. I ≠ ∅ and I ≠ {0}) additive subgroup that is closed under

multiplication by R, i,e., r · a ∈ I for any r ∈ R and a ∈ I.

Definition A.1 For R = Z[ζm], define g =
∏︀
p(1− ζp) ∈ R, where p runs over all odd primes dividingm. Also,

define t = m̂
g ∈ R, where m̂ =

m
2

if m is even, otherwise m̂ = m.

The dual ideal R∨
of R is defined as R∨

= ⟨t−1⟩, satisfying R ⊆ R∨ ⊆ m̂−1R. The quotient R∨
q is defined as

R∨
q = R∨

/qR∨
.

A.2 Ring-LWE

We next present the formal definition of the RLWE problem as given in [26].

Definition A.2 (RLWE Distribution) For a “secret" s ∈ R∨
q (or just R∨

) and a distribution χ over KR, a sample

from the RLWE distribution As,χ over Rq × (KR/qR∨
) is generated by choosing a ← Rq uniformly at random,

choosing e ← χ, and outputting (a, b = a · s + emod qR∨
).

Definition A.3 (RLWE, Average-Case Decision) The average-case decision version of the RLWE problem,

denoted R-DLWEq,χ, is to distinguishwith non-negligible advantage between independent samples from As,χ,
where s ← R∨

q is sampled uniformly at random, and the same number of uniformly random and independent

samples from Rq × (KR/qR∨
).

Theorem A.4. [26, Theorem 2.22] Let K be the mth cyclotomic number field having dimension n = φ(m) and
R = OK be its ring of integers. Let α = α(n) > 0, and q = q(n) ≥ 2, q = 1modmbeapoly(n)-bounded prime such
that αq ≥ ω(

√︀
log n). Then there is a polynomial-time quantum reduction from ˜O(

√
n/α)-approximate SIVP (or

SVP) on ideal lattices in K to the problem of solving R-DLWEq,χ given only l samples, where χ is the Gaussian
distribution Dξ for ξ = α · q · (nl/log (nl))

1/4.

A Note on the Tweak.
In [8], Alperin-Sheriff and Peikert show that an equivalent “tweaked" form of the Ring-LWE problem can

be used in cryptographic applications without loss in security or efficiency. This is convenient since the

“tweaked" version does not involve R∨
. The “tweaked" ring-LWE problem can be obtained by implicitly mul-

tiplying the noisy products b by the “tweak" factor t, and, as it is explained in [8], t · R∨
= R. This yields new

values

b′ = t · b = (t · s) · a + (t · e) = s′ · a + e′mod qR,

where a, s′ = t · s ∈ Rq, and the errors e′ = t · e come from the “tweaked" error distribution t · χ.
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A.3 Number Theoretic Transform (NTT)

Let Rq := Zq[x]/xn + 1 be the ring of polynomials, with n = 2

d
for any positive integer d. Also, letm = 2n and

q = 1modm. For, ω a mth

root of unity in Zq the NTT of polynomial p =

∑︀n−1
i=0 pix

i ∈ Rq is defined as,

̂︀p = NTT(p) :=
n−1∑︁
i=0

̂︀pixi
where the NTT coefficients ̂︀pi are defined as: ̂︀pi = ∑︀n−1

j=0 pjω
j(2i+1)

.

The function NTT−1 is the inverse of function NTT, defined as

p = NTT−1(̂︀p) := n−1∑︁
i=0

pixi

where the NTT inverse coefficients pi are defined as: pi = n−1
∑︀n−1

j=0 ̂︀pjωi(2j+1).

B Attack Algorithm for Other Leakage Patterns

B.1 Reconstructing the secret given (α1, α2 mod n′) leakage

Let eαu(x) be the degree u = n/n′ polynomial that is obtainedby taking e(x)modulo xu−(ωα)u.We consider two

polynomials eα1u (x) and eα2u (x).Wemay assumeWLOG, α
1
= 1.We therefore set α := α

2
. For i ∈ {0, . . . , u−1},

the (i + 1)-st coefficient of eu(x) and eαu(x) are as follows, respectively

ei + ωu · ei+u + ω2·u
· ei+2·u + . . . + ω(n′−1)·u

· ei+(n′−1)·u
ei + ωα·u · ei+u + ωα·2·u · ei+2·u + . . . + ωα·(n

′
−1)·u

· ei+(n′−1)·u
Similar to the previous attack, we obtain the following constraints on the error, given leakage on the

secret key and an RLWE sample,

[︃
1 ωu ω2·u

· · · ω(n′−1)·u

1 ωα·u ωα·2·u · · · ωα·(n
′
−1)·u

]︃
·

⎡⎢⎢⎢⎢⎢⎢⎣
ei
ei+u
ei+2·u
.

.

.

ei+(n′−1)·u

⎤⎥⎥⎥⎥⎥⎥⎦ =

[︃
eu,i
eαu,i

]︃

We solve a corresponding CVP instance to find the “most likely” solution, ei for (ei , ei+u , ei+2·u , . . .,
ei+(n′−1)·u), since the “most likely” solution is the one with smallest norm.

Similar to our previous attack, our goal is to carefully choose the answers with “high confidence” such

that (1) In total, we must guess at least u number of n′-dimensional solutions, eji, from all the obtained so-

lutions [eji]j∈[ℓ],i∈[u]; (2) With high probability all our guesses are correct. We choose the candidate which

has probability of at least, say, 0.95 of being correct solution. The total probability of success for this case is

0.95

u
= 0.95

n/n′
.

Our experiments in section 3.2 again show that we can obtain enough “high” confidence solutions, with-

out requiring too large a number of RLWE instances.

C Description of Basic Attack
In this section, we present the Basic Attack, following the description from [23–25] and using the fact that

NTT coefficients form a CRT representation. We first recall definition of CRT representation in our setting of

parameters.
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Definition C.1 (CRT Representation) For p ∈ Rq, and ω a mth
primitive root of unity in Z*q, CRT representa-

tion for p is defined as

CRT(p) = (p(ωj1 ), . . . , p(ωjn )),

for ji ∈ Z*m.

It is easy to see that CRT(p) = (̂︀p
0
, . . . , ̂︀pn−1).

We first introduce the following definition:

Definition C.2 (Hybrid Leaky RLWE Distribution) For j ∈ Z*
2n = {1, 3, . . . , 2n − 1}, a “secret" s ∈ Rq, and a

distribution χ over Rq, a sample from the distribution Ds,j
real,n′ ,S is generated by choosing (̂︀a, ̂︀b) ← Ds

real,n′ ,S

and outputting (̂︀a, ̂︀b+u), where u = (u
1
, u

3
, . . . , u

2n−1) ∈ Znq with ui, i ∈ Z*
2n defined as follows: ui is chosen

uniformly at random from Zq if i ≠ α′ mod 2n′ for all α′ ∈ S and i ≤ j, ui = 0 otherwise.

Define Ds,−1
real,n′ ,S := Ds

real,n′ ,S. Additionally, notice that D
s,2n−1
real,n′ ,S = Ds

sim,n′ ,S. Thus if, for any (n
′
, S ⊆ Z*

2n′ )

adversary A running in time t := t(n) distinguishes Ds
real,n′ ,S from Ds

sim,n′ ,S with probability p := p(n), then
there is some index j ∈ Z*

2n such that j ≠ α′ mod n for all α′ ∈ S and a distinguisher Dj that is able to

distinguish between the distribution Ds,j−2
real,n′ ,S and D

s,j
real,n′ ,S with probability at least p/n.

We now show the distinguisher Dj can be used to construct an algorithm that finds the value of ŝj.
The idea of this algorithm is to try each of the possible values ŝj, constructing the samples on inputs from

Ds
real,n′ ,S, so that the samples are distributed according to Ds,j−2

real,n′ ,S if ŝj is guessed correctly, and the samples

are distributed according to Ds,j
real,n′ ,S otherwise. Then using the distinguisherDj poly(n/p) times for each of

the q(= poly(n)) guesses for ŝi, we are able to find the correct value of ŝj with probability 1−1/poly(n) in time

t · poly(n) · 1/p.
Next we present the samples construction algorithm that takes a guess g ∈ Zq and transform Ds

real,n′ ,S
to either Ds,j−2

real,n′ ,S or D
s,j
real,n′ ,S. On each sample (̂︀a, ̂︀b)← Ds

real,n′ ,S, it outputs a sample

(a′, b′
) = (̂︀a + v, ̂︀b + u + gv),

where u = (u
1
, u

3
, . . . , um−1), v = (v

1
, v

3
, . . . , vm−1) ∈ Znq are chosen as follows: uk is uniform in Zq if k < j,

k ≠ α′ mod 2n′ for all α′ ∈ S, and the rest are 0; vk is uniform in Zq if k = j, and the rest are 0. Note that b′j
can be written as

b′j = âj ŝj + êj + uj + gvj = a′j ŝj + êj + uj + (g − ŝj)vj .

Observe that if g is the correct guess, then (g − ŝj)vj = 0. The distribution of (a′, b′
) is identical to Ds,j−2

real,n′ ,S. If

g is a wrong guess, (g − sj) is non-zero. Since q is prime, (g − ŝj)vj is uniform in Zq. Thus the distribution of
(a′, b′

) is identical to Ds,j
real,n′ ,S.
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D Pseudocode of Attack from Section 3

Partial Key Exposure Attack

Given leaked coordinates on NTT version of secret keŷ︀s, public key a and a public value b, recover all coordinates of s
1: [ω̄, B] = create_basis()

◁ create basis used in CVP solver and ω̄ being

[︀
1, ωu , ω2·u

, · · · , ω(n′−1)·u]︀
2: bTotal = [], aTotal = []
3: count = 0
4: u = n/n′

5: for j ∈ [1, 2, . . . , RLWESamples] do
6: Aj =create_a(̂︀aj) ◁ Create circulant matrix corresponding to ̂︀aj
7: ̂︀ej = ̂︀bj − ̂︀aj ·̂︀s

◁ For all leaked coordinate of̂︀s we compute the corresponding coordinates of error ̂︀ej
8: e = Lagrange polynomials(̂︀ej)

◁ Recover the coeffiecient of polynomial obtained by taking e(x) modulo (xu − (ωα)u)
9: aMat = [], bTemp = []
10: for i ∈ [0, 1, 2, . . . , u − 1] do
11: X = ω̄.solve_right(ei) ◁ Solving the system of equation explained in Section 3

12: Y =CVP.closest_vector(B, X)
13: ēi = X − Y
14: if Prob(ēi) > Threshold then
15: aMat.append

(︀̂︀Aj[i, i + u, i + 2 · u, . . . , i + (n′ − 1) · u][:])︀
◁ Select the corresponding rows from ̂︀aj and save them

16: bTemp.append
(︀̂︀bj[i, i + u, i + 2 · u, . . . , i + (n′ − 1) · u] − ēi)︀

◁ Select the corresponding rows from ̂︀bj, subtract ēi from it to get noiseless system

17: count += n′

18: end if
19: end for
20: aTotal.append

(︀
aMat

)︀
21: bTotal.append

(︀
bTemp

)︀
22: if count == n then
23: break
24: end if
25: end for
26: try:

27: sk = aTotal.solve_right(bTotal) ◁ solve the noiseless system to recover key

28: except:

29: return error ◁ couldn’t solve the system

30: return sk

Figure 3: Description of Partial Key Exposure Attack from Section 3
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