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Abstract:We revisit the approximate Voronoi cells approach for solving the closest vector problem with pre-
processing (CVPP) on high-dimensional lattices, and settle the open problem of Doulgerakis–Laarhoven–De
Weger [PQCrypto, 2019] of determining exact asymptotics on the volume of these Voronoi cells under the
Gaussian heuristic. As a result, we obtain improved upper bounds on the time complexity of the randomized
iterative slicer when using less than 20.076d+o(d)memory, andwe showhow to obtain time–memory trade-offs
even when using less than 20.048d+o(d) memory. We also settle the open problem of obtaining a continuous
trade-off between the size of the advice and the query time complexity, as the time complexity with subexpo-
nential advice in our approach scales as dd/2+o(d), matching worst-case enumeration bounds, and achieving
the same asymptotic scaling as average-case enumeration algorithms for the closest vector problem.
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1 Introduction
Ever since the discovery of polynomial-time quantum attacks on widely deployed public-key cryptosys-
tems [36], researchers have been looking for ways to construct cryptographic schemes whose security relies
on problems which remain hard even when large-scale quantum computers become a reality [8, 14, 29].
A prominent class of potentially “post-quantum” cryptosystems [2, 33, 38] relies on the hardness of lattice
problems, such as the shortest (SVP) and closest vector problems (CVP). Understanding their hardness is
essential for an efficient and reliable deployment of lattice-based cryptographic schemes in practice.

Over time, the practical hardness of SVP and CVP has been quite well studied, with two classes of al-
gorithms emerging as the most competitive: enumeration [5, 6, 15, 16, 19, 27], running in superexponential
time 2Θ(d log d) in the lattice dimension d (the main security parameter), using a negligible amount of space;
and sieving [3, 4, 13, 18, 20, 26, 28], running in only exponential time 2Θ(d), but also requiring an amount of
memory scaling as 2Θ(d). The best asymptotic time complexities for enumeration (dd/2e+o(d) for SVP, dd/2+o(d)

for CVP [17]) and sieving ((3/2)d/2+o(d) for both SVP and CVP [7, 21]) have remained unchanged since 2007
and 2016 respectively,¹ and recent work has mainly focused on decreasing second-order terms in the time
and space complexities [4, 5, 13, 16, 22].

A close relative to CVP, the closest vector problemwith preprocessing (CVPP), has received far less atten-
tion [1, 10, 24, 39] – from a practical point of view, only a few recent works have studied how preprocessing
can be used to speed up CVP [12, 21]. Since a fast CVPP algorithm would imply faster lattice enumeration
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algorithms for SVP/CVP [12, 16, 21], faster approximate-SVP algorithms for ideal lattices [30, 39], and even
faster isogeny-based cryptography [9], a better understanding of the hardness of CVPP is needed.

1.1 Approximate Voronoi cells

A natural approach for solving nearest-point queries for large data sets is to use Voronoi cells; partitioning
the space in regions, where each cell contains all points closer to the point in this cell than to any other
point in the data set. Micciancio–Voulgaris [25] proposed an algorithm for constructing the Voronoi cell V of
a lattice in time 22d+o(d) and space 2d+o(d), which can then be used to solve CVPP in time 22d+o(d). Bonifas–
Dadush [10] later improved the query time complexity to only 2d+o(d), but with the best heuristic algorithms
for CVP running in time and space less than 20.3d+o(d), using exact Voronoi cells seems impractical.

To make the Voronoi cells approach practical, Laarhoven [21] and Doulgerakis–Laarhoven–De Weger
(DLW) [12] proposed constructing approximate Voronoi cells of the lattice, and using a randomized version of
the iterative slicer algorithm of Sommer–Feder–Shalvi [37] for solving CVP queries. These cellsVL, defined by
a list of lattice vectors L ⊂ L, can be seen as rough, low-memory approximations to the exact Voronoi cellV –
low-quality representations of the same object, which attempt to model the object as well as possible within
the limited space available. These approximate representations are lossy, but are also smaller and easier to
store (less memory) and faster to process (less time).

For analyzing the performance of this approach, DLW conjectured a relation between the performance of
the algorithm and how well VL approximates V:

p = Pr(the iterative slicer, with input L, solves CVP) ?≈ vol(V)
vol(VL)

. (1)

They then obtained upper bounds on the volume of VL relative to V by studying the success probability of
the randomized slicer. An open problem from DLW was to better study the volumes of these approximate
Voronoi cells, as thismay lead to tighter bounds on their CVPP algorithm. Furthermore, the time–space trade-
offs from DLW seemed somewhat unnatural — the query time complexity diverges when the memory is less
than 20.05d+o(d) — and a second open problem was to obtain time complexities scaling as 2Θ(d) for arbitrary
memory complexities 2Ω(d).

1.2 Volumes of approximate Voronoi cells

In this paper we take a fundamental approach to studying the shape of approximate Voronoi cells. We model
this problem as estimating the volume of the intersection of a large number of random half-spaces, and we
solve the latter problem exactly for the main regimes of interest. In particular, without any heuristic assump-
tions, we prove the following result regarding the volume of a random polytope obtained by intersecting a
large number of random half-spaces. Assuming that the distribution of lattice points inside a large ball can
be approximated well by a uniform distribution over the ball, this then leads to a tight asymptotic estimate
of the volume of approximate Voronoi cells.

Theorem 1.1 (Volume of approximate Voronoi cells) Let α > 1, and let L ⊂ L \ {0} consist of the αd shortest
non-zero vectors of a lattice L. Then, assuming the Gaussian heuristic holds, with probability 1 − o(1) we
have:

α ≤
√
2 =⇒ vol(VL) =

(︂
α4

4α2 − 4

)︂d/2+o(d)
vol(V); (2)

α ≥
√
2 =⇒ vol(VL) = (1 + o(1))d+o(d) vol(V). (3)

Assuming [12, Heuristic assumption 1] holds (which has been restated here as Heuristic 4.2), this result would
then imply what are the exact asymptotic time and space complexities of the randomized slicer. However,
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under the same assumption, DLW derived the following asymptotic upper bound on the relative volume of
approximate Voronoi cells, for α ∈ (1,

√
2):

vol(VL)
vol(V)

?
≤
(︃

16α4
(︀
α2 − 1

)︀
−9α8 + 64α6 − 104α4 + 64α2 − 16

)︃d/2+o(d)
. (4)

Looking closely, (2) in fact contradicts the above upper bound for α > 1
3
√
10 ≈ 1.054. The source of this

contradiction can be found in [12, Heuristic assumption 1]: while this assumption states that the success
probability p of the randomized slicer is exactly p = vol(V)/ vol(VL), the randomized slicer is in fact more
likely to converge to short solutions than to long solutions: wemaywell have p ≫ vol(V)/ vol(VL), and the gap
between both quantities may be exponentially large in d. A lower bound on p therefore does not necessarily
translate to a lower bound on vol(V)/ vol(VL), or to an upper bound on its reciprocal.

1.3 Application to CVPP

Although (4) is incorrect as an upper bound on the volume of approximate Voronoi cells, on closer inspection
we see that to bound the complexity of their algorithm, DLW in fact proved that p is atmost the RHS of (4): the
bound on the volume of the approximate Voronoi cell was then only obtained through transitivity by applying
[12, Heuristic assumption 1]. Thus, letting pα denote the success probability of the randomized slicer when
using a list of the n = αd shortest non-zero vectors in the lattice, we now have two heuristic lower bounds on
pα:

(DLW) pα ≥
(︃
−9α8 + 64α6 − 104α4 + 64α2 − 16

16α4
(︀
α2 − 1

)︀ )︃d/2+o(d)
; (5)

(ours) pα ≥
(︂
4α2 − 4
α4

)︂d/2+o(d)
. (6)

These bounds are both conditional on the Gaussian heuristic, and the second result holds conditional on
pα ≥ vol(V)/ vol(VL). By applying similar techniques from [12], we obtain the following CVPP complexities,
where δ =

√
α2 − 1/α.

Theorem 1.2 (CVPP complexities) Let α ∈ (1,
√
2) and u ∈ (δ, 1δ ). Thenwe can heuristically solve CVPPwith

query space and time S and T, where:

S =
(︂

α
α − (α2 − 1)(αu2 − 2u

√
α2 − 1 + α)

)︂d/2+o(d)
, (7)

T =
(︂

α4
4α2 − 4 ·

α + u
√
α2 − 1

−α3 + α2u
√
α2 − 1 + 2α

)︂d/2+o(d)
. (8)

The best query complexities (S, T) together form the blue curve in Figure 1.

Aswe can see in Figure 1, for the low-memory regime of less than 20.076d+o(d)memory,we obtain strictly better
query time complexities than [12]. The trade-offs from [12] were further limited to the regime of using at least
20.048d+o(d)memory, whereas Theorem 1.2 describes a continuous trade-off between the query time and space
complexities: for arbitrary memory complexities 2εd+o(d) with ε > 0, we obtain a query time complexity 2Θ(d).
Extending Theorem 1.2 to the regime of α = 1 + o(1), we obtain the following result.

Corollary 1.3 (Polynomial advice for CVPP). Using dΘ(1) memory, we can heuristically solve CVPP in time
dd/2+o(d).
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Figure 1: Query complexities for solving CVPP. The labeled curves and points correspond to the papers [7, 12, 18, 21]. Our new
upper bound on the query time complexity improves upon DLW when using less than (10/9)d/2+o(d) ≈ 20.076d+o(d) memory.
Note that, whereas the red DLW-curve diverges as the memory approaches the dashed asymptote 20.048d+o(d) from above, our
trade-offs heuristically continue all the way to the regime of subexponential memory.

This matches the asymptotic worst-case time complexities for solving CVP with enumeration of Hanrot–
Stehlé [17], and with an average-case scaling for enumeration of dd/(2e)+o(d), this is only off by a factor 1/e
in the exponent compared to practical enumeration methods. We further see that if we use a preprocessed
list of size e.g. 2Θ(d

𝛾 ) for constant 𝛾 ∈ (0, 1), we heuristically obtain a CVPP time complexity scaling as
2 1

2 (1−𝛾)d log2 d+o(d log d).

Outline.
Section 2 first defines notation and preliminary results. Section 3 studies the volume of intersections of ran-
dom halfspaces. Section 4 describes the application of these results to solving CVPP and the resulting trade-
offs. The appendices describe further details on prior work, to make the paper self-contained.

2 Preliminaries
Given a set B = {b1, . . . , bd} ⊂ Rd of linearly independent vectors, we define L = L(B) := {

∑︀d
i=1 λibi : λ ∈

Zd} as the lattice generated by B. We write ‖ · ‖ for the Euclidean norm. Given a basis of a lattice and a target
vector t ∈ Rd, the closest vector problem (CVP) is to find the vector v ∈ L closest to t. In the preprocessing
version (CVPP), the problem is split into two parts: the preprocessing phase (without knowing t) and the
query phase (with knowledge of t). For CVPP, the task is to do preprocessing such that CVP queries can then
be answered more efficiently than when solving CVP directly.

Let us define some basic high-dimensional objects below, where v ∈ Rd.

(unit sphere) S := {x ∈ Rd : ‖x‖ = 1}, (9)

(unit ball) B := {x ∈ Rd : ‖x‖ ≤ 1}, (10)

(half-space) Hv := {x ∈ Rd : ‖x‖ ≤ ‖x − v‖}, (11)
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(convex polytope) VL :=
⋂︁
v∈L

Hv , (0 ∉ L) (12)

(spherical cap) Cv := Hv ∩B, (13)
(Voronoi cell) V := VL\{0}. (14)

We further define the complements Hv := Rd \Hv and VL := Rd \ VL in Rd, and Cv := B \ Cv on the ball.
Note that the definition of a polytope VL is generic, and the list L need not be from a lattice. VL may further
be unbounded (and its volumemay be infinite), although for sufficiently large, randomly chosen lists L it will
usually be finite. For L ⊂ L \ {0}, the polytope VL defines an approximate Voronoi cell of the lattice L [12],
satisfying V ⊆ VL with equality iff R ⊆ L, where R is the set of relevant vectors of the lattice [25].

To analyze volumes of intersections on the ball, we will use the following asymptotic formula [34, Equa-
tion (28)], where α = 1

2‖v‖ ∈ (0, 1):

C(α) := vol(Cv)
vol(B) ∼

√︂
1 − α2
2πα2d · (1 − α

2)d/2. (d →∞) (15)

For constant α ∈ (0, 1) and large d, Equation (15) can alternatively be written as C(α) = O((1 − α2)d/2/
√
d) =

(1 − α2)d/2+o(d).
Finally, theGaussian heuristic states that for sufficiently smooth and randomregionsK ⊂ Rd, thenumber

of lattice points insideK scales as vol(K)/ vol(V).

3 Volumes of random polytopes
To study the asymptotic behavior of volumes of approximate Voronoi cells, we will first study the more fun-
damental problem of estimating the volume of polytopes VL defined as the intersection of a large number of
random half-spaces. We will study two specific cases for the list L below:

1. Uniformly random points from the (unit) sphere;
2. Uniformly random points from the (unit) ball.

The volume of such randompolytopes has been previously studied in e.g. [31, 32, 35, 40, 41], and in particular
the case of points from the sphere was analyzed in [31]. For the application to approximate Voronoi cells
we need bounds for the case when points are drawn uniformly at random from a ball, which to the best of
our knowledge has not been explicitly studied before. For completeness, and to illustrate how the analysis
changes between the case of the sphere and the ball, we treat the case of random points from the unit sphere
here as well.

3.1 Uniformly random points from the (unit) sphere

First, let us study the case where L is sampled uniformly at random from the unit sphere S. This setting was
previously studied in [31, Section 3.2], but for extending the analysis to the case of the unit ball we explicitly
analyze this problemhere aswell. Note that for L ⊆ Sd−1 wehave the trivial lower bound vol(VL) ≥ 2−d vol(B),
as 1

2B ⊆ VL. For a slightly less trivial upper bound, note that the polytope VL is unbounded iff all points in L
lie in a certain hemisphere. The probability that this happens was computed by Wendel [42] as:

Pr
L∼S

(︁
vol(VL) < ∞

)︁
= 1 − 2−n+1

d−1∑︁
k=0

(︃
n − 1
k

)︃
. (16)

In particular, it is extremely unlikely that for lists of size n = ω(d), the corresponding polytopes are un-
bounded. For lists of exponential size, we obtain the following result, similar to [31, Theorem 3.9].
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Theorem 3.1 (Random points from the sphere) Let α > 1, and let L ⊂ S consist of n = αd uniformly random
vectors from S. Then, with probability 1 − o(1) over the randomness of L, we have:

vol(VL) =
(︂

α2
4α2 − 4

)︂d/2+o(d)
vol(B). (17)

Proof. To prove Theorem 3.1, we will prove the following, equivalent statement:

vol(VL) = vol(r0B)1+o(1), r0 =
√︂

α2
4α2 − 4 . (18)

Note that vol(rB) = rd vol(B) for arbitrary r, hence the equivalence. Below we will further use the quantity
V(r)
L = VL ∩ rB ⊆ VL as the intersection of the polytope with the ball of radius r > 0. Observe that for

sufficiently small r ≪ r0 we have V(r)
L = rB ⊂ VL while for large r ≫ r0 we have V(r)

L = VL ⊂ rB. The quantity
r0 is intuitively the radius r for which vol(V(r)

L ) ≈ vol(VL) ≈ vol(rB).
First, some simple manipulations give:

V(r)
L =

⋂︁
v∈L

Hv ∩ (rB) =
⋂︁
v∈L

(︀
rB \ rCv/r

)︀
= r
(︁
B \

⋃︁
v∈L

Cv/r

)︁
⏟  ⏞  

K

. (19)

Note that the vectors v/r all have norm 1/r, and the spherical caps Cv/r thus have a fixed base radius of
1/(2r). To prove the lower bound on vol(VL), wewill use elementary volume arguments to argue that vol(K) ≈
vol(B). For the upper bound, we have vol(K) ≤ vol(B), and we will argue that with high probability over the
randomness of L, vol(VL) ≈ vol(V(r)

L ).
Lower bound (≥): Ignoring spherical cap intersections, we have:

vol(K) ≥ vol(B) − n · vol(Cv/r) = vol(B)
[︁
1 − αd

(︀
1 − 1

4r2
)︀d/2+o(d)]︁ . (20)

For 1/α2 = 1 − 1/(4r2) + o(1), or equivalently r = r0 − o(1), we thus get vol(K) ≥ (1 − o(1)) · vol(B).
Upper bound (≤): Clearly vol(V(r)

L ) = rd vol(K) ≤ rd vol(B); the difficulty lies in showing that vol(VL) ≈
vol(V(r)

L ). Note that when n is large, then the spherical caps in (19) will cover (almost) the entire surface ofB –
if e.g. only a fraction 2−Θ(d

2) of the sphere remains uncovered, then the parts of VL extending beyond rBwill
contribute a negligible amount to the volume of VL.

Given a point on S, the probability of it not being covered by one of n spherical caps Cv/r is given
by [1 − vol(Cv/r)/ vol(B)]n. For n = vol(B)/ vol(Cv/r), this can be upper bounded by 1/e, hence for n =
2d2 vol(B)/ vol(Cv/r) the expected quantity not covered on the sphere is at most e−2d

2
. By Markov’s inequal-

ity, the probability that more than a fraction e−d
2
of the sphere is covered is at most e−2d

2+d2 = e−d
2
, and so

the upper bound follows.

3.2 Uniformly random points from the (unit) ball

As sampling from B and S is similar in high-dimensional spaces (almost all the volume of the ball is con-
centrated near the surface of the sphere), in most cases the asymptotics for the unit sphere and the unit ball
are the same. However, when n is very large, a significant number of vectors will have norm significantly less
than 1, and these will then determine the shape of the resulting polytope.

The following main result shows that if n ≫ 2d/2, then the volume of the Voronoi cell for 0 scales like
vol(B)/n. Note that VL can be seen as the Voronoi cell for 0 in the data set L ∪ {0}, and for n ≫ 2d/2 the
Voronoi cell of the 0-vector is therefore no larger than the Voronoi cells of the other n points in the ball – each
of the points covers an equal fraction vol(B)/n of the ball. For small n, the portion of the ball covered by 0 is
an exponential factor larger than the average.
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Theorem 3.2 (Random points from the unit ball) Let α > 1, and let L ⊂ B consist of n = αd uniformly ran-
dom vectors fromB. Then, with probability 1 − o(1) over the randomness of L, we have:

α ≤
√
2 =⇒ vol(VL) =

(︂
α2

4α2 − 4

)︂d/2+o(d)
vol(B); (21)

α ≥
√
2 =⇒ vol(VL) =

(︂
1
α2

)︂d/2+o(d)
vol(B). (22)

Proof. For 𝛾 < 1 close to 1, let us divide the set L into sets Li = {v ∈ L : 𝛾 i ≤ ‖v‖ ≤ 𝛾 i−1}, for i = 0, 1, . . . , i.e. we
partition Li according to a sequence of thin spherical shells. With high probability over the randomness of L,
each of these lists Li will contain (𝛾 iα)d+o(d) vectors. The original polytope can now equivalently be described
as VL =

⋂︀∞
i=0 VLi . To estimate the volume of VL, note that by Theorem 3.1, each of these cells VLi is roughly

shaped like a ball of a certain radius ri. As a result, the volume of VL is determined by the smallest radius
mini∈N ri of these balls, corresponding to one of the lists Li.

To find the list Li defining the smallest polytope, recall that by applying Theorem 3.1 with ni = (𝛾 iα)d+o(d)

vectors to a sphere of radius 𝛾 i, we have the following relation, where β = 𝛾2i:

vol(VLi ) =
(︁

α2𝛾2i

4α2𝛾2i−4

)︁d/2+o(d)
vol(𝛾 iB) =

(︁
β2α2

4βα2−4⏟  ⏞  
f (β)

)︁d/2+o(d)
vol(B). (23)

To find the value β resulting in the smallest radius, note that the derivative of f (β) satisfies f ′(β) = −βα2(2 −
βα2)/4(βα2−1)2, which is negative for small β < 2/α2, i.e. f (β) is decreasingwith β, and the volume of theVLi
increases with i. Now f ′(β) = 0 has one solution at β = 2/α2, which is attained by one of the lists Li iff α ≥

√
2.

In the regime α <
√
2, the smallest radius is obtained for the first list L0, resulting in the same bound as in

Theorem 3.1, while for α ≥
√
2 the non-trivial minimum value lies at β = 𝛾2i = 2/α2, resulting in f (β) = 1/α2

and vol(VL) = α−d+o(d) vol(B).

Let us finally state separately what happens when we draw points uniformly at random from a ball of a dif-
ferent radius. This directly follows from Theorem 3.2.

Corollary 3.3 (Random points from the β-ball). Let α > 1, and let L ⊂ B consist of n = αd uniformly random
vectors from β ·B. Then, with probability 1 − o(1) over the randomness of L, we have:

α ≤
√
2 =⇒ vol(VL) =

(︂
α2β2

4α2 − 4

)︂d/2+o(d)
vol(B); (24)

α ≥
√
2 =⇒ vol(VL) =

(︂
β2
α2

)︂d/2+o(d)
vol(B). (25)

Proof. Relative to the β-ball, we have vol(VL) = rd+o(d) vol(βB) with r as in Theorem 3.2. Noting that vol(βB) =
βd vol(B), the result follows.

4 Approximate Voronoi cells, revisited
With the results from Section 3, we can immediately deduce asymptotics for the volume of approximate
Voronoi cells, where these results can now be derived using only the Gaussian heuristic, which has been
used and verified on far more occasions than [12, Heuristic 1].²

2 Byapplying theGaussianheuristic to balls of different radii,we canderive thedensity of normsof lattice vectors,while spherical
symmetry of the distribution of lattice vectors then implies that the lattice vectors inside a ball must follow a uniform distribution.
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Corollary 4.1 (Points from a lattice). Let α > 1, and let L ⊂ L \ {0} consist of the αd shortest non-zero vectors
of a lattice L. Then, assuming the Gaussian heuristic holds, with probability 1 − o(1) we have:

α ≤
√
2 =⇒ vol(VL) =

(︂
α4

4α2 − 4

)︂d/2+o(d)
vol(V); (26)

α ≥
√
2 =⇒ vol(VL) = (1 + o(1))d/2+o(d) vol(V). (27)

Proof. Without loss of generality, suppose that vol(V) = vol(B). Under the Gaussian heuristic, the points L
are then essentially uniformly distributed in the ball of radius α. Applying Corollary 3.3 with α = β, the result
then follows.

4.1 Heuristic assumptions

Assuming that [12, Heuristic assumption 1] holds, as discussed in the introduction this would give us tight
bounds on the success probability of the randomized iterative slicer from [12]. However, these results would
then contradict the claimed lower bound on the success probability from [12, Equation (37)]. The source of
this contradiction is [12, Heuristic assumption 1], which reads as follows.³

Heuristic assumption 4.2 (Randomized slicing, DLW) For L ⊂ L and large s,

Pr
t′∼Dt+L,s

[︁
SliceL(t′) ∈ V

]︁
≈ vol(V)
vol(VL)

. (28)

In fact, the randomized slicer is biased towards finding as short solutions as possible, and the probability of
returning the unique representative from V may be much larger than vol(V)/ vol(VL). We therefore propose
using the following heuristic assumption instead:

Heuristic assumption 4.3 (Randomized slicing, new) For L ⊂ L and large s,

Pr
t′∼Dt+L,s

[︁
SliceL(t′) ∈ V

]︁
&

vol(V)
vol(VL)

. (29)

To motivate this new assumption, consider the reverse process of starting at the sliced solution vector t′′ =
SliceL(t′), and adding lattice vectors of length at most αλ1(L) to obtain longer and longer vectors in the coset
t + L. Now, given an initial sampled vector t′ ∼ Dt+L,s, the probability of reaching t′′ out of all possible
solution vectors in t + L is essentially proportional to the number of paths from t′′ to t′ through the above
process of adding lattice vectors of length at most αλ1(L) to t′′. Starting from a shorter vector, the tree of
potential paths to t′′ is likely to be wider, and there are likely more such paths reaching t′′.

Assuming that indeed, the success probability is at least proportional to the ratio of these volumes, we
obtain the CVPP complexities described in Theorem 1.2 in the introduction. Here we simply replaced the
upper bound on pα from [12] by the upper bound obtained via the volume of approximate Voronoi cells, and
otherwise applied the same techniques of nearest neighbor speed-ups.

4.2 The low-memory regime

As Theorem 1.2 describes complexities even for the regime of 2εd+o(d) memory with small ε, let us study the
asymptotic behavior as the memory is actually subexponential or even polynomial in d.

3 For details and definitions of Dt+L,s and SliceL(t′), we refer the reader to [12].
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First, note that for the lower bound on the volume, we essentially only needed Equation (15), which holds
even when α = o(1) scales with d. (See also [31, Lemmas 4.1 and 4.2] for absolute bounds.) For the upper
bounds, we needed that the list L properly covers the sphere, and we argued that n = 2d2 vol(B)/ vol(Cv)
suffices to cover enough of the sphere with high probability. We can therefore extend these results all the way
up to the regime of polynomial space. Note that for small α = 1 + ε, Theorem 3.2 gives:

vol(VL) =
(︂

1√
8ε

+ O(
√
ε)
)︂d+o(d)

vol(B). (30)

Substituting suitable values of α, we get the following results.

Proposition 4.4 (Polynomially many points from the unit ball). Let L ⊂ B consist of n = dΘ(1) uniformly ran-
domvectors fromB. Then,with probability1−o(1)over the randomness of L,wehavevol(VL) = 2 1

2 d log2 d+o(d log d)

vol(B).

Proof. This follows from substituting α = dΘ(1/d) = 1 + Θ(log d)/d.

In the application of CVPP algorithms, Proposition 4.4 shows that heuristically, we obtain a smooth trade-off
between enumeration and using exact Voronoi cells – Hanrot–Stehlé [17, Theorem 4] previously showed that
enumeration has a cost of dd/2+o(d) time for solving CVP in the worst case, with polynomial memory.

Proposition 4.5 (Subexponentially many points from the unit ball). Let L ⊂ B consist of n = 2Θ(d
𝛾 ) uni-

formly random vectors from B. Then, with probability 1 − o(1) over the randomness of L, we have vol(VL) =
2 1

2 (1−𝛾)d log2 d+o(d log d) vol(B).

Proof. This follows from substituting α = expΘ(d𝛾−1) = 1 + Θ(d𝛾−1).

This matches results from e.g. [11]. To illustrate Proposition 4.5 with an example, we expect to be able to solve
CVPP with query time dd/4+o(d) when using 2Θ(

√
d) memory, or we can match the average-case complexity of

enumeration with a query time complexity of dd/(2e)+o(d) using 2Θ(d
1−1/e) ≈ 2Θ(d

0.63) memory.

Acknowledgement: The author thanks Léo Ducas for insightful discussions on the topic of approximate
Voronoi cells.
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A The Sommer–Feder–Shalvi iterative slicer
We briefly describe some more details on previous, related work in these appendices, starting with the itera-
tive slicer of Sommer–Feder–Shalvi [37]. This algorithm provides an elementary, greedy strategy to attempt to
find a closest vector to a given target vector t, given a list of lattice points L ⊂ L, which always finds a solution
when L = R is the set of relevant vectors of the lattice. To do this, note that the shortest representative t′ in
the coset of the lattice t + L is necessarily contained in the Voronoi cell of the lattice, and therefore 0 is the
closest lattice vector to t′. This implies that t − t′ is the closest lattice vector to t, and so finding the shortest
representative t′ ∈ t + L is equivalent to solving CVP for t.

To find this shortest representative, given t and a list of lattice vectors L ⊂ L, the algorithm follows the
same approach of e.g. lattice sieving algorithms [21, 26, 28]: we start with t′ = t, and we repeatedly try to find
vectors v ∈ L such that t′ ← t′ − v is a shorter vector in the coset t + L. If no more such reductions can be
done, we terminate and hope that the algorithm found the shortest representative.

Summarizing, the iterative slicer can be succinctly described through the pseudocode of Algorithm 1.

Algorithm 1 The Sommer–Feder–Shalvi iterative slicer [37]

Require: The relevant vectors R ⊂ L and a target t ∈ Rd

Ensure: The algorithm outputs a closest lattice vector s ∈ L to t
1: Initialize t′ ← t
2: for each r ∈ R do
3: if ‖t′ − r‖ < ‖t′‖ then
4: Replace t′ ← t′ − r and restart the for-loop
5: end if
6: end for
7: return s = t − t′

B The Doulgerakis–Laarhoven–De Weger randomized slicer
As the iterative slicer of Sommer–Feder–Shalvi often does not succeed, when using as input only a subset of
the relevant vectors of the lattice, Doulgerakis–Laarhoven–DeWeger proposed the followingheuristic variant
of the slicer. Instead of using the list of relevant vectors for reductions, firstwe only use a subset of the relevant
vectors. Since there is no guarantee that the slicer then returns a vector from the exact Voronoi cell, and the
output may not be a solution, we repeat the algorithm many times on rerandomized versions of the same
target vector. What this means is that instead of reducing t′ = t with the iterative slicer, we sample t′ ∼ t +L

at random (e.g. from a discrete Gaussian distribution over the coset t +L) and repeat the algorithm on many
such samples. This algorithm is given in pseudocode in Algorithm 2.

In the worst case, each of these reductions will end up on the same path and reduce to the same, wrong
solutions, thus making no progress. In practice however it was observed that, if the iterative slicer find a
solution in a single run with probability p ≪ 1, then repeating the algorithm K times with such randomized
target vectors leads to an overall success probability proportional to K × p. This is purely an experimental,
heuristic tweak – there are no theoretical guarantees that reducing such a shifted target vector gives “fresh”
results.
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Algorithm 2 The Doulgerakis–Laarhoven–De Weger randomized slicer [12]

Require: A list L ⊂ L and a target t ∈ Rd

Ensure: The algorithm outputs a closest lattice vector s ∈ L to t
1: s ← 0
2: repeat
3: Sample t′ ∼ Dt+L,s
4: for each r ∈ L do
5: if ‖t′ − r‖ < ‖t′‖ then
6: Replace t′ ← t′ − r and restart the for-loop
7: end if
8: end for
9: if ‖t′ − 0‖ < ‖t − s‖ then
10: s ← t − t′

11: end if
12: until s is a closest lattice vector to t
13: return s

C The Doulgerakis–Laarhoven–De Weger complexity analysis
To analyze the heuristic time and space complexities of the randomized slicer, Doulgerakis–Laarhoven–De
Weger made the following assumptions. First, the vectors from the list L ⊂ L are assumed to follow a spheri-
cally symmetric distribution, and their lengths are assumed to follow thepredictionobtained via theGaussian
heuristic. Similarly, the exact Voronoi cell of the lattice is modeled as a ball of a certain radius, such that the
volume of the ball matches the volume of the lattice. Containment of the reduced vector t′ ∈ t + L in V was
then estimated to be equivalent to the condition ‖t′‖ ≤ λ1(L).

Then, to analyze the success probability of the slicing routine, first it was observed that if t′ has a rather
large norm, then it is likely that L contains a vector v such that t′ − v is shorter than t′; progress can then still
be made with ease. There is a phase transition at a certain value β such that

– If ‖t′‖ > β, then with probability at least d−Θ(1) there exists a vector v ∈ L such that ‖t′ − v‖ ≤ ‖t′‖;
– If ‖t′‖ < β, then with probability at most 2−Θ(d) there exists a vector v ∈ L such that ‖t′ − v‖ ≤ ‖t′‖.

After reaching norm β, the algorithmmay still find a solution, but each additional reduction step is exponen-
tially small to occur. To obtain a boundon the overall success probability of the algorithm, the authors studied
the probability that after exactly one more reduction with the list L, we reach the desired norm λ1(L), so that
t′ is expected to be contained in V. This is of course only one way for the algorithm to “reach” the Voronoi
cell, and it may also happen that after two, three, and any number of additional reductions we still reach the
solution, albeit with exponentially small probability. The analysis based on finding the solution in exactly
one step, jumping from norm β to λ1(L), is therefore only a lower bound on the overall success probability of
the algorithm. This directly leads to the bound on the success probability stated in Equation (5).

Then, given this analysis of the algorithm, the authors obtained a lower bound on the success probability
p of a single run of the (randomized) iterative slicer. If one then makes the additional assumption that the
success probability of the algorithm is equal to the ratio of the volume of the exact cell over the volume of the
approximate Voronoi cell, then this would immediately yield a lower bound on the ratio of these volumes as
well. This would then lead to the conjectured lower bound on the ratio of the volumes given in Equation (4).

As shown in this paper, the latter step is incorrect, as we give tight bounds on the ratio of these volumes,
and show that the inverse of the expression from (4) is not a lower bound on the ratio of the volumes.
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